Alexander S. Kechris

The spaces of measure preserving equivalence relations and graphs

Alexander S. Kechris
Department of Mathematics
California Institute of Technology
Pasadena, CA 91125
kechris@caltech.edu

Contents

1 Introduction 5
2 The space of closed subgroups 7
3 Full groups 9
4 The space of subequivalence relations 13
4.1 The weak topology 13
4.2 The strong topology 16
4.3 Identification of the topologies 21
4.4 Alternative descriptions 22
4.5 Continuity of operations 29
4.6 The uniform topology 31
5 Limits of sequences 33
6 The space of equivalence relations 37
6.1 Coherence of topologies 37
6.2 Properties of the weak topology 39
6.3 Parametrization by actions 41
6.4 The inclusion poset 43
7 Relations with the space of actions 47
8 Complexity calculations 55
9 Finite and infinite index subrelations 61
10 Ergodic and strongly ergodic equivalence relations 67
10.1 Ergodic equivalence relations 67
10.2 Strongly ergodic equivalence relations 68
11 Richly ergodic equivalence relations 69
12 The cost function 73
13 Normality 79
14 A selection theorem for hyperfiniteness 85
15 Invariant, random equivalence relations on groups 91
15.1 Equivalence relations on groups 91
15.2 Classes of invariant, random equivalence relations 93
15.3 Bauer vs Poulsen 95
15.4 Another approach to the topology of equivalence relations 96
15.5 Invariant, random equivalence relations and weak contain- ment 97
16 Ultraproducts of equivalence relations 101
17 Factors 103
17.1 Factors in general 103
17.2 Class-bijective factors 111
17.3 Other notions of factors 115
17.4 An application to soficity 116
17.5 Relative hyperfiniteness 118
17.6 Relative cost 120
17.7 Topological rank of relative full groups 124
18 The space of graphs 125
19 More complexity calculations 129
20 Treeability 135
Bibliography 143
Index 149

1. Introduction

This work is to a large extent a continuation of that in [K] on the global aspects of measure preserving actions of countable groups. We define and study here natural topologies on the spaces of measure preserving equivalence relations and graphs on a standard probability space.

Here is an overview of its contents. In Chapter 2 we recall some basic facts about the space of closed subgroups of a Polish group which admits a (two-sided) invariant metric. In Chapter 3 we discuss full groups of measure preserving countable Borel equivalence relations on a standard probability space (X, μ), including a characterization of these groups among the subgroups of the group $\operatorname{Aut}(X, \mu)$ of measure preserving automorphisms of (X, μ). In Chapter 4 we define a natural Polish topology on the space $S(E)$ of subequivalence relations of a measure preserving countable Borel equivalence relation E. Several formulations of the topology are given and shown to be equivalent. A stronger (non-separable) topology, useful in certain applications, is also discussed. In Chapter 5 we discuss the structure of limits of convergent sequences in $S(E)$. In Chapter 6 it is shown that the topologies on $S(E)$ are coherent under inclusion and can be used to define a topology on the space of all measure preserving countable Borel equivalence relations (which is however far from Polish).

In Chapter 7 we discuss continuity properties of the map that assigns to each measure preserving action of a countable group Γ the associated equivalence relation and show that they are related to properties of the group such as amenability and property (T). In Chapter 8, Chapter 9, and Chapter 10 we include several descriptive set theoretic complexity calculations for classes of equivalence relations in $S(E)$. This leads in Chapter 11 to the introduction and study of the class of richly ergodic equivalence relations E, i.e., those for which the generic equivalence relation in $S(E)$ is ergodic. In Chapter 12 we consider the cost function on the space of sube-
quivalence relations and in Chapter 13 the concept of normality. In Chapter 14 we prove a Borel selection theorem for hyperfiniteness. In Chapter 15 we study the connections of the preceding theory to the structure of invariant, random equivalence relations on a countable group. Chapter 16 deals with ultraproducts of equivalence relations and in Chapter 17 we define and study various notions of factoring for equivalence relations.

In Chapter 18 we introduce an analogous canonical topology on the space $\operatorname{Gr}(E)$ of Borel subgraphs of a measure preserving countable Borel equivalence relation E and in Chapter 19 we include various descriptive complexity calculations related to this topology. Chapter 20 deals with the notion of treeability for equivalence relations.

Finally we mention that a survey (without proofs) of the results presented here appeared on [K3].

Acknowledgments. Research in this paper was partially supported by NSF Grants DMS-0968710, DMS-1464475 and DMS-1950475. I would like to thank Lewis Bowen for asking some questions that got me thinking about this topic. Thanks also to Lewis, Peter Burton, François Le Maître, Ben Miller, Forte Shinko, Anush Tserunyan and Robin Tucker-Drob for many useful comments and corrections or for allowing me to include some results of theirs in this paper.

2. The space of closed subgroups

We start with some preliminaries. Fix a Polish metric space (X, d), with $d \leq 1$ and let $\mathcal{F}^{*}(X)$ be the set of non-empty closed subsets of X. We can identify $F \in \mathcal{F}^{*}(X)$ with the distance function

$$
f_{F}(x)=d(x, F), x \in X
$$

and view $\mathcal{F}^{*}(X)$ as a subset of $[0,1]^{X}$. The relative topology on $\mathcal{F}^{*}(X)$ induced by the product topology on $[0,1]^{X}$ is called the Wijsman topology on $\mathcal{F}^{*}(X)$. It is the topology generated by the functions:

$$
F \mapsto d(x, F), \quad x \in X
$$

It is shown in Beer [B] that $\overline{\mathcal{F}^{*}(X)}$, the closure of $\mathcal{F}^{*}(X)$ in $[0,1]^{X}$, is compact metrizable and $\mathcal{F}^{*}(X)$ is G_{δ} in $\overline{\mathcal{F}^{*}(X)}$, thus a Polish space. Moreover the Borel σ-algebra of the Wijsman topology on $\mathcal{F}^{*}(X)$ is the Effros σ-algebra generated by the sets $\left\{F \in \mathcal{F}^{*}(X): F \cap V \neq \emptyset\right\}$, for $V \subseteq X$ open (Hess, see, e.g., [BK, 2.6.2]).

Equivalently, we can describe this topology as follows. Fix a countable dense subset $X_{0} \subseteq X$. Then it is clear that this topology is also the one generated by the functions $F \mapsto d\left(x_{0}, F\right), x_{0} \in X_{0}$. Then we can also identify $F \in \mathcal{F}^{*}(X)$ with the function

$$
f_{F}^{0}\left(x_{0}\right)=d\left(x_{0}, F\right), x_{0} \in X
$$

and view $\mathcal{F}^{*}(X)$ as a subset of $[0,1]^{X_{0}}$. The relative topology on $\mathcal{F}^{*}(X)$ induced by the product topology on $[0,1]^{X_{0}}$ is again the Wijsman topology.

Assume next that Γ is a Polish group with a compatible (two-sided) invariant metric $d \leq 1$. Then (Γ, d) is complete, thus a Polish metric space. Let

$$
S g(\Gamma)=\{H \subseteq \Gamma: H \text { is a closed subgroup }\}
$$

Proposition 2.1. $S g(\Gamma)$ is a closed subspace of $\mathcal{F}^{*}(\Gamma)$.
Proof. Let $H_{n} \in S g(\Gamma)$ and $H_{n} \rightarrow H$. Then $d\left(1, H_{n}\right)=0 \rightarrow d(1, H)$, so $d(1, H)=0$ and $1 \in H$. Let now $g, h \in H$ in order to show that $g h^{-1} \in$ H. Since $0=d(g, H)=\lim _{n \rightarrow \infty} d\left(g, H_{n}\right)$, find $g_{n} \in H_{n}$ with $d\left(g, g_{n}\right) \rightarrow$ 0 and similarly find $h_{n} \in H_{n}$ with $d\left(h, h_{n}\right) \rightarrow 0$. Then $d\left(h^{-1}, h_{n}^{-1}\right) \rightarrow 0$ (since $d\left(h, h_{n}\right) \rightarrow 0$ iff $h_{n} \rightarrow h$ iff $h_{n}^{-1} \rightarrow h^{-1}$ iff $d\left(h^{-1}, h_{n}^{-1}\right) \rightarrow 0$) and so $d\left(g h^{-1}, g_{n} h_{n}^{-1}\right) \rightarrow 0$, thus $d\left(g h^{-1}, H_{n}\right) \rightarrow d\left(g h^{-1}, H\right)=0$, i.e., $g h^{-1} \in H$.

It follows that $S g(\Gamma)$ with the induced topology is also Polish. The group Γ acts on $S g(\Gamma)$ by conjugation: $g \cdot H=g H g^{-1}$.

Proposition 2.2. The conjugation action of Γ on $S g(\Gamma)$ is continuous.
Proof. It is enough to show that it is separately continuous (see [K2, 9.14]).
(1) Let $g_{n} \rightarrow g$ in Γ and $H \in S g(\Gamma)$. We will show that $g_{n} H g_{n}^{-1} \rightarrow g H^{-1}$, i.e., that for $x \in \Gamma$,

$$
d\left(x, g_{n} H g_{n}^{-1}\right) \rightarrow d\left(x, g H g^{-1}\right)
$$

Now $d\left(x, g_{n} H g_{n}^{-1}\right)=d\left(g_{n}^{-1} x g_{n}, H\right)$ and $d\left(x, g H g^{-1}\right)=d\left(g^{-1} x g, H\right)$. Since $g_{n}^{-1} x g_{n} \rightarrow g^{-1} x g$ and $|d(x, H)-d(y, H)| \leq d(x, y)$, this is clear.
(2) Let $g \in \Gamma$ and $H_{n} \rightarrow H$ in $S g(\Gamma)$. We will show that $g H_{n} g^{-1} \rightarrow$ $g H^{-1}$, i.e., for any $x \in \Gamma$

$$
d\left(x, g H_{n} g^{-1}\right) \rightarrow d\left(x, g H g^{-1}\right)
$$

or equivalently

$$
d\left(g^{-1} x g, H_{n}\right) \rightarrow d\left(g^{-1} x g, H\right)
$$

which is obvious.

3. Full groups

Let now (X, μ) be a standard probability space (i.e., X is a standard Borel space and μ is a probability Borel measure on X). We denote by $\operatorname{Aut}(X, \mu)$ the group of all Borel automorphisms of X which preserve the measure μ and in which we identify two such automorphisms if they agree μ-a.e.

Unless otherwise stated or is clear from the context, we will assume that (X, μ) is non-atomic and moreover, as usual, we neglect null sets in the sequel.

The uniform metric $d=d_{u}$ on $\operatorname{Aut}(X, \mu)$ is defined by $d_{u}(S, T)=$ $\mu(\{x: S(x) \neq T(x)\})$. This is a (two-sided) invariant complete metric on Aut (X, μ) and the associated uniform topology, u, makes it a topological group.

Let now E be a measure preserving countable Borel equivalence relation on X and $\Gamma=[E]$ the full group of E, i.e., the subgroup of $\operatorname{Aut}(X, \mu)$ consisting of all $T \in \operatorname{Aut}(X, \mu)$ with $T(x) E x$, for (almost) all x. Then Γ is a closed subgroup of $\operatorname{Aut}(X, \mu)$ in the uniform topology and d restricted to Γ is separable, thus Γ is a Polish group admitting the compatible invariant metric d. When $T \in \operatorname{Aut}(X, \mu)$, its full group [T], is the full group of the equivalence relation E_{T} induced by T.

For further reference, we also define the full pseudogroup of E, in symbols $[[E]]$, consisting of all Borel bijections $f: A \rightarrow B$, with A, B Borel subsets of X and $f(x) E x$, for (almost) all $x \in A$, where we again identify any two such functions if they agree a.e. Clearly $[E] \subseteq[[E]]$.

It is an interesting question to characterize the full groups $[E]$ among the subgroups of the topological group $\operatorname{Aut}(X, \mu)$ equipped with the uniform topology, using only the topological group structure of this group. Below we provide one such characterization. We start with the following lemma.

Lemma 3.1. For any non-trivial involution $T \in \operatorname{Aut}(X, \mu)$, the centralizer C_{T} of T in the group $\operatorname{Aut}(X, \mu)$ has a largest abelian normal subgroup, denoted by A_{T}. Moreover $A_{T}=[T]$.

Proof. By [K, Lemma 4.7], if $T \in[E], E$ ergodic, then $[T]$ is the largest abelian normal subgroup of $C_{T} \cap[E]$. Since

$$
\operatorname{Aut}(X, \mu)=\bigcup\{[E]: E \text { ergodic, } T \in[E]\}
$$

the result follows.
We now have:
Theorem 3.2. The following are equivalent for a subgroup Γ of $\operatorname{Aut}(X, \mu)$:
(i) $\Gamma=[E]$, for a measure preserving countable Borel equivalence relation E,
(ii) (a) Γ is closed and separable in $(\operatorname{Aut}(X, \mu), u),(b)$ every element of Γ is a product of involutions, and (c) for any nontrivial involution $T \in \Gamma, A_{T} \subseteq \Gamma$.

Proof. It is clear that (i) implies (ii), (a) and (c). That (i) implies (ii), (b), see [M1, Chapter 1] or [M2, Theorem 1].

To prove that (ii) implies (i), assume that Γ is nontrivial and let \mathcal{I} be a countable set of nontrivial involutions in Γ which is uniformly dense in the set of all nontrivial involutions in Γ (this is nonempty by (b)). Let E be the equivalence relation induced by \mathcal{I}. The group generated by \mathcal{I} is included in $[E]$ and thus so is its uniform closure, so $\Gamma \subseteq[E]$. By [KT, 4.4], the group generated by the union of the full groups $[T], T \in \mathcal{I}$, is uniformly dense in $[E]$. By (c) and Lemma 3.1 this group is contained in Γ, so $\Gamma=[E]$.

Theorem 3.3. The following are equivalent for a subgroup Γ of $\operatorname{Aut}(X, \mu)$:
(i) $\Gamma=[E]$, for an ergodic measure preserving countable Borel equivalence relation E,
(ii) (a) Γ is closed and separable in $(\operatorname{Aut}(X, \mu), u),(b) \Gamma$ is simple, and (c) Γ contains a nontrivial involution T with $A_{T} \subseteq \Gamma$.

Proof. For the proof that (i) implies (ii), use [K, 4.5, 4.6]. For the other direction, it is enough to show that Γ is of the form $[E]$, because (b) then implies the ergodicity of E (see [K, page 22]). By [KT, proof of 4.14], and using (c), we see that there is a nonempty countable set of nontrivial involutions \mathcal{I} contained in Γ such that if E is the equivalence relation induced by \mathcal{I}, then $[E] \triangleleft \Gamma$. Since Γ is simple and $[E]$ is nontrivial, $\Gamma=[E]$.

Remark 3.4. In Theorem 3.3, (b) can be replaced by (b)*: Γ is topologically simple.

The above characterization of the subgroups Γ of $(\operatorname{Aut}(X, \mu), u)$ that are full groups involves the properties of Γ within $(\operatorname{Aut}(X, \mu), u)$. One can wonder whether there is a characterization that depends only on the topological group structure of (Γ, u). In other words, is it possible to find a property $\mathcal{P}(\Gamma)$ of Polish groups Γ, invariant under topological group isomorphism, such that for a closed separable subgroup of $(\operatorname{Aut}(X, \mu), u), \Gamma$ is a full group iff $\mathcal{P}(\Gamma)$ holds. It turns out that no such "internal" characterization is possible, even if one uses the metric d_{u} on Γ.

Proposition 3.5. For each measure preserving countable Borel equivalence relation E, different than equality, there is a closed separable subgroup G of the group (Aut $(X, \mu), u)$ which is not a full group but there is an isometry between $\left(G, d_{u}\right)$ and $\left([E], d_{u}\right)$ which is also a group isomorphism.

Proof. Let $Y=X \times\{0,1\}, \nu=\mu \times \eta$, where η is the uniform measure on $\{0,1\}$. Consider the equivalence relation E^{*} on Y given by

$$
(x, i) E^{*}(y, j) \Longleftrightarrow x E y \& i=j .
$$

Then E^{*} is a measure preserving countable Borel equivalence relation on (Y, ν), which is of course isomorphic to (X, μ). For $T \in[E]$, let $T^{*} \in\left[E^{*}\right]$ be defined by

$$
T^{*}(x, i)=(T(x), i) .
$$

Then $T \mapsto T^{*}$ is an isometry of $\left([E], d_{u}\right)$ with $\left(\Gamma, d_{u}\right)$, where

$$
\Gamma=\left\{T^{*}: T \in[E]\right\}
$$

is a closed subgroup of $(\operatorname{Aut}(Y, \nu), u)$, and $T \mapsto T^{*}$ is also clearly a group isomorphism.

However Γ is not a full group. Indeed if $\Gamma=[F]$, then $F=E^{*}$, so $\Gamma=\left[E^{*}\right]$. But if $T_{0} \neq T_{1}$ are in $[E]$, let $S \in[E]$ be defined by

$$
S(x, i)=\left(T_{i}(x), i\right)
$$

Then $S \in\left[E^{*}\right] \backslash \Gamma$, a contradiction.

4. The space of subequivalence relations

Let E be a measure preserving countable Borel equivalence relation on (X, μ). We denote by $S(E)$ the set of all subequivalence relations of E, where as usual we identify two such relations if they agree a.e. We will next define a canonical Polish topology on $S(E)$. In fact we will give several equivalent descriptions of this topology.

4.1 The weak topology

We can identify any $F \in S(E)$ with its full group $[F]$ and thus view $S(E)$ as a subspace of $S g([E])$.
Proposition 4.1. $S(E)$ is a closed subspace of $\mathrm{Sg}([E])$.
Proof. Let $F_{n} \in S(E)$ and $\left[F_{n}\right] \rightarrow H \in \operatorname{Sg}([E])$. We will show that $H \in$ $S(E)$, i.e., that $H=[F]$, where F is a subequivalence relation of E.

Let $H_{0} \leq H$ be a countable dense subgroup of H. Thus $H_{0} \leq[E]$ and let F be the subequivalence relation of E induced by H_{0}. We will show that this works.

Since $H_{0} \subseteq[F]$ and H_{0} is dense in H, clearly $H \subseteq[F]$.
We verify next that $[F] \subseteq H$. Fix any $T \in[F]$. Then there is a Borel decomposition $X=\bigsqcup_{n} A_{n}$ and $h_{n} \in H_{0}$ such that $T=\bigsqcup_{n}\left(h_{n} \mid A_{n}\right)$. Fix $\epsilon>0$ and let N be so large that

$$
\sum_{n \geq N} \mu\left(A_{n}\right)<\epsilon
$$

Put $\varphi=\bigsqcup_{n<N}\left(h_{n} \mid A_{n}\right)$. Since $h_{0}, \ldots, h_{N-1} \in H=\lim _{n \rightarrow \infty}\left[F_{n}\right]$, for all large enough N_{0} we can find $g_{0}, \ldots, g_{N-1} \in\left[F_{N_{0}}\right]$ with $d\left(h_{n}, g_{n}\right)<\frac{\epsilon}{N}$ for $n<N$.

For $n<N$ let $B_{n} \subseteq A_{n}$ be such that $\mu\left(A_{n} \backslash B_{n}\right)<\frac{\epsilon}{N}$ and $h_{n}\left|B_{n}=g_{n}\right| B_{n}$. Let then $\psi=\bigsqcup_{n<N} g_{n} \mid B_{n}$ and note that $\psi(x) F_{N_{0}} x$ (for almost all x in the domain of ψ). Let $U \in \operatorname{Aut}(X, \mu)$ be such that $\psi \subseteq U$.

We now recall the following fact (see Ioana-Kechris-Tsankov [IKT, 1.1, 1.2]).

Proposition 4.2. Let F be a measure preserving countable Borel equivalence relation and $S \in \operatorname{Aut}(X, \mu)$. Then

$$
d(S,[F])=\mu(\{x:(x, S(x)) \notin F\})
$$

and there is $T \in[F]$ such that $\{x:(x, S(x)) \in F\}=\{x: S(x)=T(x)\}$, so that, in particular, $d(S,[F])=d(S, T)$.

By this result, there is $S \in\left[F_{N_{0}}\right]$ such that $S(x)=U(x)$ if $U(x) F_{N_{0}} x$. Then if $x \in B_{n}, n<N, U(x)=g_{n}(x) F_{N_{0}} x$, so $\psi \subseteq S$.

Now S, T agree except on a set of measure $<N \frac{\epsilon}{N}+\epsilon$, so $d(S, T)<2 \epsilon$ and thus $d\left(T,\left[F_{\left.N_{0}\right]}\right)<2 \epsilon\right.$. Thus we have shown that if $T \in[F]$, then we can find $N_{1}<N_{2}<\ldots$ such that $d\left(T,\left[F_{N_{i}}\right]\right)<\frac{1}{i}$, so $d(T, H)=0$, i.e., $T \in H$.

Below we put

$$
d(S, F)=d(S,[F])
$$

From Proposition 4.1, we have that $S(E)$ is also a Polish space with the topology it inherits from $\operatorname{Sg}([E])$. We call this the weak topology on $S(E)$ and denote it by w. We recall that in this topology

$$
F_{n} \xrightarrow{w} F \text { iff } \forall S \in[E]\left(d\left(S, F_{n}\right) \rightarrow d(S, F)\right) .
$$

Moreover $[E]$ can be replaced in this equivalence by any dense subset of $[E]$. The group $[E]$ acts on $S(E)$ by

$$
x(T \cdot F) y \Longleftrightarrow T^{-1}(x) F T^{-1}(y)
$$

and, since $[T \cdot F]=T[F] T^{-1}$, Proposition 2.2 shows that this action is continuous. It is clear that this action is not minimal, since E is a fixed point of the action. In an earlier version of this work the following problem was raised:

Is there a dense orbit for the action of $[E]$ on $S(E)$?

Subsequently, in [LeM1], Le Maître has shown that the answer is positive when E is ergodic hyperfinite but negative if E is aperiodic, i.e., has infinite classes, and generated by a measure preserving action of an infinite countable group with property (T) (and in fact all non approximable E; see Definition 11.2) . We do not know a characterization of the equivalence relations E for which the above problem has a positive answer.

In fact Le Maître has shown the following, where we use the terminology and notation below:
(a) For each Borel set $A \subseteq X$ and equivalence relation E, we let $E \mid A=$ $E \cap A^{2}$ be the restriction of E to A.
(b) We say that $F \in S(E)$ has everywhere infinite index in E if for every Borel set $A \subseteq X$ of positive measure, $[E|A: F| A]=\infty$, i.e., each $E \mid A$-class contains infinitely many $F \mid A$-classes.
(c) $i d$ is the equality relation on X.
(d) If $F \in S(E)$, then $[E] \cdot F$ is the orbit of F in the action of $[E]$ on $S(E)$.
(e) For $\mathcal{R} \subseteq S(E), \overline{\mathcal{R}}$ is the closure of \mathcal{R} in the weak topology of $S(E)$.
(f) $\mathcal{H}_{E} \subseteq S(E)$ is the class of hyperfinite subequivalence relations of E.

Theorem 4.3 (Le Maître, [LeM1]). (i) If E is aperiodic, then for every $F \in$ $S(E), F$ has everywhere infinite index in E iff id $\in \overline{[E] \cdot F}$.
(ii) If E is ergodic and $F \in S(E)$ is aperiodic and has everywhere infinite index in E, then $\mathcal{H}_{E} \subseteq \overline{[E] \cdot F}$. Therefore for $F \in S(E), F$ is aperiodic and has everywhere infinite index in E iff id $\in \overline{[E] \cdot F}$ iff $\mathcal{H}_{E} \subseteq \overline{[E] \cdot F}$.

In particular, if E is ergodic hyperfinite, then for $F \in S(E), F$ is aperiodic and has everywhere infinite index in E iff $[E] \cdot F$ is dense in $S(E)$.

Moreover Le Maître has shown the following:
Theorem 4.4 (Le Maître, [LeM1]). If E is ergodic, then all $[E]$ orbits in \mathcal{H}_{E} are meager in \mathcal{H}_{E}

In particular, if E is ergodic hyperfinite, then all $[E]$ orbits are meager in $S(E)$
Consider now an aperiodic equivalence relation E and its automorphism group, $N(E)$, which is also the stabilizer of E in $\operatorname{Aut}(X, \mu)$, with its associated Polish topology (see [K, Section 6]). Clearly $N(E)$ also acts on $S(E)$ by the formula:

$$
x(T \cdot F) y \Longleftrightarrow T^{-1}(x) F T^{-1}(y)
$$

or equivalently

$$
T \cdot[F]=T[F] T^{-1}
$$

Proposition 4.5. If E is aperiodic, then the action of $N(E)$ on $S(E)$ is continuous.

Proof. It is enough to check separate continuity. Below the superscripts on the arrows indicate the spaces in which these limits are taken.
(i) $F_{n} \xrightarrow{w} F \Longrightarrow T \cdot F_{n} \xrightarrow{w} T \cdot F$: This is equivalent to

$$
F_{n} \xrightarrow{w} F \Longrightarrow d\left(T^{-1} S T, F_{n}\right) \rightarrow d\left(T^{-1} S T, F\right)
$$

for all $S \in[E]$, which is clear as $T^{-1} S T \in[E]$.
(ii) $T_{n} \xrightarrow{N(E)} T \Rightarrow T_{n} \cdot F \xrightarrow{w} T \cdot F:$ Fix $S \in[E]$ in order to show that

$$
d\left(S, T_{n} \cdot F\right) \rightarrow d(S, T \cdot F)
$$

This is equivalent to

$$
d\left(T_{n}^{-1} S T_{n}, F\right) \rightarrow d\left(T^{-1} S T, F\right) .
$$

But $T_{n} \xrightarrow{N(E)} T$ implies that $T_{n}^{-1} S T_{n} \xrightarrow{[E]} T^{-1} S T$, so this is clear.
Le Maitre in [LeM1] has also shown that there is no dense orbit for the action of $N(E)$ on $S(E)$, if E is aperiodic and generated by a measure preserving action of an infinite countable group with property (T).

We finally note, for further reference, the following simple fact:
Proposition 4.6. Let $F_{0} \subseteq F_{1} \subseteq \ldots$ be in $S(E)$ and let $F=\bigcup_{n} F_{n}$. Then $F_{n} \xrightarrow{w} F$. Similarly, if $F_{0} \supseteq F_{1} \supseteq F_{2} \ldots$ and $F=\bigcap_{n} F_{n}$.

Proof. This is immediate from Proposition 4.2.

4.2 The strong topology

We now define another topology on $S(E)$.
Definition 4.7. Let E be a countable Borel equivalence relation on X. A sequence $\left(T_{i}\right)_{i \in \mathbb{N}}$ of Borel automorphisms is called generating for E if

$$
T_{i}(x) E x, \text { for all } x, i,
$$

and if $x \neq y, x E y$, then there is i such that $y=T_{i}(x)$.

Such generating sequences exist by the Feldman-Moore Theorem (see, e.g., [K4, Section 3.2] and references therein). In fact one can see the following stronger version, where we call a generating sequence $\left(T_{i}\right)_{i \in \mathbb{N}}$ for E a uniquely generating sequence if for all $x \neq y, x E y$, there is a unique i such that $y=T_{i}(x)$. The following is a special case of [KST, 4.10] but we include a proof for completeness.

Proposition 4.8. Let E be a countable Borel equivalence relation on X. Then there is a uniquely generating sequence $\left(T_{i}\right)_{i \in \mathbb{N}}$ for E consisting of Borel involutions of X.

Proof. The proof of the Feldman-Moore Theorem gives a sequence $\left\{S_{j}\right\}_{j \in \mathbb{N}}$ of Borel involutions such that $x E y \Longleftrightarrow \exists j\left(S_{j}(x)=y\right)$. For each j, let $\operatorname{supp}\left(S_{j}\right)=\left\{x: S_{j}(x) \neq x\right\}$. Now let $Y_{i}=\left\{x: \forall j<i\left(S_{i}(x) \neq S_{j}(x)\right)\right\}$. If $x \in Y_{i}$, then $S_{i}(x) \in Y_{i}$, since otherwise there is $j<i$ with $x=S_{i}\left(S_{i}(x)\right)=$ $S_{j}\left(S_{i}(x)\right)$, so $S_{j}(x)=S_{i}(x)$, a contradiction. Thus if we let

$$
T_{i}=S_{i}\left|Y_{i} \cup i d\right|\left(X \backslash Y_{i}\right)
$$

T_{i} is an involution and clearly $T_{i}(x) E x$. Now let $x \neq y, x E y$. Let i be least such that $S_{i}(x)=y$. We claim that $x \in Y_{i}$, thus $T_{i}(x)=y$. Otherwise, for some $j<i, S_{i}(x)=S_{j}(x)=y$ a contradiction. Finally assume that $y=T_{i}(x)=T_{j}(x)$ with $j<i$, towards a contradiction. Since $x \neq y$ this means that $x \in \operatorname{supp}\left(T_{j}\right)$, so $y=S_{j}(x)$, a contradiction.

Definition 4.9. Consider the space $S(E)$ and for $T \in[E], F \in S(E)$ let

$$
A_{T, F}=\{x:(x, T(x)) \in F\} .
$$

Therefore, by Proposition 4.2, $d(T, F)=1-\mu\left(A_{T, F}\right)$. Fix a generating sequence $\left(T_{i}\right)_{i \in \mathbb{N}}$ for E and consider the map

$$
F \mapsto\left(A_{T_{i}, F}\right)_{i \in \mathbb{N}} \in \mathrm{MALG}^{\mathbb{N}},
$$

where MALG $=$ MALG $_{\mu}$ is the measure algebra of (X, μ). We also endow MALG with the usual complete, separable metric

$$
d_{\mu}(A, B)=\mu(A \Delta B),
$$

and the associated topology.

Lemma 4.10. The map $F \mapsto\left(A_{T_{i}, F}\right)_{i \in \mathbb{N}}$ is 1-1.
Proof. Assume $F, G \in S(E)$ and $A_{T_{i}, F}=A_{T_{i}, G}$ for all i. Then for $x \neq y$, $(x, y) \in F \Longleftrightarrow \exists i\left(y=T_{i}(x) \& x \in A_{T_{i}, F}\right) \Longleftrightarrow(x, y) \in G$.

Thus we can identify F with $\left(A_{T_{i}, F}\right)_{i \in \mathbb{N}}$ and transfer the product topology on $\mathrm{MALG}^{\mathbb{N}}$ to $S(E)$ to get a separable, metrizable topology on $S(E)$, which we will call the strong topology on $S(E)$, Thus

$$
F_{n} \xrightarrow{s} F \Longleftrightarrow \forall i\left(A_{T_{i}, F_{n}} \xrightarrow{\mathrm{MALG}} A_{T_{i}, F}\right) .
$$

We next note that this topology is independent of the choice of $\left(T_{i}\right)_{i \in \mathbb{N}}$.

Proposition 4.11.

$$
F_{n} \xrightarrow{s} F \Longleftrightarrow \forall T \in[E]\left(A_{T, F_{n}} \xrightarrow{\text { MALG }} A_{T, F}\right) .
$$

Proof. \Leftarrow is obvious.
\Rightarrow Assume $F_{n} \xrightarrow{s} F$ and let $T \in[E]$. Let $A_{\infty}=\{x: T(x)=x\}$ and let A_{i} be a Borel partition of $X \backslash A_{\infty}$ such that $x \in A_{i} \Rightarrow T(x)=T_{i}(x)$, i.e., $X=\bigsqcup_{i=0}^{\infty} A_{i} \sqcup A_{\infty}$ and $T\left|A_{i}=T_{i}\right| A_{i}$. Fix now $\epsilon>0$ and choose N large enough so that $\sum_{i>N} \mu\left(A_{i}\right)<\epsilon$. Then choose M large enough so that for any $n \geq M$ and any $i<N$,

$$
\mu\left(A_{T_{i}, F_{n}} \Delta A_{T_{i}, F}\right)<\frac{\epsilon}{N} .
$$

Now

$$
\begin{aligned}
A_{T, F_{n}} & =\left\{x:(x, T(x)) \in F_{n}\right\} \\
& =A_{\infty} \sqcup \bigsqcup_{i \in \mathbb{N}}\left(A_{i} \cap\left\{x:(x, T(x)) \in F_{n}\right\}\right) \\
& =A_{\infty} \sqcup \bigsqcup_{i<N}\left(A_{i} \cap A_{T_{i}, F_{n}}\right) \sqcup C_{n},
\end{aligned}
$$

where $\mu\left(C_{n}\right)<\epsilon$. Similarly

$$
\begin{aligned}
A_{T, F} & =A_{\infty} \sqcup \bigsqcup_{i<N}\left(A_{i} \cap A_{T, F}\right) \sqcup C, \\
& =A_{\infty} \sqcup \bigsqcup_{i<N}\left(A_{i} \cap A_{T_{i}, F}\right) \sqcup C
\end{aligned}
$$

where $\mu(C)<\epsilon$. Therefore

$$
\begin{aligned}
\left(A_{T, F_{n}} \Delta A_{T, F}\right) & \subseteq\left(\bigsqcup_{i<N}\left(A_{i} \cap A_{T_{i}, F}\right) \Delta \bigsqcup_{i<N}\left(A_{i} \cap A_{T, F_{n}}\right)\right) \cup C \cup C_{n} \\
& =\left(\bigsqcup_{i<N}\left(A_{i} \cap\left(A_{T_{i}, F} \Delta A_{T_{i}, F_{n}}\right)\right) \cup C \cup C_{n},\right.
\end{aligned}
$$

thus

$$
\mu\left(A_{T, F_{n}} \Delta A_{T, F}\right) \leq \sum_{i<N} \mu\left(A_{T_{i}, F} \Delta A_{T_{i}, F_{n}}\right)+2 \epsilon \leq 3 \epsilon
$$

We will next show that the strong topology on $S(E)$ is Polish. Before we do that however we state the following elementary lemma that will be also useful later on. Its proof is straightforward, so we omit it.

Lemma 4.12. Let Γ be a group, $a: \Gamma \times X \rightarrow X$ an action of Γ on a set X and put $a(g, x)=g \cdot x$. Let E_{a} be the induced equivalence relation on X and let $F \subseteq E_{a}$ be a subequivalence relation. For $g \in \Gamma$, let

$$
A_{g, F}^{a}=A_{g, F}=\{x:(x, g \cdot x) \in F\} .
$$

Then for all $g, h \in \Gamma$,

1. $A_{1, F}=X$,
2. $A_{g, F} \subseteq g^{-1} \cdot A_{g^{-1}, F}$,
3. $A_{g, F} \cap g^{-1} \cdot A_{h, F} \subseteq A_{h g, F}$,
4. $A_{h, F} \cap \operatorname{Fix}\left(h^{-1} g\right) \subseteq A_{g, F}$,
where

$$
\operatorname{Fix}(p)=\{x: p \cdot x=x\}
$$

Conversely, if $\left(A_{g}\right)_{g \in \Gamma}$ is a family of sets satisfying 1.-3. above, then the relation

$$
x F y \Longleftrightarrow \exists g\left(g \cdot x=y \vee x \in A_{g}\right)
$$

defines a subequivalence relation of E_{a} and if 4. also holds we have that $A_{g}=$ $A_{g, F}$, for all $g \in \Gamma$.

Theorem 4.13. The strong topology on $S(E)$ is Polish.
Proof. Proposition 4.11 shows that the strong topology does not depend on which generating sequence we use. So fix a Borel action of a countable group Γ generating E and for each group element g denote also by g the automorphism of the space X induced by the action of g. Since the strong topology is obtained by transferring to $S(E)$ the relative topology (in $\mathrm{MALG}^{\mathrm{C}}$) of the range of the map

$$
F \mapsto\left(A_{g, F}\right)_{g \in \Gamma},
$$

it is enough to show that the range of this map is closed in MALG ${ }^{\Gamma}$. This means that we have to show that if $F_{n} \in S(E)$ and for each $g, A_{g, F_{n}} \xrightarrow{\text { MALG }} A_{g}$ as $n \rightarrow \infty$, then there is $F \in S(E)$ with $A_{g, F}=A_{g}$, for all $g \in \Gamma$.

Since, for each n, the family $\left(A_{g, F_{n}}\right)_{g \in \Gamma}$ satisfies (a.e.) conditions 1.-4. of Lemma 4.12, it follows, by taking limits, that so does the family $\left(A_{g}\right)_{g \in \Gamma}$, and then, by Lemma 4.12 again, there is $F \in S(E)$ such that $A_{g, F}=A_{g}$, for all $g \in \Gamma$.

An alternative description of the strong topology on $S(E)$ is as follows:
First consider MALG and let $\mathcal{D} \subseteq$ MALG be a countable dense subset of MALG. Then the map

$$
A \in \text { MALG } \mapsto\{\mu(A \cap D)\}_{D \in \mathcal{D}} \in[0,1]^{\mathcal{D}}
$$

is 1-1. Because if $A, B \in$ MALG are distinct, then either $\mu(A \backslash B)>0$ or $\mu(B \backslash A)>0$. Say $a=\mu(A \backslash B)>0$. Let $D \in \mathcal{D}$ be such $\mu((A \backslash B) \Delta D)<a / 2$. Then $\mu(D \cap A) \geq \mu(D \cap(A \backslash B))=a-\mu((A \backslash B) \backslash D)>a / 2$, while $\mu(D \cap B) \leq \mu((D \cap(X \backslash A)) \cup(D \cap B))=\mu(D \backslash(A \backslash B))<a / 2$, so $\mu(A \cap D) \neq \mu(B \cap D)$. Thus we can identify MALG with the range of this map and transfer to MALG the relative topology from $[0,1]^{\mathcal{D}}$ (with the product topology). We can now see that this topology is the same as the topology of MALG. This follows from the next proposition.

Proposition 4.14. The following are equivalent:
(i) $A_{n} \xrightarrow{\text { MALG }} A$,
(ii) $\forall B \in \operatorname{MALG}\left(\mu\left(B \cap A_{n}\right) \rightarrow \mu(B \cap A)\right)$,
(iii) $\forall D \in \mathcal{D}\left(\mu\left(D \cap A_{n}\right) \rightarrow \mu(D \cap A)\right)$.

Proof. Clearly (i) \Rightarrow (ii) \Rightarrow (iii). To see that (ii) \Rightarrow (i), take in (ii) $B=A$ and $B=X \backslash A$. Finally for (iii) \Rightarrow (ii), fix $B \in$ MALG and $\epsilon>0$. Then let $D \in \mathcal{D}$ be such that $\mu(D \Delta B)<\epsilon$. Choose next N such that for $n \geq N$ we have $\left|\mu\left(D \cap A_{n}\right)-\mu(D \cap A)\right| \leq \epsilon$. Then for such $n,\left|\mu\left(B \cap A_{n}\right)-\mu(B \cap A)\right| \leq$ $\left|\mu\left(B \cap A_{n}\right)-\mu\left(D \cap A_{n}\right)\right|+\left|\mu\left(D \cap A_{n}\right)-\mu(D \cap A)\right|+|\mu(D \cap A)-\mu(B \cap A)|<$ $2 \mu(B \Delta D)+\epsilon<3 \epsilon$.

From this it follows that if $\left(T_{i}\right)_{i \in \mathbb{N}}$ is a generating sequence for E and \mathcal{D} is a dense subset of MALG,

$$
\begin{aligned}
F_{n} \xrightarrow{s} F & \Longleftrightarrow \forall i \in \mathbb{N} \forall D \in \mathcal{D}\left(\mu\left(A_{T_{i}, F_{n}} \cap D\right) \rightarrow \mu\left(A_{T_{i}, F} \cap D\right)\right) \\
& \Longleftrightarrow \forall T \in[E] \forall D \in \mathcal{D}\left(\mu\left(A_{T, F_{n}} \cap D\right) \rightarrow \mu\left(A_{T, F} \cap D\right)\right) \\
& \Longleftrightarrow \forall T \in[E] \forall B \in \operatorname{MALG}\left(\mu\left(A_{T, F_{n}} \cap B\right) \rightarrow \mu\left(A_{T, F} \cap B\right)\right) .
\end{aligned}
$$

For comparison we note that

$$
F_{n} \xrightarrow{w} F \Longleftrightarrow \forall T \in[E]\left(\mu\left(A_{T, F_{n}}\right) \rightarrow \mu\left(A_{T, F}\right)\right) .
$$

Moreover in all these equivalences we can replace $[E]$ by any dense subset of $[E]$.

4.3 Identification of the topologies

We next show that the two topologies we introduced are the same.
Theorem 4.15. The weak topology on $S(E)$ is equal to the strong topology on $S(E)$.

Proof. Clearly the weak topology is contained in the strong topology, so it is enough to show that if $F_{n}, F \in S(E)$ and $F_{n} \xrightarrow{w} F$, then $F_{n} \xrightarrow{s} F$.

So assume that $F_{n} \xrightarrow{w} F$. Fix $T \in[E]$ in order to show that $\mu\left(A_{T, F_{n}} \triangle\right.$ $\left.A_{T, F}\right) \rightarrow 0$. By Proposition 4.2, let $S \in[F]$ be such that $(x, T(x)) \in F \Longleftrightarrow$ $S(x)=T(x)$. The rest of the argument is due to Anush Tserunyan. My original proof was more complicated.

We have $\mu\left(A_{T, F} \backslash A_{T, F_{n}}\right)=\mu\left(\left\{x \in A_{T, F}:(x, T(x)) \notin F_{n}\right\}\right)=\mu(\{x \in$ $\left.\left.\left.A_{T, F}:(x, S(x)) \notin F_{n}\right\}\right)\right\} \leq d\left(S, F_{n}\right) \rightarrow 0$.

Also $\mu\left(A_{T, F_{n}} \backslash A_{T, F}\right)-\mu\left(A_{T, F} \backslash A_{T, F_{n}}\right)=\left(\mu\left(A_{T, F_{n}} \backslash A_{T, F}\right)+\mu\left(A_{T, F_{n}} \cap\right.\right.$ $\left.\left.A_{T, F}\right)\right)-\left(\mu\left(A_{T, F} \cap A_{T, F_{n}}\right)+\mu\left(A_{T, F} \backslash A_{T, F_{n}}\right)\right)=\mu\left(A_{T, F_{n}}\right)-\mu\left(A_{T, F}\right) \rightarrow 0$, and hence $\mu\left(A_{T, F_{n}} \backslash A_{T, F}\right) \rightarrow 0$, so $\mu\left(A_{T, F_{n}} \triangle A_{T, F}\right) \rightarrow 0$.

Remark 4.16 (A. Tserunyan). Note that in the proof of Theorem 4.15 we only needed to verify that $F_{n} \xrightarrow{w} F \Rightarrow \forall i\left(\mu\left(A_{T_{i}, F_{n}} \triangle A_{T_{i}, F}\right) \rightarrow 0\right)$, for a sequence of involutions $\left(T_{i}\right)_{i \in \mathbb{N}}$ generating E. For an involution T, it is obvious how to find $S \in[F]$ such that $S(x)=T(x)$, whenever $(x, T(x)) \in$ F. One simply defines $A=\{x:(x, T(x)) \in F\}$ and, noting that A is T-invariant, let $S(x)=T(x)$, if $x \in A$, and $S(x)=x$, if $x \notin A$.

From now on we will call this topology simply the topology of $S(E)$. Note that we also have the following characterization of convergence in this topology.

Let $((E))$ be the set of Borel maps $\varphi: A \rightarrow B$, with A, B Borel subsets of X, such that $x \in A \Rightarrow \varphi(x) E x$. For $\varphi \in((E)), F \in S(E)$, let

$$
A_{\varphi, F}=\{x \in \operatorname{dom}(\varphi):(x, \varphi(x)) \in F\} .
$$

Then for $F_{n}, F \in S(E)$:

$$
\begin{aligned}
F_{n} \rightarrow F & \Longleftrightarrow \forall \varphi \in((E))\left(\mu\left(A_{\varphi, F_{n}}\right) \rightarrow \mu\left(A_{\varphi, F}\right)\right) \\
& \Longleftrightarrow \forall \varphi \in((E))\left(A_{\varphi, F_{n}} \xrightarrow{\text { MALG }} A_{\varphi, F}\right) .
\end{aligned}
$$

This is because if $\varphi \in((E))$ and $\left(T_{i}\right)$ is such that $x E y \Longleftrightarrow \exists i\left(y=T_{i}(x)\right)$, then there is a Borel decomposition $\operatorname{dom}(\varphi)=\bigsqcup_{i} A_{i}$ such that $x \in A_{i} \Rightarrow$ $\varphi(x)=T_{i}(x)$. Then if $F_{n} \rightarrow F$, we have $\mu\left(A_{\varphi, F_{n}} \triangle A_{\varphi, F}\right)=\sum_{i} \mu\left(A_{i} \cap\right.$ $\left.\left(A_{T_{i}, F_{n}} \triangle A_{T_{i}, F}\right)\right) \rightarrow 0$, as $n \rightarrow \infty$.

Remark 4.17. One can also consider the topology on $S(E)$ induced by the complete metric

$$
\sigma\left(F_{1}, F_{2}\right)=\mu\left(\left\{x:[x]_{F_{1}} \neq[x]_{F_{2}}\right\}\right)
$$

(see [CM1, 1.7]). This is stronger than the topology of $S(E)$ but it is not separable in general. However it is shown in [CM1, Proposition 1.7.4] that it is separable when restricted to the finite subequivalence relations of E.

4.4 Alternative descriptions

We discuss here three more equivalent descriptions of the topology of $S(E)$.
(1) If Y is a standard Borel space and ν, ρ are Borel probability measures on Y that are equivalent, i.e., have the same null sets, then $\mathrm{MALG}_{\nu}=$

MALG $_{\rho}$. The measure ν induces the usual Polish metric $\delta_{\nu}(A, B)=\nu(A \Delta B)$ on MALG_{ν} and similarly for ρ. Since ν is equivalent to ρ, these two metrics are equivalent, i.e., induce the same topology. In particular, if Σ is a σ-finite Borel measure on Y one can define unambiguously a Polish topology on $\mathrm{MALG}_{\Sigma}=\mathrm{MALG}_{\nu}$, for any Borel probability measure ν equivalent to Σ, e.g., $\nu=\sum_{n=0}^{\infty} \frac{1}{2^{n}}\left(\Sigma_{Y_{n}}\right)$, where $Y=\bigsqcup_{n} Y_{n}$ is a Borel decomposition of Y into sets of positive finite Σ-measure and $\Sigma_{Y_{n}}$ is the normalized restriction of Σ to Y_{n}.

The set $E \subseteq X^{2}$ admits a Borel measure $M=M_{E}$ defined by

$$
M(W)=\int\left|W_{x}\right| d \mu(x)=\int\left|W^{y}\right| d \mu(y)
$$

for Borel $W \subseteq E$, where $W_{x}=\{y:(x, y) \in W\}, W^{y}=\{x:(x, y) \in W\}$. This measure is σ-finite. We call the measure algebra of M, the measure algebra of E, in symbols MALG ${ }_{E}$. (Thus MALG ${ }_{E}=$ MALG $_{M}$.) Fix a sequence $\left(T_{i}\right)_{i \in \mathbb{N}}$ in $[E]$, such that $x E y \Longleftrightarrow \exists i\left(T_{i}(x)=y\right)$. Note that $M\left(\operatorname{graph}\left(T_{i}\right)\right)=1$. Define next the Borel probability measure $\nu=\nu_{\left(T_{i}\right)}$ on E by

$$
\begin{aligned}
\nu(W) & =\sum_{i=0}^{\infty} \frac{1}{2^{i+1}} M\left(W \cap \operatorname{graph}\left(T_{i}\right)\right) . \\
& =\sum_{i=0}^{\infty} \frac{1}{2^{i+1}} \mu\left(A_{T_{i}, W}\right)
\end{aligned}
$$

where for $T \in[E], W \subseteq E$:

$$
A_{T, W}=\{x:(x, T(x)) \in W\} .
$$

This is equivalent to M and the metric

$$
\delta_{\nu}(W, V)=\nu(W \Delta V)
$$

gives the topology of $\mathrm{MALG}_{E}=\mathrm{MALG}_{\nu}$. In this topology

$$
W_{n} \rightarrow W \Longleftrightarrow \forall i\left(A_{T_{i}, W_{n}} \xrightarrow{\mathrm{MALG}} A_{T_{i}, W}\right) .
$$

It is clear that $S(E) \subseteq$ MALG $_{E}$ and the topology of $S(E)$ is the induced topology from MALG ${ }_{E}$. Also as in the proof of Theorem 4.13, $S(E)$ is a closed set in the topology of MALG $_{E}$. Thus we can view $S(E)$ as a closed subspace of MALG_{E}.

We next note a selection property of this representation of $S(E)$. Below we view E as a genuine countable Borel equivalence relation on X and not one viewed μ-a.e. The measure ν as above is a non-atomic probability measure on E and therefore there is a Borel bijection $\theta: E \rightarrow(0,1)$, which takes ν to the Lebesgue measure λ on $(0,1)$. For any $A \in$ MALG $_{\lambda}$, let $\varphi(A)=\{x \in(0,1): x$ is a density point of $A\}$. Then $\varphi(A)$ is a Borel subset of $(0,1)$ which represents A in the measure algebra MALG ${ }_{\lambda}$. So for each $F \in S(E)$, let

$$
\psi(F)=\theta^{-1}(\varphi(\theta(F))
$$

Then $\psi(F)$ represents F in the measure algebra MALG_{ν}. Let \tilde{F} be a Borel subequivalence relation of E that represents F in the measure algebra MALG_{ν}. Then $\nu(\tilde{F} \Delta \psi(F))=0$, so there is a Borel E-invariant set $L \subseteq X$ with $\mu(L)=1$ and for $x, y \in L,(x, y) \in \tilde{F} \Longleftrightarrow(x, y) \in \psi(F)$. Let

$$
B=\left\{x \in X: \psi(F) \mid[x]_{E} \text { is an equivalence relation }\right\} .
$$

Then $\mu(B)=1$ and B is E-invariant Borel. Let $F^{\circ}=(\psi(F) \mid B) \cup\{(x, x): x \notin$ $B\}$. Then F° is a Borel subequivalence relation of E and F° represents F in MALG_{ν}. In fact a simple calculation shows that F° has a uniform Borel definition from F, i.e., we have the following:

Proposition 4.18. There is a Borel set $R \subseteq S(E) \times E$ such that for any $F \in$ $S(E)$, the section $R_{F}=F^{\circ}$ is a Borel subequivalence relation of E which represents F in the measure algebra MALG_{ν}, i.e., F° is equal to F in $S(E)$.

We can also use this result to formulate a "uniform Borel version" of the Ergodic Decomposition Theorem for elements of $S(E)$.

First recall the Ergodic Decomposition Theorem of Farrell and (independently) Varadarajan, where again below F is viewed as a genuine countable Borel equivalence relation on X.

Theorem 4.19 (Farrell [F], Varadarajan [V]). Let F be a countable Borel equivalence relation on a standard Borel space X. Then

$$
\mathcal{E} \mathcal{I}_{F}=\{\sigma \in P(X): \sigma \text { is invariant, ergodic for } F\}
$$

is a Borel set in the standard Borel space $P(X)$ of probability measures on X and if F admits an invariant probability Borel measure, then $\mathcal{E} \mathcal{I}_{F} \neq \emptyset$, and there is a Borel surjection $\pi: X \rightarrow \mathcal{E L}_{F}$ such that

1. π is F-invariant,
2. if $X_{e}=\{x: \pi(x)=e\}$, then $e\left(X_{e}\right)=1$ and $F \mid X_{e}$ has a unique invariant measure, namely e,
3. if $\mu \in P(X)$ is invariant for F, then $\mu=\int \pi(x) d \mu(x)$.

Moreover, π is uniquely determined in the sense that, if π^{\prime} is another such map, then $\left\{x: \pi(x) \neq \pi^{\prime}(x)\right\}$ is null with respect to all invariant measures for F.

The proof of this result is effective and therefore, in combination with Proposition 4.18, shows the following:

Theorem 4.20. Let $E, R, F \mapsto F^{\circ}$ be as in Proposition 4.18. Let $Q \subseteq S(E) \times$ $P(X)$ be defined by

$$
(F, \sigma) \in Q \Longleftrightarrow \sigma \in \mathcal{E I}_{F^{\circ}}
$$

Then Q is Borel, nonempty and there is a Borel set $R \subseteq S(E) \times X \times P(X)$ such that for each $F \in S(E)$, the section $R_{F} \subseteq X \times P(X)$ is the graph of a (Borel) function π_{F} which is an ergodic decomposition for F° as in Theorem 4.19.
(2) The next description is due to Robin Tucker-Drob and the author. It is motivated by the idea of measurable subgroups, see [Bo, Section 4].

First, without loss of generality, we can assume that $X=2^{\mathbb{N}}$ and E is generated by a continuous action of a countable group Γ. (Recall here that we identify equivalence relations if they agree a.e.)

For $x \in X, F \in S(E)$, define $\Gamma_{x}^{F}=\left\{g \in \Gamma:\left(x, g^{-1} \cdot x\right) \in F\right\}$. Then $\Gamma_{x}^{F} \in \mathcal{P}_{1}(\Gamma)=\{a \subseteq \Gamma: 1 \in a\}$. For $g \in \Gamma, a \in \mathcal{P}_{1}(\Gamma)$, let $g a=\{g h: h \in a\}$ and $a^{-1}=\left\{h^{-1}: h \in a\right\}$. Put

$$
\varphi_{F}(x)=\left(x, \Gamma_{x}^{F}\right) \in X \times \mathcal{P}_{1}(\Gamma)
$$

On $X \times \mathcal{P}_{1}(\Gamma)$ put

$$
(x, a) R(y, b) \Longleftrightarrow \exists g \in a^{-1}(g \cdot x=y \& g a=b)
$$

Proposition 4.21. R is an equivalence relation.
Proof. This is obvious.
Proposition 4.22. $\varphi_{F}: X \rightarrow X \times \mathcal{P}_{1}(\Gamma)$ is 1-1.

Proof. This is also obvious.
Proposition 4.23. $\varphi_{F}(X)$ is R-invariant.
Proof. Let $\left(x, \Gamma_{x}^{F}\right) R(y, b)$ and let $g \in \Gamma$ be such that $g \cdot x=y, g \Gamma_{x}^{F}=b$. So $(x, g \cdot x) \in F$, thus $(x, y) \in F$. Now $\Gamma_{y}^{F}=\left\{h:\left(y, h^{-1} \cdot y\right) \in F\right\}=$ $\left\{h:\left(y, h^{-1} g \cdot x\right) \in F\right\}=\left\{h:\left(x, h^{-1} g \cdot x\right) \in F\right\}=\left\{g p:\left(x, p^{-1} \cdot x\right) \in F\right\}=$ $g\left\{p:\left(x, p^{-1} \cdot x\right) \in F\right\}=g \Gamma_{x}^{F}=b$, so $(y, b)=\varphi_{F}(y)$.

Proposition 4.24. $x F y \Longleftrightarrow \varphi_{F}(x) R \varphi_{F}(y)$.
Proof. \Rightarrow Let $x F y$ and let $g \in \Gamma$ be such that $y=g \cdot x$. That $g \Gamma_{x}^{F}=\Gamma_{y}^{F}$ follows as in Proposition 4.23.
\Leftarrow Let $g \in \Gamma$ be such that $g \cdot x=y$ and $g \Gamma_{x}^{F}=\Gamma_{y}^{F}$. Then $g^{-1} \in \Gamma_{x}^{F}$, so $(x, g \cdot x)=(x, y) \in F$.

Since μ is F-invariant and φ_{F} is a Borel bijection between X and a Borel R-invariant subset of $X \times \mathcal{P}_{1}(\Gamma)$, it follows that $\left(\varphi_{F}\right)_{*} \mu=\mu_{F}$ is an R-invariant probability measure on $X \times \mathcal{P}_{1}(\Gamma)$.

Remark 4.25. Actually the definition of $\varphi_{F}, F \in S(E)$, depends on picking an a.e. representative for F but it is easy to check that μ_{F} is well defined.

Let \mathcal{M} be the compact, metrizable space of probability measures on the compact zero-dimensional space $Y=X \times \mathcal{P}_{1}(\Gamma) \subseteq X \times \mathcal{P}(\Gamma)$, where $\mathcal{P}(\Gamma)=\{a: a \subseteq \Gamma\}$ (we identify of course here $\mathcal{P}(\Gamma)$ with the product space 2^{Γ}). We first note the following:

Proposition 4.26. $\{\mu \in \mathcal{M}: \mu$ is R-invariant $\}$ is closed in \mathcal{M}.
Proof. For $g \in \Gamma$, let $N_{g}=\left\{(x, a) \in Y: g \in a^{-1}\right\}$, a clopen subset of Y. Let Γ act on $X \times \mathcal{P}(\Gamma)$ by $g \cdot(x . a)=(g \cdot x, g a)$. Of course Y is not invariant under this action but note that $g \cdot N_{g} \subseteq Y$. It is enough to show for $\mu \in \mathcal{M}$ the following:

Claim. For $\mu \in \mathcal{M}, \mu$ is R-invariant $\Longleftrightarrow \forall g \forall$ clopen $N \subseteq N_{g}(\mu(N)=$ $\mu(g \cdot N))$.

Granting this claim, it is clear that $\{\mu \in \mathcal{M}: \mu$ is R-invariant $\}$ is closed in \mathcal{M}.

Proof of the claim. \Rightarrow Fix $N \subseteq N_{g}, N$ clopen. Then $N \ni t \mapsto g \cdot t$ is in $[[R]$], so $\mu(N)=\mu(g \cdot N)$ follows.
\Leftarrow Let $\varphi: A \rightarrow B$ be in [[R]], in order to show that $\mu(A)=\mu(\varphi(A))$. Now $\varphi=\bigsqcup_{g \in \Gamma} \varphi_{g}, \varphi_{g}: A_{g} \rightarrow B_{g}, A=\bigsqcup_{g \in \Gamma} A_{g}, B=\bigsqcup_{g \in \Gamma} B_{g}, A_{g}, B_{g}$ Borel and $A_{g} \subseteq N_{g}, \varphi_{g}(y)=g \cdot y$ for $y \in A_{g}$. It is thus enough to show that $\mu\left(B_{g}\right)=\mu\left(A_{g}\right)$. Since $A_{g} \subseteq N_{g}$, it is enough to show that for every Borel set $A \subseteq N_{g}, \mu(A)=\mu(g \cdot A)$. Let $\mathcal{B}=\left\{A \subseteq N_{g}: A\right.$ is Borel and $\mu(A)=\mu(g$. $A)\}$. By hypothesis \mathcal{B} contains the algebra of clopen sets contained in (the clopen set) N_{g} and clearly \mathcal{B} is closed under relative complementation in N_{g} and under countable disjoint unions, so \mathcal{B} contains all the Borel subsets of N_{g}.

Define now $\Phi: S(E) \rightarrow \mathcal{M}$ by $\Phi(F)=\mu_{F}=\left(\varphi_{F}\right)_{*} \mu$.
Theorem 4.27. The map $\Phi: S(E) \rightarrow \mathcal{M}$ is a homeomorphism of $S(E)$ with a (necessarily) G_{δ} subspace of \mathcal{M}.

Proof. (a) Φ is continuous: It is enough to show that for each clopen rectangle $U \times V$ in $Y=X \times P_{1}(\Gamma)$, the function

$$
F \in S(E) \mapsto\left(\varphi_{F}\right)_{*} \mu(U \times V)
$$

is continuous. Now V is a finite disjoint union of sets of the form

$$
W=\left\{a \in \mathcal{P}_{1}(\Gamma): g_{1}^{-1} \in a \& \ldots \& g_{n}^{-1} \in a \& h_{1}^{-1} \notin a \& \ldots \& h_{m}^{-1} \notin a\right\}
$$

for $g_{i}, h_{j} \in \Gamma$, so it is enough to show that

$$
F \in S(E) \mapsto\left(\varphi_{F}\right)_{*} \mu(U \times W)
$$

is continuous. We have

$$
\begin{aligned}
\left(\varphi_{F}\right)_{*} \mu(U \times W)= & \mu\left(\varphi_{F}^{-1}(U \times W)\right) \\
= & \mu\left(\left\{x: x \in U \& g_{1}^{-1} \in \Gamma_{x}^{F} \& \ldots \& g_{n}^{-1} \in \Gamma_{x}^{F}\right.\right. \\
& \left.\& h_{1}^{-1} \notin \Gamma_{x}^{F} \& \ldots \& h_{m}^{-1} \notin \Gamma_{x}^{F}\right\} \\
= & \mu\left(\left\{x: x \in U \& x \in A_{g_{1}, F} \& \ldots \& x \in A_{g_{n}, F}\right.\right. \\
& \left.\left.\& x \notin A_{h_{1}, F} \& \ldots \& x \notin A_{h_{m}, F}\right\}\right) \\
= & \mu\left(U \cap A_{g_{1}, F} \cap \cdots \cap A_{g_{n}, F}\right. \\
& \left.\cap\left(X \backslash A_{h_{1}, F}\right) \cap \cdots \cap\left(X \backslash A_{h_{m}, F}\right)\right] .
\end{aligned}
$$

This function is continuous in the (strong) topology of $S(E)$, so Φ is continuous.
(b) Φ is 1-1: For Borel $B \subseteq X, g \in \Gamma$, let $N_{g, B}=B \times\left\{a \in \mathcal{P}_{1}(\Gamma)\right.$: $\left.g^{-1} \in a\right\}$. Then $\mu_{F}\left(N_{g, B}\right)=\mu\left(B \cap A_{g, F}\right)$. Thus $\Phi(F)=\Phi\left(F^{\prime}\right)$ implies that $\mu\left(B \cap A_{g, F}\right)=\mu\left(B \cap A_{g, F^{\prime}}\right)$, for any B, g, so $A_{g, F}=A_{g, F^{\prime}}$ and $F=F^{\prime}$.
(c) Φ^{-1} is continuous: We check that

$$
\mu_{F_{n}} \rightarrow \mu_{F} \Rightarrow F_{n} \rightarrow F .
$$

Let \mathcal{D} be the collection of clopen sets in X, so that $\mathcal{D} \subseteq$ MALG is countable dense in MALG. Then for $D \in \mathcal{D}, N_{g, D}$ is clopen in $X \times \mathcal{P}_{1}(\Gamma)$, so $\mu_{F_{n}}\left(N_{g, D}\right) \rightarrow \mu_{F}\left(N_{g, D}\right)$. Thus $\mu\left(D \cap A_{g, F_{n}}\right) \rightarrow \mu\left(D \cap A_{g, F}\right)$ for all $D \in \mathcal{D}, g \in$ Γ, therefore, by Proposition 4.14, $A_{g, F_{n}} \xrightarrow{\text { MALG }} A_{g, F}$ for all $g \in \Gamma$, and so $F_{n} \rightarrow F$.

Thus the topological space $S(E)$ can be identified with a G_{δ} subspace of \mathcal{M} and this gives another description of the topology of $S(E)$.
(3) The final description is due to Peter Burton.

Let Γ be a countable group and let $A(\Gamma, X, \mu)$ be the space of measure preserving actions of Γ on (X, μ). Denote by $(A(\Gamma, X, \mu), u)$ the space of measure preserving actions of Γ on (X, μ) with the uniform topology u (see $[\mathrm{K}$, Section 10, (A)]). Here we consider the product topology on $\operatorname{Aut}(X, \mu)^{\Gamma}$, where $\operatorname{Aut}(X, \mu)$ is given the uniform topology. The space $A(\Gamma, X, \mu)$ is then viewed as a closed subspace of $\operatorname{Aut}(X, \mu)^{\Gamma}$ in this product topology. Given an equivalence relation E, we denote by $A(\Gamma, E)=$ $A(\Gamma,[E])$ the subspace of $A(\Gamma, X, \mu)$ consisting of all $a \in A(\Gamma, X, \mu)$ "contained" in E, i.e., $\forall \gamma \in \Gamma\left(\gamma^{a} \in[E]\right)$ (see [K1, Section 6]). Then $A(\Gamma, E)$ is separable and closed in $(A(\Gamma, X, \mu), u)$, so a Polish space in the uniform topology.

Consider now the case $\Gamma=\mathbb{F}_{\infty}$, the free group with a countably infinite sequence of free generators $\left(\gamma_{i}\right)$. Then a complete compatible metric for $(A(\Gamma, E), u)$ is given by

$$
\delta\left(a_{1}, a_{2}\right)=\sum_{i=0}^{\infty} 2^{-(i+1)} d_{u}\left(\gamma_{i}^{a_{1}}, \gamma_{i}^{a_{2}}\right)
$$

Fix a generating sequence of involutions $\left(T_{i}\right)$ for E. Then the following is a compatible metric for the topology of $S(E)$

$$
\rho\left(F_{1}, F_{2}\right)=\sum_{i=0}^{\infty} 2^{-(i+1)} \mu\left(A_{T_{i}, F_{1}} \Delta A_{T_{i}, F_{2}}\right)
$$

(see Section 4.2).
Note that the metric ρ is complete. Indeed if $\left(F_{n}\right)$ is a ρ-Cauchy sequence, then for each $i,\left(A_{T_{i}, F_{n}}\right)_{n}$ is a Cauchy sequence in the usual metric of MALG given by $\mu(A \Delta B)$. The argument in the proof of Proposition 4.11 shows then that for each $T \in[E]$ the sequence $\left(A_{T, F_{n}}\right)_{n}$ is Cauchy in the metric of MALG and thus converges to some A_{T}. Then the argument in the proof of Theorem 4.13 shows that there is an $F \in S(E)$ such that $F_{n} \rightarrow F$.

We define a map $\Psi: S(E) \rightarrow A\left(\mathbb{F}_{\infty}, E\right)$ as follows: We let $\Psi(F)=a$, where the action a is defined by letting $\gamma_{i}^{a}(x)=T_{i}(x)$, if $T_{i}(x) F x$, and $\gamma_{i}^{a}(x)=x$, otherwise. Denoting by E_{a} the equivalence relation generated by an action a, we have that $F=E_{\Psi(F)}$.

Theorem 4.28. Ψ is an isometric embedding of $(S(E), \rho)$ onto a closed subspace of $\left(A\left(\mathbb{F}_{\infty}, E\right), \delta\right)$.

Proof. To show that Ψ is an isometry it is enough to check that for each i, and each F_{1}, F_{2} in $S(E)$ with $\Psi\left(F_{1}\right)=a_{1}, \Psi\left(F_{2}\right)=a_{2}$, we have

$$
\left\{x: \gamma_{i}^{a_{1}}(x) \neq \gamma_{i}^{a_{2}}(x)\right\}=A_{T_{i}, F_{1}} \Delta A_{T_{i}, F_{2}} .
$$

which follows easily from the definitions. Finally the range of Ψ is closed, since the metric δ is complete.

Therefore the topological space $S(E)$ can be identified with a closed subspace of $\left(A\left(\mathbb{F}_{\infty}, E\right), u\right)$.

4.5 Continuity of operations

We discuss here the continuity (or lack thereof) of various operations in $S(E)$.

The operation $\left(F_{1}, F_{2}\right) \mapsto F_{1} \cap F_{2}$ from $S(E) \times S(E)$ to $S(E)$ is continuous. The relations $F_{1} \subseteq F_{2}$ and $F_{1} \perp F_{2}$ (see [KM, Section 27] are closed in $S(E) \times S(E)$. Moreover the map $\left(F_{1}, F_{2}\right) \mapsto F_{1} \times F_{2}$ from $S\left(E_{1}\right) \times S\left(E_{2}\right)$ to $S\left(E_{1} \times E_{2}\right)$ is continuous. Finally the map

$$
(F, A) \in S(E) \times \mathrm{MALG} \rightarrow F \mid A \in S(E)
$$

where $F \mid A=\{(x, y):(x, y \in A \& x E y) \vee x=y\}$, is continuous.

One the other hand, the operation $\left(F_{1}, F_{2}\right) \mapsto F_{1} \vee F_{2}$ from $S(E) \times S(E)$ to $S(E)$ is not continuous, if E is aperiodic. (Here $F_{1} \vee F_{2}$ is the smallest equivalence relation containing both F_{1}, F_{2}.) To see this, first find $S \in$ $[E]$ which is aperiodic, see $[K 4,8.16]$. Let $F_{n}=E_{S^{2 n}}$, so that the F_{n} are decreasing and $\bigcap_{n} F_{n}=i d$, where $i d$ is the equality relation on X, thus $F_{n} \rightarrow i d$. Let also $F=F_{S^{3}}$. Since for each $n, 2^{n}$ and 3 are relatively prime, it is clear that $F_{n} \vee F=E_{S}$. On the other hand $i d \vee F=E_{S^{3}} \neq E_{S}$.
Proposition 4.29. The operation $\left(F_{1}, F_{2}\right) \mapsto F_{1} \vee F_{2}$ from $S(E) \times S(E)$ to $S(E)$ is of Baire class 1.
Proof. For each $T_{1}, T_{2} \in[E]$ and $F \in S(E)$, let

$$
A_{T_{1}, T_{2}, F}=\left\{x:\left(T_{1}(x), T_{2}(x)\right) \in F\right\}
$$

(so that $\left.A_{T, F}=A_{i d, T, F}\right)$. Since $A_{T_{1}, T_{2}, F}=T_{1}^{-1}\left(A_{T_{2} T_{1}^{-1}, F}\right)$, it is clear that $F \mapsto A_{T_{1}, T_{2}, F}$ is continuous for every $T_{1}, T_{2} \in[E]$.

In order to prove the proposition, it is enough to show that for any $T \in[E], \alpha<\beta$ in \mathbb{R},

$$
\left\{\left(F_{1}, F_{2}\right): \alpha<\mu\left(A_{T, F_{1} \vee F_{2}}\right)<\beta\right\}
$$

is F_{σ}. Let $\left(T_{i}\right)_{i \in \mathbb{N}}$ be a generating sequence for E.
Let

$$
\begin{aligned}
x \in A_{T, F_{1}, F_{2}}^{n} \Longleftrightarrow & \exists m \leq n \exists i_{1}, \ldots, i_{2 m+1} \leq n\left(x \in A_{T_{i_{1}}, F_{1}} \&\right. \\
& x \in A_{T_{i_{1}}, T_{i_{2}}, F_{2}} \& \ldots \& x \in A_{T_{i_{2 m}}, T_{i_{2 m+1}}, F_{1}} \& \\
& \left.x \in A_{T_{i_{2 m+}}, T, F_{2}}\right) .
\end{aligned}
$$

Then $A_{T, F_{1}, F_{2}}^{n} \subseteq A_{T, F_{1}, F_{2}}^{n+1}$ and $A_{T, F_{1} \vee F_{2}}=\bigcup_{n} A_{T, F_{1}, F_{2}}^{n}$. So

$$
\mu\left(A_{T, F_{1} \vee F_{2}}\right)>\gamma \Longleftrightarrow \exists n\left(\mu\left(A_{T, F_{1}, F_{2}}^{n}\right)>\gamma\right) .
$$

Since $A_{T, F_{1}, F_{2}}^{n}$ is equal to

$$
\bigcup_{m \leq n} \bigcup_{i_{1}, \ldots, i_{2 m+1} \leq n}\left(A_{T_{i_{1}}, F_{1}} \cap A_{T_{i_{1}}, T_{i_{2}}, F_{2}} \cap \cdots \cap A_{T_{i_{2 m}}, T_{i_{2 m+1}}, F_{1}} \cap A_{T_{i_{2 m+1}}, T, F_{2}}\right),
$$

the map $\left(F_{1}, F_{2}\right) \mapsto A_{T, F_{1}, F_{2}}^{n}$ is continuous and thus the set $\left\{\left(F_{1}, F_{2}\right): \gamma<\right.$ $\left.\mu\left(A_{T, F_{1} \vee F_{2}}\right)\right\}$ is open, for every $\gamma \in \mathbb{R}$. It follows that
$\left\{\left(F_{1}, F_{2}\right): \mu\left(A_{T, F_{1} \vee F_{2}}\right)<\beta\right\}=S(E)^{2} \backslash\left\{\left(F_{1}, F_{2}\right): \forall n\left(\beta-\frac{1}{n}<\mu\left(A_{T, F_{1} \vee F_{2}}\right)\right)\right\}$
is F_{σ} and so $\left\{\left(F_{1}, F_{2}\right): \alpha<\mu\left(A_{T, F_{1} \vee F_{2}}\right)<\beta\right\}$ is F_{σ}.

4.6 The uniform topology

We will next discuss a stronger topology for $S(E)$. Recall that the topology on $S(E)$ is the smallest topology making the functions $F \mapsto A_{T, F}, T \in[E]$, from $S(E)$ to MALG, continuous. It is also the smallest topology making the functions $F \mapsto \mu\left(A_{T, F}\right), T \in[E]$, from $S(E)$ to [0,1], continuous. This topology is induced by the equivalent metrics:

$$
\begin{gathered}
\tau\left(F_{1}, F_{2}\right)=\sum_{i=0}^{\infty} 2^{-(i+1)} \mu\left(A_{T_{i}, F_{1}} \Delta A_{T_{i}, F_{2}}\right), \\
\tau^{\prime}\left(F_{1}, F_{2}\right)=\sum_{i=0}^{\infty} 2^{-(i+1)}\left|\mu\left(A_{T_{i}, F_{1}}\right)-\mu\left(A_{T_{i}, F_{2}}\right)\right|,
\end{gathered}
$$

where $\left(T_{i}\right)_{i \in \mathbb{N}}$ is a dense sequence in $[E]$. Consider now the following two metrics:

$$
\begin{gathered}
\tau_{\infty}\left(F_{1}, F_{2}\right)=\sup _{i} \mu\left(A_{T_{i}, F_{1}} \Delta A_{T_{i}, F_{2}}\right)=\sup _{T \in[E]} \mu\left(A_{T, F_{1}} \Delta A_{T, F_{2}}\right), \\
\tau_{\infty}^{\prime}\left(F_{1}, F_{2}\right)=\sup _{i}\left|\mu\left(A_{T_{i}, F_{1}}\right)-\mu\left(A_{T_{i}, F_{2}}\right)\right|=\sup _{T \in[E]}\left|\mu\left(A_{T, F_{1}}\right)-\mu\left(A_{T, F_{2}}\right)\right| .
\end{gathered}
$$

Proposition 4.30. $\tau_{\infty}^{\prime} \leq \tau_{\infty} \leq 3 \tau_{\infty}^{\prime}$.
Proof. Clearly $\tau_{\infty}^{\prime} \leq \tau_{\infty}$. Let now $\tau_{\infty}^{\prime}\left(F_{1}, F_{2}\right)=a$. We will show that $\tau_{\infty}\left(F_{1}, F_{2}\right) \leq 3 a$. We have that $\left|\mu\left(A_{T, F_{1}}\right)-\mu\left(A_{T, F_{2}}\right)\right| \leq a$, for all $T \in[E]$, so in particular for $S \in\left[F_{1}\right], 1-\mu\left(A_{S, F_{2}}\right) \leq a$, i.e., $d\left(S, F_{2}\right) \leq a$. Now given $T \in[E]$, there is $S \in\left[F_{1}\right]$ such that $x \in A_{T, F_{1}} \Longrightarrow S(x)=T(x)$ (see Proposition 4.2). Then by the last two paragraphs of the proof of Theorem 4.15,

$$
\mu\left(A_{T, F_{1}} \backslash A_{T, F_{2}}\right) \leq d\left(S, F_{2}\right) \leq a
$$

and also

$$
\mu\left(A_{T, F_{1}} \backslash A_{T, F_{2}}\right)-\mu\left(A_{T, F_{2}} \backslash A_{T, F_{1}}\right)=\mu\left(A_{T, F_{1}}\right)-\mu\left(A_{T, F_{2}}\right),
$$

therefore

$$
\mu\left(A_{T, F_{2}} \backslash A_{T, F_{1}}\right) \leq \mu\left(A_{T, F_{1}} \backslash A_{T, F_{2}}\right)+a \leq 2 a,
$$

so $\mu\left(A_{T, F_{1}} \Delta A_{T, F_{2}}\right) \leq 3 a$, thus $\tau_{\infty}\left(F_{1}, F_{2}\right) \leq 3 a$.

Thus $\tau_{\infty}, \tau_{\infty}^{\prime}$ induce the same topology, which we call the uniform topology of $S(E)$. It clearly contains the topology of $S(E)$. It is easy to see that the metric τ_{∞} (or equivalently τ_{∞}^{\prime}) is complete. Indeed let $\left(F_{n}\right)$ be τ_{∞}-Cauchy. Then it is also τ-Cauchy (where we can assume that τ is defined using a countable dense subgroup of $[E]$), so, by the proof of Theorem 4.13, there is $F \in S(E)$, such that $F_{n} \rightarrow F$ (in the topology of $S(E)$). Fix now $\epsilon>0$ and let N be big enough, so that for $m, n \geq N$, we have $\tau_{\infty}^{\prime}\left(F_{m}, F_{n}\right) \leq \epsilon$. Let $T \in[E]$ and then choose $N_{0}>N$ such that for $m \geq N_{0},\left|\mu\left(A_{T, F_{m}}\right)-\mu\left(A_{T, F}\right)\right| \leq \epsilon$. Then for $n \geq N$ we have $\left|\mu\left(A_{T, F_{n}}\right)-\mu\left(A_{T, F}\right)\right| \leq\left|\mu\left(A_{T, F_{n}}\right)-\mu\left(A_{T, F_{N_{0}}}\right)\right|+\left|\mu\left(A_{T, F_{N_{0}}}\right)-\mu\left(A_{T, F}\right)\right| \leq 2 \epsilon$, thus $\tau_{\infty}^{\prime}\left(F_{n}, F\right) \leq 2 \epsilon$.

However the uniform topology is not, in general, separable.
Proposition 4.31. Let E be aperiodic. Then the uniform topology on $S(E)$ is not separable.

Proof. Let $F \subseteq E$ be aperiodic hyperfinite. Then there is free Borel action a of $\mathbb{Z}_{2}^{<\mathbb{N}}$ such that $E_{a}=F$ (see [K4, 8.10]). For Γ a subgroup of $\mathbb{Z}_{2}^{<\mathbb{N}}$ consider the subequivalence relation E_{Γ} induced by the restriction of the action a to Γ. There are clearly uncountably many such Γ and the map $\Gamma \mapsto E_{\Gamma}$ is injective. Suppose now that Γ is not contained in Δ and choose $\gamma \in \Gamma \backslash \Delta$. Then $\mu\left(A_{\gamma^{a}, E_{\Gamma}}\right)=1$. On the other hand, by the freeness of a, there is no x such that $\gamma^{a}(x)=\delta^{a}(x)$, for some $\delta \in \Delta$. Thus $\mu\left(A_{\gamma^{a}, E_{\Delta}}\right)=0$. It follows that $\tau_{\infty}^{\prime}\left(E_{\Gamma}, E_{\Delta}\right)=1$, thus the uncountable set consisting of the $E_{\Gamma}{ }^{\prime}$ s is discrete.

Remark 4.32. Recall the metric σ on $S(E)$ defined in Remark 4.17. Then the topology induced by σ contains the uniform topology. In particular, the uniform topology is separable when restricted to the finite subequivalence relations of E.

5. Limits of sequences

The following shows how the limit of a convergent sequence in $S(E)$ is related to the members of the sequence.

Theorem 5.1. Let $F_{n}, F \in S(E)$ and $F_{n} \rightarrow F$. Then for each i, there is an increasing sequence $n_{0}^{(i)}<n_{1}^{(i)}<\ldots$, so that $\left(n_{m}^{(i+1)}\right)_{m \in \mathbb{N}}$ is a subsequence of $\left(n_{m}^{(i)}\right)_{m \in \mathbb{N}}$ and

$$
F=\bigcup_{m} \bigcap_{k \geq m} F_{n_{k}^{(m)}}
$$

Proof. Let $\left\{T_{i}\right\}_{i \in \mathbb{N}}$ be a countable subset of $[F]$, with $T_{0}=i d$, such that $x F y \Longleftrightarrow \exists i\left(T_{i}(x)=y\right)$. We will define for each i an increasing sequence

$$
n_{0}^{(i)}<n_{1}^{(i)}<\ldots,
$$

so that $\left(n_{m}^{(i+1)}\right)_{m \in \mathbb{N}}$ is a subsequence of $\left(n_{m}^{(i)}\right)_{m \in \mathbb{N}}$ and moreover if we put

$$
R_{i, m}=\bigcap_{k \geq m} F_{n_{k}^{(i)}},
$$

then for (almost) all x,

$$
\left(x, T_{i}(x)\right) \in \bigcup_{m} R_{i, m}
$$

We construct $\left(n_{m}^{(i)}\right)$, recursively on i.
To start with, take $n_{m}^{(0)}=m$. Assume now $\left(n_{m}^{(i)}\right)$ is defined. We will next define $\left(n_{m}^{(i+1)}\right)$.

Consider $T_{i+1} \in[F]$. Since $d\left(T_{i+1}, F\right)=0$,

$$
d\left(T_{i+1}, F_{n}\right)=\mu\left(\left\{x:\left(x, T_{i+1}(x)\right) \notin F_{n}\right\}\right) \rightarrow 0
$$

so we can find a subsequence $\left(n_{m}^{(i+1)}\right)$ of $\left(n_{m}^{(i)}\right)$ with $\mu\left(A_{m}\right)<2^{-(m+1)}$, where

$$
A_{m}=\left\{x:\left(x, T_{i+1}(x)\right) \notin F_{n_{m}^{(i+1)}}\right\} .
$$

Thus, by the Borel-Cantelli Lemma, $\mu\left(\varlimsup_{m} A_{m}\right)=0$, where $\varlimsup_{m} A_{m}=$ $\bigcap_{m} \bigcup_{k \geq m} A_{k}$. Therefore, $\mu\left(\varliminf_{m}\left(\sim A_{m}\right)\right)=1$, where

$$
\underline{\lim }_{m} B_{m}=\bigcup_{m} \bigcap_{k \geq m} B_{k}
$$

i.e., for almost all x, there is m such that for all $k \geq m,\left(x, T_{i+1}(x)\right) \in F_{n_{k}^{(i+1)}}$, thus $\left(x, T_{i+1}(x)\right) \in \bigcup_{m} R_{i+1, m}$.

Now note that $R_{i, m} \subseteq R_{i+1, m}$ and $R_{i, m} \subseteq R_{i, m+1}$, thus $R_{i, m} \subseteq R_{j, n}$ if $i \leq j, m \leq n$. So let $R_{m}=R_{m, m}$. Then clearly $\bigcup_{i, m} R_{i, m}=\bigcup_{m} R_{m}$ and $R_{0} \subseteq R_{1} \subseteq \ldots$. Finally if $(x, y) \in F$, then for some $i, y=T_{i}(x)$, so $(x, y) \in$ $\bigcup_{m} R_{i, m} \subseteq \bigcup_{m} R_{m}$, i.e., $F \subseteq \bigcup_{m} R_{m}$. We thus have $F \subseteq \bigcup_{m} \bigcap_{k \geq m} F_{n_{k}^{(m)}}$.

We will now verify that conversely

$$
R=\bigcup_{m} \bigcap_{k \geq m} F_{n_{k}^{(m)}} \subseteq F
$$

Let $T \in[R]$ in order to show that $T \in[F]$. We have $\forall x \exists m[(x, T(x)) \in$ $\bigcap_{k \geq m} F_{n_{k}^{(m)}}$. Let

$$
A_{m}=\left\{x:(x, T(x)) \in \bigcap_{k \geq m} F_{n_{k}^{(m)}}\right\},
$$

so that $\bigcup_{m} A_{m}=X$. Now $F_{n_{k}^{(m)}} \rightarrow F$ as $k \rightarrow \infty$, so $A_{T, F_{n_{k}^{(m)}}} \xrightarrow{\text { MALG }} A_{T, F}$. Since $A_{m} \subseteq A_{T, F_{n_{k}^{(m)}}}$ for all $k \geq m$, by taking limits as $k \rightarrow \infty$, we obtain $A_{m} \subseteq A_{T, F}$, i.e., $x \in A_{m} \Rightarrow(x, T(x)) \in F$ and so $(x, T(x)) \in F$ for all x, i.e., $T \in[F]$.

Although the preceding result is sufficient for the subsequent applications, Le Maître in [LeM1], showed, using the description of the topology in Section 4.4, (1), that one has the following stronger form of Theorem 5.1 (similar to Theorem 5.6):

Let $F_{n}, F \in S(E)$ and $F_{n} \rightarrow F$. Then there is an increasing sequence $n_{0}<$ $n_{1}<\ldots$, so that

$$
F=\bigcup_{m} \bigcap_{k \geq m} F_{n_{k}}
$$

For \mathcal{R} a class of measure preserving countable Borel equivalence relations on (X, μ), let

$$
\mathcal{R}_{\downarrow}=\left\{\bigcap_{n} F_{n}: F_{0} \supseteq F_{1} \supseteq \ldots, F_{i} \in \mathcal{R}\right\},
$$

and

$$
\mathcal{R}_{\uparrow}=\left\{\bigcup_{n} F_{n}: F_{0} \subseteq F_{1} \subseteq \ldots, F_{i} \in \mathcal{R}\right\}
$$

Theorem 5.2. Let $\mathcal{R} \subseteq S(E)$ be closed under finite intersections. Then

$$
\overline{\mathcal{R}}=\left(\mathcal{R}_{\downarrow}\right)_{\uparrow}
$$

(where $\overline{\mathcal{R}}$ is the closure of \mathcal{R} in $S(E)$).
Proof. Clearly $\left(\mathcal{R}_{\downarrow}\right)_{\uparrow} \subseteq \overline{\mathcal{R}}$. The converse follows from Theorem 5.1, noting that $\bigcap_{k \geq m} F_{n_{k}^{(m)}}$ can be written as a decreasing intersection of relations in \mathcal{R}.

Put

$$
\mathcal{R}^{*}=\left(\mathcal{R}_{\downarrow}\right)_{\uparrow} .
$$

The preceding shows that if $\mathcal{R} \subseteq S(E)$ is closed under finite intersections, then $\mathcal{R}^{*}=\overline{\mathcal{R}}$ and thus $\left(\mathcal{R}^{*}\right)^{*}=\mathcal{R}^{*}$. Also note that if \mathcal{R} is hereditary, i.e, closed under subequivalence relations, then $\overline{\mathcal{R}}=\mathcal{R}^{*}=\mathcal{R}_{\uparrow}$.

For any class \mathcal{R} of measure preserving countable Borel equivalence relations on (X, μ) closed under finite intersections (not necessarily contained in some $S(E)$), we have that if $F \in\left(\mathcal{R}^{*}\right)^{*}$, then for some large enough $E, F \in\left(\mathcal{R}_{E}^{*}\right)^{*}$ with $\mathcal{R}_{E}=\mathcal{R} \cap S(E)$, so $F \in \mathcal{R}_{E}^{*}$. Thus $\left(\mathcal{R}^{*}\right)^{*}=\mathcal{R}^{*}$.

This has the following implication about arbitrary hereditary classes of equivalence relations (not necessarily within a fixed $S(E)$). It was originally proved (in a somewhat stronger form not requiring invariance of the measure) in Boykin-Jackson [BJ, page 116].

Corollary 5.3 (Boykin-Jackson [BJ]). Let \mathcal{R} be a hereditary class of measure preserving countable Borel equivalence relations on (X, μ). Then \mathcal{R}_{\uparrow} is closed under taking unions of increasing sequences of relations, i.e., $\left(\mathcal{R}_{\uparrow}\right)_{\uparrow}=\mathcal{R}_{\uparrow}$.

Proof. Let $S_{n} \in \mathcal{R}_{\uparrow}, S_{0} \subseteq S_{1} \subseteq \ldots, E=\bigcup_{n} S_{n}$. Then if $\mathcal{R}_{E}=S(E) \cap$ \mathcal{R}, we have that $\left(\mathcal{R}_{E}\right)_{\uparrow}=S(E) \cap \mathcal{R}_{\uparrow}$ and $S_{n} \in\left(\mathcal{R}_{E}\right)_{\uparrow}$, so $E \in \overline{\mathcal{R}_{E}}$, by Proposition 4.6, and thus $E \in \mathcal{R}_{\uparrow}$.

Put also

$$
\mathcal{R}_{*}=\left(\mathcal{R}_{\uparrow}\right)_{\downarrow}
$$

If \mathcal{R} is closed under finite intersections, then $\mathcal{R}_{*} \subseteq \overline{\mathcal{R}}=\mathcal{R}^{*}$.
Problem 5.4. If \mathcal{R} is closed under finite intersections, is it true that $\mathcal{R}_{*}=\mathcal{R}^{*}$?
We also have the following corollary of Theorem 5.1. Recall that id is the equality equivalence relation.

Corollary 5.5. If $F_{n} \in S(E), F_{n} \rightarrow i d$, then $\bigcap_{n} F_{n}=i d$.
Proof. By Theorem 5.1, there is an increasing sequence $\left(n_{i}\right)$ with $\bigcap_{i} F_{n_{i}}=$ $i d$ and thus $\bigcap_{n} F_{n}=i d$.

We finally note the following for the uniform topology.
Theorem 5.6. Let $F_{n}, F \in S(E)$ and $F_{n} \rightarrow F$ in the uniform topology. Then there is an increasing sequence $n_{0}<n_{1}<\ldots$, so that

$$
F=\bigcup_{m} \bigcap_{k \geq m} F_{n_{k}} .
$$

Proof. We have

$$
\sup _{T \in[F]} \mu\left(X \backslash A_{T, F_{n}}\right) \rightarrow 0
$$

therefore let $n_{0}<n_{1}<\ldots$ be such that for every $T \in[F], \mu\left(X \backslash A_{T, F_{n_{m}}}\right)<$
 and (almost) all x there is m such that for all $\left.k \geq m, x \in A_{T, F_{n_{k}}}\right)$. It follows that

$$
F \subseteq \bigcup_{m} \bigcap_{k \geq m} F_{n_{k}}
$$

The reverse inclusion follows as in the last part of the proof of Theorem 5.1.

6. The space of equivalence relations

We discuss here a topology on the space of all measure preserving countable Borel equivalence relations.

6.1 Coherence of topologies

We consider now the relation of the topologies of $S(E), S(F)$, when $E \subseteq F$.
Theorem 6.1. Let $E \subseteq F$. Then $S(E)$ is a closed subset of $S(F)$ and the topology of $S(E)$ is the relative topology from $S(F)$.
Proof. From Theorem 5.1 it is clear that $S(E)$ is a closed subset of $S(F)$.
Let τ be the relative topology of $S(E)$ and let σ be the topology of $S(E)$. We will use the description of the topology of $S(E)$ from Section 4.4, (1). Let M_{E}, M_{F} be the corresponding measures and let ν_{F} be a probability Borel measure equivalent to M_{F}. Then $\nu_{F}(E)>0$, so let ν_{E} be the normalized measure on E given by $\nu_{E}(W)=\frac{\nu_{F}(W)}{\nu_{F}(E)}$, for Borel $W \subseteq E$. Then, since M_{E} is simply the restriction of M_{F} to E, clearly ν_{E} is equivalent to M_{E}. It follows that the identity map is a homeomorphism of $(S(E), \tau)$ with (S $(E), \sigma)$, so $\tau=\sigma$.

Denote by \mathcal{E} the set of all measure preserving countable Borel equivalence relations on (X, μ) (where again we identify two equivalence relations if they agree a.e.). Thus $\mathcal{E}=\bigcup_{E \in \mathcal{E}} S(E)$. By the preceding Theorem 6.1, the topologies on $S(E), S(F)$ agree on $S(E) \cap S(F)=S(E \cap F)$ and $S(E \cap F)$ is closed on $S(E)$ and $S(F)$. So we can define the weak topology on \mathcal{E} induced by the spaces $S(E)$, which is the topology on \mathcal{E} defined by declaring that $U \subseteq \mathcal{E}$ is open iff $U \cap S(E)$ is open in $S(E)$ for
all $E \in \mathcal{E}$. In particular $f: \mathcal{E} \rightarrow Y, Y$ a topological space, is continuous if $f \mid S(E): S(E) \rightarrow Y$ is continuous for all $E \in \mathcal{E}$. Also on each $S(E)$ the relative topology from \mathcal{E} coincides with its topology and $S(E)$ is closed in \mathcal{E}. (For the general concept of weak topology on a set induced by topologies on families of subsets, see, e.g., [D, VI.8].)

We should also note here that for $E \subseteq F, S(E)$ is a retract of $S(F)$, with the retraction given by the map $R \in S(F) \mapsto R \cap E \in S(E)$. From this it follows that the map $E \in S(F) \mapsto S(E) \in \mathcal{F}^{*}(S(F))$, where $\mathcal{F}^{*}(S(F))$ is equipped with the Effros Borel structure, is a Borel map. To see this fix a countable dense subset $\left\{F_{n}: n \in \mathbb{N}\right\}$ of $S(F)$. Then $\left\{E \cap F_{n}: n \in \mathbb{N}\right\}$ is dense in $S(E)$ and the map $\Phi: S(F) \rightarrow S(F)^{\mathbb{N}}$ given by $\Phi(E)_{n}=E \cap F_{n}$ is Borel and gives for each $E \in S(F)$ a dense sequence in $S(E)$, which implies that the map $E \in S(F) \mapsto S(E) \in \mathcal{F}^{*}(S(F))$ is Borel. On the other hand, we do not know if the map $E \in S(F) \mapsto\{G \in S(F): E \subseteq G\} \in$ $\mathcal{F}^{*}(S(F))$ is Borel.

Finally we point out that each space $S(E)$ is contractible (to the equality relation) by the map $\varphi: S(E) \times[0,1] \rightarrow S(E)$ given by $\varphi(F, t)=F \mid[1,1-$ $t] \cup\{(x, x): x \in(1-t, 1]\}$, where without loss of generality we assume that $X=[0,1]$ and μ is Lebesgue measure.

Remark 6.2. The question of the Borelness of the map $E \in S(F) \mapsto S(E) \in$ $\mathcal{F}^{*}(S(F))$ is a special case of the following more general question: Let X be a Polish space and \leq a closed (as a subset of X^{2}) partial ordering on X. Is the map $x \in X \mapsto I_{x}=\{y \in X: y \leq x\} \in \mathcal{F}^{*}(X)$ Borel (where again $\mathcal{F}^{*}(X)$ is equipped with the Effros Borel structure)?

The answer is in general negative. To see this, fix a Polish space Y and a closed subset $F \subseteq Y^{2}$ such that $\forall y \in Y \exists z \in Y(y, z) \in F$ but there is no Borel function $f: Y \rightarrow Y$ such that $\forall y \in Y(y, f(y)) \in F$ (see, e.g., [K, Exercise 18.17]).

Let $Y^{\infty}=\bigoplus_{n \geq 1} Y^{n}$ be the direct sum of the Y^{n}. Thus each Y^{n} is clopen in Y^{∞}. Let $\bar{X} \subseteq Y^{\infty}$ be the closed subset of Y^{∞} consisting of $Y^{1}=$ $\{(y): y \in Y\}$, and for each $n \geq 2$ of all $\left(y_{1}, \ldots, y_{n}\right)$ such that $\left(y_{n-1}, y_{n}\right) \in$ $F,\left(y_{n-2}, y_{n-1}\right) \in F, \ldots,\left(y_{1}, y_{2}\right) \in F$.

Finally define on X the partial ordering

$$
s=\left(s_{1}, \ldots, s_{n}\right) \leq t=\left(t_{1}, \ldots, t_{m}\right) \Longleftrightarrow n \geq m \& s \supseteq t
$$

This is closed in X. Suppose now, towards a contradiction, that the map $x \mapsto I_{x}$ is Borel. Define $K: Y \rightarrow \mathcal{F}^{*}\left(Y^{2}\right)$ by $K(y)=I_{(y)} \cap\left(X \cap Y^{2}\right)$. Since
$X \cap Y^{2}$ is clopen in X, this is also a Borel map. Now

$$
K(y)=\left\{(u, v) \in Y^{2}:(u, v) \in F \& u=y\right\}=\{y\} \times F_{y} .
$$

Since K is Borel, there is a Borel map $\phi: Y \rightarrow Y$ such that $\phi(y) \in K(y)$ and so there is a Borel map $f: Y \rightarrow Y$ such that $f(y) \in F_{y}$, contradicting our assumption about F.

On the other hand, it is easy to see that if \leq is a closed pre-linear ordering on a Polish space X, then the map $x \mapsto I_{x}$ is Borel. Indeed for each open set $U \subseteq X$, let $P_{U}=\left\{x \in X: I_{x} \cap U \neq \emptyset\right\}$. We will check that P_{U} is Borel, in fact either open or closed. For that notice that for each $x \in X$, the set $J_{x}=\{y \in X: x<y\}$ is open. Then if U has a least element $u_{0}, P_{U}=\left\{x: u_{0} \leq x\right\}$ is closed, while if U has no least element, then $P_{U}=\bigcup_{x \in U} J_{x}$ is open.

6.2 Properties of the weak topology

We will next give another description of the weak topology of \mathcal{E}. Consider the compact space $[0,1]^{\operatorname{Aut}(X, \mu)}$ with the product topology. Define

$$
\Pi: \mathcal{E} \rightarrow[0,1]^{\operatorname{Aut}(X, \mu)}
$$

by $\Pi(F)(T)=d(T, F)$. Since $[F]=\{T: d(T, F)=0\}$, clearly Π is injective.
Proposition 6.3. The map Π defined above is a homeomorphism of \mathcal{E} with a subspace of $[0,1]^{\operatorname{Aut}(X, \mu)}$.

Proof. Below denote by τ the weak topology of \mathcal{E}. We first verify that Π is continuous. Let $V=\bigcap_{i=1}^{n} V_{i}$ be a basic open set in $[0,1]^{\operatorname{Aut}(X, \mu)}$, where $V_{i}=$ $\left\{p \in[0,1]^{\operatorname{Aut}(X, \mu)}: p\left(T_{i}\right) \in U_{i}\right\}$, with U_{i} open in $[0,1]$ and $T_{1}, T_{2}, \cdots, T_{n} \in$ $\operatorname{Aut}(X, \mu)$. Then

$$
\Pi^{-1}(V)=\left\{F \in \mathcal{E}: d\left(T_{i}, F\right) \in U_{i}, 1 \leq i \leq n\right\}
$$

Let $F \in \mathcal{E}$ be such that $T_{i} \in[F]$ for all $1 \leq i \leq n$. Then $\Pi^{-1}(V) \cap S(F)$ is open in $S(F)$. Since for each $E \in \mathcal{E}$ there is such an F containing E, it follows from Theorem 6.1 that $\Pi^{-1}(V) \cap S(E)$ is open in $S(E)$ for each $E \in \mathcal{E}$, so $\Pi^{-1}(V)$ is τ-open.

Conversely, we show that Π sends τ-closed sets to closed subsets of $\Pi(\mathcal{E})$ (in its relative topology from $\left.[0,1]^{\operatorname{Aut}(X, \mu)}\right)$, so Π^{-1} is also continuous.

Fix $\mathcal{F} \subseteq \mathcal{E}$ which is τ-closed. Let $\left(F_{i}\right)_{i \in I}$ be a net in \mathcal{F} and $F \in \mathcal{E}$ be such that $\Pi\left(F_{i}\right) \rightarrow \Pi(F)$, i.e., $d\left(T, F_{i}\right) \rightarrow d(T, F), \forall T \in \operatorname{Aut}(X, \mu)$. We will show that $F \in \mathcal{F}$.

We inductively define an increasing sequence $E_{0} \subseteq E_{1} \subseteq \ldots$ of elements of \mathcal{E} and for each $n \in \mathbb{N}$ a countable dense subset $\left\{T_{k}^{n}\right\}_{k \in \mathbb{N}}$ of $\left[E_{n}\right]$ such that $\left\{T_{k}^{n}\right\}_{k \in \mathbb{N}} \subseteq\left\{T_{k}^{n+1}\right\}_{k \in \mathbb{N}}$, as follows:
(i) $E_{0}=F,\left\{T_{k}^{0}\right\}_{k \in \mathbb{N}}$ is some dense subset of $\left[E_{0}\right]$,
(ii) Given $E_{n},\left\{T_{k}^{n}\right\}_{k \in \mathbb{N}}$, for each $l \geq 1$, finite sequence $\bar{m}=\left(m_{1}, \ldots, m_{l}\right) \in$ \mathbb{N}^{l}, and $\epsilon \in \mathbb{Q}^{+}$, find $F_{\bar{m}, \epsilon}^{n} \in \mathcal{F}$ such that

$$
\left|d\left(T_{m_{i}}^{n}, F\right)-d\left(T_{m_{i}}^{n}, F_{\bar{m}, \epsilon}^{n}\right)\right|<\epsilon, 1 \leq i \leq l .
$$

Put

$$
E_{n+1}=E_{n} \vee\left(\bigvee_{\bar{m}, \epsilon} F_{\bar{m}, \epsilon}^{n}\right),
$$

where for a sequence of equivalence relations $\left(F_{j}\right), \bigvee_{j} F_{j}$ is the smallest equivalence relation containing all F_{j}. Finally let $\left\{T_{k}^{n+1}\right\}_{k \in \mathbb{N}}$ be a dense subset of $\left[E_{n+1}\right]$ containing $\left\{T_{k}^{n}\right\}_{k \in \mathbb{N}}$.

Let $E=\bigcup_{n} E_{n}$. Since $\mathcal{F} \cap S(E)$ is closed in $S(E)$, it is enough to show that F is in the closure of $\mathcal{F} \cap S(E)$ in $S(E)$. Since $\left\{T_{k}^{n}\right\}_{n, k}$ is dense in $[E]$, a basic open nbhd of F in $S(E)$ is of the form

$$
U=\bigcap_{i=1}^{l}\left\{F^{\prime} \in S(E):\left|d\left(S_{i}, F^{\prime}\right)-d\left(S_{i}, F\right)\right|<\epsilon\right\}
$$

for some $S_{1}, \ldots, S_{l} \in\left\{T_{k}^{n}\right\}_{n, k}$ and $\epsilon \in \mathbb{Q}^{+}$. Then for large enough n, we have that $S_{1}, \ldots, S_{l} \in\left\{T_{k}^{n}\right\}_{k}$, say $S_{i}=T_{m_{i}}^{n}, 1 \leq i \leq l$. Put $\bar{m}=\left(m_{1}, \ldots, m_{l}\right)$. Then by construction $F_{\bar{m}, \epsilon}^{n} \in \mathcal{F} \cap U$ and the proof is complete.

Thus \mathcal{E} can be viewed as a subspace of $[0,1]^{\operatorname{Aut}(X, \mu)}$, so, in particular, it is Hausdorff. On the other hand it is neither separable or first countable.

Proposition 6.4. The weak topology on \mathcal{E} is not separable.
Proof. The closure of any countable set $\left\{F_{n}\right\} \subseteq \mathcal{E}$ is clearly contained in $S\left(\bigvee_{n} F_{n}\right)$.

Proposition 6.5. The weak topology of \mathcal{E} is not first countable.

Proof. We will use the following lemma. Recall that for $T \in \operatorname{Aut}(X, \mu), E_{T}$ is the equivalence relation generated by T.

Lemma 6.6. Let $F \in \mathcal{E}, S_{1}, S_{2}, \cdots \in \operatorname{Aut}(X, \mu)$ and $T \in \operatorname{Aut}(X, \mu)$ be such that $E_{T} \perp\left(F \vee\left(\bigvee_{i=1}^{\infty} E_{S_{i}}\right)\right)$. Then for every $i \geq 1, d\left(S_{i}, F \vee E_{T}\right)=d\left(S_{i}, F\right)$.

Proof. By definition of $\perp, A_{S_{i}, F \vee E_{T}}=A_{S_{i}, F}$.
Assume now, towards a contradiction, that \mathcal{E} is first countable. Fix $F \in \mathcal{E}$ and let $\left\{U_{n}\right\}$ be a local basis at F. Then, for each n, there is a sequence $T_{1}^{n}, \ldots, T_{k_{n}}^{n} \in \operatorname{Aut}(X, \mu)$ and open sets $V_{i}^{n}, \ldots, V_{k_{n}}^{n}$ in $[0,1]$ such that

$$
F \in \bigcap_{i=1}^{k_{n}}\left\{F^{\prime}: d\left(T_{i}^{n}, F^{\prime}\right) \in V_{i}^{n}\right\} \subseteq U_{n}
$$

Let $R=F \vee \bigvee_{i \leq k_{n}, n \in \mathbb{N}} E_{T_{i}^{n}}$. The set $\left\{T \in \operatorname{Aut}(X, \mu): E_{T} \perp R\right\}$ is comeager in the weak topology of $\operatorname{Aut}(X, \mu)$ (see Conley-Miller [CM, Theorem 8]), so fix aperiodic $T \in \operatorname{Aut}(X, \mu)$ with $E_{T} \perp R$. Then $d(T, F)=1$. Put

$$
U=\left\{F^{\prime} \in \mathcal{E}: d\left(T, F^{\prime}\right)>\epsilon\right\},
$$

where $0<\epsilon<1$. Then $F \in U$, so for some $n, F \in U_{n} \subseteq U$ and thus $F \in \bigcap_{i=1}^{k_{n}}\left\{F^{\prime}: d\left(T_{i}^{n}, F^{\prime}\right) \in V_{i}^{n}\right\} \subseteq U$. Put $F^{\prime}=F \vee E_{T}$. Then, since $E_{T} \perp R$, we have by Lemma 6.6 that $d\left(T_{i}^{n}, F^{\prime}\right)=d\left(T_{i}^{n}, F\right)$, therefore $d\left(T_{i}^{n}, F^{\prime}\right) \in V_{i}^{n}$ for $1 \leq i \leq k_{n}$. Thus $F^{\prime} \in U_{n} \subseteq U$, so $d\left(T, F^{\prime}\right)>\epsilon$. But $T \in\left[F^{\prime}\right]$, so $d\left(T, F^{\prime}\right)=0$, a contradiction.

6.3 Parametrization by actions

To see another aspect of the global structure of \mathcal{E}, consider the Polish space $A\left(\mathbb{F}_{\infty}, X, \mu\right)$ with the weak topology. The map $a \mapsto E_{a}$ is a surjection from $A\left(\mathbb{F}_{\infty}, X, \mu\right)$ to \mathcal{E} and provides a canonical parametrization of \mathcal{E}. Let

$$
a \sim_{\mathbb{F}_{\infty}} b \Longleftrightarrow E_{a}=E_{b}
$$

be the associated equivalence relation, so that $\mathcal{E}=A\left(\mathbb{F}_{\infty}, X, \mu\right) / \sim_{\mathbb{F}_{\infty}}$.
Proposition 6.7. $\sim_{\mathbb{F}_{\infty}}$ is $F_{\sigma \delta}$.

Proof. We use below letters β, γ, δ for elements of \mathbb{F}_{∞} and a, b for elements of $A\left(\mathbb{F}_{\infty}, X, \mu\right)$. We will verify that the negation of $\sim_{\mathbb{F}_{\infty}}$ is $G_{\delta \sigma}$. For this it is enough to check that for each $\gamma, \epsilon>0$ the relation

$$
P(a, b) \Longleftrightarrow \mu\left(\left\{x: \forall \delta\left(\gamma^{a}(x) \neq \delta^{b}(x)\right)\right\}\right) \geq \epsilon
$$

is G_{δ} and for this it suffices to check that for each fixed $\delta_{1}, \ldots, \delta_{n}$ the relation

$$
Q(a, b) \Longleftrightarrow \mu\left(\left\{x: \forall 1 \leq i \leq n\left(\gamma^{a}(x) \neq \delta_{i}^{b}(x)\right)\right\}\right) \geq \epsilon
$$

is G_{δ}. Since the maps $a \mapsto \beta^{a}$ from $A\left(\mathbb{F}_{\infty}, X, \mu\right)$ to $\operatorname{Aut}(X, \mu)$ (with the weak topologies) are continuous, this reduces to showing that the relation $R \subseteq \operatorname{Aut}(X, \mu)^{n+1}$ given by

$$
R\left(T, S_{1}, \ldots, S_{n}\right) \Longleftrightarrow \mu\left(\bigcap_{i=1}^{n} \operatorname{supp}\left(T^{-1} S_{i}\right)\right) \geq \epsilon
$$

is G_{δ}, where as usual

$$
\operatorname{supp}(T)=\{x: T(x) \neq x\} .
$$

This is clear, since the map

$$
\left(U_{1}, \ldots, U_{n}\right) \in \operatorname{Aut}(X, \mu) \mapsto\left(\operatorname{supp}\left(U_{1}\right), \ldots, \operatorname{supp}\left(U_{n}\right)\right) \in \operatorname{MALG}^{n}
$$

is of Baire class 1 (see [K, page 4$]$).
Below let $E_{\text {ctble }}$ be the equivalence relation on $P^{\mathbb{N}}$, where P is an uncountable Polish space, given by

$$
\left(x_{n}\right) E_{\text {ctble }}\left(y_{n}\right) \Longleftrightarrow\left\{x_{n}: n \in \mathbb{N}\right\}=\left\{y_{n}: n \in \mathbb{N}\right\} .
$$

It is well known that this is a non-smooth equivalence relation and moreover it is $F_{\sigma \delta}$-complete (as a set of pairs). Below for Borel equivalence relations E, F in Polish spaces X, Y, we let $E \leq_{c} F$ mean that there is a continuous reduction from E to F.

Theorem 6.8. $E_{\text {ctble }} \leq_{c} \sim_{\mathbb{F}_{\infty}}$, so, in particular, $\sim_{\mathbb{F}_{\infty}}$ is $F_{\sigma \delta}$-complete (as a set of pairs) and non-smooth.

Proof. Let $R_{n} \subseteq \operatorname{Aut}(X, \mu)^{n}$ be defined by

$$
R_{n}\left(T_{1}, \ldots, T_{n}\right) \Longleftrightarrow \forall 1 \leq i \leq n\left(E_{T_{i}} \perp E_{T_{1}, \ldots, T_{i-1}, T_{i+1}, \ldots, T_{n}}\right)
$$

By Conley-Miller [CM, Theoem 8] and the Kuratowski-Ulam Theorem, a simple induction on n shows that each R_{n} is comeager in $\operatorname{Aut}(X, \mu)^{n}$. Thus by the Kuratowski-Mycielski Theorem (see [K2, 19.1]), there is a Cantor set $P \subseteq \operatorname{Aut}(X, \mu)$ so that for any distinct $T_{1}, \ldots, T_{n} \in P$ we have $R_{n}\left(T_{1}, \ldots, T_{n}\right)$.

Define now $f: P^{\mathbb{N}} \rightarrow A\left(\mathbb{F}_{\infty}, X, \mu\right)$ by $f\left(\left(T_{i}\right)\right)=a$, where $\gamma_{i}^{a}=T_{i}$, with $\left(\gamma_{i}\right)$ free generators of \mathbb{F}_{∞}. Clearly f is continuous and a reduction of $E_{\text {ctble }}$ to $\sim_{\mathbb{F}_{\infty}}$.

It can be also shown that $\sim_{\mathbb{F}_{\infty}}$ is Borel reducible to an equivalence relation induced by a Borel action of a Polish group. In fact, by using a slightly different parametrization of \mathcal{E}, the associated equivalence relation is again $F_{\sigma \delta}$ and induced by a continuous action of a Polish group (see Törnquist [T, page 33]).

The preceding show that it is not possible to find a "definable" injection of \mathcal{E} into a standard Borel space, so in particular \mathcal{E} does not admit any "definable" separable metrizable topology. The following remains open:

Problem 6.9. What is the complexity of the equivalence relation (as a set of pairs) on the space $A(\Gamma, X, \mu)$ (in the weak topology) given by

$$
a \sim_{\Gamma} b \Longleftrightarrow E_{a}=E_{b}
$$

for other groups Γ, e.g., $\Gamma=\mathbb{Z}$?
Problem 6.10. Determine the complexity of the equivalence relation $\sim_{\mathbb{F}_{\infty}}$ in the hierarchy of Borel equivalence relations under Borel reducibility.

6.4 The inclusion poset

We finally note an interesting property of the poset (\mathcal{E}, \subseteq). We start with the following simple observation.

Let (P, \leq) be an upper semilattice having the following two properties: (i) there is no strictly increasing ω_{1} sequence in P and (ii) every increasing ω sequence in P has a least upper bound. Then for every function $f: P \rightarrow$
P and every $p \in P$, there is $q \geq p$ such that $f(q) \leq q$. Indeed if this fails, then for some p_{0} and all $q \geq p_{0}$ we have that $q^{*}=q \vee f(q)>q$, which using (ii) above produces a strictly increasing ω_{1} sequence. Moreover note that if f is $\boldsymbol{\omega}$-continuous, i.e., for any increasing sequence $\left(p_{n}\right)$ we have that $f\left(\right.$ lub $\left.p_{n}\right)=\operatorname{lub} f\left(p_{n}\right)$, then the set $\{p \in P: f(p) \leq p\}$ is $\boldsymbol{\omega}$-closed, i.e., closed under suprema of increasing sequences, and cofinal.

In the following paragraph, we work in $\mathrm{ZF}+\mathrm{DC}+\mathrm{AD}$.
By a result of Harrington [H] there is no injective ω_{1} sequence of $F_{\sigma \delta}$ sets and thus condition (i) above holds for (\mathcal{E}, \subseteq). Clearly condition (ii) is also true. Thus for every $f: \mathcal{E} \rightarrow \mathcal{E}$ and every $E \in \mathcal{E}$, there is $F \supseteq E$, with $f(F) \subseteq F$. An interesting example of such an f is defined as follows. Fix a measure preserving bijection φ of X^{2} (with the product measure) with X and let $f(E)$ be the image of $E \times E$ by φ. Clearly f is ω-continuous. It follows that there is an ω-closed, cofinal set of E for which $E \times E$ is isomorphic to a subequivalence relation of E.

We work next in the stronger theory $\mathrm{ZF}+\mathrm{DC}+\mathrm{AD}_{\mathbb{R}}$.
Let for any uncountable Polish space $Z, \mathcal{P}_{\aleph_{1}}(Z)$ be the set of all countable subsets of Z. Solovay [S] has shown that the set $\mathcal{P}_{\aleph_{1}}(Z)$ admits a non-principal, countably complete ultrafilter \mathcal{U} defined by:

$$
A \in \mathcal{U} \Longleftrightarrow A \text { contains an } \omega \text {-closed, cofinal subset. }
$$

(Here a subset $C \subseteq \mathcal{P}_{\aleph_{1}}(Z)$ is called ω-closed if for any $S_{0} \subseteq S_{1} \subseteq \ldots$, with $S_{n} \in C, \forall n$, we have that $\bigcup_{n} S_{n} \in C$. It is cofinal if for any $S \in \mathcal{P}_{\aleph_{1}}(Z)$ there is $T \in C$ with $S \subseteq T$.)

We can use this to define a non-principal, countably complete ultrafilter on \mathcal{E} as follows: For each $S \in \mathcal{P}_{\aleph_{1}}(\operatorname{Aut}(X, \mu))$, let E_{S} be the equivalence relation generated by S. Then for every $\mathcal{R} \subseteq \mathcal{E}$, put

$$
\mathcal{R} \in \mathcal{U}_{\mathcal{E}} \Longleftrightarrow\left\{S: E_{S} \in \mathcal{R}\right\} \in \mathcal{U}
$$

It is easy to see that if $\mathcal{R} \subseteq \mathcal{E}$ is ω-closed and cofinal in (\mathcal{E}, \subseteq), then $\mathcal{R} \in$ $\mathcal{U}_{\mathcal{E}}$, thus $\mathcal{U}_{\mathcal{E}}$ contains the countably complete filter of sets containing an ω-closed, cofinal subset of \mathcal{E}. The following is open:

Problem 6.11. Is the filter generated by the ω-closed, cofinal subsets of \mathcal{E} an ultrafilter? Equivalently, is $\mathcal{U}_{\mathcal{E}}$ equal to that filter?

In any case, the ultrafilter $\mathcal{U}_{\mathcal{E}}$ provides a natural way to define a notion of "largeness" for sets of equivalence relations. For example, the class of
ergodic equivalence relations is "large", i.e., belongs to $\mathcal{U}_{\mathcal{E}}$ (and we will see in Chapter 11 that so is the class of richly ergodic ones, being ω-closed, cofinal). On the other hand, the class of hyperfinite equivalence relations is "small", i.e., is not in $\mathcal{U}_{\mathcal{E}}$.

Remark 6.12. The above can be also viewed as results concerning "definable" functions and sets in \mathcal{E}, where we interpret "definable" as meaning "belonging to some inner model of $\mathrm{ZF}+\mathrm{DC}+\mathrm{AD}$ or $\mathrm{ZF}+\mathrm{DC}+\mathrm{AD}_{\mathbb{R}}$ containing the set of reals $\mathbb{R}^{\prime \prime}$ and working in a strong enough large cardinal extension of ZFC .

We conclude this section by pointing out the following unboundedness property of \mathcal{E} : There is no $E \in \mathcal{E}$ such that for every $F \in \mathcal{E}$ there is a subequivalence relation F^{\prime} of E which is isomorphic to F. This follows from a result of Ozawa, see [K, page 29].

7. Relations with the space of actions

Let Γ be a countable group and let $(A(\Gamma, X, \mu), u)$ be the space of measure preserving actions of Γ on (X, μ) with the uniform topology u and consider its closed subspace $A(\Gamma, E)$. For each $a \in A(\Gamma, E)$, let $E_{a} \in S(E)$ be the equivalence relation induced by a. We also let $E_{T_{1}, T_{2}}, \ldots$ be the equivalence relation induced by T_{1}, T_{2}, \ldots in $\operatorname{Aut}(X, \mu)$.

If $\Gamma=\mathbb{F}_{\infty}$, the map $a \mapsto E_{a}$ gives a parametrization of $S(E)$ by $A\left(\mathbb{F}_{\infty}, E\right)$, i.e., a surjective map from $A\left(\mathbb{F}_{\infty}, E\right)$ onto $S(E)$. By Theorem 4.28, and the paragraph preceding it, we have the following selection result.

Theorem 7.1. There is a continuous map $\Psi: S(E) \rightarrow A\left(\mathbb{F}_{\infty}, E\right)$ such that for $F \in S(E), E_{\Psi(F)}=F$.

We now have:
Theorem 7.2. The map $a \in A(\Gamma, E) \mapsto E_{a} \in S(E)$ is of Baire class 1.
Proof. A subbasis for the weak topology of $S(E)$ consists of the sets of the form

$$
\{F \in S(E): d(T, F) \in(a, b)\}
$$

where $T \in D$, with D a countable dense subset of $[E]$, and $a<b$ rationals. It is thus enough to show that

$$
\left\{a \in A(\Gamma, E): d\left(T, E_{a}\right) \in(a, b)\right\}
$$

is F_{σ} and for that it suffices to show that for any such T and $r>0$

$$
\left\{a \in A(\Gamma, E): d\left(T, E_{a}\right) \geq r\right\}
$$

is closed.

So assume $a_{n} \rightarrow a$ in $A(\Gamma, E)$ and $d\left(T, E_{a_{n}}\right) \geq r$. Let $U \in E_{a}$ be such that $d(T, U)=d\left(T, E_{a}\right)$. Then $d\left(T, E_{a_{n}}\right) \leq d(T, U)+d\left(U, E_{a_{n}}\right)$.

Claim. $d\left(U, E_{a_{n}}\right) \rightarrow 0$.
Granting this $r \leq \varlimsup \varlimsup_{n} d\left(T, E_{a_{n}}\right) \leq d(T, U)=d\left(T, E_{a}\right)$.
Proof of claim. Fix $\epsilon>0$. Find next a Borel partition $\left\{A_{n}\right\}_{n=1}^{\infty}$ of X and elements $\left\{\gamma_{n}\right\}_{n=1}^{\infty}$ of Γ with $U=\bigsqcup_{\gamma} \gamma_{n}^{a} \mid A_{n}$. Let N be large enough so that $\sum_{n>N} \mu\left(A_{n}\right)<\epsilon$. Then let M be large enough, so that $d\left(\gamma_{i}^{a}, \gamma_{i}^{a_{n}}\right)<\frac{\epsilon}{N}$, if $i \leq N$ and $n>M$. Let for $i \leq N, n>M$

$$
B_{i}^{n}=\left\{x \in A_{i}: \gamma_{i}^{a}(x)=\gamma_{i}^{a_{n}}(x)\right\} .
$$

Then $B_{i}^{n} \subseteq A_{i}$ and $\mu\left(A_{i} \backslash B_{i}^{n}\right)<\frac{\epsilon}{N}$, so if

$$
B=\bigcup_{i>N} A_{i} \cup \bigcup_{i \leq N}\left(A_{i}^{n} \backslash B_{i}^{n}\right),
$$

then $\mu(B)<2 \epsilon$. If $x \notin B$, then $U(x)=\gamma_{i}^{a_{n}}(x)$ for some $i \leq N$, so $(x, U(x)) \in$ $E_{a_{n}}$. Thus $\left\{x:(x, U(x)) \notin E_{a_{n}}\right\} \subseteq B$, so

$$
d\left(U, E_{a_{n}}\right)=\mu\left(\left\{x:(x, U(x)) \notin E_{a_{n}}\right\}\right)<2 \epsilon
$$

for all $n>M$ and we are done.
Corollary 7.3. Let $\Gamma=\mathbb{F}_{\infty}$. Let \mathcal{P} be a property of equivalence relations such that

$$
\mathcal{P}_{E}^{*}=\left\{a \in A(\Gamma, E): E_{a} \in \mathcal{P}\right\}
$$

is Borel in $A(\Gamma, E)$. Then $\mathcal{P}_{E}=\mathcal{P} \cap S(E)$ is Borel in the topology of $S(E)$.
Proof. For $F \in S(E)$,

$$
\begin{aligned}
F \in \mathcal{P} & \Longleftrightarrow \exists a \in A(\Gamma, E)\left(E_{a}=F \& a \in \mathcal{P}^{*}\right) \\
& \Longleftrightarrow \forall a \in A(\Gamma, E)\left(E_{a}=F \Rightarrow a \in \mathcal{P}^{*}\right)
\end{aligned}
$$

Since $a \mapsto E_{a}$ is Borel this shows that $\mathcal{P} \cap S(E)$ is both analytic and coanalytic, thus Borel.

In particular, taking again $\Gamma=\mathbb{F}_{\infty}$, suppose \mathcal{P} is a property of equivalence relations such that $\left\{a \in A(\Gamma, X, \mu): E_{a} \in \mathcal{P}\right\}$ is Borel in the topology of $A(\Gamma, X, \mu)$. Since this is contained in the uniform topology of $A(\Gamma, X, \mu)$, this set is Borel in the uniform topology of $A(\Gamma, X, \mu)$ and it follows that $\left\{a \in A(\Gamma, E): E_{a} \in \mathcal{P}\right\}$ is Borel in (the uniform topology of) $A(\Gamma, E)$. Therefore \mathcal{P}_{E} is Borel in $S(E)$.

Problem 7.4. For which countable Γ is the map $a \in A(\Gamma, E) \mapsto E_{a} \in S(E)$ continuous, for each E ?

Anush Tserunyan and Robin Tucker-Drob found the first examples that showed that this map is not always continuous.
(1) (R. Tucker-Drob) Take $\Gamma=\mathbb{F}_{\infty}$ with free generating set $\left\{\gamma_{m}\right\}_{m \in \mathbb{N}}$. Fix any two transformations $S, T \in \operatorname{Aut}(X, \mu)$ such that $E_{S} \vee E_{T} \neq E_{T}$. Let $E=E_{S} \vee E_{T}$ and define $a_{n} \in A(\Gamma, E)$ by

$$
\gamma_{m}^{a_{n}}= \begin{cases}S & \text { if } m>n \\ T & \text { if } m \leq n\end{cases}
$$

Also define $a \in A(\Gamma, E)$ by $\gamma_{m}^{a}=T$ for all m. Clearly $E_{a_{n}}=E$ and $E_{a}=$ E_{T}. Also a_{n} converges uniformly to a. On the other hand, the constant sequence $E_{a_{n}}=E$ does not converge to $E_{a}=E_{T}$.
(2) (A. Tserunyan) Take $\Gamma=\mathbb{F}_{\infty}$ with free generating set $\left\{\gamma_{m}\right\}_{m \in \mathbb{N}}$. Let a be the usual shift action of Γ on 2^{Γ} and E_{a} the induced equivalence relation. Let T be the measure preserving automorphism on 2^{Γ} such that $T(x)(\gamma)=$ $1-x(\gamma)$, for all $\gamma \in \Gamma$. Let a_{n} be the action of Γ such that

$$
\gamma_{m}^{a_{n}}= \begin{cases}\gamma_{m}^{a} & \text { if } m \leq n \\ T & \text { if } m>n\end{cases}
$$

Let E be large enough so that all γ_{n}^{a}, for all $\gamma \in \Gamma$, and T are in $[E]$. Then $a_{n} \rightarrow a$ uniformly but $E_{a_{n}}$ does not converge to E_{a}, since $d\left(T, E_{a_{n}}\right)=0$ but $d\left(T, E_{a}\right)=1$.
(3) (R. Tucker-Drob) Take $\Gamma=\mathbb{Z}$. Let (S, T) be any free action of \mathbb{Z}^{2} on (X, μ) and fix some ergodic equivalence relation E whose full group contains the transformations S and T. Fix also sequences $\epsilon_{n}>0, \epsilon_{n} \rightarrow 0$ and $k_{n} \in \mathbb{N}, k_{n} \rightarrow \infty$. By the Rokhlin Lemma for \mathbb{Z}^{2} actions, for each n we can find a set $B_{n}=B \subseteq X$ such that the sets $S^{i} T^{j}(B), 0 \leq i, j<k_{n}$, are pairwise disjoint, and satisfy $\mu(C)>1-\epsilon_{n}$, where

$$
C=\bigsqcup_{0 \leq i, j<k_{n}} S^{i} T^{j}(B)
$$

Define the transformation S_{n} as follows: view powers of the transformation S as successively moving the block B upward and view powers of T as moving B horizontally to the right. We thus have a square structure
consisting of k_{n}-many rows and k_{n}-many columns, and where B is in the bottom left corner. Define S_{n} to be equal to S on all rows except for the top. On the top row define

$$
S_{n}(x)= \begin{cases}T S^{-\left(k_{n}-1\right)}(x) & \text { if } x \in S^{k_{n}-1} T^{j}(B) \text { where } j<k_{n}-1 \\ T^{-\left(k_{n}-1\right)} S^{-\left(k_{n}-1\right)}(x) & \text { if } x \in S^{k_{n}-1} T^{k_{n}-1}(B)\end{cases}
$$

Thus, on C, S_{n} is a cyclic permutation of the blocks $\left\{S^{i} T^{j}(B)\right\}_{0 \leq i, j<k_{n}}$ with $E_{S_{n}}\left|C \subseteq E_{(S, T)}\right| C \subseteq E \mid C$. We extend S_{n} to all of X so that it has period k_{n}^{2} and is in $[E]$. Then it is clear that $S_{n} \rightarrow S$ uniformly. Since (S, T) defines a free action of \mathbb{Z}^{2} we have $d\left(T, E_{S}\right)=1-\mu(\{x \in X:(x, T(x)) \in$ $\left.\left.E_{S}\right\}\right)=1$. On the other hand, if $x \in C$ is in any column except the last, then $S_{n}^{k_{n}}(x)=T(x)$, so that $(x, T(x)) \in E_{S_{n}}$ and thus $d\left(T, E_{S_{n}}\right)=1-\mu(\{x$: $\left.\left.(x, T(x)) \in E_{S_{n}}\right\}\right) \rightarrow 0$. This shows that $E_{S_{n}}$ does not converge to E_{S}.

Assume now that S is ergodic. We can use the sequence $\left\{S_{n}\right\}$ to define a new sequence $\left\{Q_{n}\right\} \subseteq[E]$ of ergodic transformations which converge uniformly to S and also satisfy $\mu\left(\left\{x: T(x)=Q_{n}^{k_{n}}(x)\right\}\right) \rightarrow 1$, so that $E_{Q_{n}}$ does not converge to E_{S} in $S(E)$. Let $\eta_{n}>0$ be chosen so that $k_{n} \eta_{n} \rightarrow 0$. Since E is ergodic, any two transformations in $[E]$ of period k_{n}^{2} are isomorphic via an element of $[E]$, so by the Uniform Approximation Theorem (see [K, 3.3]), for each n there exists an ergodic transformation $Q_{n} \in[E]$ such that $d_{u}\left(S_{n}, Q_{n}\right) \leq \frac{1}{k_{n}^{2}}+\eta_{n}$. Then $Q_{n} \rightarrow S$ uniformly (since S_{n} converges to S uniformly), and $d_{u}\left(Q_{n}^{k_{n}}, S_{n}^{k_{n}}\right) \leq k_{n}\left(\frac{1}{k_{n}^{2}}+\eta_{n}\right)=\frac{1}{k_{n}}+k_{n} \eta_{n} \rightarrow 0$, so $\mu\left(\left\{x: T(x)=Q_{n}^{k_{n}}(x)\right\}\right) \rightarrow 1$.

It turns out now that we have the following general fact.
Theorem 7.5. Let E be ergodic. Let Γ be a countable infinite amenable group. Then the map $a \in A(\Gamma, E) \mapsto E_{a} \in S(E)$ is not continuous.

Proof. By Dye and Ornstein-Weiss (see [KM, 10.7]), let $T \in[E]$ be mixing and let $a \in A(\Gamma, E)$ be such that $E_{a}=E_{T}$. Let $S=T^{2}$. Then S is ergodic and $E_{S} \varsubsetneqq E_{T}$. Again by Ornstein-Weiss, there is a free ergodic $b \in A(\Gamma, E)$ such that $E_{b}=E_{S}$. By Foreman-Weiss [FW, proof of Claim 19], there is a sequence $S_{0}, S_{1}, \cdots \in\left[E_{a} \vee E_{b}\right]=\left[E_{a}\right]$ such that $a_{n}=S_{n} a S_{n}^{-1} \rightarrow b$ uniformly. But $E_{a_{n}}=E_{a} \neq E_{b}$.

We now define a stronger topology than the uniform topology on the space $A(\Gamma, X, \mu)$ (see [K, Remark in page 103]). It is induced by the complete metric

$$
\delta_{\Gamma, \infty}(a, b)=\sup _{\gamma \in \Gamma} d_{u}\left(\gamma^{a}, \gamma^{b}\right) .
$$

The main fact is that the map $a \in A(\Gamma, E) \mapsto E_{a} \in S(E)$ is Lipschitz in the metrics $\delta_{\Gamma, \infty}, \tau_{\infty}$ (defined in Section 4.6). Below recall that $[[E]]$ is the full pseudogroup of E, i.e., the set of all partial Borel bijections $\varphi: A \rightarrow B$ with $\varphi(x) E x, \forall x \in A$. As usual we identify two such partial bijections if they agree μ-a.e.

Theorem 7.6. For any countable group Γ and any $a, b \in A(\Gamma, E)$,

$$
\tau_{\infty}\left(E_{a}, E_{b}\right) \leq 80 \delta_{\Gamma, \infty}(a, b)
$$

In particular, $a \in A(\Gamma, E) \mapsto E_{a} \in S(E)$ is continuous from the $\delta_{\Gamma, \infty}$-topology on $A(\Gamma, E)$ to the uniform topology of $S(E)$ (and thus to the topology of $S(E)$).
Proof. We will show that for any $\delta>0$,

$$
\delta_{\Gamma, \infty}(a, b)<\frac{\delta^{2}}{2} \Longrightarrow \tau_{\infty}\left(E_{a}, E_{b}\right) \leq 40 \delta^{2} .
$$

Assume $\delta_{\Gamma, \infty}(a, b)<\frac{\delta^{2}}{2}$ and fix $T \in[E]$. By [K, Remark in page 103], there is $\varphi: A \rightarrow B, \varphi \in[[E]]$ such that A is a-invariant, B is b-invariant, $\varphi(a \mid A) \varphi^{-1}=b \mid B, \mu(A)>1-16 \delta^{2}$ and $\mu(\{x \in A: \varphi(x) \neq x\}) \leq 4 \delta^{2}$.

Put

$$
\begin{gathered}
A^{\prime}=\{x \in A: \varphi(x)=x\}=\left\{x \in B: \varphi^{-1}(x)=x\right\}, \\
A^{\prime \prime}=\left\{x \in A^{\prime}: T(x) \in A^{\prime}\right\} .
\end{gathered}
$$

Suppose now that $(x, T(x)) \in E_{a}$ and $x \in A^{\prime \prime}$. Then there is $\gamma \in \Gamma$ such that $\gamma^{a}(x)=T(x)$, so, as $x, T(x) \in A^{\prime}$, we have

$$
\gamma^{b}(x)=\gamma^{b}(\varphi(x))=\varphi\left(\gamma^{a}(x)\right)=\varphi(T(x))=T(x),
$$

so $(x, T(x)) \in E_{b}$. Similarly let $(x, T(x)) \in E_{b}$ and $x \in A^{\prime \prime}$. Then there is $\gamma \in \Gamma$ such that $\gamma^{b}(x)=T(x)$, so, as $x, T(x) \in A^{\prime}$, we have

$$
T(x)=\varphi^{-1}(T(x))=\varphi^{-1}\left(\gamma^{b}(x)\right)=\gamma^{a}\left(\varphi^{-1}(x)\right)=\gamma^{a}(x)
$$

thus $(x, T(x)) \in E_{a}$.
It follows that $A_{T, E_{a}} \Delta A_{T, E_{b}} \subseteq X \backslash A^{\prime \prime}$, and, since $A^{\prime \prime}=A^{\prime} \cap T^{-1}\left(A^{\prime}\right)$, we have $\mu\left(X \backslash A^{\prime \prime}\right) \leq 2 \mu\left(X \backslash A^{\prime}\right)$. Also $X \backslash A^{\prime} \subseteq(X \backslash A) \cup\{x \in A: \varphi(x) \neq x\}$, so $\mu\left(X \backslash A^{\prime}\right)<16 \delta^{2}+4 \delta^{2}=20 \delta^{2}$. Thus $\mu\left(A_{T, E_{a}} \Delta A_{T, E_{b}}\right)<40 \delta^{2}$ and, since T was arbitrary, $\tau_{\infty}\left(E_{a}, E_{b}\right) \leq 40 \delta^{2}$.

It is known that when Γ has property (T) the $\delta_{\Gamma, \infty}$-topology on $A(\Gamma, E)$ coincides with the (uniform) topology of $A(\Gamma, E)$ (see again [K, Remark in page 103]), so we have the following result originally proved by R. TuckerDrob:

Corollary 7.7 (Tucker-Drob). If Γ has property (T), then the map $a \in A(\Gamma, E) \mapsto$ $E_{a} \in S(E)$ is continuous.

In view of Theorem 7.5 and Corollary 7.7, one can consider the following more precise version of Problem 7.4.

Problem 7.8. Let Γ be an infinite group. Is it true that the map $a \in A(\Gamma, E) \mapsto$ $E_{a} \in S(E)$ is continuous for every E iff the group Γ has property (T).

Finally we have:
Proposition 7.9. Assume $a_{n} \rightarrow$ a in $A(\Gamma, E)$ and for every $T \in[E]$,

$$
\mu\left(\left\{x: \neg T(x) E_{a} x \& T(x) E_{a_{n}} x\right\}\right) \rightarrow 0 .
$$

Then $E_{a_{n}} \rightarrow E_{a}$. In particular this holds if $E_{a_{n}} \subseteq E_{a}$.
Proof. We have to show that for $T \in[E], d\left(T, E_{a_{n}}\right) \rightarrow d\left(T, E_{a}\right)$.
Let now $U \in\left[E_{a}\right]$ be such that

$$
T(x) E_{a} x \Rightarrow U(x)=T(x)\left(\text { therefore } d\left(T, E_{a}\right)=d(U, T)\right)
$$

Let

$$
\begin{aligned}
& B_{n}=\left\{x: \neg T(x) E_{a_{n}}(x) \& T(x) E_{a} x\right\} \\
& C_{n}=\left\{x: T(x) E_{a_{n}} x \& U(x) E_{a_{n}} x \& \neg T(x) E_{a} x\right\} \\
& D_{n}=\left\{x: T(x) E_{a_{n}} x \& \neg U(x) E_{a_{n}} x \& \neg T(x) E_{a} x\right\} \\
& E_{n}=\left\{x: \neg T(x) E_{a_{n}} x \& U(x) E_{a_{n}} x \& \neg T(x) E_{a} x\right\} \\
& F_{n}=\left\{x: \neg T(x) E_{a_{n}} x \& \neg U(x) E_{a_{n}} x \& \neg T(x) E_{a} x\right\} .
\end{aligned}
$$

Let $b_{n}, c_{n}, d_{n}, e_{n}, f_{n}$ be the measure of these sets, resp.
Then

$$
\begin{aligned}
& d\left(T, E_{a_{n}}\right)=b_{n}+e_{n}+f_{n} \\
& d\left(U, E_{a_{n}}\right)=b_{n}+d_{n}+f_{n}
\end{aligned}
$$

and

$$
d\left(T, E_{a}\right)=c_{n}+d_{n}+e_{n}+f_{n}
$$

Therefore $d\left(T, E_{a_{n}}\right)-d\left(T, E_{a}\right)=b_{n}-c_{n}-d_{n}$.
Now as $d\left(U, E_{a_{n}}\right) \rightarrow 0$ (by the Claim in Theorem 7.2), we have that $b_{n}+d_{n} \rightarrow 0$.

So it is enough to show that $c_{n} \rightarrow 0$. But

$$
\begin{aligned}
C_{n} & =\left\{x: T(x) E_{a_{n}} x \& U(x) E_{a_{n}} x \& \neg T(x) E_{a} x\right\} \\
& \subseteq\left\{x: T(x) E_{a_{n}} x \& \neg T(x) E_{a} x\right\}
\end{aligned}
$$

so $c_{n} \rightarrow 0$ by hypothesis.

8. Complexity calculations

We now discuss the complexity of various classes of equivalence relations. For any class \mathcal{R} of measure preserving countable Borel equivalence relations and any given such relation E, we denote by

$$
\mathcal{R}_{E}=\mathcal{R} \cap S(E),
$$

the set of subequivalence relations of E that are in the class \mathcal{R}. In particular $\mathcal{E}_{E}=S(E)$. Recall that an equivalence relation is finite if all its equivalence classes are finite and hyperfinite if it is the union of an increasing sequence of finite equivalence relations.

Theorem 8.1. Let \mathcal{H} be the class of hyperfinite equivalence relations. Then \mathcal{H}_{E} is closed in $S(E)$.

Proof. By Theorem 5.2.
Denote by \mathcal{F}, resp., $\mathcal{B F}$ the classes of equivalence relations which are finite, resp., bounded finite (i.e., for some N each equivalence class has at most N elements). It follows that

$$
\overline{\mathcal{F}_{E}}=\overline{\mathcal{B} \mathcal{F}_{E}}=\mathcal{H}_{E} .
$$

In particular, E is hyperfinite iff \mathcal{F}_{E} is dense in $S(E)$ iff $\mathcal{B} \mathcal{F}_{E}$ is dense in $S(E)$. It also follows from this that the map $E \in S(F) \mapsto \mathcal{H}_{E} \in \mathcal{F}^{*}(S(F))$ is Borel (when $\mathcal{F}^{*}(S(F)$) is equipped with the Effros Borel structure). To see this let $\left\{F_{n}: n \in \mathbb{N}\right\}$ be a countable dense subset of \mathcal{F}_{F} and let $\Phi: S(F) \rightarrow$ $S(F)^{\mathbb{N}}$ be given by $\Phi(E)_{n}=E \cap F_{n}$. Then Φ is Borel and for each E it gives a dense sequence in \mathcal{F}_{E}, and so in \mathcal{H}_{E}, thus the map $E \in S(F) \mapsto \mathcal{H}_{E} \in$ $\mathcal{F}^{*}(S(F))$ is Borel.

Next we calculate the complexity of the class of aperiodic equivalence relations.

Theorem 8.2. Let \mathcal{A} be the class of aperiodic equivalence relations. Then \mathcal{A}_{E} is a G_{δ} set in the topology of $S(E)$. Moreover, if E is aperiodic, then \mathcal{A}_{E} is dense.

Proof. Let $\left\{T_{n}\right\} \subseteq[E]$ be a sequence of aperiodic automorphisms which is dense in the set of aperiodic elements of $[E]$. We claim that the following are equivalent for $F \in S(E)$:
(1) F is aperiodic,
(2) $\forall \epsilon \in \mathbb{Q}^{+} \exists n\left(d\left(T_{n}, F\right)<\epsilon\right)$,
which clearly shows that the class of aperiodic elements of $S(E)$ is G_{δ}.
$(1) \Rightarrow(2)$. By $[K, 3.5],[F]$ contains an aperiodic T. Then for each $\epsilon \in \mathbb{Q}^{+}$ there is n such that $d\left(T_{n}, T\right)<\epsilon$, so $d\left(T_{n},[F]\right)<\epsilon$.
(2) $\Rightarrow(1)$. Assume (2) and also that (1) fails, towards a contradiction. Then there is $N \in \mathbb{N}^{+}$such that if $A=\left\{x:\left|[x]_{F}\right|=N\right\}$, then $\mu(A)=a>0$.

Choose n so that $d\left(T_{n}, F\right)<\frac{a}{2(N+1)^{2}}$ and let $T \in[F]$ be such that $d\left(T_{n}, T\right)<\frac{a}{2(N+1)^{2}}$. Now note that for $i \leq N, d\left(T_{n}^{i}, T^{i}\right) \leq \frac{i a}{2(N+1)^{2}} \leq \frac{(N+1) a}{2(N+1)^{2}}$, so $\mu\left(\left\{x: \exists i \leq N\left(T^{i}(x) \neq T_{n}^{i}(x)\right)\right\} \leq \frac{(N+1)^{2} a}{2(N+1)^{2}}=\frac{a}{2}\right.$. Therefore if $B=\{x$: $\forall i \leq$ $\left.N\left(T^{i}(x)=T_{n}^{i}(x)\right)\right\}$, then $\mu(B) \geq 1-\frac{a}{2}$, so $\mu(A \cap B)>0$.

If $x \in A \cap B$, then $T^{i}(x)=T_{n}^{i}(x)$, for $i \leq N$, so $N=\left|[x]_{F}\right| \geq \mid\left\{T^{i}(x): i \leq\right.$ $N\}\left|=\left|\left\{T_{n}^{i}(x): i \leq N\right\}\right|=N+1\right.$, a contradiction.

Finally we prove that \mathcal{A}_{E} is dense in $S(E)$, if E is aperiodic. For that it is enough to show that if $F \in S(E)$ is finite, then there is a sequence $F_{0} \supseteq F_{1} \supseteq \ldots$ with $F_{n} \in \mathcal{A}_{E}$ and $\bigcap_{n} F_{n}=F$. Let Y be a Borel transversal for F.

Note now that if R is an aperiodic equivalence relation, then there is a sequence of aperiodic $R \supseteq R_{0} \supseteq R_{1} \supseteq \ldots$ such that $\bigcap R_{n}=i d$ (the equality equivalence relation). To see this, let $T \in[R]$ be aperiodic and let R_{n} be the equivalence relation generated by $T^{2^{n}}, n=0,1,2, \ldots$. Apply this now to $R=E \mid Y$ to find R_{n} as above and let $F_{n}=R_{n} \vee F$.

We also have the following calculation concerning the Marker Lemma (see [KM, Lemma 6.7]).

Proposition 8.3. There is a Borel function $\Xi: \mathcal{A}_{E} \rightarrow$ MALG $^{\mathbb{N}}$ such that for each $F \in \mathcal{A}_{E}, \Xi(F)_{0} \supseteq \Xi(F)_{1} \supseteq \ldots, \mu\left(\Xi(F)_{n}\right) \rightarrow 0$ and each $\Xi(F)_{n}$ is a complete section of F.

Proof. Use Proposition 4.18 and the proof of the Marker Lemma as in [KM, Lemma 6.7].

It is clear that $\mathcal{B} \mathcal{F}_{E}$ is F_{σ} in the topology of $S(E)$ and it is dense if E is hyperfinite. Moreover if E is aperiodic, so that $S(E) \backslash \mathcal{B} \mathcal{F}_{E}$ is dense by Theorem 8.2, it follows that $\mathcal{B} \mathcal{F}_{E}$ is in $F_{\sigma} \backslash G_{\delta}$ in the topology of $S(E)$ for E aperiodic, hyperfinite. From Theorem 6.1, if $E \subseteq F$, then the topology on $S(E)$ is the relative topology it inherits from $S(F)$. Since every aperiodic E contains an aperiodic, hyperfinite subequivalence relation, we have the following:

Theorem 8.4. For every aperiodic $E, \mathcal{B} \mathcal{F}_{E}$ is in $F_{\sigma} \backslash G_{\delta}$ and \mathcal{A}_{E} is in $G_{\delta} \backslash F_{\sigma}$ in the topology of $S(E)$.

Theorem 8.5. The set \mathcal{F}_{E} of finite equivalence relations in $S(E)$ is $F_{\sigma \delta}$ in the topology of $S(E)$.

Proof. The proof is a variation of that of Theorem 8.2. Since every equivalence relation is included in an aperiodic one, by the paragraph preceding Theorem 8.4 , we can assume that E is aperiodic.

First note that for each open set $V \subseteq[E]$, the set

$$
\{F \in S[E]:[F] \cap V \neq \emptyset\}
$$

is open in the weak topology of $S(E)$. To see this, let

$$
V=\bigcup_{n}\left\{T \in[E]: d\left(T, T_{n}\right)<\epsilon_{n}\right\}
$$

for some sequence $\left\{T_{n}\right\} \in[E]^{\mathbb{N}}$ and sequence $\left(\epsilon_{n}\right)$ of positive reals. Then $[F] \cap V \neq \emptyset \Longleftrightarrow \exists n\left(d\left(T_{n}, F\right)<\epsilon_{n}\right)$, so the above set is clearly open.

Below let $A(E)$ be the set of aperiodic elements of $[E]$. We claim that the following are equivalent for $F \in S(E)$:
(1) F is not finite,
(2) $\exists a \in \mathbb{Q}^{+} \forall N \in \mathbb{N}^{+} \exists S \in A(E)$ $\exists T \in[F]\left[\mu\left(\left\{x: \forall i \leq N\left(S^{i}(x)=T^{i}(x)\right)\right\}\right)>a\right]$.

Granting this, it is enough to see that the expression in the second line of (2) above defines an open set of F^{\prime} s (for each fixed S). Let

$$
V=\left\{T \in[E]: \mu\left(\left\{x: \forall i \leq N\left(S^{i}(x)=T^{i}(x)\right)\right\}\right)>a\right\} .
$$

Clearly $V \subseteq[E]$ is open and this expression is equivalent to $[F] \cap V \neq \emptyset$, which by the above defines an open set of F^{\prime} s.

We finally prove the equivalence of (1) and (2).
$(1) \Rightarrow(2)$. Assume that F is not finite. Let A be an F-invariant Borel set of positive measure with $F \mid A$ aperiodic and let $a \in \mathbb{Q}^{+}$be such that $\mu(A)>$ a. Let $T_{0} \in[F \mid A]$ be aperiodic and let $T \in[F]$ be such that $T\left|A=T_{0}\right| A$. Let also $S \in A(E)$ be such that $T|A=S| A$. Then for each $N \in \mathbb{N}^{+}, x \in A$, we have that $S^{i}(x)=T^{i}(x), \forall i \leq N$, so $\mu\left(\left\{x: \forall i \leq N\left(S^{i}(x)=T^{i}(x)\right)\right\}\right)>a$.
$(2) \Rightarrow(1)$. Assume that (2) is true and fix $a \in \mathbb{Q}^{+}$witnessing that. If (1) fails, towards a contradiction, find $N \in \mathbb{N}^{+}$large enough so that $\mu\left(\left\{x:\left|[x]_{F}\right| \leq N\right\}\right)>1-a$. Then find $S \in A(E), T \in[F]$ so that $\mu(\{x: \forall i \leq$ $\left.\left.N\left(S^{i}(x)=T^{i}(x)\right)\right\}\right)>a$. Thus there is x so that $\left|[x]_{F}\right| \leq N$ but $S^{i}(x)=$ $T^{i}(x)$, for $i \leq N$. Then $N \geq\left|[x]_{F}\right| \geq\left|\left\{T^{i}(x): i \leq N\right\}\right|=\left|\left\{S^{i}(x): i \leq N\right\}\right|=$ $N+1$, a contradiction.

In an earlier version of this work, the following question was asked:
If E is aperiodic, is \mathcal{F}_{E} in $F_{\sigma \delta} \backslash G_{\delta \sigma}$ for the topology of $S(E)$?
The following then provided an affirmative answer when E is ergodic.
Theorem 8.6. If E is ergodic, then \mathcal{F}_{E} is in $F_{\sigma \delta} \backslash G_{\delta \sigma}$ in the topology of $S(E)$.
Proof. First notice that for any aperiodic E, \mathcal{F}_{E} is not G_{δ} in the topology of $S(E)$. To see this, we can assume, by the paragraph preceding Theorem 8.4, that E is aperiodic, hyperfinite. In this case \mathcal{F}_{E} is dense and disjoint from the dense G_{δ} set \mathcal{A}_{E}, so it cannot be G_{δ}. It follows (see [K2, 21.18] and proof of 22.10) that for any aperiodic E, \mathcal{F}_{E} is F_{σ}-hard, i.e., for each F_{σ} subset $A \subseteq Y, Y$ a zero-dimensional Polish space, there is a continuous function $f: Y \rightarrow S(E)$ such that $y \in A \Longleftrightarrow f(y) \in \mathcal{F}_{E}$.

Since every ergodic E contains an ergodic, hyperfinite subequivalence relation, we can assume as before that E is ergodic, hyperfinite. Since every aperiodic, hyperfinite equivalence relation is contained in an ergodic, hyperfinite equivalence relation (see [K, Lemma 5.4]) and all ergodic, hyperfinite equivalence relations are isomorphic by Dye's Theorem,
it is enough to find some aperiodic, hyperfinite equivalence relation E such that this theorem holds for E.

Given a sequence of measure preserving countable Borel equivalence relations $\left(E_{n}\right)$ on (X, μ), define their direct sum, in symbols $\bigoplus_{n} E_{n}$, as follows: Let $Y=\bigsqcup_{n} X_{n}$ be the direct sum of infinitely many copies of X. On each X_{n} put a copy μ_{n} of the measure μ and define the measure ν on Y by $\nu=\sum_{n} \frac{1}{2^{n+1}} \mu_{n}$. Then put on each Y_{n} a copy E_{n}^{\prime} of E_{n}, and let $\bigoplus_{n} E_{n}=\bigcup_{n} E_{n}^{\prime}$. Clearly $\bigoplus_{n} E_{n}$ is a measure preserving equivalence relation on (Y, ν). Moreover the map $\prod_{n} S\left(E_{n}\right) \rightarrow S\left(\bigoplus_{n} E_{n}\right)$ given by $\left(F_{n}\right) \mapsto \bigoplus_{n} F_{n}$ is a homeomorphism of $\prod_{n} S\left(E_{n}\right)$ with $S\left(\bigoplus_{n} E_{n}\right)$, each equipped with the weak topology. Moreover, under this homeomorphism $\prod_{n} \mathcal{F}_{E_{n}}$ goes to $\mathcal{F}_{\oplus_{n} E_{n}}$.

Take now each E_{n} to be aperiodic, hyperfinite, so that $E=\bigoplus_{n} E_{n}$ is also aperiodic, hyperfinite. Then each $\mathcal{F}_{E_{n}}$ is F_{σ}-hard and so $\prod_{n} \mathcal{F}_{E_{n}}$ is $\mathcal{F}_{\sigma \delta}$-hard and thus \mathcal{F}_{E} is also $\mathcal{F}_{\sigma \delta}$-hard, which completes the proof.

Recently Le Maître, in [LeM1], gave a positive answer in general for every aperiodic E.

Theorem 8.7 (Le Maître, [LeM1]). If E is aperiodic, then \mathcal{F}_{E} is in $F_{\sigma \delta} \backslash G_{\delta \sigma}$ in the topology of $S(E)$.

Let \mathcal{T} be the class of treeable equivalence relations and let $\mathcal{D}_{n}, n=$ $1,2, \ldots$, be the class of equivalence relations that have geometric dimension $\leq n$, i.e., can be Borel reduced (a.e.) to a \mathcal{K}_{n}-structurable Borel equivalence relation, where \mathcal{K}_{n} is the class of n-dimensional contractible simplicial complexes (see Gaboriau [G1, 3.18], and Hjorth-Kechris [HK, Appendix D]). Thus $\mathcal{D}_{1}=\mathcal{T}$. Gaboriau [G1,5.8], shows that \mathcal{D}_{n} is hereditary and by [G1, 3.17], if $E \in \mathcal{D}_{n}$, then $\beta_{p}(E)=0$, if $p>n$, where β_{p} is the p-th L^{2}-Betti number. Recall also from [G1,3.16], that if F is induced by a free measure preserving action of $\left(\mathbb{F}_{2}\right)^{n}$, then $\beta_{n}(F)=1$.

Let $\mathcal{D}_{n, E}=\left(\mathcal{D}_{n}\right)_{E}$. We have $\mathcal{T}_{E}=\mathcal{D}_{1, E} \varsubsetneqq \mathcal{D}_{2, E} \varsubsetneqq \cdots \varsubsetneqq \mathcal{D}_{n, E} \varsubsetneqq \ldots$, for any large enough E. This is because an equivalence relation F_{n} induced by a free measure preserving action of $\left(\mathbb{F}_{2}\right)^{n+1}$ is in $\mathcal{D}_{n+1} \backslash \mathcal{D}_{n}$, for $n \geq 1$. That $F_{n} \in \mathcal{D}_{n+1}$ follows from [G1,5.17], and $F_{n} \notin \mathcal{D}_{n}$ since $\beta_{n+1}(F)=1$.

Gaboriau [G1, 5.13], also shows that if $R_{0} \subseteq R_{1} \subseteq \ldots$ are measure preserving countable Borel equivalence relations, with $R=\bigcup_{i} R_{i}$, then $\beta_{n}(R) \leq \underline{\lim }_{i} \beta_{n}\left(R_{i}\right)$, thus if all $\beta_{n}\left(R_{i}\right)=0$, we also have that $\beta_{n}(R)=0$. It follows that if $R_{i} \in \mathcal{D}_{n}$, so that $\beta_{p}\left(R_{i}\right)=0$, for $p>n$, then $\beta_{p}(R)=0$, if
$p>n$. Therefore if $R \in\left(\mathcal{D}_{n}\right)_{\uparrow}$, then $\beta_{p}(R)=0$, if $p>n$. In particular, if E is large enough so that it contains equivalence relations induced by free measure preserving actions of $\left(\mathbb{F}_{2}\right)^{n}, n=1,2, \ldots$, then no $\mathcal{D}_{n, E}$ is dense in $S(E)$.

Problem 8.8. Let $\mathcal{D}_{\infty}=\bigcup_{n} \mathcal{D}_{n}$. Is $\mathcal{D}_{\infty, E}$ dense in the topology of $S(E)$ (for large enough E)?

We also note that for $n \geq 1,\left(\mathcal{D}_{n}\right)_{\uparrow} \neq \mathcal{D}_{n}$, thus no $\mathcal{D}_{n, E}$ is closed in the topology of $S(E)$ (if E is large enough). To see this, let F_{2} be the equivalence relation induced by the shift action of \mathbb{F}_{2} and let F_{1} be the equivalence relation induced by the shift action of $Z=\bigoplus_{n}(\mathbb{Z} / 2)^{n}$. Then $F=\left(F_{2}\right)^{n} \times F_{1}$, is induced by a free measure preserving action of $\left(\mathbb{F}_{2}\right)^{n} \times Z$. Gaboriau (see [G2, 7.3]) has shown that the ergodic dimension of $\left(\mathbb{F}_{2}\right)^{n} \times Z$ is $n+1$. Recall that the ergodic dimension of a group is the minimum of the geometric dimensions of the equivalence relations given by free measure preserving actions of the group. It follows that the geometric dimension of F is $\geq n+1$, thus $F \notin \mathcal{D}_{n}$. On the other hand it is easy to see (see, e.g., [HK, page 62]) that $F \in\left(\mathcal{D}_{n}\right)_{\uparrow}$.

Finally notice that by $[\mathrm{G} 2,7.3],(\mathrm{a}),\left(\mathcal{D}_{n}\right)_{\uparrow} \subseteq \mathcal{D}_{n+1}$, so for every E, $\mathcal{D}_{\infty, E}=\bigcup_{n} \mathcal{D}_{n, E}=\bigcup_{n} \overline{\mathcal{D}_{n, E}}$ is an F_{σ} set.

Problem 8.9. What is the descriptive complexity of each $\mathcal{D}_{n, E}, n \geq 1$, in the topology of $S(E)$ (for large enough E)? Is $\mathcal{D}_{\infty, E}$ a true F_{σ} set?

We will see later in Corollary 19.5 that \mathcal{T}_{E} is analytic in $S(E)$ but it is not known if it is Borel; see Problem 19.6.

9. Finite and infinite index subrelations

Denote by FinIndex (E) (resp., Inf Index (E)) the set of all $F \in S(E)$ such that $[E: F]<\infty$, i.e., every E-class contains only finitely many F-classes (resp., $[E: F]=\infty$, i.e., every E-class contains infinitely many F-classes).

Proposition 9.1. The set Inf $\operatorname{Index}(E)$ is G_{δ} in $S(E)$ and it is dense if E is aperiodic.

Proof. Let $\left(T_{i}\right)$ be a generating sequence for E. Then the following are equivalent for $F \in S(E)$:
(i) $F \in \operatorname{InfIndex}(E)$,
(ii) $\forall n \forall k>0 \exists M\left(\mu\left(\left\{x: \exists m \leq M \forall i \leq n \neg T_{m}(x) F T_{i}(x)\right\}\right)>1-\frac{1}{k}\right)$.

Let

$$
B_{F, M, n}=\bigcup_{m \leq M} \bigcap_{i \leq n}\left(X \backslash T_{i}^{-1}\left(A_{T_{m} T_{i}^{-1}, F}\right)\right) .
$$

Then

$$
\operatorname{Inf} \operatorname{Index}(E)=\bigcap_{n} \bigcap_{k>0} \bigcup_{M}\left\{F: \mu\left(B_{F, M, n}\right)>1-\frac{1}{k}\right\} .
$$

Since $F \mapsto \mu\left(B_{F, M, n}\right)$ is continuous, this shows that $\operatorname{Inf} \operatorname{Index}(E)$ is G_{δ}.
Assume now that E is aperiodic and let $A_{0} \supseteq A_{1} \supseteq \ldots$ be Borel sets which are complete sections of E and $\mu\left(A_{n}\right) \rightarrow 0$. Given $F \in S(E)$, let $F_{n}=F\left|\left(X \backslash A_{n}\right) \sqcup i d\right| A_{n}$. Then $\left(F_{n}\right)$ is increasing and $F=\bigcup F_{n}$, so $F_{n} \rightarrow F$. Since each A_{n} meets every E-class in an infinite set, there are infinitely many F_{n}-classes in each E-class, i.e., $F_{n} \in \operatorname{Inf} \operatorname{Index}(E)$.

Remark 9.2. A similar calculation gives another way to show that \mathcal{A}_{E} is G_{δ} is $S(E)$ (see Theorem 8.2). Indeed as in the proof of Proposition 9.1, put
$C_{i, m}=\left\{x: T_{i}(x) \neq T_{m}(x)\right\}$ and $D_{F, M, n}=\bigcup_{m \leq M} \bigcap_{i \leq n}\left(C_{i, m} \cap A_{F, T_{m}}\right)$. Then $\mathcal{A}_{E}=\bigcap_{n} \bigcap_{k>0} \bigcup_{M}\left\{F: \mu\left(D_{F, M, n}\right)>1-\frac{1}{k}\right\}$ and since $F \mapsto D_{F, M, n}$ is again continuous, \mathcal{A}_{E} is G_{δ}.

Answering a question raised in an earlier version of this work, Le Maître in [LeM1] showed the following:

Theorem 9.3 (Le Maître, [LeM1]). If E is aperiodic, then $\operatorname{InfIndex}(E)$ is $G_{\delta} \backslash F_{\sigma}$ in the topology of $S(E)$.

Proposition 9.4. The set FinIndex (E) is $F_{\sigma \delta}$ in $S(E)$. If E is aperiodic, hyperfinite, then it is also dense.

Proof. Let (T_{i}) be a generating sequence for E. Let

$$
L_{F, M, n}=\left\{x: \forall i \leq n \exists m \leq M\left(T_{i}(x) F T_{m}(x)\right)\right\} .
$$

Then

$$
\text { FinIndex }(E)=\bigcap_{k>0} \bigcup_{M}\left\{F: \mu\left(L_{F, M, n}\right) \geq 1-\frac{1}{k}\right\}
$$

and since the map $F \mapsto L_{F, M, n}$ is continuous, this shows that FinIndex (E) is $F_{\sigma \delta}$.

Assume now that E is aperiodic, hyperfinite. It is enough to approximate every smooth $F \in S(E)$ by finite index subrelations of E. Let Y be a Borel transversal for F. Then $E \mid Y$ is aperiodic (on Y), so there is aperiodic $S \in[E \mid Y]$ which generates $E \mid Y$. Let $F_{n}=F \vee E_{S^{2}}$ (note that $E_{S^{2}}$ is an equivalence relation on Y, which we can view as an equivalence relation on X but extending it by equality outside Y). Then $\left(F_{n}\right)$ is decreasing, $F_{n} \in \operatorname{FinIndex}(E)$ and $F_{n} \rightarrow F$.

Again answering a question raised in an earlier version of this work, Le Maître in [LeM1] showed the following:

Theorem 9.5 (Le Maître, [LeM1]). If E is aperiodic, then FinIndex (E) is $F_{\sigma \delta} \backslash G_{\delta \sigma}$ (in the topology of $S(E)$) iff E has infinitely many ergodic components. Otherwise it is in $F_{\sigma} \backslash G_{\delta}$.

We next show that FinIndex (E) is not always dense in $S(E)$.
Theorem 9.6. There is an ergodic E such that FinIndex (E) is not dense in $S(E)$.

Proof. Let Γ be an infinite property (T) group all of whose proper subgroups are finite (such groups exist by a result of Olshanskii, see [DC, Proposition 2] and [O, Corollary 4]). Consider the shift action of Γ on $X=[0,1]^{\Gamma}$ and denote by E the associated equivalence relation. We will show that this works.

Call $F \in$ FinIndex (E) degenerate if there is a Borel partition $X=$ $A_{0} \sqcup A_{1} \sqcup \cdots \sqcup A_{n-1}$ into sets of positive measure such that

$$
x F y \Longleftrightarrow x E y \& \exists i<n\left(x, y \in A_{i}\right) .
$$

Such an F is denoted by $E_{A_{0}, A_{1}, \ldots, A_{n-1}}$.
The next fact strengthens the last part of Bowen [Bo1, Theorem 1.1].
Lemma 9.7. If $F \in$ FinIndex (E), then F is degenerate.
Proof. Let $[E: F]=n$ be the index of F in E, i.e., the number of F-classes in each E-class. Let also $\left(\varphi_{i}\right)_{i<n}$ be a choice sequence for F in E, i.e., a sequence of Borel functions such that for each $x,\left(\left[\varphi_{i}(x)\right]_{F}\right)_{i<n}$ is an injective enumeration of the F-classes in $[x]_{E}$. Let also $\sigma: E \rightarrow S_{n}$ (= the symmetric group of n elements) be the associated index cocycle defined by

$$
\sigma(x, y)(i)=j \Longleftrightarrow \varphi_{i}(x) F \varphi_{j}(y)
$$

This of course can also viewed as a cocycle of the shift action of Γ into S_{n}, so by Popa superrigidity, see [Po], it is cohomologous to a homomorphism from Γ into S_{n}, which, since Γ has no proper finite index subgroups, must be trivial, i.e., σ is a coboundary and so by [FSZ, Proposition 1.7], F is degenerate.

Call $F \in S(E)$ relatively smooth, resp., relatively hypersmooth, if there is a smooth (resp., hypersmooth) Borel equivalence relation R such that $F=E \cap R$.

Lemma 9.8. If $F \in S(E)$ is the limit of a sequence of degenerate relations, then F is relatively hypersmooth.

Proof. Let $F_{i}=E_{A_{0}^{i}, \ldots, A_{n_{i}-1}^{i}}$ be such that $F_{i} \rightarrow F$. Then by Theorem 5.1, for each i, there is an increasing sequence $n_{0}^{(i)}<n_{1}^{(i)}<\ldots$, so that $\left(n_{m}^{(i+1)}\right)_{m \in \mathbb{N}}$ is a subsequence of $\left(n_{m}^{(i)}\right)_{m \in \mathbb{N}}$ and

$$
F=\bigcup_{m} \bigcap_{k \geq m} F_{n_{k}^{(m)}}
$$

Put $R_{m}=\bigcap_{k \geq m} F_{n_{k}^{(m)}}$. Then $R_{0} \subseteq R_{1} \ldots$ and $F=\bigcup_{m} R_{m}$. Define for each m,

$$
f_{m}: X \rightarrow \mathbb{N}^{\mathbb{N}}
$$

by

$$
f_{m}(x)(i)=n \Longleftrightarrow x \in A_{n}^{n_{m+i}^{(m)}} .
$$

Then if

$$
x S_{m} y \Longleftrightarrow f_{m}(x)=f_{m}(y),
$$

we have $R_{m}=E \cap S_{m}$. Also $S_{0} \subseteq S_{1} \subseteq \ldots$ and $F=\bigcup_{m} R_{m}=E \cap\left(\bigcup_{m} S_{m}\right)$ and $\bigcup_{m} S_{m}$ is hypersmooth.

By a result of Gaboriau-Lyons [GL], there is a free, measure preserving, ergodic action of \mathbb{F}_{2} whose induced equivalence relation F is in $S(E)$. Then by the result of Chifan-Ioana [CI], F is strongly ergodic (see Section 10.2 for the definition of strong ergodicity). We claim that F cannot be the limit of a sequence of degenerate relations, thus it is not in the closure of FinIndex (E). Otherwise, by Lemma 9.8, we would have $F=E \cap R$, with R hypersmooth, say $R=\bigcup_{n} R_{n}$, with $\left(R_{n}\right)$ increasing and each R_{n} smooth. Let $f_{n}: X \rightarrow 2^{\mathbb{N}}$ be Borel such that $x R_{n} y \Longleftrightarrow f_{n}(x)=f_{n}(y)$. Let $F_{n}=E \cap R_{n}$, so that $\left(F_{n}\right)$ is increasing and $F=\bigcup_{n} F_{n}$. By a result of Gaboriau [G2, Proposition 5.2], there is n and a F_{n}-invariant Borel set A of positive measure such that $F_{n} \mid A$ is ergodic. Since $f_{n} \mid A$ is $F_{n} \mid A$-invariant, it is constant, so $F_{n}|A=E| A$ and thus

$$
F_{n}|A \subseteq F| A \subseteq E\left|A=F_{n}\right| A,
$$

i.e, $F|A=E| A$. But $F \mid A$ is treeable, so $E \mid A$ is treeable and, since A is a complete section for E, E is treeable, contradicting the result of Adams and Spatzier [AS].

Remark 9.9. For an arbitrary E, it is the case that $F \in S(E)$ is relatively hypersmooth iff F is the limit of a sequence of degenerate relations. One direction is proved as in Lemma 9.8 (which did not use any particular properties of E). For the other direction it is enough to show that every relatively smooth $F \in S(E)$ is the limit of degenerate relations. Indeed. let R be smooth such that $F=E \cap R$ and let $f: X \rightarrow 2^{\mathbb{N}}$ be a Borel function such that $x R y \Longleftrightarrow f(x)=f(y)$. For $s \in 2^{n}, n \in \mathbb{N} \backslash\{0\}$, let $N_{s}=$ $\left\{x \in 2^{\mathbb{N}}: x \mid n=s\right\}$ and $A_{s}=f^{-1}\left(N_{s}\right)$. Consider then, for each $n>0$,
the degenerate relation F_{n} determined by the partition $\left\{A_{s}\right\}_{s \in 2^{n}}$. Clearly $F_{1} \supseteq F_{2} \supseteq F_{3} \supseteq \ldots$ and $F=\bigcap_{n} F_{n}$, so F is the limit of the sequence $\left(F_{n}\right)$.

Problem 9.10. For what ergodic E is FinIndex (E) dense in $S(E)$?
Remark 9.11. In Vaes [Va] and Bowen [Bo1] examples are given of ergodic equivalence relations that do not have proper finite index ergodic subequivalence relations or proper finite index extensions.

Remark 9.12. In Popa [Po, Section 6.6] it is suggested that it might be possible that the cocycle superrigidity proved in that paper could be extended to target groups that are closed subgroups of the (infinitary) unitary group $U(H)$. One can see however that this fails for the infinite symmetric group S_{∞}, which is a closed subgroup of $U(H)$. Indeed let Γ, E be as in the proof of Theorem 9.6. Let $F \in S(E)$ be ergodic, hyperfinite, so that $[E: F]=\infty$. Let $\left(\varphi_{i}\right)_{i<\infty}$ be a choice sequence for F in E and let σ be the associated index cocycle, which now takes values in S_{∞}. Assume, towards a contradiction, that this is cohomologous to a homomorphism $\pi: \Gamma \rightarrow S_{\infty}$. Thus there is a Borel map $p: X \rightarrow S_{\infty}$ such that

$$
\sigma(x, \gamma \cdot x)=p(\gamma \cdot x) \pi(\gamma) p(x)^{-1}
$$

Put $\psi_{i}(x)=\varphi_{p(x)(i)}(x)$, so that $\left(\psi_{i}\right)$ is also a choice sequence with associated index cocycle $\tau(x, \gamma \cdot x)=\pi(\gamma)$, so that $\psi_{i}(x) F \psi_{\pi(\gamma)(i)}(\gamma \cdot x)$. Since $\forall x \exists i\left(\psi_{i}(x) F x\right)$, fix i_{0} such that if $A=\left\{x: \psi_{i_{0}}(x) F x\right\}$, then A has positive measure. By the ergodicity of F, A meets every F-class infinitely often.

Now if $x, \gamma \cdot x \in A$ and $x F \gamma \cdot x$, we have

$$
x F \psi_{i_{0}}(x) F \psi_{\pi(\gamma)\left(i_{0}\right)}(\gamma \cdot x) F \gamma \cdot x F \psi_{i_{0}}(\gamma \cdot x)
$$

so

$$
\psi_{\pi(\gamma)\left(i_{0}\right)}(\gamma \cdot x) F \psi_{i_{0}}(\gamma \cdot x)
$$

thus $\pi(\gamma)\left(i_{0}\right)=i_{0}$. It follows that

$$
\Delta=\left\{\gamma: \pi(\gamma)\left(i_{0}\right)=i_{0}\right\}
$$

is an infinite subgroup of Γ, so $\Delta=\Gamma$, i.e., $\forall \gamma \in \Gamma\left(\pi(\gamma)\left(i_{0}\right)=i_{0}\right)$. Then

$$
\psi_{i_{0}}(x) F \psi_{\pi(\gamma)\left(i_{0}\right)}(\gamma \cdot x)=\psi_{i_{0}}(\gamma \cdot x)
$$

so $x \mapsto \psi_{i_{0}}(x)$ is a homomorphism of E into F. Since E is strongly ergodic and F is hyperfinite, this maps a.e. to a single F-class, which is a contradiction, since $\psi_{i_{0}}(x) E x$.

More generally, one can show that if E is induced by a free, measure preserving, ergodic action of a countable infinite group Γ on a standard measure space (X, μ), if $F \in S(E)$ is aperiodic and the index cocycle of F in E is cohomologous to a homomorphism, then there is a Borel decomposition $X=\bigsqcup_{n} X_{n}$ and infinite subgroups Δ_{n} of Γ such that if E_{n} is the equivalence relation induced by the restriction of the action to Δ_{n}, then $E_{n}\left|X_{n}=F\right| X_{n}$.

10. Ergodic and strongly ergodic equivalence relations

We discuss here the complexity of the notions of ergodicity and strong ergodicity.

10.1 Ergodic equivalence relations

We first calculate the complexity of the set of ergodic equivalence relations in $S(E)$. We denote by $\mathcal{E R G}$ the class of (measure preserving countable Borel) equivalence relations which are ergodic.

Theorem 10.1. The set $\mathcal{E R} \mathcal{G}_{E}$ of ergodic equivalence relations in $S(E)$ is G_{δ} in $S(E)$.

Proof. We will give two proofs based, resp., in two descriptions of the topology of $S(E)$ given in Section 4.4.
(1) (with R. Tucker-Drob) In the notation of Section 4.4, (2) we have the following fact:
Lemma 10.2. The set $\mathrm{ERG}=\{\mu \in \mathcal{M}: \mu$ is R-invariant, ergodic $\}$ is G_{δ} in \mathcal{M}.
Proof. The set $\{\mu \in \mathcal{M}: \mu$ is R-invariant $\}$ is compact, convex and, since R is a countable Borel equivalence relation, the ergodic measures in $\{\mu \in$ $\mathcal{M}: \mu$ is R-invariant $\}$ are exactly its extreme points, which clearly form a G_{δ} set.

Then

$$
\mathcal{E R} \mathcal{G}_{E}=\Phi^{-1}(\mathrm{ERG})
$$

and since $\Phi: S(E) \rightarrow \mathcal{M}$ is continuous, $\mathcal{E R} \mathcal{G}_{E}$ is G_{δ} in $S(E)$.
(2) (P. Burton) In the notation of Section 4.4, (3), we note that if we let $\operatorname{ERG}\left(\mathbb{F}_{\infty}, X, \mu\right)$ be the set of ergodic actions in $A\left(\mathbb{F}_{\infty}, X, \mu\right)$, then we have that $\operatorname{ERG}\left(\mathbb{F}_{\infty}, X, \mu\right)$ is G_{δ} in the weak topology of $A\left(\mathbb{F}_{\infty}, X, \mu\right)$ (see [K, Proposition 12.1]) and thus it is also G_{δ} in the uniform topology. Since Ψ is a homeomorphism between $S(E)$ and a closed subspace of $A\left(\mathbb{F}_{\infty}, E\right)$ with the uniform topology and for $F \in S(E), F=E_{\Psi(F)}$, we have that $\mathcal{E R} \mathcal{G}_{E}=\Psi^{-1}\left(\operatorname{ERG}\left(\mathbb{F}_{\infty}, X, \mu\right)\right)$, so $\mathcal{E} \mathcal{R} \mathcal{G}_{E}$ is G_{δ} in $S(E)$.

10.2 Strongly ergodic equivalence relations

An equivalence relation F is called strongly ergodic or \boldsymbol{E}_{0}-ergodic iff for any Borel homomorphism $\pi: X \rightarrow Y$ from F to a hyperfinite equivalence relation R on Y (i.e., $x F x^{\prime} \Longrightarrow \pi(x) R \pi\left(x^{\prime}\right)$), there is $y \in Y$ such that $\pi^{-1}\left([y]_{F}\right)$ has measure 1. By a result of Jones-Schmidt this is equivalent to the non-existence of non-trivial almost invariant sets for F (see, e.g., [HK, Theorem A2.2], in which the hypothesis of ergodicity is unnecessary). We denote the class of all (measure preserving countable Borel) equivalence relations that are strongly ergodic by $\mathcal{E}_{0} \mathcal{R G}$.

We call an equivalence relation F anti- \boldsymbol{E}_{0}-ergodic if there is homomorphism π as above to a hyperfinite equivalence relation for which all preim-
 equivalence relations.

Proposition 10.3. The set $\mathcal{A \mathcal { E } _ { 0 }} \mathcal{R} \mathcal{G}_{E}$ is closed in $S(E)$.
Proof. Miller [M, 2.1], has shown that $\mathcal{A \mathcal { E } _ { 0 }} \mathcal{R \mathcal { G } _ { E }}$ is closed under taking unions of increasing sequences. It is obvious that it is also hereditary, so by Theorem 5.2 it is closed.

Theorem 10.4. The set $\mathcal{E}_{0} \mathcal{R} \mathcal{G}_{E}$ is in the class $F_{\sigma} \cap G_{\delta}$ in $S(E)$.
Proof. Consider $\mathcal{S}=S(E) \backslash \mathcal{E}_{0} \mathcal{R G}_{E}$. Then clearly $\mathcal{E R} \mathcal{G}_{E} \cap \mathcal{S}=\mathcal{E R} \mathcal{G}_{E} \cap$ $\mathcal{A \mathcal { E } _ { 0 }} \mathcal{R G}_{E}$. Moreover $S(E) \backslash \mathcal{E} \mathcal{R} \mathcal{G}_{E} \subseteq \mathcal{S}$. Thus $\mathcal{S}=\left(\mathcal{E} \mathcal{R} \mathcal{G}_{E} \cap \mathcal{A \mathcal { E } _ { 0 }} \mathcal{R} \mathcal{G}_{E}\right) \sqcup$ $\left(S(E) \backslash \mathcal{E R} \mathcal{G}_{E}\right)$, which is in $G_{\delta} \cup F_{\sigma}$ by Theorem 10.1 and Proposition 10.3.

Problem 10.5. Are there E for which Theorem 10.4 gives the optimal descriptive complexity of $\mathcal{E}_{0} \mathcal{R \mathcal { G } _ { E }}$?

11. Richly ergodic equivalence relations

We first note that for any $E, S(E) \backslash \mathcal{E} \mathcal{R} \mathcal{G}_{E}$ is dense in $S(E)$. This is because any $F \in S(E)$ can be approximated by equivalence relations of the form $F|(X \backslash A) \sqcup i d| A$, for Borel A of small positive measure, which clearly are not ergodic.

We discuss here the following problem:
Problem 11.1. For which ergodic equivalence relations E is the set $\mathcal{E R} \mathcal{G}_{E}$ dense in $S(E)$?

Let us call an ergodic equivalence relation E for which $\mathcal{E R} \mathcal{G}_{E}$ is dense in $S(E)$ richly ergodic. We first show that there exist ergodic but not richly ergodic equivalence relations. These arise in the context of the socalled non-approximable equivalence relations, introduced in the paper Gaboriau-Tucker-Drob [GT].

Definition 11.2. Let E be a measure preserving countable Borel equivalence relation on (X, μ). We say that E is non-approximable if whenever $E=\bigcup_{n} F_{n}$, where F_{n} are Borel equivalence relations with $F_{0} \subseteq F_{1} \subseteq F_{2} \ldots$, then there is n and a positive measure Borel set A with $E\left|A=F_{n}\right| A$.

It is an unpublished result of Gaboriau that if $a \in A(\Gamma, X, \mu)$, where Γ is an infinite property (T) group, and a is ergodic, then the equivalence relation E_{a} is non-approximable. This can be also seen as an application of [IKT, Corollary 5.4 and Corollary 2.15]. In [GT] the authors also show that if $a \in A(\Gamma \times \Delta, X, \mu)$ is a free action, where Γ, Δ are finitely generated, and $a \mid \Gamma$ is strongly ergodic while $a \mid \Delta$ is ergodic, then E_{a} is non-approximable. We now have:

Proposition 11.3. If E is ergodic and non-approximable, then E is not richly ergodic.

Proof. First we show that E is an isolated point in $\mathcal{E R} \mathcal{G}_{E}$. Otherwise there is a sequence $F_{n} \in \mathcal{E R} \mathcal{G}_{E}$ such that $F_{n} \rightarrow E$ and $F_{n} \neq E, \forall n$. By Theorem 5.1, we can write $E=\bigcup_{m} R_{m}$, with $R_{0} \subseteq R_{1} \subseteq \ldots$, and for each m, there is n such that $R_{m} \subseteq F_{n}$. Since E is non-approximable, there is m, n and a positive measure Borel set A such that $E\left|A=R_{m}\right| A \subseteq F_{n}|A \subseteq E| A$, so that $E\left|A=F_{n}\right| A$. Since E is ergodic, A is a complete section for E. Let $B=[A]_{F_{n}}$. Then we also have $E\left|B=F_{n}\right| B$. Since B has positive measure, is F_{n}-invariant and F_{n} is ergodic, $B=X$ (modulo null sets) and so $E=F_{n}$, a contradiction.

If now E was richly ergodic, it would follow that E is also an isolated point in $S(E)$. However it is easy to see that $S(E)$ is perfect, i.e., has no isolated points. This follows from the remarks in the first paragraph of this section.

We will next see that in some sense most E are richly ergodic (see the paragraph following Problem 6.11 here). If $E_{0} \subseteq E_{1} \subseteq \ldots$ is an increasing sequence, we say that $\left(E_{n}\right)_{n \in \mathbb{N}}$ is strongly increasing if for each n there is an ergodic $T \in\left[\bigcup_{n} E_{n}\right]$ such that $E_{n} \perp E_{T}$.

Proposition 11.4. If $\left(E_{n}\right)$ is strongly increasing and $E=\bigcup_{n} E_{n}$, then E is richly ergodic.

Proof. Let $F \in S(E)$. Then $F \cap E_{n} \rightarrow F$, so it is enough to show that for each $n, S\left(E_{n}\right)$ is contained in the closure of $\mathcal{E} \mathcal{R} \mathcal{G}_{E}$. Fix $F \in S\left(E_{n}\right)$. Let then $T \in[E]$ be ergodic with $E_{T} \perp E_{n}$. By Dye's Theorem, there is $S \in\left[E_{T}\right]$, S mixing. Then also $F \perp E_{S}$. Put $F_{n}=F \vee E_{S^{2}} \in S(E)$. Then $\left(F_{n}\right)$ is decreasing, $\bigcap_{n} F_{n}=F$, so that $F_{n} \rightarrow F$, and each F_{n} is ergodic.

Proposition 11.5. For any E, there is $E^{\prime} \supseteq E$ which is richly ergodic.
Proof. Recall that for each equivalence relation R, the set

$$
\left\{T \in \operatorname{Aut}(X, \mu): E_{T} \perp R\right\}
$$

is comeager in the weak topology of $\operatorname{Aut}(X, \mu)$ (see Conley-Miller [CM, Theorem 8]). Since the set of ergodic automorphisms in $\operatorname{Aut}(X, \mu)$ is also comeager, it follows that there is an ergodic T with $R \perp E_{T}$.

Define now recursively $E_{0} \subseteq E_{1} \subseteq \ldots$, by $E_{0}=E, E_{n+1}=E_{n} \vee E_{T_{n}}$, where $E_{T_{n}} \perp E_{n}$ and T_{n} is ergodic. Then $\left(E_{n}\right)$ is strongly increasing and thus $E^{\prime}=\bigcup_{n} E_{n}$ is richly ergodic.

Proposition 11.6. If $E_{0} \subseteq E_{1} \subseteq \ldots$ are richly ergodic, so is $E=\bigcup_{n} E_{n}$.
Proof. If $F \in S(E)$, then $F \cap E_{n} \rightarrow F$ and each $F \cap E_{n}$ is the limit of ergodic equivalence relations contained in E_{n}.

Thus the collection of richly ergodic equivalence relations is ω-closed and cofinal in the class of all equivalence relations. We next discuss some classes of richly ergodic equivalence relations. Below let $\mathcal{E R G \mathcal { H }}=\mathcal{E} \mathcal{R} \mathcal{G} \cap \mathcal{H}$ be the class of ergodic, hyperfinite equivalence relations.

Proposition 11.7. For any ergodic $E, \mathcal{E R G} \mathcal{H}_{E}$ is dense in \mathcal{H}_{E}. In particular, every hyperfinite ergodic equivalence relation is richly ergodic.

Proof. It is enough to show that if $F \in S(E)$ is smooth, then F is the limit of ergodic, hyperfinite equivalence relations in $S(E)$.

Let Y be a Borel transversal for F. Then $E \mid Y$ is ergodic (on Y), so there is $S \in[E \mid Y]$ which is mixing. Let $F_{n}=F \vee E_{S^{2^{n}}}$ (note that $E_{S^{2 n}}$ is an equivalence relation on Y, which we can view as an equivalence relation on X but extending it by equality outside Y). Then $\left(F_{n}\right)$ is decreasing and each F_{n} is ergodic. Indeed, if a Borel set A is F_{n}-invariant, then $A \cap Y$ is $E_{S^{2}}$-invariant, so, since $E_{S^{2}}$ is ergodic (on Y), we have that $\mu(A \cap Y)=0$ or $\mu(Y \backslash A)=0$, thus $\mu(A)=0$ or $\mu(X \backslash A)=0$, since $A=[A \cap Y]_{F}$ and similarly for $X \backslash A$. Moreover Y is a complete section of F_{n} and $F_{n} \mid Y=$ $E_{S^{2}}$ is hyperfinite, so F_{n} is hyperfinite.

Finally we claim that $\bigcap_{n} F_{n}=F$, which completes the proof. Let $p: X \rightarrow Y$ be the Borel selector corresponding to Y, i.e., $p(x) \in Y$ and $x F p(x)$. Then if $(x, y) \in \bigcap_{n} F_{n}$, we have that for each n there is a unique $k_{n} \in \mathbb{Z}$ with $p(y)=S^{k_{n} 2^{n}}(p(x))$. Since S is aperiodic, this can only happen if $p(x)=p(y)$, i.e., $x F y$.

Proposition 11.8. Let $\Gamma=\Gamma_{1} * \Gamma_{2} * \cdots$, where each countable group Γ_{n} is nontrivial. Let E be induced by a free, measure preserving, mixing action of Γ. Then E is richly ergodic.

Proof. Let $\Delta_{n}=\Gamma_{1} * \cdots * \Gamma_{n}$ and let E_{n} be the equivalence relation induced by the restriction of the action to Δ_{n}. Then $\left(E_{n}\right)$ is clearly increasing with
$\bigcup_{n} E_{n}=E$ and we claim that $\left(E_{n}\right)$ is strongly increasing. This is because $\Gamma_{n+1} * \Gamma_{n+2}$ contains an element of infinite order, say δ. If $T \in[E]$ corresponds to the action of δ, then T is ergodic and clearly $E_{n} \perp E_{T}$. So, by Proposition $11.4, E$ is richly ergodic.

Finally we call an equivalence relation E richly \boldsymbol{E}_{0}-ergodic if $\mathcal{E}_{0} \mathcal{R} \mathcal{G}_{E}$ is dense in $S(E)$.

Problem 11.9. Which E_{0}-ergodic equivalence relations E are richly E_{0}-ergodic?
By Proposition 11.3 and the paragraph preceding it, it clearly follows that there are E_{0}-ergodic equivalence relations which are not richly $E_{0^{-}}$ ergodic. There are also richly E_{0}-ergodic equivalence relations, One way to see this is by using a variation of the construction in Proposition 11.8.

Let $\Gamma=\mathbb{F}_{\infty}=\left\langle\gamma_{0}, \gamma_{1}, \ldots\right\rangle$. Let a be the shift action of Γ on 2^{Γ}, equipped with the usual product measure. Then for any non-amenable $\Delta \leq \Gamma$, the restriction $a \mid \Delta$ of this action to Δ is E_{0}-ergodic (see, e.g., [HK, Theorem A4.1]). Let $E=E_{a}, \Gamma_{n}=\left\langle\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n}\right\rangle, a_{n}=a \mid \Gamma_{n}$ and $E_{n}=E_{a_{n}}$. Then the E_{n} are increasing and $E=\bigcup_{n} E_{n}$. We will check that E is richly $E_{0}-$ ergodic. For this it is enough to show that for each n and $F \in S\left(E_{n}\right), F$ is the limit of E_{0}-ergodic equivalence relations in $S(E)$.

Let $\Delta_{m} \leq\left\langle\gamma_{n+1}, \gamma_{n+2}\right\rangle$ be non-abelian subgroups with $\Delta_{0} \supseteq \Delta_{1} \ldots$ and $\bigcap_{m} \Delta_{m}=\{1\}$. Put $b_{m}=a \mid \Delta_{m}$ and $R_{m}=E_{b_{m}}$, so that R_{m} is E_{0}-ergodic. Also clearly $R_{m} \perp F$. Let $F_{m}=F \vee R_{m}$. Then F_{m} is E_{0}-ergodic, $F_{0} \supseteq F_{1} \ldots$ and $\bigcap_{m} F_{m}=F$, so $F_{m} \rightarrow F$.

12. The cost function

For an equivalence relation F denote by $C(F)=C_{\mu}(F)$ the cost of F. We will discuss here the complexity of the function $F \in S(E) \mapsto C(F) \in$ $[0, \infty]$.

Let

$$
\begin{aligned}
& \operatorname{FinCost}_{E}=\{F \in S(E): C(F)<\infty\}, \\
& \text { InfCost }_{E}=\{F \in S(E): C(F)=\infty\} .
\end{aligned}
$$

Proposition 12.1. The set FinCost ${ }_{E}$ is dense in $S(E)$.
Proof. Let $F \in S(E)$ and fix $a \in A\left(\mathbb{F}_{\infty}, X, \mu\right)$ with $F=E_{a}$. Let $F_{n}=E_{a \mid \mathbb{F}_{n}}$. Then $F_{n} \rightarrow F$ and each F_{n} has finite cost.

We next have the following dichotomy:
Theorem 12.2. For any aperiodic equivalence relation E, exactly one of the following holds:
(i) For every $F \in S(E), C(F) \leq 1$,
(ii) Inf $^{\text {Cost }}{ }_{E}$ is dense in the uniform topology of $S(E)$.

Proof. We will need the following lemma:
Lemma 12.3. Let F be an equivalence relation with $C(F)>1$. Then there is a subequivalence relation $F^{\prime} \subseteq F$ with $C\left(F^{\prime}\right)=\infty$.

Proof. We use the ideas in the proof of [KM, Proposition 28.8]. Consider the ergodic decomposition $\pi: X \rightarrow \mathcal{E} \mathcal{I}_{F}$, where $\mathcal{E} \mathcal{I}_{F}$ is the standard Borel space of F-ergodic invariant probability measures on X (we view here F as a genuine countable Borel equivalence relation and not one defined μ a.e.); see Theorem 4.19. Let $\nu=\pi_{*} \mu$.

Put

$$
Y_{1}=\left\{e \in \mathcal{E} \mathcal{I}_{F}:: C_{e}\left(F \mid X_{e}\right)>1\right\}, Y_{0}=\mathcal{E} \mathcal{I}_{F} \backslash Y_{1},
$$

where $X_{e}=\pi^{-1}(\{e\})$. Then Y_{1} is coanalytic and by [KM, Theorem 18.6] $\nu\left(Y_{1}\right)>0$, so there is Borel $Z_{1} \subseteq Y_{1}$ such that $\nu\left(Y_{1}\right)>0$. Put $X_{1}=$ $\pi^{-1}\left(Z_{1}\right), X_{0}=X \backslash X_{1}$. Then X_{1} is Borel, $\mu\left(X_{1}\right)>0$ and if $X_{e} \subseteq X_{1}$, then $C_{e}\left(F \mid X_{e}\right)>1$. By the proof of [KM, Proposition 28.8], there is a free Borel action a of \mathbb{F}_{2} on X_{1} with $E_{a} \subseteq F \mid X_{1}$ and thus there is a free Borel action a^{\prime} of \mathbb{F}_{∞} on X_{1} with $E_{a^{\prime}} \subseteq F \mid X_{1}$. Put $F^{\prime}=E_{a^{\prime}} \oplus F \mid X_{0} \subseteq F$. Then $C\left(F^{\prime}\right)=C_{\mu \mid X_{1}}\left(E_{a^{\prime}}\right)+C_{\mu \mid X_{0}}\left(F \mid X_{0}\right)=\infty$, since $C_{\mu \mid X_{1}}\left(E_{a^{\prime}}\right)=\infty$.

It is clear that (i) and (ii) are contradictory, so let us assume that (i) fails for E and then show (ii). By Lemma 12.3, we can assume that there is $F \in S(E)$ with $C(F)=\infty$. It follows that F is not smooth (see, e.g., [KM, Proposition 20.1]). Put $X_{0}=\left\{x:\left|[x]_{E}\right|=\infty\right\}, X_{1}=X \backslash X_{0}$. Thus $\mu\left(X_{0}\right)>0$. Now $F \mid X_{1}$ is smooth and thus $C_{\mu \mid X_{1}}\left(F \mid X_{1}\right)<\infty$. Since

$$
C(F)=C_{\mu \mid X_{0}}\left(F \mid X_{0}\right)+C_{\mu \mid X_{1}}\left(F \mid X_{1}\right)=\infty,
$$

it follows that $C_{\mu \mid X_{0}}\left(F \mid X_{0}\right)=\infty$.
Fix now $\epsilon>0$. Let $S \subseteq X_{0}$ be a complete section of $F \mid X_{0}$ such that $\mu(S)<\epsilon$. We have

$$
C_{\mu \mid X_{0}}\left(F \mid X_{0}\right)=C_{\mu \mid S}(F \mid S)+\mu\left(X_{0} \backslash S\right)=\infty
$$

so $C_{\mu \mid S}(F \mid S)=\infty$.
Let now $R \in S(E)$. Put $R_{\epsilon}=R|(X \backslash S) \oplus F| S$. Then

$$
C\left(R_{\epsilon}\right)=C_{\mu \mid(X \backslash S)}(R \mid(X \backslash S))+C_{\mu \mid S}(F \mid S)=\infty
$$

Also for any $T \in[E]$, we have

$$
\begin{aligned}
A_{T, R_{\epsilon}}= & \left\{x: x \notin S \& T(x) \notin S \& x \in A_{T, R}\right\} \\
& \sqcup\left\{\left(x:(x \in S \vee T(x) \in S) \& x \in A_{T, R_{\epsilon}}\right\},\right. \\
A_{T, R}= & \left\{x: x \notin S \& T(x) \notin S \& x \in A_{T, R}\right\} \\
& \sqcup\left\{\left(x:(x \in S \vee T(x) \in S) \& x \in A_{T, R}\right\},\right.
\end{aligned}
$$

so $A_{T, R_{\epsilon}} \Delta A_{T, R} \subseteq S \cup T^{-1}(S)$ and therefore $\mu\left(A_{T, R_{\epsilon}} \Delta A_{T, R}\right)<2 \epsilon$. It follows that $R_{\frac{1}{n}}$ converges in the uniform topology to R.

Remark 12.4. It is unknown if condition (i) in Theorem 12.2 is equivalent to hyperfiniteness.

The following problem is open. For convenience, we will say that E is of type II if it is aperiodic and there is $F \in S(E)$ with $C(F)>1$.

Problem 12.5. Let E be a type II equivalence relation. Is $I n f C o s t_{E}$ comeager in $S(E)$?

We will next consider the descriptive complexity of the cost function.
Proposition 12.6. The set FinCost E_{E} is analytic in $S(E)$ and the cost function $F \mapsto C(F)$ is Borel on FinCost ${ }_{E}$.

Proof. The first assertion follows by a direct calculation (or using Proposition 19.1 and Proposition 19.11 below).

For the second assertion, we recall that if an ergodic $F \in S(E)$ has finite cost, then it is induced by an action of some \mathbb{F}_{n} (see [KM, Lemma 27.7]). Also the cost function $a \in A\left(\mathbb{F}_{n}, E\right) \mapsto C(a)=C\left(E_{a}\right)$ is upper semicontinuous on $A\left(\mathbb{F}_{n}, E\right)$ by [K, First Remark in page 78]. Thus for ergodic $F \in S(E)$ of finite cost and $r \in \mathbb{R}$, we have:

$$
\begin{aligned}
C(F)<r & \Longleftrightarrow \exists n \exists a \in A\left(\mathbb{F}_{n}, E\right)\left(E_{a}=F \& C(a)<r\right) \\
& \Longleftrightarrow \forall n \forall a \in A\left(\mathbb{F}_{n}, E\right)\left(E_{a}=F \Longrightarrow C(a)<r\right),
\end{aligned}
$$

which shows that the cost function is Borel on the set $\mathcal{E R} \mathcal{G}_{E} \cap$ FinCost $_{E}$. The general case can be proved using the Ergodic Decomposition Theorem 4.19, Theorem 4.20 and the integration formula for cost with respect to the ergodic decomposition [KM, Corollary 18.6], which, in particular, shows that if an equivalence relation has finite cost, so do (almost) all its ergodic components.

The following is an open problem:
Problem 12.7. Is the cost function $F \mapsto C(F)$ Borel on $S(E)$? Equivalently is the set FinCost ${ }_{E}$ Borel in $S(E)$?

We next notice some related facts and questions. It is clear from Theorem 12.2 that for each E of type II the sets $\{F \in S(E): C(F)>r\},\{F \in$ $S(E): C(F) \geq r\}$, for $r \in \mathbb{R}, r>0$, are not uniformly closed. We can also see that for some E the sets $\{F \in S(E): C(F)<r\}, r>1,\{F \in$ $S(E): C(F) \leq r\}, r \geq 1$, are not closed. Take $n>r$, let $\Gamma=\mathbb{F}_{n} \times \mathbb{Z}$, let $a \in$ $\operatorname{FR}(\Gamma, X, \mu)$ and let $E_{a} \subseteq E$. Put $\Gamma_{m}=2^{m} \mathbb{Z}, m \geq 1$, and let $E_{m}=E_{a \mid\left(\mathbb{F}_{n} \times \Gamma_{m}\right)}$,
so that $E_{1} \supseteq E_{2} \ldots$ and $C\left(E_{m}\right)=1$. Now $\bigcap_{m} E_{m}=E_{a \mid \mathbb{F}_{n}}$, so $E_{m} \rightarrow E_{a \mid \mathbb{F}_{n}}$ and $C\left(E_{a \mid \mathbb{F}_{n}}\right)=n>r$. A similar argument, using $\Gamma=\mathbb{F}_{\infty} \times \mathbb{Z}$, shows that in general $\{F \in S(E): C(F)<\infty\}$ is not closed. The following problem is open:

Problem 12.8. Are the sets

$$
\begin{aligned}
& \{F \in S(E): C(F)<r\}, r>1, \\
& \{F \in S(E): C(F)<\infty\}, \\
& \{F \in S(E): C(F) \leq r\}, r \geq 1 .
\end{aligned}
$$

uniformly closed?
One can also use these observations to answer a question that arises from [K, First Remark in page 78]. It is shown there that when the infinite group Γ is finitely generated, the cost function C on $A(\Gamma, E)$ is upper semicontinuous. Is that true for arbitrary infinite Γ ? The answer is negative:

Proposition 12.9. For any equivalence relation E of type II, the function $a \in$ $A\left(\mathbb{F}_{\infty}, E\right) \mapsto C(a)$ is not upper semicontinuous.

Proof. By Theorem 7.1, there is a continuous map $\Psi: S(E) \rightarrow A\left(\mathbb{F}_{\infty}, E\right)$ such that $E_{\Psi(F)}=F$. So if the cost function was upper semicontinuous in $A\left(\mathbb{F}_{\infty}, E\right)$, for each $r \in \mathbb{R}$ the set $\{F \in S(E): C(F) \geq r\}$ would be closed in $S(E)$, a contradiction.

Finally we show that an analog of Theorem 7.1 fails for $\mathbb{F}_{n}, n \geq 2$. Below let $\mathcal{F}_{n, E}=\left\{F \in S(E): \exists a \in A\left(\mathbb{F}_{n}, E\right)\left[E_{a}=E\right]\right\}$.

Proposition 12.10. Let $n \geq 2$. If E is of type $I I$, there is no continuous function $\Psi_{n}: \mathcal{F}_{n, E} \rightarrow A\left(\mathbb{F}_{n}, E\right)$ such that $E_{\Psi_{n}(F)}=F$.

Proof. As in the proof of Lemma 12.3, there is an invariant Borel set X_{1} of positive measure and a free Borel action a_{∞} of \mathbb{F}_{∞} on X_{1} with $E_{a_{\infty}} \subseteq E$. Let for $n \geq 1, a_{n}=a_{\infty} \mid\left\langle\gamma_{0}, \gamma_{n}\right\rangle$, where $\left\{\gamma_{0}, \gamma_{1}, \ldots\right\}$ are free generators of \mathbb{F}_{∞}. Let $X_{0}=X \backslash X_{1}$ and put $R_{0}=i d \mid X_{0}$ and $F_{n}=E_{a_{n}} \oplus R_{0}$. Then $C\left(F_{n}\right)=2 \mu\left(X_{1}\right)$.

Lemma 12.11. Let $a_{0}=a_{\infty} \mid\left\langle\gamma_{0}\right\rangle, F_{0}=E_{a_{0}} \oplus R_{0}$. Then $F_{n} \rightarrow F_{0}$.

Proof. Below put $\delta \cdot x=a_{\infty}(\delta, x)$. Fix $T \in[E]$. Then

$$
\begin{gathered}
A_{T, F_{n}}=\left\{x \in X_{1}: T(x) \in\left\langle\gamma_{0}, \gamma_{n}\right\rangle \cdot x\right\} \sqcup\left\{x \in X_{0}: T(x)=x\right\}, \\
A_{T, F_{0}}=\left\{x \in X_{1}: T(x) \in\left\langle\gamma_{0}\right\rangle \cdot x\right\} \sqcup\left\{x \in X_{0}: T(x)=x\right\} .
\end{gathered}
$$

Thus $A_{T, F_{0}} \subseteq A_{T, F_{n}}$ and $\left(A_{T, F_{n}} \backslash A_{T, F_{0}}\right) \cap\left(A_{T, F_{m}} \backslash A_{T, F_{0}}\right)=\emptyset$, if $n \neq m$, so $\mu\left(A_{T, F_{n}} \backslash A_{T, F_{0}}\right) \rightarrow 0$, thus $\mu\left(A_{T, F_{n}}\right) \rightarrow \mu\left(A_{T, F_{n}}\right)$.

Note also that $C\left(F_{0}\right)=\mu\left(X_{1}\right)$. If such Ψ_{n} existed, and since the cost function is upper semicontinuous on $A\left(\mathbb{F}_{n}, E\right)$, the set $\{F \in S(E): C(F) \geq$ $r\}$ would be closed in $\mathcal{F}_{n, E}$. Taking $r=2 \mu\left(X_{1}\right)$ we have a contradiction.

Notice that the set $\mathcal{F}_{n, E}$ is analytic in $S(E)$. The following problem is open:

Problem 12.12. Let $n \geq 2$. Is there a Borel function $\Psi_{n}: \mathcal{F}_{n, E} \rightarrow A\left(\mathbb{F}_{n}, E\right)$ such that $E_{\Psi_{n}(F)}=F$?

For $n=1, \mathcal{F}_{1, E}=\mathcal{H}_{E}$, thus, by Theorem 8.1, $\mathcal{F}_{1, E}$ is closed in $S(E)$ and we will see in Theorem 14.1 that Problem 12.12 has a positive solution for $n=1$. (Note that $A\left(\mathbb{F}_{1}, E\right)=A(\mathbb{Z}, E)$ is homeomorphic to $[E]$.) However we do not know if there is continuous $\Psi_{1}: \mathcal{F}_{1, E} \rightarrow A(\mathbb{Z}, E)$ with $E_{\Psi_{1}(F)}=$ F.

13. Normality

We discuss here normal subequivalence relations, see [FSZ]. Let E be ergodic and let $N=[E: F] \leq \infty$ be the index of F in E, i.e., the number of F-classes in each E-class. A sequence $\left(\varphi_{n}\right)_{n<N}$ of Borel functions on X such that for each $x,\left(\left[\varphi_{n}(x)\right]_{F}\right)_{n<N}$ is an injective enumeration of the F classes in $[x]_{E}$ is called a choice sequence. Again we identify two such sequences if they agree a.e. Every F admits a choice sequence and if F is also ergodic, then such $\left(\varphi_{n}\right)_{n<N}$ can be found which are in $\operatorname{Aut}(X, \mu)$ (see [FSZ, Lemma 1.3]).
Definition 13.1. Let E be ergodic. A subequivalence relation $F \in S(E)$ is normal in E, in symbols

$$
F \triangleleft E,
$$

if there are choice sequences which are F-invariant.
In particular, if $F \triangleleft E$ and F is ergodic, then one can find choice sequences which are F-invariant and in $\operatorname{Aut}(X, \mu)$. We now have the following result concerning the complexity of the set of normal subequivalence relations.

Theorem 13.2. The set $\operatorname{Normal}(E)$ of normal subequivalence relations of an ergodic equivalence relation E is Borel in $S(E)$.

Proof. We first note the following fact:
Lemma 13.3. The set $\{F \in S(E):[E: F]=N\}$ is $F_{\sigma \delta}$, for any $N \leq \infty$.
Proof. For $N=\infty$ this follows from Proposition 9.1. So we can assume that $N<\infty$. Then the proof is similar to that of Proposition 9.4. Let $\left(T_{i}\right)$ be a generating sequence for E. Then we have that $[F: E] \leq N$ iff

$$
\forall k \exists M \forall n\left(\mu\left(\left\{x: \exists s \in M^{N} \forall j \leq n \exists k<N\left(T_{j}(x) F T_{s(k)}(x)\right)\right\}\right) \geq 1-\frac{1}{k}\right)
$$

So it is enough to show that for each $N \leq \infty$, the set $\{F \in S(E):[E$: $F]=N \& F \triangleleft E\}$ is Borel.

We will first deal with ergodic normal subequivalence relations and then consider the general case.

Ergodic case. The set $\left\{F \in \mathcal{E} \mathcal{R G}_{E}:[E: F]=N \& F \triangleleft E\right\}$ is Borel in $S(E)$.
We will view below E as a genuine countable Borel equivalence relation (and not one defined a.e.). Let then $R \subseteq S(E) \times E$ be as in Proposition 4.18, so that for each $F \in S(E), R_{F}=F^{0}$ is a subequivalence relation of E which is a representative for F in $S(E)$. Let $\Gamma=\left\{\gamma_{n}\right\}$ be a countable group acting in a Borel way on X generating E. Then define inductively for each $F \in S(E), n<N$, a Borel function $\varphi_{n}^{F}: X \rightarrow X$ as follows:

$$
\begin{gathered}
\varphi_{0}^{F}(x)=x \\
\varphi_{n}^{F}(x)=\gamma_{k} \cdot x
\end{gathered}
$$

where k is least such that $\gamma_{k} \cdot x \notin\left[\varphi_{i}^{F}(x)\right]_{F^{0}}, \forall i<n$, if such exists; else $\varphi_{n}^{F}(x)=x$. Clearly $\left(\varphi_{n}^{F}\right)_{n<N}$ is a choice sequence for F (a.e.). Moreover the relation $Q \subseteq S(E) \times \mathbb{N} \times X^{2}$, given by:

$$
Q(F, n, x, y) \Longleftrightarrow \varphi_{n}^{F}(x)=y
$$

is Borel.
Define now for each $F \in S(E)$, a function $\sigma_{F}: E \rightarrow S_{N}$, where S_{N} is the symmetric group on N elements, as follows:

$$
\sigma_{F}(x, y)(i)=j \Longleftrightarrow \varphi_{i}^{F}(x) F^{0} \varphi_{j}^{F}(y),
$$

provided that there are exactly $N F^{0}$-classes in $[x]_{E}=[y]_{E}$; else $\sigma_{F}(x, y)(i)=$ i. Then σ_{F} is a Borel cocycle from E into S_{N} and is the index cocycle of F corresponding to the choice sequence $\left(\varphi_{n}^{F}\right)_{n<N}$ (a.e.) (see [FSZ, Lemma 1.2]).

From [FSZ, Definition 2.1 and Theorem 2.2], we have that $F \triangleleft E$ iff $\sigma_{F} \mid F$ is a coboundary, i.e., there is a function $f \in L\left(X, \mu, S_{N}\right)$ such that for $x F y, \sigma_{F}(x, y)=f(y) f(x)^{-1}$ (a.e.). Here $L\left(X, \mu, S_{N}\right)$ is the space of Borel functions from X to the Polish group S_{N}, two functions being identified if they agree a.e. Then $L\left(X, \mu, S_{N}\right)$ is a Polish group under pointwise multiplication and the topology of convergence in measure. Let also
$Z^{1}\left(F, S_{N}\right)$ be the Polish space of Borel cocycles from F to S_{N} (two such cocycles being identified if they agree a.e.), see [K, Section 24]. The Polish group $L\left(X, \mu, S_{N}\right)$ acts continuously on $Z^{1}\left(F, S_{N}\right)$ via $f \cdot \alpha(x, y)=$ $f(y) \alpha(x, y) f(x)^{-1}$. Denoting by 1 the trivial cocycle (that sends any $(x, y) \in$ F to the identity element 1 of S_{N}), we thus have that α is a coboundary iff it is in the orbit of 1 in the action of $L\left(X, \mu, S_{N}\right)$.

The stabilizer of 1 in this action consists of all $f \in L\left(X, \mu, S_{N}\right)$, which are F-invariant and thus constant, if F is ergodic. Thus for ergodic F this stabilizer is equal to the group S_{N} (identified with the group of constant functions from X to $\left.S_{N}\right)$. Clearly S_{N} is a closed subgroup of $L\left(X, \mu, S_{N}\right)$, so let T be a Borel set that contains exactly one element in each left-coset of S_{N} in $L\left(X, \mu, S_{N}\right)$. Then if α is a coboundary there is a unique $f \in T$ such that $f \cdot 1=\alpha$. Define then $P \subseteq\left\{F \in \mathcal{E} \mathcal{R} \mathcal{G}_{E}:[E: F]=N\right\} \times L\left(X, \mu, S_{N}\right)$ by

$$
P(F, f) \Longleftrightarrow f \in T \& f \cdot 1=\sigma_{F} \mid F
$$

Then by the preceding discussion the first projection map is an injective map from P onto $\left\{F \in \mathcal{E} \mathcal{R} \mathcal{G}_{E}:[E: F]=N \& F \triangleleft E\right\}$. It thus suffices to show that P is a Borel set or that

$$
S(F, f) \Longleftrightarrow f \cdot 1=\sigma_{F} \mid F
$$

is Borel.
Recall that $L\left(X, \mu, S_{N}\right)$ admits the compatible complete metric

$$
d(f, g)=\int D(f(x), g(x)) d \mu(x)
$$

where D is the usual compatible metric for S_{N} (which is bounded by 1).
Lemma 13.4. For $f \in L\left(X, \mu, S_{N}\right)$, let for $m, n<N$,

$$
A_{f, m, n}=\{x: f(x)(m)=n\} \in \operatorname{MALG}_{\mu} .
$$

Then $f \in L\left(X, \mu, S_{N}\right) \rightarrow A_{f, m, n} \in$ MALG $_{\mu}$ is Lipschitz (for the usual metric ρ on MALG_{μ}).

Proof. Let ϵ be such that

$$
D(p, q)<\epsilon \Longrightarrow p(m)=q(m)
$$

Then we will show that

$$
\rho\left(A_{f, m, n}, A_{g, m, n}\right) \leq \frac{d(f, g)}{\epsilon}
$$

Let $d(f, g)=a$. Then by Markov's inequality

$$
\mu(\{x: D(f(x), g(x)) \geq \epsilon\})) \leq \frac{a}{\epsilon} .
$$

Now

$$
A_{f, m, n} \Delta A_{g, m, n} \subseteq\{x: D(f(x), g(x)) \geq \epsilon\}
$$

so $\rho\left(A_{f, m, n}, A_{g, m, n}\right) \leq \frac{a}{\epsilon}$.
Lemma 13.5. There is a Borel set $U \subseteq L\left(X, \mu, S_{N}\right) \times X \times N^{2}$ such that for each $f \in L\left(X, \mu, S_{N}\right), x \in X$, the section $U_{f, x}$ is the graph of a permutation $p_{f, x} \in S_{N}$ and the map $f^{0}: X \rightarrow S_{N}$ given by $f^{0}(x)=p_{f, x}$ is equal to f a.e.

Proof. We can assume that $X=[0,1]$ and μ is Lebesgue measure. Let $A_{f, m, n}^{*}$ be the set of density points of $A_{f, m, n}$. Then by Lemma 13.4, the relation $U^{*}(f, x, m, n) \Longleftrightarrow x \in A_{f, m, n}^{*}$ is Borel. Finally let

$$
\begin{aligned}
U(f, x, m, n) \Longleftrightarrow & \left(U_{f, x}^{*} \text { is not the graph of an element of } S_{N} \text { and } m=n\right) \\
& \text { or (it is such a graph and } \left.U^{*}(f, x, m, n)\right) .
\end{aligned}
$$

We have now that

$$
S(F, f) \Longleftrightarrow \forall i \forall^{*} x\left[x F T_{i}(x) \Longrightarrow \sigma_{F}\left(x, T_{i}(x)\right)=f\left(T_{i}(x)\right) f(x)^{-1}\right]
$$

where $\forall^{*} x$ means "for almost all x." So $S(F, f)$ is equivalent to

$$
\left.\forall i \forall m \forall^{*} x\left[x F T_{i}(x)\right) \Longrightarrow \varphi_{m}^{F}(x) F \varphi_{f\left(T_{i}(x)\right) f(x)^{-1}(m)}\left(T_{i}(x)\right)\right]
$$

and therefore to

$$
\begin{gathered}
\forall i \forall m \forall^{*} x \exists j, k\left(x F T_{i}(x) \Longrightarrow\right. \\
\left.\left[\left\{\varphi_{m}^{F}(x)=T_{j}(x) \& \varphi_{f^{0}\left(T_{i}(x)\right) f^{\circ}(x)^{-1}(m)}\left(T_{i}(x)\right)=T_{k}(x)\right\} \& T_{j}(x) F T_{k}(x)\right]\right)
\end{gathered}
$$

Let B be the Borel set of x satisfying the condition within $\{\ldots\}$ in the line above, so that finally

$$
S(F, f) \Longleftrightarrow \forall i \forall m \forall^{*} x \exists j, k\left[x \notin A_{T_{i}, F} \text { or }\left(x \in B \& x \in A_{T_{j}, T_{k}, F}\right)\right]
$$

and so $S(F, f)$ is equivalent to:
$\forall i \forall m \forall n \exists M \mu\left(\left\{x: \exists j, k \leq M\left[x \notin A_{T_{i}, F}\right.\right.\right.$ or $\left.\left.\left.\left(x \in B \& x \in A_{T_{j}, T_{k}, F}\right)\right]\right\}\right) \geq 1-\frac{1}{n}$.
Since the maps $F \mapsto A_{T_{i}, F}, A_{T_{j}, T_{k}, F}$ from $S(E)$ to MALG_{μ} are continuous, this shows that S is Borel and completes the proof in the ergodic case.

General case. The set $\{F \in S(E):[F: E]=N \& F \triangleleft E\}$ is Borel in $S(E)$.
Repeating the argument as in the ergodic case, we note that the stabilizer of 1 is the closed subgroup G_{F} of the F-invariant functions in the space $L\left(X, \mu, S_{N}\right)$. Again as in the previous argument, it is enough to find a Borel transversal T_{F} for the cosets of G_{F} in $L\left(X, \mu, S_{N}\right)$, so that relation

$$
T(F, f) \Longleftrightarrow f \in T_{F}
$$

is Borel (as a subset of $S(E) \times L\left(X, \mu, S_{N}\right)$). Denote by \mathcal{F} the Effros Borel space of the closed subgroups of $L\left(X, \mu, S_{N}\right)$. By the usual proof of the existence of a Borel transversal for the cosets of a closed subgroup of a Polish group, it is then enough to show that the map $F \in S(E) \mapsto G_{F} \in \mathcal{F}$ is Borel or equivalently that there is a Borel function

$$
\delta: S(E) \rightarrow L\left(X, \mu, S_{N}\right)^{\mathbb{N}}
$$

such that for each $F \in S(E)$ the sequence $\delta(F)$ is dense in G_{F}.
To see this consider the Ergodic Decomposition Theorem 4.19 and Theorem 4.20, whose notation we use below. Thus π_{F} is an ergodic decomposition of F^{0}, mapping X to $P(X)$, and has range the set $\mathcal{E} \mathcal{I}_{F^{0}}$.

Then $f \in L\left(X, \mu, S_{N}\right)$ is F-invariant iff it is of the form $g \circ \pi_{F}$ for a uniquely determined $g \in L\left(P(X),\left(\pi_{F}\right)_{*}(\mu), S_{N}\right)$. Thus the map $g \in$ $L\left(P(X),\left(\pi_{F}\right)_{*}(\mu), S_{N}\right) \mapsto g \circ \pi_{F} \in L\left(X, \mu, S_{N}\right)$ is an isometric embedding, whose range is G_{F}.

Now pick a countable Boolean algebra \mathcal{B} of Borel subsets of $P(X)$ which generates its Borel sets. Then for any probability Borel measure ν on $P(X)$, \mathcal{B} is dense in the measure algebra MALG_{ν}. Fix also a countable dense set $\Sigma=\left\{\sigma_{n}\right\}$ in S_{N}. Then the Borel maps from $P(X)$ into S_{N} that are constant in the pieces of a partition of $P(X)$ in \mathcal{B} and take values in Σ form a dense set in any $L\left(P(X),\left(\pi_{F}\right)_{*}(\mu), S_{N}\right)$. Enumerate these functions as $\left\{g_{0}, g_{1}, \ldots\right\}$.

Finally define the function $\delta=\left(\delta_{n}\right)$ as follows:

$$
\delta_{n}(F)=g_{n} \circ \pi_{F}
$$

It only remains to check that this is a Borel function and for that we verify that for any n, any (genuine) Borel function h_{0} from X to S_{N} and any $\epsilon>0$, the set of all $F \in S(E)$ for which

$$
d\left(\delta_{n}(F), h_{0}\right)=\int D\left(\delta_{n}(F)(x), h_{0}(x)\right) d x<\epsilon
$$

is Borel, which is clear as the function $(F, x) \mapsto D\left(g_{n}\left(\pi_{F}(x)\right), h_{0}(x)\right)$ is Borel.

14. A selection theorem for hyperfiniteness

Recall that \mathcal{H} is the class of hyperfinite equivalence relations. For each E, the set \mathcal{H}_{E} is closed in $S(E)$ by Theorem 8.1. Also the set $\mathcal{E R G} \mathcal{H}_{E}$ of ergodic hyperfinite subequivalence relations of E is a G_{δ} set in $S(E)$ by Theorem 8.1 and Theorem 10.1. Note that if F is in $\mathcal{E R G}$, then F is aperiodic.

We next prove the following selection result.
Theorem 14.1. There is a Borel function $\Theta: \mathcal{H}_{E} \rightarrow[E]$ such that for $F \in \mathcal{H}_{E}$, if $\Theta(F)=T$, then $F=E_{T}$ (i.e., $x F y \Longleftrightarrow \exists n \in \mathbb{Z}\left(T^{n}(x)=y\right)$).

Proof. We will first give a detailed argument that there is a Borel function $\Phi: \mathcal{E} \mathcal{R G} \mathcal{H}_{E} \rightarrow[E]$ such that for $F \in \mathcal{E} \mathcal{R G} \mathcal{H}_{E}$, if $\Phi(F)=T$, then $F=E_{T}$, i.e, we will first prove the theorem for the ergodic hyperfinite equivalence relations. Then we will indicate how this can be extended to all hyperfinite equivalence relations.

Let for $F \in S(E)$,

$$
A(F)=\{T \in[F]: T \text { is aperiodic }\} .
$$

Then for any aperiodic $F, A(F)$ is a closed non-empty subset of $[F]$ (and thus of $[E]$); see $[K, 3.5]$. We first prove the following:
Lemma 14.2. The following are equivalent:
(i) There is a Borel function $\Phi: \mathcal{E} \mathcal{R G} \mathcal{H}_{E} \rightarrow[E]$ such that if $\Phi(F)=T$, then $E_{T}=F$ (thus $T \in A(F)$).
(ii) The function $A \mid \mathcal{E R G} \mathcal{H}_{E}$ from $\mathcal{E R G H} \mathcal{H}_{E}$ to $\mathcal{F}^{*}([E])$ is Borel.
(iii) There is a Borel function $\Omega: \mathcal{E} \mathcal{R G H} \mathcal{H}_{E} \rightarrow[E]$ such that $\Omega(F) \in A(F)$.

Proof. (ii) \Rightarrow (i). We need the following:

Sublemma 14.3. Let $F \in \mathcal{E R G \mathcal { H }}{ }_{E}$. Then the generic element $T \in A(F)$ has the property that $E_{T}=F$.

Proof. Let $C=\left\{T \in A(F): E_{T}=F\right\}$. We show first that it is dense in $A(F)$. To see this, fix $T_{0} \in A(F)$ with $E_{T_{0}}=F$. Then the orbit of T_{0} under the conjugation action of $[F]$ on $A(F)$ is dense in $A(F)$, by [K],3.4. Clearly every element T of that orbit has $E_{T}=F$.

It remains to show that C is G_{δ} in $A(F)$. For that it is enough to show that the map $[E] \ni T \mapsto E_{T} \in S(E)$ is of Baire class 1. This will follow if we can show that for any $S \in[E]$ and $\alpha \in \mathbb{R}$, the set $\left\{T \in[E]: \alpha<\mu\left(A_{S, E_{T}}\right)\right\}$ is open.

Now

$$
\begin{aligned}
A_{S, E_{T}} & =\left\{x:(x, S(x)) \in E_{T}\right\} \\
& =\left\{x: \exists n \in \mathbb{Z}\left(S(x)=T^{n}(x)\right)\right. \\
& =\bigcup_{N \in \mathbb{N}}\left\{x: \exists|n| \leq N\left(S(x)=T^{n}(x)\right)\right\} \\
& =\bigcup_{N \in \mathbb{N}} A_{N}^{T},
\end{aligned}
$$

where $A_{N}^{T}=\left\{x: \exists|n| \leq N\left(S(x)=T^{n}(x)\right)\right\}$. Clearly $A_{0}^{T} \subseteq A_{1}^{T} \subseteq \ldots$, so

$$
\alpha<\mu\left(A_{S, E_{T}}\right) \Longleftrightarrow \exists N\left(\mu\left(A_{N}^{T}\right)>\alpha\right)
$$

thus it suffices to show that

$$
\left\{T: \mu\left(A_{N}^{T}\right)>\alpha\right\}
$$

is open in $[E]$. Fix T_{1} such that $\mu\left(A_{N}^{T_{1}}\right)>\alpha$ and let $\delta=\mu\left(A_{N}^{T_{1}}\right)-\alpha>0$. Then let $\epsilon>0$ be such that $N(N+1) \epsilon<\delta$. We will show that if $d_{u}\left(T, T_{1}\right)<\epsilon$, then $\mu\left(A_{N}^{T}\right)>\alpha$.

If $d_{u}\left(T, T_{1}\right)<\epsilon$, then $d_{u}\left(T^{n}, T_{1}^{n}\right)<|n| \epsilon$, for any $n \in \mathbb{Z}$. Since

$$
\left\{x: S(x)=T^{n}(x)\right\} \Delta\left\{x: S(x)=T_{1}^{n}(x)\right\} \subseteq\left\{x: T^{n}(x) \neq T_{1}^{n}(x)\right\}
$$

we have

$$
\mu\left(\left\{x: S(x)=T^{n}(x)\right\} \Delta\left\{x: S(x)=T_{1}^{n}(x)\right\}\right)<|n| \epsilon,
$$

SO

$$
\begin{gathered}
\mu\left(\left\{x: \exists|n| \leq N\left(S(x)=T^{n}(x)\right)\right\} \Delta\left\{x: \exists|n| \leq N\left(S(x)=T_{1}^{n}(x)\right)\right\}\right) \\
\leq \sum_{|n| \leq N}(|n| \epsilon)=N(N+1) \epsilon<\delta,
\end{gathered}
$$

therefore

$$
\mu\left(A_{N}^{T}\right)>\mu\left(A_{N}^{T_{1}}\right)-\delta=\alpha
$$

This concludes the proof of the Sublemma.
Consider now the relation $P \subseteq \mathcal{E R G}_{\mathcal{R}} \mathcal{H}^{\times} \times[E]$ given by

$$
P(F, T) \Longleftrightarrow T \in A(F) \& E_{T}=F .
$$

Clearly it is Borel and our goal is to find a Borel uniformizing function Φ for P. To each $F \in \mathcal{E R G} \mathcal{H}_{E}$ assign the σ-ideal \mathcal{I}_{F} on $[E]$ defined by

$$
\mathcal{I}_{F}=\{W \subseteq[E]: W \cap A(F) \text { is meager in } A(F)\}
$$

It is clear that for $F \in \mathcal{E R G} \mathcal{H}_{F}, P_{F}=\{T: P(F, T)\} \notin \mathcal{I}_{F}$. Therefore by [K2, 18.6], it is enough to show that $F \mapsto \mathcal{I}_{F}$ is Borel on Borel. So let Z be a Polish space and $U \subseteq Z \times \mathcal{E R G H}_{F} \times[E]$ be Borel in order to show that

$$
\left\{(z, F): U_{z, F} \text { is meager in } A(F)\right\}
$$

is Borel. In fact, more generally, we will show that for any $W \subseteq[E]$, which is an open non-empty set in $[E]$, the set

$$
M_{U, W}=\left\{(z, F): A(F) \cap W \neq \emptyset \& U_{z, F} \text { is not meager in } A(F) \cap W\right\} .
$$

is Borel. Note that if $\left\{W_{n}\right\}$ is a basis of nonempty open sets in $[E]$, then we have for Borel $U, U_{n} \subseteq Z \times \mathcal{E R G H}_{F} \times[E]$:

$$
M_{\cup_{n} U_{n}, W}=\bigcup_{n} M_{U_{n}, W}
$$

and (letting $\left.\sim U=\left(Z \times \mathcal{E R G H}_{E} \times[E]\right) \backslash U\right)$

$$
\begin{aligned}
M_{\sim U, W}= & {\left[\left(Z \times \mathcal{E R \mathcal { G H }}{ }_{E}\right) \backslash \bigcap\left\{M_{U, W_{n}}: W_{n} \subseteq W, W_{n} \cap A(F) \neq \emptyset\right\}\right] } \\
& \cap\left\{(z, F) \in Z \times \mathcal{E R G \mathcal { G }}{ }_{F}: A(F) \cap W \neq \emptyset\right\}
\end{aligned}
$$

thus, since $\left\{(z, F) \in Z \times \mathcal{E R G H}_{E}: A(F) \cap W \neq \emptyset\right\}$ is Borel by our hypothesis, it is enough to show that $M_{U, W}$ is Borel for each $U=U_{1} \times U_{2} \times U_{3}$, where U_{1} is open in Z, U_{2} is open in $\mathcal{E R G \mathcal { H }}{ }_{E}$ and U_{3} is open in $[E]$. But in that case

$$
\begin{aligned}
(z, F) \in M_{U, W} \Longleftrightarrow & z \in U_{1} \& F \in U_{2} \& A(F) \cap W \neq \emptyset \& \\
& U_{3} \text { is not meager in } A(F) \cap W \\
\Longleftrightarrow & z \in U_{1} \& F \in U_{2} \& A(F) \cap W \neq \emptyset \& \\
& A(F) \cap W \cap U_{3} \neq \emptyset
\end{aligned}
$$

which again is Borel by hypothesis.
(i) \Rightarrow (iii): Obvious taking $\Omega=\Phi$.
(iii) \Rightarrow (ii): By $[\mathrm{K}, 3.4]$, the conjugacy class $\left\{T \Omega(F) T^{-1}: T \in[F]\right\}$ is dense in $A(F)$. So for $W \subseteq[E]$ open,

$$
\begin{aligned}
A(F) \cap W \neq \emptyset & \Longleftrightarrow \exists T \in[F]\left(T \Omega(F) T^{-1} \in W\right) \\
& \Longleftrightarrow \exists T \in \mathcal{D}\left(T \Omega(F) T^{-1} \in W\right)
\end{aligned}
$$

for any countable dense subset $\mathcal{D} \subseteq[F]$. It is thus enough to show that there is a Borel function $D: S(E) \rightarrow[E]^{\mathbb{N}}$ such that $D(F)=\left(T_{n}\right)_{n \in \mathbb{N}}$, where $\left\{T_{n}\right\}_{n \in \mathbb{N}}$ is dense in $[F]$. Since $F \in S(E)$ is identified with $[F]$, a closed subset of $[E]$, this follows from [K2, 12.13].

This concludes the proof of the Lemma.
Thus to complete the proof of Theorem 14.1 in the ergodic case, it is enough to prove (iii) of the preceding lemma.

We now use Proposition 4.18, in which we recall that E is viewed as a genuine equivalence relation and not one viewed a.e., Combining this with the proof of $[K, 3.5$], we then have:

Lemma 14.4. There is a Borel set $Q \subseteq \mathcal{E R G H}_{E} \times E$ such that for any $F \in$ $\mathcal{E R G H}{ }_{E}, Q_{F} \subseteq F^{\circ}$ and Q_{F} is the graph of a Borel automorphism T_{F} of X (thus $E_{T_{F}} \subseteq F^{\circ}$) such that T_{F} restricted to the aperiodic part of F° (i.e., the set of all x with $[x]_{F \circ}$ infinite) is also aperiodic.

In particular, if $\left\langle T_{F}\right\rangle$ is the element of $\left[F^{\circ}\right]=[F]$ represented by T_{F}, then $\left\langle T_{F}\right\rangle \in A(F)$. We put $\Omega(F)=\left\langle T_{F}\right\rangle$ for $F \in \mathcal{E} \mathcal{R G} \mathcal{H}_{E}$. It remains to verify that $\Omega: \mathcal{E R G H}_{E} \rightarrow[E]$ is Borel.

Fix $T_{0} \in[E]$. It is enough to show that

$$
\left\{F \in \mathcal{E R} \mathcal{R} \mathcal{H}_{E}: d\left(T_{F}, T_{0}\right)<\epsilon\right\}
$$

is Borel in $S(E)$. Now for $F \in \mathcal{E} \mathcal{R G} \mathcal{H}_{E}$,

$$
\begin{aligned}
d_{u}\left(T_{F}, T_{0}\right)<\epsilon & \Longleftrightarrow \mu\left(\left\{x: T_{F}(x) \neq T_{0}(x)\right\}\right)<\epsilon \\
& \Longleftrightarrow \mu\left(\left\{x:\left(x, T_{0}(x)\right) \notin Q_{F}\right\}\right)<\epsilon \\
& \Longleftrightarrow \mu\left(\left\{x:\left(F, x, T_{0}(x)\right) \notin Q\right\}\right)<\epsilon,
\end{aligned}
$$

which is clearly a Borel condition on F.
This completes the proof of selection for the ergodic case.
The proof in the general case can proceed in two different ways. The first is by using the ergodic composition theorem, see Theorem 4.20. The second uses a result of Miri Segal in her (unpublished) Ph.D. Thesis (see [K4, 8.47 and the following paragraph]. I would like to thank Ben Miller for this suggestion. Segal's result states that for each (genuine) countable Borel equivalence relation F, which is hyperfinite μ-a.e., one can find in an effective Borel way a Borel automorphism that generates $F \mu$-a.e. Combined with Proposition 4.18 this implies the following:
Proposition 14.5. There is a Borel set $P \subseteq \mathcal{H}_{E} \times E$ such that for any $F \in$ $\mathcal{H}_{E}, P_{F} \subseteq F^{\circ}$ and P_{F} is the graph of a Borel automorphism T_{F} of X such that $E_{T_{F}}$ is equal to F in $S(E)$.

This together with the argument following Lemma 14.4 completes the proof of Theorem 14.1.

Combining Proposition 8.3 with Theorem 14.1 and the proof of [DJK, Theorem 5.1], we also have the following result:

Theorem 14.6. There is a Borel function $H: \mathcal{H}_{E} \rightarrow S(E)^{\mathbb{N}}$ such that for $F \in$ \mathcal{H}_{E} we have that for each $n, H(F)_{n} \in \mathcal{B} \mathcal{F}_{E}, H(F)_{n} \subseteq H(F)_{n+1}$, and $F=$ $\bigcup_{n} H(F)_{n}$.

15. Invariant, random equivalence relations on groups

We study here the connection between the space of subequivalence relations and that of invariant, random equivalence relations on groups.

15.1 Equivalence relations on groups

For each infinite countable group Γ, denote by $\mathrm{Eq}(\Gamma)$ the space of equivalence relations on Γ. This is a compact subspace of $2^{\Gamma^{2}}$. The group Γ acts continuously by translation on $\operatorname{Eq}(\Gamma)$: if $\gamma \in \Gamma, e \in \operatorname{Eq}(\Gamma)$, then

$$
(\delta, \epsilon) \in \gamma \cdot e \Longleftrightarrow\left(\gamma^{-1} \delta, \gamma^{-1} \epsilon\right) \in e
$$

Let σ be a Borel probability measure on $\mathrm{Eq}(\Gamma)$. If σ is invariant under the action of Γ, we say that σ is a (Γ-)invariant, random equivalence relation (IRE) on Γ. We denote by $\operatorname{IRE}(\Gamma)$ the space of these measures.

Clearly $\operatorname{IRE}(\Gamma)$ is a compact subspace of the space of all Borel probability measures on $\operatorname{Eq}(\Gamma)$ (which is equipped, as usual, with the weak*topology, in which it is compact metrizable)

There is a canonical connection between subequivalence relations of the equivalence relation E_{a} induced by an action $a \in A(\Gamma, X, \mu)$ and IRE on Γ, which is a special case of structurability of such equivalence relations. See [KM, 29.1], [CK, Section 2], and [T-D, Appendix A] for the particular case of equivalence relations.

Let $a \in A(\Gamma, X, \mu)$ and put $E=E_{a}$. Given $F \in S(E)$, define the map

$$
e_{F}^{a}=e_{F}: X \rightarrow \operatorname{Eq}(\Gamma)
$$

by

$$
(\gamma, \delta) \in e_{F}(x) \Longleftrightarrow\left(\gamma^{-1} \cdot x, \delta^{-1} \cdot x\right) \in F .
$$

Then e_{F} is a Γ-equivariant Borel function. Put

$$
\sigma^{a}(F)=\sigma(F)=\left(e_{F}\right)_{*} \mu
$$

Thus $\sigma^{a}(F) \in \operatorname{IRE}(\Gamma)$.
Proposition 15.1. The map $\sigma^{a}: S(E) \rightarrow \operatorname{IRE}(\Gamma)$ is continuous.
Proof. Fix $\alpha_{i}, \beta_{i}, \gamma_{j}, \delta_{j} \in \Gamma, i \leq m, j \leq k$, and put

$$
A_{\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta}, F}^{a}=A_{\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta}, F}=\bigcap_{i \leq m} A_{\left(\alpha_{i}^{a}\right)^{-1},\left(\beta_{i}^{a}\right)^{-1}, F} \cap \bigcap_{j \leq k}\left(X \backslash A_{\left(\gamma_{j}^{a}\right)^{-1},\left(\delta_{j}^{a}\right)^{-1}, F}\right),
$$

where $A_{S, T, F}$, for $S, T \in[E]$, is defined in the proof of Proposition 4.29.
It is enough to prove that the map that sends $F \in S(E)$ to the real number

$$
\left.\sigma^{a}(F)\left(\left\{e \in \operatorname{Eq}(\Gamma): \forall i \leq m\left(\alpha_{i}, \beta_{i}\right) \in e \& \forall j \leq k\left(\gamma_{j}, \delta_{j}\right) \notin e\right)\right\}\right)
$$

is continuous. But this number is equal to $\mu\left(A_{\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta}, F}\right)$, which depends continuously on F, since, by Proposition 4.29, the map $F \mapsto A_{S, T, F}$ as above is continuous.

Remark 15.2. The map σ^{a} is not injective. Consider, for example, the shift action s of Γ on $[0,1]^{\Gamma}$, with the usual product measure. Let $F_{1}=E_{s} \cap$ $\{(x, y): x(1)=y(1)\}, F_{2}=E_{s} \cap\{(x, y): x(\gamma)=y(\gamma)\}$, where $\gamma \neq 1$. Then $e_{F_{1}}=e_{F_{2}}$ is the constant function with value the equality relation $={ }_{\Gamma}$ on Γ, so $\sigma\left(F_{1}\right)=\sigma\left(F_{2}\right)$ is the Dirac measure at $={ }_{\Gamma}$ but $F_{1} \neq F_{2}$.

It turns out that every IRE is generated by the above procedure for some, in fact free, action a and equivalence relation F. Below we denote by $\operatorname{FR}(\Gamma, X, \mu)$ the set of free actions in $A(\Gamma, X, \mu)$.
Proposition 15.3. $\operatorname{IRE}(\Gamma)=\left\{\sigma^{a}(F): a \in A(\Gamma, X, \mu), F \in S\left(E_{a}\right)\right\}$ $=\left\{\sigma^{a}(F): a \in \operatorname{FR}(\Gamma, X, \mu), F \in S\left(E_{a}\right)\right\}$.
Proof. Let $\sigma \in \operatorname{IRE}(\Gamma)$. Let $b \in \operatorname{FR}(\Gamma, Y, \nu)$ and put $X=\mathrm{Eq}(\Gamma) \times Y, \mu=\sigma \times \nu$. Let also a be the product action of Γ on X, so that $a \in \operatorname{FR}(\Gamma, X, \mu)$. Define $F \subseteq E_{a}$ by

$$
(e, x) F(f, y) \Longleftrightarrow \exists \gamma\left(\gamma \cdot(e, x)=(f, y) \&\left(1, \gamma^{-1}\right) \in e\right)
$$

Then $e_{F}^{a}(e, x)=e$ and so $\sigma^{a}(F)=\sigma$.

A special case of the above construction of IRE is the following. Let Y be a standard Borel space and F a Borel equivalence relation on Y. Consider the product space $X=Y^{\Gamma}$ with the shift action s_{Y} of Γ on this space and let μ be a shift-invariant probability measure on X. Define the equivalence relation \tilde{F} on X by $x \tilde{F} y \Longleftrightarrow x E_{s_{Y}} y \& x(1) F y(1)$. Let $e_{\tilde{F}}: X \rightarrow$ $\mathrm{Eq}(\Gamma)$ be the associated map, so that $(\gamma, \delta) \in e_{\tilde{F}}(x) \Longleftrightarrow x(\gamma) F x(\delta)$. Finally consider the IRE $\sigma^{s_{X}}(\tilde{F})$.
Problem 15.4. Is every element of $\operatorname{IRE}(\Gamma)$ of the form $\sigma^{s_{Y}}(\tilde{F})$, for some measure μ and Borel equivalence relation F on Y ? What if we take F to be the equality relation on Y ?

Another way to obtain IRE is the following. Let $\operatorname{Sg}(\Gamma)$ be the space of subgroups of Γ, which is a compact subspace of 2^{Γ} on which Γ acts continuously by conjugation. An invariant, random subgroup (IRS) of Γ is a conjugation invariant Borel probability measure on $\operatorname{Sg}(\Gamma)$. Denote the space of such measures by $\operatorname{IRS}(\Gamma)$. There is a canonical homeomorphism Σ from $\operatorname{Sg}(\Gamma)$ into $\operatorname{Eq}(\Gamma)$ given by $(\gamma, \delta) \in \Sigma(H) \Longleftrightarrow \gamma \delta^{-1} \in H$. Thus the equivalence classes of $\Sigma(H)$ are the right cosets of H. The range of Σ consists of the equivalence relations induced by the cosets of a subgroup of Γ. The embedding Σ is also Γ-equivariant, thus if $\mu \in \operatorname{IRS}(\Gamma)$, then $\Sigma_{*} \mu \in \operatorname{IRE}(\Gamma)$ and the range of Σ_{*} consists of the IRE that concentrate on the range of Σ. This forms a proper compact subset of $\operatorname{IRE}(\Gamma)$. TuckerDrob [T-D, Appendix A] characterizes $\Sigma_{*}(\operatorname{IRS}(\Gamma))$ as consisting of exactly those $\sigma^{a}(F)$ for $F \subseteq E_{a}$ that are normalized by a, which means that each γ^{a} is an automorphism of F, i.e., $x F y \Longleftrightarrow \gamma^{a}(x) F \gamma^{a}(y)$.

15.2 Classes of invariant, random equivalence relations

We say that $\sigma \in \operatorname{RS}(\Gamma)$ is an aperiodic IRE if it concentrates on the equivalence relations all of whose classes are infinite. It is an infinite index IRE if it concentrates on the equivalence relations that have infinitely many classes. Both the aperiodic and the infinite index IRE form G_{δ} sets in $\operatorname{IRE}(\Gamma)$. Similarly σ is a finite index IRE if it concentrates on the equivalence relations that have only finitely many classes. Finally, σ is a finite IRE if it concentrates on the equivalence relations all of whose classes are finite.

We now have the following results:
Theorem 15.5. Let Γ be an infinite countable group. The generic IRE on Γ is aperiodic and has infinite index.

Proof. By Proposition 15.1 and Proposition 15.3 and Theorem 8.2 the aperiodic IRE are dense in $\operatorname{IRE}(\Gamma)$ and by Proposition 9.1 the same is true for the infinite index IRE.

Theorem 15.6. Let Γ be an infinite amenable countable group. Then the finite index IRE are dense in $\operatorname{IRE}(\Gamma)$.

Proof. This follows as before from Proposition 9.4.
We do not know if this holds for all infinite Γ.
Theorem 15.7. Let Γ be an infinite countable group. Then the following are equivalent:
(i) Γ is amenable,
(ii) The finite IRE are dense in $\operatorname{IRE}(\Gamma)$,
(iii) The Dirac measure $\delta_{\Gamma \times \Gamma}$ on the equivalence relation $\Gamma \times \Gamma$ is a limit of finite IRE.

Proof. (i) \Longrightarrow (ii) follows from Proposition 15.1 and Proposition 15.3 and the paragraph following Theorem 8.1, while (ii) \Longrightarrow (iii) is obvious.
(iii) \Longrightarrow (i): Let σ_{n} be finite IRE such that $\sigma_{n} \rightarrow \delta_{\Gamma \times \Gamma}$. We will use these to find a left-invariant probability measure on Γ.

For $A \subseteq \Gamma$ and an equivalence relation e with finite classes, put

$$
\rho_{e}(A)=\frac{\left|A \cap[1]_{e}\right|}{\left|[1]_{e}\right|} .
$$

Then, for each n, put

$$
\rho_{n}(A)=\int \rho_{e}(A) d \sigma_{n}(e)
$$

Clearly ρ_{n} is a finitely additive probability measure on Γ.
Let now \mathcal{U} be a non-principal ultrafilter on \mathbb{N} and put

$$
\rho(A)=\lim _{n \rightarrow \mathcal{U}} \rho_{n}(A) .
$$

Again ρ is a finitely additive probability measure on Γ. We will show that it is left-invariant. We have for each $A \subseteq \Gamma, \gamma \in \Gamma$,

$$
\rho(A)=\lim _{n \rightarrow \mathcal{U}} \int \frac{\left|A \cap[1]_{e}\right|}{\left|[1]_{e}\right|} d \sigma_{n}(e)
$$

and

$$
\rho(\gamma A)=\lim _{n \rightarrow \mathcal{U}} \int \frac{\left|\gamma A \cap[1]_{e}\right|}{\left|[1]_{e}\right|} d \sigma_{n}(e)
$$

Now note that

$$
\frac{\left|\gamma A \cap[1]_{e}\right|}{\left|[1]_{e}\right|}=\frac{\left|A \cap\left[\gamma^{-1}\right]_{\gamma^{-1} \cdot e}\right|}{\left|\left[\gamma^{-1}\right]_{\gamma^{-1} \cdot e}\right|}
$$

so, using the invariance of ν_{n}, we have

$$
\rho(\gamma A)=\lim _{n \rightarrow \mathcal{U}} \int \frac{\left|A \cap\left[\gamma^{-1}\right]_{e}\right|}{\left|\left[\gamma^{-1}\right]_{e}\right|} d \sigma_{n}(e) .
$$

It is thus enough to show that

$$
\lim _{n \rightarrow \infty} \int\left(\frac{\left|A \cap[1]_{e}\right|}{\left|[1]_{e}\right|}-\frac{\left|A \cap\left[\gamma^{-1}\right]_{e}\right|}{\left|\left[\gamma^{-1}\right]_{e}\right|}\right) d \sigma_{n}(e)=0
$$

Since $\sigma_{n} \rightarrow \delta_{\Gamma \times \Gamma}$, we have

$$
\sigma_{n}\left(\left\{e:\left(1, \gamma^{-1}\right) \in e\right\}\right) \rightarrow \delta_{\Gamma \times \Gamma}\left(\left\{e:\left(1, \gamma^{-1}\right) \in e\right\}\right)=1
$$

so, given $\epsilon>0$, let N be large enough so that for $n \geq N$,

$$
\sigma_{n}\left(\left\{e:[1]_{e} \neq\left[\gamma^{-1}\right]_{e}\right\}\right)<\epsilon
$$

Then

$$
\left|\int\left(\frac{\left|A \cap[1]_{e}\right|}{\left|[1]_{e}\right|}-\frac{\left|A \cap\left[\gamma^{-1}\right]_{e}\right|}{\left|\left[\gamma^{-1}\right]_{e}\right|}\right) d \sigma_{n}(e)\right| \leq \epsilon
$$

and the proof is complete.

15.3 Bauer vs Poulsen

The space $\operatorname{IRE}(\Gamma)$ is a Choquet simplex (being the space of invariant Borel probability measures for a continuous action of Γ on a compact metrizable
space). Its extremal points are the ergodic IRE, whose set we denote by $\operatorname{ERGIRE}(\Gamma)$. We next consider the question of whether $\operatorname{IRE}(\Gamma)$ is a Bauer simplex, i.e., $\operatorname{ERGIRE}(\Gamma)$ is closed in $\operatorname{IRE}(\Gamma)$, or the Poulsen simplex, i.e., $\operatorname{ERGIRE}(\Gamma)$ is dense in $\operatorname{IRE}(\Gamma)$. By the results in Glasner-Weiss [GW], if Γ has property (T), then $\operatorname{IRE}(\Gamma)$ is a Bauer simplex. However the following is open:

Problem 15.8. Assume that the countable group Γ does not have property (T). Is $\operatorname{IRE}(\Gamma)$ the Poulsen simplex?

15.4 Another approach to the topology of equivalence relations

One can use ideas similar to those in this section to provide one more description of the topology of $S(E)$.

Fix $a \in A(\Gamma, X, \mu)$ with $E=E_{a}$. Consider the compact metrizable space $\mathcal{P}(\Gamma)^{\mathbb{N}} \times \operatorname{Eq}(\Gamma)$ (where $\mathcal{P}(\Gamma)$ is the space of all subsets of Γ, identified with $\left.2^{\Gamma}\right)$, on which Γ acts continuously by $\gamma \cdot\left(\left(a_{n}\right), e\right)=\left(\left(\gamma a_{n}\right), \gamma \cdot e\right)$. Fix also a sequence $\left(D_{n}\right)$ of Borel sets which is dense in MALG ${ }_{\mu}$. Define then the map

$$
\theta_{F}^{a}=\theta_{F}: X \rightarrow \mathcal{P}(\Gamma)^{\mathbb{N}} \times \operatorname{Eq}(\Gamma),
$$

by $\theta_{F}(x)=\left(\left(a_{n}\right), e\right)$, where $a_{n}=\left\{\gamma: \gamma^{-1} \cdot x \in D_{n}\right\}$ and $e=e_{F}(x)$. Let $\tau^{a}(F)=\tau(F)=\left(\theta_{F}\right)_{*} \mu \in \operatorname{Prob}\left(\mathcal{P}(\Gamma)^{\mathbb{N}} \times \operatorname{Eq}(\Gamma)\right)$, the space of Borel probability measures on $\left(\mathcal{P}(\Gamma)^{\mathbb{N}} \times \operatorname{Eq}(\Gamma)\right)$. Then $\tau(F)$ is Γ-invariant and so its projection on $\operatorname{Eq}(\Gamma)$ is in $\operatorname{IRE}(\Gamma)$.

Proposition 15.9. The map $\tau^{a}: S(E) \rightarrow \operatorname{IRE}(\Gamma)$ is a homeomorphism into IRE(Γ).

Proof. The continuity of τ^{a} is proved as in Proposition 15.1. That τ^{a} is injective follows from the paragraph preceding Proposition 4.14 and Lemma 4.10. That $\left(\tau^{a}\right)^{-1}$ is continuous can be deduced from the paragraph following Proposition 4.14.

Thus we can also view $S(E)$ as a G_{δ} subset of $\operatorname{Prob}\left(\mathcal{P}(\Gamma)^{\mathbb{N}} \times \mathrm{Eq}(\Gamma)\right)$.

15.5 Invariant, random equivalence relations and weak containment

Recall that for $a, b \in A(\Gamma, X, \mu)$, we let $a \preceq b$ iff a is weakly contained in b (see [K], where \prec is used instead of \preceq). Concerning the map $\sigma^{a}(F)$ that sends $F \in S\left(E_{a}\right), a \in A(\Gamma, X, \mu)$, to an IRE on Γ, we consider its "slice" corresponding to the \preceq-predecessors of an action b.

Theorem 15.10. Let Γ be an infinite countable group and $b \in A(\Gamma, X, \mu)$. Then the set

$$
\left\{\sigma^{a}(F): a \in A(\Gamma, X, \mu), a \preceq b, F \in S\left(E_{a}\right)\right\}
$$

is a compact subset of $\operatorname{IRE}(\Gamma)$.
Proof. We use the method of ultraproducts.
Fix a non-principal ultrafilter \mathcal{U} on \mathbb{N}. Let $a_{n} \in A(\Gamma, X, \mu), a_{n} \preceq b$ and $F_{n} \in S\left(E_{a_{n}}\right)$, for $n \in \mathbb{N}$. As in the proof of Proposition 15.1, for each action $d \in A(\Gamma, Z, \rho), F \in S\left(E_{d}\right)$, and $\alpha_{i}, \beta_{i}, \gamma_{j}, \delta_{j} \in \Gamma, i \leq m, j \leq k$, we put

$$
A_{\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta}, F}^{d}=\bigcap_{i \leq m} A_{\left(\alpha_{i}^{d}\right)^{-1},\left(\beta_{i}^{d}\right)^{-1}, F}^{d} \cap \bigcap_{j \leq k}\left(X \backslash A_{\left(\gamma_{j}^{d}\right)^{-1},\left(\delta_{j}^{d}\right)^{-1}, F}^{d}\right),
$$

where for each $S, T \in\left[E_{d}\right], A_{S, T, F}^{d}=\{z \in Z:(S(z), T(z)) \in F\}$. In particular, $A_{T, F}^{d}=\{z:(z, T(z)) \in F\}=A_{i d, T, F}$ and $A_{S, T, F}^{d}=S^{-1}\left(A_{T S^{-1}, F}^{d}\right)$.

We will show that there is a standard probability space (Y, ν), an action $c \in A(\Gamma, Y, \nu), c \preceq b$, and an equivalence relation $F \in S\left(E_{c}\right)$ on (Y, ν) such that

$$
\nu\left(A_{\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta}, F}^{c}\right)=\lim _{n \rightarrow \mathcal{U}} \mu\left(A_{\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta}, F_{n}}^{a_{n}}\right),
$$

for all $\alpha_{i}, \beta_{i}, \gamma_{j}, \delta_{j} \in \Gamma, i \leq m, j \leq k$, which implies that $\left\{\sigma^{a}(F): a \in\right.$ $\left.A(\Gamma, X, \mu), a \preceq b, F \in S\left(E_{a}\right)\right\}$ is compact in $\operatorname{IRE}(\Gamma)$.

We will use below the notation and terminology of Conley-Kechris-Tucker-Drob [CKT] concerning ultraproducts. Let $\left(X_{\mathcal{U}}, \mu_{\mathcal{U}}\right)$ be the ultrapower of (X, μ) and let $a=\prod_{n} a_{n} / \mathcal{U}$ the ultraproduct of $\left(a_{n}\right)$. Put for $g \in \Gamma$,

$$
A_{g, F_{n}}^{a_{n}}=\left\{x \in X:\left(x, g^{a_{n}}(x)\right) \in F_{n}\right\} .
$$

Then for each $n,\left(A_{g, F_{n}}^{a_{n}}\right)$ satisfies conditions 1.-4. of Lemma 4.12. So if $A_{g}=\left[\left(A_{g, F_{n}}^{a_{n}}\right)\right]_{\mathcal{U}}$ is the ultrapower of $\left(A_{g, F_{n}}^{a_{n}}\right)$, it follows that $\left(A_{g}\right)_{g \in \Gamma}$ also satisfies these conditions (all of course $\mu_{\mathcal{U}}$-a.e.).

If $\boldsymbol{B}_{\mathcal{U}}$ is the σ-algebra on which $\mu_{\mathcal{U}}$ lives, let $\mathrm{MALG}_{\mu_{\mathcal{U}}}$ be the measure algebra of $\left(X_{\mathcal{U}}, \boldsymbol{B}_{\mathcal{U}}, \mu_{\mathcal{U}}\right)$. By the proof of Proposition 4.3 in [CKT], there is a map $T_{\mathcal{U}}: \Gamma \times$ MALG $_{\mu_{\mathcal{U}}} \rightarrow$ MALG $_{\mu_{\mathcal{U}}}$ such that if $g \in \Gamma, A \in$ MALG $_{\mu_{\mathcal{U}}} \backslash\{\emptyset\}$ and $g^{a}(x) \neq x, \forall x \in A$, then $T_{\mathcal{U}}(g, A) \subseteq A, \mu_{\mathcal{U}}\left(T_{\mathcal{U}}(g, A)\right) \geq \frac{1}{16} \mu_{\mathcal{U}}(A)$ and $g^{a} \cdot T_{\mathcal{U}}(g, A) \cap T_{\mathcal{U}}(g, A)=\emptyset$.

As in [CKT, Sections 4.2, 4.3], fix a countable Boolean subalgebra $\boldsymbol{B}_{0} \subseteq$ $\operatorname{MALG}_{\mu_{u}}$ which contains all $A_{g}, \operatorname{Fix}\left(g^{a}\right), g \in \Gamma$, and is closed under the action a, the function $S_{\mathcal{U}}$ in [CKT, Section 3.2] and the function $T_{\mathcal{U}}$ as above. Let $\boldsymbol{B}=\sigma\left(\boldsymbol{B}_{0}\right) \subseteq$ MALG $_{\mu_{\mathcal{U}}}$ be the σ-algebra generated by \boldsymbol{B}_{0}. This is a countably generated, non-atomic, a-invariant subalgebra of MALG $_{\mu_{\mathcal{U}}}$, so there is a standard probability space (Y, ν) and a measurable map $\pi: X_{\mathcal{U}} \rightarrow$ Y with $\pi_{*} \mu_{\mathcal{U}}=\nu$ and an action $c \in A(\Gamma, Y, \nu)$ such that

$$
\pi\left(g^{a}(x)\right)=g^{c}(\pi(x)), g \in \Gamma, x \in X_{\mathcal{U}}
$$

(i.e., c is a factor of a) and $B \mapsto \pi^{-1}(B)$ is an isomorphism of $\left(\mathrm{MALG}_{\nu}, \nu\right)$ with $\left(\boldsymbol{B}, \mu_{\mathcal{U}} \mid \boldsymbol{B}\right)$ preserving the Γ-action.

Let then $B_{g}, g \in \Gamma$, in MALG_{ν}, be such that $\pi^{-1}\left(B_{g}\right)=A_{g}$. Then $\nu\left(B_{g}\right)=$ $\mu_{\mathcal{U}}\left(A_{g}\right)$ and the family $\left(B_{g}\right)_{g \in \Gamma}$ satisfies 1.-3. of Lemma 4.12. We will next verify that condition 4 . of the same proposition also holds. Assuming this, there will be an equivalence relation F on (Y, ν) with $A_{g, F}^{c}=B_{g}$. Replacing F by $F \cap E_{c}$, we can assume that $F \subseteq E_{c}$. Then, for each $\alpha_{i}, \beta_{i}, \gamma_{j}, \delta_{j} \in \Gamma, i \leq$ $m, j \leq k$,

$$
\nu\left(A_{\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta}, F}^{c}\right)=\lim _{n \rightarrow \mathcal{U}} \mu\left(A_{\bar{\alpha}, \bar{\beta}, \bar{\gamma}, \bar{\delta}, F_{n}}^{a_{n}}\right) .
$$

Since c is a factor of an ultraproduct of $\left(a_{n}\right)$ and $a_{n} \preceq b$, for each n, then $c \preceq b$ (see [CKT, Theorem 1]) and the proof is complete.

In order to verify condition 4 . in Lemma 4.12, it is enough to show that for each $g \in \Gamma$,

$$
\pi^{-1}\left(\operatorname{Fix}\left(g^{c}\right)\right)=\operatorname{Fix}\left(g^{a}\right)
$$

It is clear that $\pi^{-1}\left(\operatorname{Fix}\left(g^{c}\right)\right) \supseteq \operatorname{Fix}\left(g^{a}\right)$. If they are distinct (in $\operatorname{MALG}_{\mu_{\mathcal{U}}}$), let $A=\pi^{-1}\left(\operatorname{Fix}\left(g^{c}\right)\right) \backslash \operatorname{Fix}\left(g^{a}\right) \in \boldsymbol{B}$ and let $\mu_{\mathcal{U}}(A)=\epsilon>0$. Then $g^{a}(x) \neq x, \forall x \in$ A. Let $B \in \boldsymbol{B}_{0}$ be such that $\mu_{\mathcal{U}}(B \triangle A)<\frac{\epsilon}{32}$. Since $A \subseteq X_{\mathcal{U}} \backslash \operatorname{Fix}\left(g^{a}\right) \in \boldsymbol{B}_{0}$, we can assume (by replacing B by $B \backslash \operatorname{Fix}\left(g^{a}\right)$) that $B \cap \operatorname{Fix}\left(g^{a}\right)=\emptyset$. Since \boldsymbol{B}_{0} is closed under $T_{\mathcal{U}}$, let $C \subseteq B, C \in \boldsymbol{B}_{0}$ be such that $g^{a} \cdot C \cap C=\emptyset$ and $\mu_{\mathcal{U}}(C) \geq \frac{1}{16} \mu_{\mathcal{U}}(B)$. In particular $C \cap A \neq \emptyset$. Since $C \cap A \in \boldsymbol{B}$, let $D \in \mathrm{MALG}_{\nu}$ be such that $\pi^{-1}(D)=C \cap A \subseteq \pi^{-1}\left(\operatorname{Fix}\left(g^{c}\right)\right)$, so $\emptyset \neq D \subseteq \operatorname{Fix}\left(g^{c}\right)$. On the
other hand, $\pi^{-1}\left(g^{c} \cdot D\right)=g^{a} \cdot(C \cap A)$, so $\pi^{-1}\left(g^{c} \cdot D\right) \cap \pi^{-1}(D)=g^{a} \cdot(C \cap$ $A) \cap(C \cap A)=\emptyset$, so $g^{c} \cdot D \cap D=\emptyset$, while $g^{c} \cdot D=D$, a contradiction.

Corollary 15.11. Let Γ be an infinite countable group and assume that $b \in$ $A(\Gamma, X, \mu)$ is ergodic but not strongly ergodic. Then the set

$$
\left\{\sigma^{a}(F): a \in A(\Gamma, X, \mu), a \preceq b, F \in S\left(E_{a}\right)\right\}
$$

is a compact convex subset of $\operatorname{IRE}(\Gamma)$.
Proof. By [AW, Theorem 3] the set $\{a \in A(\Gamma, X, \mu): a \preceq b\}$ is closed under convex combinations (see [K, Section 10, (F)] for the concept of convex combinations of actions).

16. Ultraproducts of equivalence relations

We will use here again the notation of Section 15.5 and [CKT]. Consider the space (X, μ) and for each non-principal ultrafilter \mathcal{U} on \mathbb{N} form the ultrapower $X_{\mathcal{U}}$ with the associated measure $\mu_{\mathcal{U}}$. For $\left(x_{n}\right) \in X^{\mathbb{N}}$, put $\left[x_{n}\right]_{\mathcal{U}}=$ $\left[\left(x_{n}\right)\right]_{\mathcal{U}} \in X_{\mathcal{U}}$. We will use below the following general fact, where for Borel $A \subseteq X$, we put $[A]_{\mathcal{U}}=\left\{\left[x_{n}\right]_{\mathcal{U}} \in X_{\mathcal{U}}: \mathcal{U} n\left(x_{n} \in A\right)\right\} \subseteq X_{\mathcal{U}}$.
Proposition 16.1. $\left[\bigcup_{i \in \mathbb{N}} A_{i}\right]_{\mathcal{U}}=\bigcup_{i \in \mathbb{N}}\left[A_{i}\right]_{\mathcal{U}}$ in MALG $_{\mu_{\mathcal{U}}}$.
Proof. Let $B_{j}=\bigcup_{i \leq j} A_{i}$. Then $\left[B_{j}\right]_{\mathcal{U}}=\bigcup_{i \leq j}\left[A_{i}\right]_{\mathcal{U}}$ and $\bigcup_{j} B_{j}=\bigcup_{i} A_{i}$, $\bigcup_{j}\left[B_{j}\right]_{\mathcal{U}}=\bigcup_{i}\left[A_{i}\right]_{\mathcal{U}}$, so we can assume that $A_{0} \subseteq A_{1} \subseteq \ldots$, and thus $\left[A_{0}\right]_{\mathcal{U}} \subseteq\left[A_{1}\right]_{\mathcal{U}} \subseteq \cdots \subseteq\left[\bigcup_{i} A_{i}\right]_{\mathcal{U}}$. Let $\mu_{\mathcal{U}}\left(\left[\bigcup_{i} A_{i}\right]_{\mathcal{U}}\right)=t$. It is enough to show that $\mu_{\mathcal{U}}\left(\bigcup_{i}\left[A_{i}\right]_{\mathcal{U}}\right)=t$. Now $t=\mu\left(\bigcup_{i} A_{i}\right)=\lim _{i \rightarrow \infty} \mu\left(A_{i}\right)$ and thus $\mu\left(\bigcup_{i}\left[A_{i}\right]_{\mathcal{U}}\right)=\lim _{i \rightarrow \infty} \mu\left(\left[A_{i}\right]_{\mathcal{U}}\right)=t$.

Consider now a sequence of measure preserving countable Borel equivalence relations $\left(F_{n}\right)$ on (X, μ). Let $E \in \mathcal{E}$ be such that $F_{n} \subseteq E$, for each n. Fix an action $a \in A(\Gamma, X, \mu)$ such that $E_{a}=E$. We will use this to define an ultraproduct $\prod_{n}^{a} F_{n} / \mathcal{U}$ of the F_{n}. We will then show that it is independent of E and the action a, so that we can define unambiguously the ultraproduct $\prod_{n} F_{n} / \mathcal{U}$.

As in the proof of Theorem 15.10, we let $A_{g, F_{n}}^{a}=\left\{x \in X:\left(x, g^{a}(x)\right) \in\right.$ $\left.F_{n}\right\}$ and $A_{g}^{a}=\left[\left(A_{g, F_{n}}^{a}\right)\right]_{\mathcal{U}}$. Consider also the ultrapower $a_{\mathcal{U}}=\prod_{n} a / \mathcal{U}$. Then $\left(A_{g}^{a}\right)$ satisfies conditions 1.-4. of Lemma 4.12 and therefore it gives rise to a countable equivalence relation $\hat{F}^{a}=\prod_{n}^{a} F_{n} / \mathcal{U}$ on $X_{\mathcal{U}}$ defined by

$$
\left[x_{n}\right]_{\mathcal{U}} \hat{F}^{a}\left[y_{n}\right]_{\mathcal{U}} \Longleftrightarrow \exists g \in \Gamma\left(g^{a \mathcal{U}}\left(\left[x_{n}\right]_{\mathcal{U}}\right)=\left[y_{n}\right]_{\mathcal{U}} \&\left[x_{n}\right]_{\mathcal{U}} \in A_{g}^{a}\right)
$$

Thus $\prod_{n}^{a} F_{n} / \mathcal{U}$ is the union of the graphs of $g^{a u} \mid A_{g}^{a}, g \in \Gamma$. It is easy to see that the equivalence relation induced by each $g^{a_{\mathcal{U}}} \mid A_{g}^{a}$ is also induced by a
single measure preserving automorphism of $\left(X_{\mathcal{U}}, \mu_{\mathcal{U}}\right)$ and thus $\prod_{n}^{a} F_{n} / \mathcal{U}$ is induced by a measure preserving action of a countable group on $\left(X_{\mathcal{U}}, \mu_{\mathcal{U}}\right)$. Thus we can view $\prod_{n}^{a} F_{n} / \mathcal{U}$ as a countable, measure preserving equivalence relation on $\left(X_{\mathcal{U}}, \mu_{\mathcal{U}}\right)$. Note that we also have $A_{g, \hat{F}^{a}}^{a_{\mathcal{U}}}=\left[\left(A_{g, F_{n}}^{a_{n}}\right)\right]_{\mathcal{U}}$ and so $\mu_{\mathcal{U}}\left(A_{g, \hat{F}^{a}}^{a}\right)=\lim _{n \rightarrow \mathcal{U}} \mu\left(A_{g, F_{n}}^{a_{n}}\right)$.

We now check that this construction is independent of E, a. Suppose $F_{n} \subseteq E \subseteq F$ for each n and let $a \in A(\Gamma, X, \mu)$ generate E and $b \in$ $A(\Delta, X, \mu)$ generate F. We will show that $\hat{F}^{a}=\prod_{n}^{a} F_{n} / \mathcal{U}=\prod_{n}^{b} F_{n} / \mathcal{U}=\hat{F}^{b}$.
(i) Suppose $\left[x_{n}\right]_{\mathcal{U}} \hat{F}^{a}\left[y_{n}\right]_{\mathcal{U}}$ and find $g \in \Gamma$ with $g^{a_{\mathcal{U}}}\left(\left[x_{n}\right]_{\mathcal{U}}\right)=\left[y_{n}\right]_{\mathcal{U}}$ and $\left[x_{n}\right]_{\mathcal{U}} \in A_{g}^{a}$, i.e., $\mathcal{U} n\left(\left(x_{n}, g^{a}\left(x_{n}\right)\right) \in F_{n}\right)$. Write $X=\bigsqcup_{d \in \Delta} X_{d}$, where X_{d} is Borel and

$$
x \in X_{d} \Rightarrow g^{a}(x)=d^{b}(x)
$$

(since $E=E_{a} \subseteq E_{b}=F$). Then $X_{\mathcal{U}}=\bigsqcup_{d \in \Delta}\left[X_{d}\right]_{\mathcal{U}}$, so $\left[x_{n}\right]_{\mathcal{U}} \in\left[X_{d}\right]_{\mathcal{U}}$ for some $d \in \Delta$ and therefore $\mathcal{U} n\left(x_{n} \in X_{d}\right)$, so that $\mathcal{U} n\left(g^{a}\left(x_{n}\right)=d^{b}\left(x_{n}\right)\right)$ and thus $g^{a_{\mathcal{U}}}\left(\left[x_{n}\right]_{\mathcal{U}}\right)=\left[y_{n}\right]_{\mathcal{U}}=d^{b u}\left(\left[x_{n}\right]_{\mathcal{U}}\right)$. Moreover, $\left.\mathcal{U} n\left(\left(x_{n}, d^{b}\left(x_{n}\right)\right) \in F_{n}\right)\right)$, i.e., $\left[x_{n}\right]_{\mathcal{U}} \in A_{d}^{b}$, so $\left[x_{n}\right]_{\mathcal{U}} \hat{F}^{b}\left[y_{n}\right]_{\mathcal{U}}$.
(ii) Conversely assume that $\left[x_{n}\right]_{\mathcal{U}} \hat{F}^{b}\left[y_{n}\right]_{\mathcal{U}}$ and find $d \in \Delta$ with $d^{b u}\left(\left[x_{n}\right]_{\mathcal{U}}\right)=$ [$\left.y_{n}\right]_{\mathcal{U}}$ and $\mathcal{U} n\left(\left(x_{n}, d^{b}\left(x_{n}\right)\right) \in F_{n}\right)$. By Proposition 4.2, there is $T \in[E]$ such that

$$
\left(x, d^{b}(x)\right) \in E \Rightarrow d^{b}(x)=T(x)
$$

Let then $X=\bigsqcup_{g \in \Gamma} X_{g}$ be a Borel decomposition such that

$$
x \in X_{g} \Rightarrow T(x)=g^{a}(x),
$$

so that

$$
x \in X_{g} \&\left(x, d^{b}(x)\right) \in E \Rightarrow d^{b}(x)=g^{a}(x) .
$$

Now $\left[x_{n}\right]_{\mathcal{U}} \in\left[X_{g}\right]_{\mathcal{U}}$ for some $g \in \Gamma$, i.e., $\mathcal{U} n\left(x_{n} \in X_{g}\right)$. But also

$$
\mathcal{U} n\left(\left(x_{n}, d^{b}\left(x_{n}\right)\right) \in F_{n} \subseteq E\right)
$$

so $\mathcal{U} n\left(d^{b}\left(x_{n}\right)=g^{a}\left(x_{n}\right)\right)$, i.e., $d^{b_{\mathcal{U}}}\left(\left[x_{n}\right]_{\mathcal{U}}\right)=\left[y_{n}\right]_{\mathcal{U}}=g^{a_{\mathcal{U}}}\left(\left[x_{n}\right]_{\mathcal{U}}\right)$ and moreover $\mathcal{U} n\left(\left(x_{n}, g^{a}\left(x_{n}\right) \in F_{n}\right)\right.$, so $\left[x_{n}\right]_{\mathcal{U}} \hat{F}^{a}\left[y_{n}\right]_{\mathcal{U}}$.

17. Factors

We will discuss here various notions of factoring for equivalence relations and their applications.

17.1 Factors in general

Let E be a measure preserving countable Borel equivalence relation on (X, μ). Let $\mathcal{A} \subseteq$ MALG $=$ MALG $_{\mu}$ be a non-atomic, σ-subalgebra of MALG. Put

$$
[E]^{\mathcal{A}}=\left\{T \in[E]: \forall A \in \mathcal{A}\left(T(A), T^{-1}(A) \in \mathcal{A}\right)\right\} .
$$

This is a closed subgroup of $([E], u)$, which we call the relative to \mathcal{A} full group of E.

Consider now a separable subgroup Γ of $(\operatorname{Aut}(X, \mu), u)$. This defines a measure preserving countable Borel equivalence relation F^{Γ} as follows: Let $\Gamma_{0} \leq \Gamma$ be a countable dense subgroup of Γ and let F^{Γ} be the equivalence relation induced by Γ_{0}. We can easily see that this is independent of the choice of Γ_{0} and moreover $\Gamma \leq\left[F^{\Gamma}\right]$.

Clearly F^{Γ} is the smallest equivalence relation F such that $\Gamma \leq[F]$. Kittrell-Tsankov [KT, 4.14] have shown that if Γ is also closed in the uniform topology, then there is a largest equivalence relation F, denoted by F_{Γ}, such that $[F] \leq \Gamma$ and moreover $\left[F_{\Gamma}\right]$ is a normal subgroup of Γ.

We now say that E is generated by \mathcal{A} or that \mathcal{A} generates E if $F^{[E]^{\mathcal{A}}}=E$ (clearly always $F^{[E]^{\mathcal{A}}} \subseteq E$). This is equivalent to saying that there is a countable group Γ and an action $a \in A(\Gamma, X, \mu)$ such that $E_{a}=E$ and \mathcal{A} is invariant under a, i.e., for each $A \in \mathcal{A}, g \in \Gamma$ we have that $g^{a}(A) \in \mathcal{A}$.

Let now $\pi:(X, \mu) \rightarrow(Y, \nu)$ be the factor corresponding to \mathcal{A}, so that (Y, ν) is a standard (non-atomic) measure space, $\pi_{*} \mu=\nu$ and $B \mapsto \pi^{-1}(B)$
is an isomorphism of $\left(\mathrm{MALG}_{\nu}, \nu\right)$ with $(\mathcal{A}, \mu \mid \mathcal{A})$ (see [K2, 17.43]). If $T \in$ $\operatorname{Aut}(X, \mu)$ preserves \mathcal{A} (i.e., $\forall A \in \mathcal{A}\left(T(A), T^{-1}(A) \in \mathcal{A}\right)$), then (via π^{-1}) it gives an automorphism of MALG_{ν}, i.e., an element of $\operatorname{Aut}(Y, \nu)$, denoted by $\hat{\pi}(T)$, such that $\hat{\pi}(T)(\pi(x))=\pi(T(x))$. (To verify this equality, simply check that for every $B \in \mathrm{MALG}_{\nu}, \hat{\pi}(T)(\pi(x)) \in B \Longleftrightarrow \pi(T(x)) \in B$.) In particular, $\pi(x)=\pi(y) \Longrightarrow \pi(T(x))=\pi(T(y))$. So if

$$
\operatorname{Aut}(X, \mu)^{\mathcal{A}}=\left\{T \in \operatorname{Aut}(X, \mu): \forall A \in \mathcal{A}\left(T(A), T^{-1}(A) \in \mathcal{A}\right)\right\}
$$

then $\operatorname{Aut}(X, \mu)^{\mathcal{A}}$ is a closed subgroup of $(\operatorname{Aut}(X, \mu), u)$ and

$$
\hat{\pi}:\left(\operatorname{Aut}(X, \mu)^{\mathcal{A}}, u\right) \rightarrow(\operatorname{Aut}(Y, \nu), u)
$$

is a continuous homomorphism. In particular, $\hat{\pi}\left([E]^{\mathcal{A}}\right)$ is a separable subgroup of $(\operatorname{Aut}(Y, \nu), u)$ and thus gives rise to the equivalence relation $F=$ $F^{\hat{\pi}\left([E]^{\mathcal{A}}\right)}$. We call this the factor of E relative to \mathcal{A}.

Note that if $\Gamma_{0} \leq[E]^{\mathcal{A}}$ is dense in $\left([E]^{\mathcal{A}}, u\right)$, so that Γ_{0} generates E, then $\hat{\pi}\left(\Gamma_{0}\right)$ is dense in $\left(\hat{\pi}\left([E]^{\mathcal{A}}\right), u\right)$ and so, by definition, it generates the factor F. It follows that there is a countable group Γ and an action $a \in A(\Gamma, X, \mu)$ preserving \mathcal{A} with $E_{a}=E$ such that if $\hat{\pi}(a)=b$ is the factor action of a via π (i.e., $g^{b}=\hat{\pi}\left(g^{a}\right)$ for each $g \in \Gamma$), so that

$$
\pi\left(g^{a}(x)\right)=g^{b}(\pi(x))
$$

then we have $E_{b}=F$. Therefore π is a homomorphism of E into F, i.e.,

$$
x E y \Rightarrow \pi(x) F \pi(y)
$$

and also π is class-surjective, i.e., the image of each E-class is an F-class. Moreover if $c \in A(\Delta, X, \mu)$ is any action of a countable group Δ preserving \mathcal{A} with $E_{c}=E$ and $\hat{\pi}(c)=d$ is the factor action of c via π, then $E_{d}=F$. Indeed, let $y F z$ and choose x with $\pi(x)=y$ and $g \in \Gamma$ with $g^{b}(y)=z$. Then $g^{a}(x)=h^{c}(x)$ for some $h \in \Delta$, since $E_{a}=E_{c}$, so $\pi\left(g^{a}(x)\right)=g^{b}(\pi(x))=$ $g^{b}(y)=z=\pi\left(h^{c}(x)\right)=h^{d}(\pi(x))=h^{d}(y)$, so $(y, z) \in E_{d}$. Thus $F \subseteq E_{d}$. Since obviously $E_{d} \subseteq F$, we are done.

Clearly $\hat{\pi}$ is a homomorphism of $[E]^{\mathcal{A}}$ into $[F]$. In fact we have:
Proposition 17.1. The homomorphism $\hat{\pi}:[E]^{\mathcal{A}} \rightarrow[F]$ is surjective.

Proof. Let $S \in[F]$. Let $a \in A(\Gamma, X, \mu), E_{a}=E, \hat{\pi}(a)=b, E_{b}=F$ as before. Then there is a Borel decomposition $Y=\bigsqcup_{g \in \Gamma} Y_{g}$ such that

$$
y \in Y_{g} \Rightarrow S(y)=g^{b}(y) .
$$

Let $X_{g}=\pi^{-1}\left(Y_{g}\right) \in \mathcal{A}$, so that $X=\bigsqcup_{g \in \Gamma} X_{g}$. If $g, h \in \Gamma$ are distinct, then $g^{b}\left(Y_{g}\right) \cap h^{b}\left(Y_{h}\right)=S\left(Y_{g}\right) \cap S\left(Y_{h}\right)=\emptyset$ and $\bigsqcup_{g \in \Gamma} g^{b}\left(Y_{g}\right)=\bigsqcup_{g \in \Gamma} S\left(Y_{g}\right)=Y$, so that $g^{a}\left(X_{g}\right) \cap h^{a}\left(X_{h}\right)=\emptyset$ and $X=\bigsqcup_{g \in \Gamma} g^{a}\left(X_{g}\right)$. Put $T=\bigsqcup_{g \in \Gamma} g^{a} \mid X_{g}$.

First note that $T \in[E]^{\mathcal{A}}$, since if $A \in \mathcal{A}$, then $T(A)=T\left(\bigsqcup_{g \in \Gamma}\left(A \cap X_{g}\right)\right)=$ $\bigsqcup_{g \in \Gamma} g^{a}\left(A \cap X_{g}\right) \in \mathcal{A}$. We will finally verify that $\hat{\pi}(T)=S$. For that it is enough to check that for each $B \in$ MALG $_{\nu}, g \in \Gamma$ we have that $\hat{\pi}(T)(B \cap$ $\left.Y_{g}\right)=S\left(B \cap Y_{g}\right)$. This is the case, since $\hat{\pi}(T)\left(B \cap Y_{g}\right)=\pi\left(T\left(\pi^{-1}(B) \cap X_{g}\right)\right)=$ $\pi\left(g^{a}\left(\pi^{-1}(B) \cap X_{g}\right)\right)=g^{b}\left(B \cap Y_{g}\right)=S\left(B \cap Y_{g}\right)$.

The kernel of $\hat{\pi} \mid[E]^{\mathcal{A}}$ is equal to

$$
[E]_{\mathcal{A}}=\left\{T \in[E]^{\mathcal{A}}: \forall A \in \mathcal{A}(T(A)=A)\right\}
$$

thus $[F] \cong[E]^{\mathcal{A}} /[E]_{\mathcal{A}}$ (as topological groups). Note also that $T \in[E]_{\mathcal{A}} \Longleftrightarrow$ $T \in[E]^{\mathcal{A}} \wedge \pi(T(x))=\pi(x), \forall x$.

Let R_{π} be the kernel of π, i.e., the smooth equivalence relation given by:

$$
x R_{\pi} y \Longleftrightarrow \pi(x)=\pi(y)
$$

Put also

$$
E_{\pi}=E \cap R_{\pi}
$$

Thus $[E]_{\mathcal{A}}=\left[E_{\pi}\right]$.
It is easy to check that E, R_{π} commute, i.e., $E \circ R_{\pi}=R_{\pi} \circ E$. (Here for any two equivalence relations E_{1}, E_{2}, we define the relation $E_{1} \circ E_{2}$ by $x E_{1} \circ E_{2} y \Longleftrightarrow \exists z\left(x E_{1} z \wedge z E_{2} y\right)$.)

We now have:
Proposition 17.2. Let F be a factor of E, let $S_{0}, S_{1}, \cdots \in[F]$ be such that $F=$ $E_{S_{0}, S_{1}, \ldots}$, and let $T_{0}, T_{1}, \cdots \in[E]^{\mathcal{A}}$ be such that $\hat{\pi}\left(T_{i}\right)=S_{i}$. If $E^{\prime}=E_{T_{0}, T_{1}, \ldots,}$, then $E=E^{\prime} \vee E_{\pi}$.

Proof. Let $x E y$. Then $\pi(x) F \pi(y)$, so for some i_{1}, \ldots, i_{n} we have $\pi(y)=$ $S_{i_{1}}^{ \pm 1} \circ \cdots \circ S_{i_{n}}^{ \pm 1}(\pi(x))$. Then if $z=T_{i_{1}}^{ \pm 1} \circ \cdots \circ T_{i_{n}}^{ \pm 1}(x)$, we have $\pi(z)=$ $S_{i_{1}}^{ \pm 1} \circ \cdots \circ S_{i_{n}}^{ \pm 1}(\pi(x))=\pi(y)$, so $x E^{\prime} z E_{\pi} y$.

The following result was shown by R. Tucker-Drob.
Proposition 17.3 (Tucker-Drob). Let $S \in[F]$ be an involution. Then there is an involution $T \in[E]^{\mathcal{A}}$ with $\hat{\pi}(T)=S$.
Proof. By Proposition 17.1, let $\tilde{T} \in[E]^{\mathcal{A}}$ be such that $\hat{\pi}(\tilde{T})=S$. We can define $T(x)=x$ for all x such that $S(\pi(x))=\pi(x)$, so that working in the complement of the set of such x^{\prime} s, we can assume that $S(\pi(x)) \neq \pi(x)$, for all x. Let $\Phi=\left\{\left\{x, x^{\prime}\right\}: x E x^{\prime} \wedge S(\pi(x))=\pi\left(x^{\prime}\right)\right\}$. Then, by [KM, Lemma 7.3], we can find a Borel set $A \subseteq X$ and a Borel equivalence relation R on A such that $[x]_{R} \in \Phi$, for $x \in A$ and if $\left\{x, x^{\prime}\right\} \cap A=\emptyset$, then $\left\{x, x^{\prime}\right\} \notin \Phi$.

For $x \in A$, we can define $T(x)=x^{\prime}$, where $\left\{x, x^{\prime}\right\} \in R$. Clearly $\pi(T(x))=S(\pi(x))$, so if we can show that $A=X$ (modulo null sets), this will imply that $T \in[E]^{\mathcal{A}}, T$ is an involution and $\hat{\pi}(T)=S$.

Let $B=\left\{x: \forall x^{\prime}\left(\left(x E x^{\prime} \wedge \pi(x)=\pi\left(x^{\prime}\right)\right) \Longrightarrow x^{\prime} \in A\right) \subseteq A\right.$. Then by the properties of A, R, we have that $x \notin A \Longrightarrow \tilde{T}(x) \in B$ (else there would be some x^{\prime} such that $x^{\prime} \notin A$ and $\left\{x, x^{\prime}\right\} \in \Phi$.) Also $(X \backslash A) \cap T(B) \subseteq$ $(X \backslash A) \cap A=\emptyset$ and $T(B) \subseteq \tilde{T}^{-1}(B)$. Therefore $X \backslash A \subseteq \tilde{T}^{-1}(B) \backslash T(B)$ and since $\mu\left(\tilde{T}^{-1}(B)\right)=\mu(T(B))=\mu(B), X \backslash A$ is null.

Corollary 17.4. If E is generated by the σ-subalgebra \mathcal{A}, then there are involutions $T_{0}, T_{1}, \cdots \in[E]^{\mathcal{A}}$ such that $E=E_{T_{0}, T_{1}, \ldots}$.
Proof. Let $S_{0}, S_{1}, \cdots \in[F]$ be involutions such that $F=E_{S_{0}, S_{1}, \ldots}$. By Proposition 17.3, let $U_{0}, U_{1}, \cdots \in[E]^{\mathcal{A}}$ be involutions such that $\hat{\pi}\left(U_{i}\right)=S_{i}$. Let $E^{\prime}=E_{U_{0}, U_{1}, \ldots}$. Then, by Proposition 17.2, $E=E^{\prime} \vee E_{\pi}$.

Now let V_{0}, V_{1}, \ldots be involutions in $\left[E_{\pi}\right]$ such that $E_{\pi}=E_{V_{0}, V_{1}, \ldots .}$. Clearly $V_{0}, V_{1}, \cdots \in[E]^{\mathcal{A}}$ and so if $\left\{T_{0}, T_{1}, \ldots\right\}=\left\{U_{0}, U_{1}, \ldots\right\} \cup\left\{V_{0}, V_{1}, \ldots\right\}$, then $T_{0}, T_{1}, \cdots \in[E]^{\mathcal{A}}$ and $E=E_{T_{0}, T_{1}, \ldots}$.

We next show the following.
Theorem 17.5. The composition of factors is a factor.
Proof. Let E live on $(X, \mu), \pi:(X, \mu) \rightarrow(Y, \nu)$ be the factor corresponding to the σ-subalgebra $\mathcal{A} \subseteq \mathrm{MALG}_{\mu}$ which generates E and let F be the corresponding factor. Let also \mathcal{B} be a σ-subalgebra of MALG_{ν} such that F is generated by \mathcal{B} and let $\rho:(Y, \nu) \rightarrow(Z, \omega)$ and H be the factor equivalence relation corresponding to \mathcal{B}. Let $\sigma=\rho \circ \pi:(X, \mu) \rightarrow(Z, \omega)$ be the composition with associated σ-subalgebra $\mathcal{C}=\pi^{-1}(\mathcal{B}) \subseteq \mathcal{A}$. We will show that H is the factor of E corresponding to \mathcal{C}.

Lemma 17.6. $[F]^{\mathcal{B}}=\hat{\pi}\left([E]^{\mathcal{C}} \cap[E]^{\mathcal{A}}\right)$.
Proof. Since $\hat{\pi}\left([E]^{\mathcal{A}}\right)=[F]$, this is clear from the definitions noting that if $T \in[E]^{\mathcal{A}}$, then $T \in[E]^{\mathcal{C}}$ iff $\hat{\pi}(T) \in[F]^{\mathcal{B}}$.

Lemma 17.7. $E=F^{\left([E]^{\mathcal{C}} \cap[E]^{\mathcal{A}}\right)}$ (in particular $E=F^{[E]^{\mathcal{C}}}$).
Proof. Let $T \in[E]^{\mathcal{A}}$. Then $\hat{\pi}(T) \in[F]$, so, since $F=F^{[F]^{\mathcal{B}}}$, we can find S_{i} in $[F]^{\mathcal{B}}$ and disjoint Borel sets $Y_{i} \subseteq Y$ with $\bigsqcup_{i} Y_{i}=Y$ such that $\hat{\pi}(T)=$ $\bigsqcup_{i} S_{i} \mid Y_{i}$. By Lemma 17.6, let $T_{i} \in[E]^{\mathcal{C}} \cap[E]^{\mathcal{A}}$ be such that $\hat{\pi}\left(T_{i}\right)=S_{i}$, so that $\hat{\pi}(T)=\bigsqcup_{i} \hat{\pi}\left(T_{i}\right) \mid Y_{i}$. Then for each $i, \hat{\pi}(T)\left|Y_{i}=\hat{\pi}\left(T_{i}\right)\right| Y_{i}$ or $\hat{\pi}\left(T_{i}^{-1} T\right) \mid Y_{i}=$ $i d \mid Y_{i}$.

Let $X_{i}=\pi^{-1}\left(Y_{i}\right) \in \mathcal{A}$. It follows that $T_{i}^{-1} T(A)=A$ for any $A \in \mathcal{A}, A \subseteq$ X_{i} and in particular $T_{i}^{-1} T\left(X_{i}\right)=X_{i}$. Since $X=\bigsqcup_{i} X_{i}, U=\bigsqcup_{i}\left(T_{i}^{-1} T\right) \mid X_{i} \in$ $[E]^{\mathcal{A}}$. Moreover $U(A)=A$ for every $A \in \mathcal{A}$, so that actually $U \in[E]_{\mathcal{A}} \subseteq$ $[E]^{\mathcal{C}}$. Now for each x, there is i such that $T_{i}^{-1} T(x)=U(x)$ or $T(x)=T_{i} U(x)$. Since $T_{i} U \in[E]^{\mathcal{C}} \cap[E]^{\mathcal{A}}$, we have that $T \in\left[F^{[E]^{\mathcal{C}} \cap[E]^{\mathcal{A}}}\right]$. But $E=F^{[E]^{\mathcal{A}}}$, so $E=F^{[E]^{\mathcal{C}} \cap[E]^{\mathcal{A}}}$.

We now complete the proof of Theorem 17.5 as follows. Let $\Gamma_{0} \leq$ $[E]^{\mathcal{C}} \cap[E]^{\mathcal{A}}$ be a countable dense subgroup of $[E]^{\mathcal{C}} \cap[E]^{\mathcal{A}}$, which therefore generates E. Then $\hat{\pi}\left(\Gamma_{0}\right)$ is a dense subgroup of $[E]^{\mathcal{B}}$, so $\hat{\rho} \circ \hat{\pi}\left(\Gamma_{0}\right)=\hat{\sigma}\left(\Gamma_{0}\right)$ generates H. By the arguments preceding Proposition 17.1, it follows that H is the factor of E corresponding to \mathcal{C}.

It also follows from the preceding argument that there is a countable group Γ and an action $a \in A(\Gamma, X, \mu)$, preserving both \mathcal{A} and \mathcal{C}, such that $E_{a}=E$, and moreover if $\hat{\pi}(a)=b$, then $E_{b}=F$ and b preserves \mathcal{B} and if $\hat{\rho}(b)=\hat{\rho}(\hat{\pi}(a))=c$, then $E_{c}=H$.

This can be extended to infinite chains as follows.
For each $n \in \mathbb{N}$, let E_{n} be an equivalence relation on (X_{n}, μ_{n}) and for each $n \geq 1$, let $\pi_{n}:\left(X_{n}, \mu_{n}\right) \rightarrow\left(X_{n-1}, \mu_{n-1}\right)$ be the map corresponding to a σ-subalgebra $\mathcal{A}_{n} \subseteq$ MALG $_{\mu_{n}}$, which generates E_{n}, and let E_{n-1} be the factor corresponding to \mathcal{A}_{n}. For $n>m$, let $\pi_{n, m}=\pi_{m+1} \circ \cdots \circ \pi_{n-1} \circ \pi_{n}$, and let $\pi_{n, n}=$ identity on X_{n}. Then $\pi_{n, m}: X_{n} \rightarrow X_{m}$, for $n \geq m$. Put $\mathcal{A}_{n, m}=\pi_{n, m}^{-1}\left(\right.$ MALG $\left._{\mu_{m}}\right)$, so that $\mathcal{A}_{n, n-1}=\mathcal{A}_{n}$ and $\mathcal{A}_{n, n}=$ MALG $_{\mu_{n}}$. Thus we have the following σ-subalgebras of MALG $_{\mu_{n}}$,

$$
\mathcal{A}_{n, 0} \subseteq \mathcal{A}_{n, 1} \subseteq \cdots \subseteq \mathcal{A}_{n, n-1}=\mathcal{A}_{n} \subseteq \mathcal{A}_{n, n}=\text { MALG }_{\mu_{n}}
$$

Put

$$
\left[E_{n}\right]^{*}=\left[E_{n}\right]^{\mathcal{A}_{n, 0}} \cap \cdots \cap\left[E_{n}\right]^{\mathcal{A}_{n, n-1}} .
$$

Then we have, generalizing Lemma 17.6, Lemma 17.7:
Proposition 17.8. For each $n \geq 1$,
(i) $\hat{\pi}_{n}\left(\left[E_{n}\right]^{*}\right)=\left[E_{n-1}\right]^{*}$,
(ii) $E_{n}=F^{\left[E_{n}\right]^{*}}$.

Proof. By induction on $n \geq 1$. The case $n=1$ is clear. So assume that (i), (ii) hold for $n-1 \geq 1$ and prove them for n. First we will show that if we assume (i) for n, then (ii) also holds for n. The proof is similar to that of Lemma 17.7.

Let $T \in\left[E_{n}\right]^{\mathcal{A}_{n}}$. Then $\hat{\pi}_{n}(T) \in\left[E_{n-1}\right]$, so by (ii) for $n-1$, there is a sequence $S_{i} \in\left[E_{n-1}\right]^{*}$ and $Y_{i} \in \operatorname{MALG}_{\mu_{n-1}}$ such that $\bigsqcup_{i} Y_{i}=Y$ and $\hat{\pi}_{n}(T)=$ $\bigsqcup_{i}\left(S_{i} \mid Y_{i}\right)$. Let then, using (i) for $n, T_{i} \in\left[E_{n}\right]^{*}$ be such that $\hat{\pi}_{n}\left(T_{i}\right)=S_{i}$. Then $\hat{\pi}_{n}(T)=\bigsqcup_{i}\left(\hat{\pi}_{n}\left(T_{i}\right) \mid Y_{i}\right)$, so $\hat{\pi}_{n}\left(T_{i}^{-1} T\right)\left|Y_{i}=i d\right| Y_{i}$. Let $X_{i}=\pi_{n}^{-1}\left(Y_{i}\right) \in \mathcal{A}_{n}$. Then for any $A \subseteq X_{i}, A \in \mathcal{A}_{n}, T_{i}^{-1} T(A)=A$, so, in particular, $T_{i}^{-1} T\left(X_{i}\right)=$ X_{i}. Since $X=\bigsqcup_{i} X_{i}$, we have that $U=\bigsqcup_{i}\left(T_{i}^{-1} T\right) \in[E]$. Also $U(A)=A$ for $A \in \mathcal{A}_{n}$, so $U \in\left[E_{n}\right]_{\mathcal{A}_{n}} \subseteq\left[E_{n}\right]^{*}$. Now for each $x \in X_{n}$, there is i such that $U(x)=T_{i}^{-1} T(x)$, i.e., $T(x)=T_{i} U(x)$. Since $T_{i} U \in\left[E_{n}\right]^{*}$, this shows that $T \in\left[F^{\left[E_{n}\right]^{*}}\right]$, thus $E_{n} \subseteq F^{\left[E_{n}\right]^{*}} \subseteq E_{n}$, so (ii) holds.

We now prove (i) for n. Clearly $\hat{\pi}_{n}\left(\left[E_{n}\right]^{*}\right) \subseteq\left[E_{n-1}\right]^{*}$. Conversely, if $S \in\left[E_{n-1}\right]^{*}$, let $T \in\left[E_{n}\right]^{\mathcal{A}_{n}}$ be such that $\hat{\pi}_{n}(T)=S$. Since S keeps invariant the σ-subalgebras $\mathcal{A}_{n-1,0}, \ldots, \mathcal{A}_{n-1, n-2}$, clearly T keeps invariant

$$
\mathcal{A}_{n, 0}=\pi_{n}^{-1}\left(\mathcal{A}_{n-1,0}\right), \ldots, \mathcal{A}_{n, n-2}=\pi_{n}^{-1}\left(\mathcal{A}_{n-1, n-2}\right), \mathcal{A}_{n, n-1}
$$

so $T \in\left[E_{n}\right]^{*}$.
Consider now the inverse limit $\left(X_{\infty}, \mu_{\infty}\right)$ of the sequence (X_{n}, μ_{n}), π_{n}. Denote by $\pi_{\infty, n}:\left(X_{\infty}, \mu_{\infty}\right) \rightarrow\left(X_{n}, \mu_{n}\right)$ the associated maps, so that $\pi_{n, m} \circ$ $\pi_{\infty, n}=\pi_{\infty, m}$ for $n \geq m$. Thus X_{∞} consist of all chains $\left(x_{n}\right) \in \prod_{n} X_{n}$ with $\pi_{n}\left(x_{n}\right)=x_{n-1}$, for $n \geq 1, \pi_{\infty, n}\left(\left(x_{n}\right)\right)=x_{n}$ and MALG $_{\mu_{\infty}}$ is the smallest σ-algebra containing the σ-subalgebras

$$
\mathcal{A}_{\infty, 0}=\pi_{\infty, 0}^{-1}\left(\mathrm{MALG}_{\mu_{0}}\right) \subseteq \mathcal{A}_{\infty, 1}=\pi_{\infty, 1}^{-1}\left(\mathrm{MALG}_{\mu_{1}}\right) \subseteq \ldots
$$

We will show next that there is a countable group Γ and a measure preserving action $a_{\infty} \in A\left(\Gamma, X_{\infty}, \mu_{\infty}\right)$, which keeps all the $\mathcal{A}_{\infty, n}$ invariant,
thus factors to a measure preserving action $\hat{\pi}_{\infty, n}\left(a_{\infty}\right)=a_{n} \in A\left(\Gamma, X_{n}, \mu_{n}\right)$, which has moreover the property that $E_{a_{n}}=E_{n}$. Then if we put $E_{a_{\infty}}=$ E_{∞}, it follows that the factor of E_{∞} via $\pi_{\infty, n}$ is exactly E_{n} and the appropriate diagrams commute.

To construct a_{∞}, let, for each $m, T_{0}^{m}, T_{1}^{m}, \ldots, T_{i}^{m}, \ldots$ be in $\left[E_{m}\right]^{*}$ and generate E_{m} (using Proposition 17.8). For $n \leq m$, let $T_{i}^{m, n}=\hat{\pi}_{m, n}\left(T_{i}^{m}\right)$ and for $n>m$ choose $T_{i}^{m, n} \in\left[E_{n}\right]^{*}$ such that $\hat{\pi}_{n+1}\left(T_{i}^{m, n+1}\right)=T_{i}^{m, n}$ for $n \geq m$ (again using Proposition 17.8). Finally let $T_{i}^{m, \infty}=\left(T_{i}^{m, n}\right)_{n \in \mathbb{N}} \in$ $\operatorname{Aut}\left(X_{\infty}, \mu_{\infty}\right)$, where $T_{i}^{m, \infty}\left(\left(x_{n}\right)\right)=T_{i}^{m, n}\left(x_{n}\right)$. Note that $T_{i}^{m, \infty}$ leaves each $\mathcal{A}_{\infty, n}$ invariant and $\hat{\pi}_{\infty, n}\left(T_{i}^{m, \infty}\right)=T_{i}^{m, n}$.

Let Γ be the free group with infinitely many generators $g_{i, m}$ and let it act in a measure preserving way on $\left(X_{\infty}, \mu_{\infty}\right)$ to produce a_{∞}, where $g_{i, m}^{a_{\infty}}=T_{i}^{m, \infty}$. If $\hat{\pi}_{\infty, n}\left(a_{\infty}\right)=a_{n}$, then $g_{i, n}^{a_{n}}=\hat{\pi}_{\infty, n}\left(T_{i}^{n, \infty}\right)=T_{i}^{n, n}=T_{i}^{n}$, so $E_{a_{n}}=E_{n}$ and thus the factor of E_{∞} by $\pi_{\infty, n}$ is equal to E_{n}, which completes the proof.

Although E_{∞} is an "upper bound" for the inverse system $\left(E_{n}\right)$, it is not clear how to construct a canonical upper bound, i.e., an inverse limit in the categorical sense for this inverse system.

Next we show that hyperfiniteness is preserved under factoring.
Proposition 17.9. If E is hyperfinite and F is a factor of E, then F is hyperfinite.
Proof. Let $\pi:(X, \mu) \rightarrow(Y, \nu)$ be the factor map and let $a \in A(\Gamma, X, \mu)$ be such that $E_{a}=E, \hat{\pi}(a)=b$ and $E_{b}=F$. For $y \in Y$, let $X_{y}=\{x \in$ $X: \pi(x)=y\}$ and let μ_{y} be the probability measure on X_{y} associated with the measure disintegration of π. Since E is amenable, let $\lambda^{n}: E \rightarrow[0,1]$ be Borel functions such that

$$
\begin{gathered}
\sum_{x^{\prime} E x} \lambda^{n}\left(x, x^{\prime}\right)=1, \\
\left\|\lambda_{x}^{n}-\lambda_{u}^{n}\right\|_{1} \rightarrow 0, \text { for } x E u, \text { as } n \rightarrow \infty
\end{gathered}
$$

(see [KM, Section 9]).
Define now $\rho^{n}: F \rightarrow[0,1]$ by

$$
\rho^{n}\left(y, y^{\prime}\right)=\int_{X_{y}} \sum_{x E x^{\prime}, \pi\left(x^{\prime}\right)=y^{\prime}} \lambda^{n}\left(x, x^{\prime}\right) d \mu_{y}(x) \in[0,1] .
$$

We will show that

$$
\sum_{y^{\prime} F y} \rho^{n}\left(y, y^{\prime}\right)=1,
$$

$$
\left\|\rho_{y}^{n}-\rho_{v}^{n}\right\|_{1} \rightarrow 0, \text { for } y F v, \text { as } n \rightarrow \infty
$$

which implies that F is amenable, thus hyperfinite (see [KM, Section 10]).
The first equality is easy to check, so we verify the second. Fix $\gamma \in \Gamma$ such that $\gamma \cdot y=v$. Then $\gamma \cdot X_{y}=X_{v}$ and $\gamma \cdot \mu_{y}=\mu_{v}$. Now for each $y^{\prime} F y$, we have

$$
\rho_{y}^{n}\left(y^{\prime}\right)=\int_{X_{y}} \sum_{x E x^{\prime}, \pi\left(x^{\prime}\right)=y^{\prime}} \lambda^{n}\left(x, x^{\prime}\right) d \mu_{y}(x),
$$

and

$$
\rho_{v}^{n}\left(y^{\prime}\right)=\int_{X_{v}} \sum_{x E x^{\prime}, \pi\left(x^{\prime}\right)=y^{\prime}} \lambda^{n}\left(x, x^{\prime}\right) d \mu_{v}(x)
$$

so

$$
\rho_{v}^{n}\left(y^{\prime}\right)=\int_{X_{y}} \sum_{x E x^{\prime}, \pi\left(x^{\prime}\right)=y^{\prime}} \lambda^{n}\left(\gamma \cdot x, x^{\prime}\right) d \mu_{y}(x) .
$$

It follows that

$$
\left\|\rho_{y}^{n}-\rho_{v}^{n}\right\|_{1} \leq \int_{X_{y}}\left\|\lambda_{x}^{n}-\lambda_{\gamma \cdot x}^{n}\right\|_{1} d \mu_{y}(x) \rightarrow 0
$$

by Lebesgue Dominated Convergence.
This result can be used, along with an ultraproduct argument, to give a different proof of a strengthening concerning weak containment of actions, due to Robin Tucker-Drob (private communication). We first need a lemma, which extends Proposition 5.7 of [CKT] and Corollary 3.1 of [AE]. Below we let $a \simeq b \Longleftrightarrow a \preceq b \& b \preceq a$ denote the weak equivalence of the actions a, b and let $a \sqsubseteq b$ denote that the action a is a factor of the action b.

Lemma 17.10. Let Γ, Δ be infinite countable groups, $a, b \in A(\Gamma, X, \mu), c \in$ $A(\Delta, X, \mu)$ be such that $a \preceq b$ and $E_{b} \subseteq E_{c}$. The there are $d \in A(\Gamma, X, \mu)$, $e \in A(\Delta, X, \mu)$ such that $b \simeq d, c \simeq e, a \sqsubseteq d$ and $E_{d} \subseteq E_{e}$. Similarly replacing $E_{b} \subseteq E_{c}, E_{d} \subseteq E_{e}$ by $E_{b}=E_{c}, E_{d}=E_{e}$, resp.

Proof. Let \mathcal{U} be a non-principal ultrafilter on \mathbb{N} and consider the ultrapowers $a_{\mathcal{U}}, b_{\mathcal{U}}, c_{\mathcal{U}}$ on the space $\left(X_{\mathcal{U}}, \mu_{\mathcal{U}}\right)$. For each $g \in \Gamma, h \in \Delta$, let $A_{g, h}$ be a Borel set such that for each $g, \bigcup_{h} A_{g, h}=X$ and $g^{b}\left|A_{g, h}=h^{c}\right| A_{g, h}$. These can be found as $E_{b} \subseteq E_{c}$. Then, using Proposition 16.1, we have that for each $g, \bigcup_{h}\left[A_{g, h}\right]_{\mathcal{U}}=X_{\mathcal{U}}$ and $g^{b_{\mathcal{U}}}\left|\left[A_{g, h}\right]_{\mathcal{U}}=h^{c_{\mathcal{U}}}\right|\left[A_{g, h}\right]_{\mathcal{U}}$. Then as in
[CKT, Sections 4.2 and 5.2] we can find an appropriate countably generated, non-atomic, invariant under $b_{\mathcal{U}}, c_{\mathcal{U}}, \sigma$-subalgebra \boldsymbol{B} of the measure algebra of $\left(X_{\mathcal{U}}, \mu_{\mathcal{U}}\right)$, which contains all the sets $\left[A_{g, h}\right]_{\mathcal{U}}$ and is such that if $d \in A(\Gamma, X, \mu), e \in A(\Delta, X, \mu)$, resp., are the factors of $b_{\mathcal{U}}, c_{\mathcal{U}}$ corresponding to \boldsymbol{B}, then $b \simeq d, c \simeq e$ and $a \sqsubseteq d$. Since \boldsymbol{B} also contains the sets $\left[A_{g, h}\right]_{\mathcal{U}}$, it follows that $E_{d} \subseteq E_{e}$.

The proof in the case of equality instead of inclusion, as in the last statement of this lemma, is similar.

Corollary 17.11 (Tucker-Drob). Let Γ be an infinite countable group and $a, b \in$ $A(\Gamma, X, \mu)$ be such that $a \preceq b$. If E_{b} is hyperfinite, then E_{a} is hyperfinite.

Proof. Apply Lemma 17.10 with $\Delta=\mathbb{Z}$ and use Proposition 17.9.
Remark 17.12. Standard factors of the ultraproduct $\prod_{n} F_{n} / \mathcal{U}$ (which was defined in Chapter 16), can be constructed as in the proof of Theorem 15.10.

17.2 Class-bijective factors

We now consider the following notion that has been considered in the literature, see Feldman-Sutherland-Zimmer [FSZ]). A measure preserving countable Borel equivalence relation F on (Y, ν) is called a class-bijective factor of a measure preserving countable Borel equivalence relation E on (X, μ) if there is Borel $\pi:(X, \mu) \rightarrow(Y, \nu)$ with $\pi_{*} \mu=\nu, \pi: E \rightarrow F$ a homomorphism (i.e., $\left.x E x^{\prime} \Rightarrow \pi(x) F \pi\left(x^{\prime}\right)\right)$ such that moreover for each E-class $[x]_{E}$ the map π is a bijection of $[x]_{E}$ with $[\pi(x)]_{F}$. In this case we also call the map π class-bijective. For example, let E be measure preserving on $(X, \mu), \mathcal{A} \subseteq \mathrm{MALG}_{\mu}$ a σ-subalgebra which generates $E, \pi:(X, \mu) \rightarrow(Y, \nu)$ the corresponding map, $a \in A(\Gamma, X, \mu)$ with $E_{a}=E$ leaving \mathcal{A} invariant, $\hat{\pi}(a)=b$ and $F=E_{b}$. If b is free, then F is a class-bijective factor of E.

Proposition 17.13. A class-bijective factor is a factor in the sense of Section 17.1.
Proof. Let $b \in A(\Gamma, Y, \nu)$ be such that $E_{b}=F$. Define then $a \in A(\Gamma, X, \mu)$ by

$$
g^{a}(x)=x^{\prime} \Longleftrightarrow x E x^{\prime} \& g^{b}(\pi(x))=\pi\left(x^{\prime}\right)
$$

Then $\pi\left(g^{a}(x)\right)=g^{b}(\pi(x))$. Let \mathcal{A} be the σ-subalgebra of MALG $_{\mu}$ corresponding to π. Clearly a preserves \mathcal{A}, since $g^{a}\left(\pi^{-1}(A)\right)=\pi^{-1}\left(g^{b}(A)\right)$, for
any $A \in \mathrm{MALG}_{\nu}$, and $E_{a}=E$ while $\hat{\pi}(a)=b$, so F is a factor in the preceding sense.

Thus a class-bijective factor is a factor π for which $E_{\pi}=i d$. In fact it turns out that the class-bijective factors of a measure preserving countable Borel equivalence relation E on (X, μ) correspond exactly to smooth equivalence relations R_{π} that commute with E and are orthogonal to E in the sense that $E_{\pi}=R_{\pi} \cap E=i d$. Indeed, if F on Y is a class-bijective factor of E via π, then E, R_{π} commute and $E_{\pi}=i d$.

Conversely if E, R_{π} commute and $E_{\pi}=i d$, define the following relation on Y :

$$
x F y \Longleftrightarrow \exists x^{\prime} \exists y^{\prime}\left(x^{\prime} E y^{\prime} \wedge \pi\left(x^{\prime}\right)=x \wedge \pi\left(y^{\prime}\right)=y\right)
$$

Then F is a equivalence relation on Y (transitivity follows from the commutativity of E, R_{π}). It is clearly analytic. It is also coanalytic, since, by the commutativity of E, R_{π}, we also have:

$$
x F y \Longleftrightarrow \forall x^{\prime}\left(\pi\left(x^{\prime}\right)=x \Longrightarrow \exists y^{\prime}\left(x^{\prime} E y^{\prime} \wedge \pi\left(y^{\prime}\right)=y\right)\right) .
$$

Thus F is Borel. Moreover the map π is bijective from $[x]_{E}$ to $[\pi(x)]_{F}$ (using that $E_{\pi}=i d$), and so, in particular, F is a countable equivalence relation. Finally, it is easy to verify that F is measure preserving.

Since $\left[E_{\pi}\right]=[E]_{\mathcal{A}}$ we also immediately have:
Proposition 17.14. Assume that E on (X, μ) is generated by the σ-subalgebra $\mathcal{A} \subseteq$ MALG with corresponding map $\pi:(X, \mu) \rightarrow(Y, \nu)$ and factor F. Then π is class-bijective iff $[E]_{\mathcal{A}}$ is trivial, i.e., $\hat{\pi}$ is an isomorphism of $[E]^{\mathcal{A}}$ with $[F]$.

We will next characterize which factors are class-bijective. Below for each $T \in \operatorname{Aut}(X, \mu)$, we let as usual $\operatorname{supp}(T)=\{x: T(x) \neq x\}$.

Proposition 17.15. Assume that E on (X, μ) is generated by the σ-subalgebra $\mathcal{A} \subseteq$ MALG with corresponding map $\pi:(X, \mu) \rightarrow(Y, \nu)$ and factor F. Then π is class-bijective iff for each $T \in[E]^{\mathcal{A}}, \operatorname{supp}(T)=\pi^{-1}(\operatorname{supp}(\hat{\pi}(T)))$.

Proof. First note that for any $T \in[E]^{\mathcal{A}}$, we have

$$
\hat{\pi}(T)(\pi(x)) \neq \pi(x) \Longleftrightarrow \pi(T(x)) \neq \pi(x)
$$

So

$$
\pi^{-1}(\operatorname{supp}(\hat{\pi}(T)) \subseteq \operatorname{supp}(T)
$$

Now assume that π is class-bijective. Let $T \in[E]^{\mathcal{A}}$ and $T(x) \neq x$. Then as π is $1-1$ on $[x]_{E}, \hat{\pi}(T)(\pi(x)) \neq \pi(x)$, so $\pi^{-1}(\operatorname{supp}(\hat{\pi}(T)) \supseteq \operatorname{supp}(T)$.

Conversely, assume that $\pi^{-1}\left(\operatorname{supp}(\hat{\pi}(T)) \supseteq \operatorname{supp}(T)\right.$ and let $x \neq x^{\prime} \in$ $[x]_{E}$. Then for some $T \in[E]^{\mathcal{A}}$ we have $T(x)=x^{\prime}$, so $x \in \operatorname{supp}(T)$, thus $\pi(x) \in \operatorname{supp}(\hat{\pi}(T))$, so $\pi\left(x^{\prime}\right)=\pi(T(x))=\hat{\pi}(T)(\pi(x)) \neq \pi(x)$, i.e., π is 1-1 on $[x]_{E}$.

From Proposition 17.15, and using its notation, we see that if π is classbijective, then for $T \in[E]^{\mathcal{A}}$ we have that $\operatorname{supp}(T) \in \mathcal{A}$. Conversely this last condition almost characterizes class-bijective factors. Recall that π is class-bijective iff $\operatorname{card}\left([x]_{E_{\pi}}\right)=1$, for all x.

Proposition 17.16. Assume that E on (X, μ) is generated by the σ-subalgebra $\mathcal{A} \subseteq$ MALG with corresponding factor map $\pi:(X, \mu) \rightarrow(Y, \nu)$. If for every $T \in[E]^{\mathcal{A}}, \operatorname{supp}(T) \in \mathcal{A}$, then $\operatorname{card}\left([x]_{E_{\pi}}\right) \leq 2$, for all x.

Proof. Assume the conclusion fails, towards a contradiction. Let $A_{\infty}=$ $\left\{x: \operatorname{card}\left([x]_{E_{\pi}}\right)=\infty\right\}$ and $A_{\geq 3}=\left\{x: \infty>\operatorname{card}\left([x]_{E_{\pi}}\right) \geq 3\right\}$. Then one of these two sets has positive measure.

Case 1. $\mu\left(A_{\infty}\right)>0$. Let then $B \subseteq A_{\infty}$ be a Borel set such that both B and $A_{\infty} \backslash B$ meet every $E_{\pi} \mid A_{\infty}$ class. The by $[\mathrm{K}, 4.10]$ there is $T_{0} \in\left[E_{\pi} \mid A_{\infty}\right]$ with $\operatorname{supp}\left(T_{0}\right)=B$. Extend T_{0} to $T \in\left[E_{\pi}\right]=[E]_{\mathcal{A}}$ by letting $T(x)=x$ for $x \notin A_{\infty}$. Then $\operatorname{supp}(T)=B$ but B is not E_{π}-invariant, so $B \notin \mathcal{A}$, a contradiction.

Case 2. $\mu\left(A_{\geq 3}\right)>0$. Let then $C \subseteq A_{\geq 3}$ be a Borel selector for $E_{\pi} \mid A_{\geq 3}$. Then $\mu(C)>0$. Define $T_{1} \in\left[E_{\pi} \mid A_{\geq 3}\right]$ so that $x \in C \quad \Longrightarrow \quad\left(T_{1}(x) \neq\right.$ $\left.x \wedge T_{1}^{2}(x)=x\right)$ and $x \notin\left(C \cup T_{1}(C)\right) \Longrightarrow T_{1}(x)=x$. Extend T_{1} to $T \in\left[E_{\pi}\right]$ by letting $T(x)=x$ if $x \notin A_{\geq 3}$. Since $\operatorname{supp}(T)=C \cup T(C)$ is not E_{π}-invariant, so not in \mathcal{A}, we again have a contradiction.

That the conclusion of Proposition 17.16 cannot be strengthened to π being class-bijective can be seen from the following example. Let E on (Y, ν) be given, let $X=Y \times\{0,1\}$, with the product measure μ, and let $(x, i) E(y, j) \Longleftrightarrow x F y$. Then for $\pi: X \rightarrow Y$ the projection function, the hypothesis of Proposition 17.16 is satisfied but π is clearly not class-bijective.

Class-bijective factors can be also characterized, in the ergodic case, in terms of skew products. Let F be a measure preserving equivalence relation on (Y, ν). Let (Z, σ) be a standard, not necessarily non-atomic, measure space and let $\alpha: F \rightarrow \operatorname{Aut}(Z, \sigma)$ be a Borel cocycle, i.e., $\alpha(x, z)=$
$\alpha(y, z) \alpha(x, y)$ for $x F y F z$ (in an F-invariant set of measure 1). Let $X=$ $Y \times Z, \mu=\nu \times \sigma$ and define the skew product equivalence relation E on X, in symbols

$$
E=F \times_{\alpha}(Z, \sigma)
$$

by

$$
(x, z) E(y, w) \Longleftrightarrow x F y \& \alpha(x, y)(z)=w
$$

Let $p: X \rightarrow Y$ be the projection map $p(y, z)=y$. Let $a \in A(\Gamma, Y, \nu)$ be such that $E_{a}=F$. Let also $\alpha^{*}(g, y)=\alpha\left(y, g^{a}(y)\right)$. Then if $b=a \times_{\alpha^{*}}(Z, \sigma)$ is the skew product action (see [K, Section 10, (E)]), we have $E_{b}=E$ and since $\hat{p}(b)=a$, it follows that F is the factor of E corresponding to p. Moreover it is easy to see that it is class-bijective.

Conversely, the proof of Rokhlin's Skew Product Theorem (see Glasner [Gl], 3.18) shows that if F on (Y, ν) is a class-bijective factor of an ergodic E on a space (X, μ) via $\pi:(X, \mu) \rightarrow(Y, \nu)$, then there is a standard, not necessarily non-atomic, space (Z, σ), a Borel cocycle $\alpha: F \rightarrow \operatorname{Aut}(Z, \sigma)$ and an isomorphism $\varphi:(X, \mu) \rightarrow(Y \times Z, \nu \times \sigma)$ of E with $F \times_{\alpha}(Z, \sigma)$ such that $p \circ \varphi=\pi$.

If F on (Y, ν) is a (class-bijective) factor of E on (X, μ) via π, we say that E is a (class-bijective) extension of E via π. Given two such extensions E, E^{\prime} of F on $(X, \mu),\left(X^{\prime}, \mu^{\prime}\right)$ via π, π^{\prime}, we say that they are isomorphic if there is an isomorphism $\varphi:(X, \mu) \rightarrow\left(X^{\prime}, \mu^{\prime}\right)$ of E with E^{\prime} with $\pi^{\prime} \circ \varphi=\pi$. Thus we have shown the following:
Theorem 17.17. Let F be an ergodic measure preserving equivalence relation on (Y, ν). Let E be an ergodic extension of F on (X, μ) via $\pi:(X, \mu) \rightarrow(Y, \nu)$. Then the following are equivalent:
(i) E, π is a class-bijective extension of F.
(ii) E, π is isomorphic to a skew product extension of F.

Concerning the question of inverse limits for systems $\left(\left(X_{n}, \mu_{n}\right), \pi_{n}, E_{n}\right)$ we note that if we restrict ourselves to the category of class-bijective factors, i.e., if in this system every factor is class-bijective, then it is easy to see that there is indeed a canonical inverse limit $E_{\infty}=\lim _{幺} E_{n}$ on $\left(X_{\infty}, \mu_{\infty}\right)$, given by

$$
\left(x_{n}\right) E_{\infty}\left(y_{n}\right) \Longleftrightarrow \forall n\left(x_{n} E_{n} y_{n}\right)
$$

This follows from the "unique lifting property" given in Proposition 17.14, which implies that if $a_{0} \in A\left(\Gamma, X_{0}, \mu_{0}\right)$ is such that $E_{a_{0}}=E_{0}$, then there
are unique $a_{n} \in A\left(\Gamma, X_{n}, \mu_{n}\right)$ with $\hat{\pi}_{n, m}\left(a_{n}\right)=a_{m}$ for $n \geq m$ and $a_{\infty} \in$ $A\left(\Gamma, X_{\infty}, \mu_{\infty}\right)$ with $\hat{\pi}_{\infty, n}\left(a_{\infty}\right)=a_{n}$ such that $E_{a_{n}}=E_{n}, E_{a_{\infty}}=E_{\infty}$.

The following is an interesting open problem:
Problem 17.18. If E is treeable and F is a class-bijective factor of E, is F treeable?

Note that a positive answer implies that every countable treeable group Γ is strongly treeable. (Recall that a countable group Γ is treeable if there is some free $a \in A(\Gamma, X, \mu)$ with E_{a} treeable, while it is strongly treeable if this holds for every free $a \in A(\Gamma, X, \mu)$.) Indeed let $a \in A(\Gamma, X, \mu)$ be free with E_{a} treeable and consider any free $b \in A(\Gamma, Y, \nu)$. Let $a \times b$ be the product of a, b. Then $E_{a \times b}$ is a class-bijective extension of E_{a}, so it is treeable. Also E_{b} is a class-bijective factor of $E_{a \times b}$, so, if the answer to Problem 17.18 is positive, E_{b} is treeable.

17.3 Other notions of factors

In the preceding we have considered two categories whose objects are triples (X, μ, E), with E a countable measure preserving Borel equivalence relation on (X, μ).
(1) In the first category, the morphisms $\pi:(X, \mu, E) \rightarrow(Y, \nu, F)$ are measure preserving Borel maps $\pi:(X, \mu) \rightarrow(Y, \nu)$ with $\pi: E \rightarrow F$ a classbijective homomorphism, i.e., for each $x \in X, \pi$ is a bijection of $[x]_{E}$ with $[\pi(x)]_{E}$. (The notation $\pi: E \rightarrow F$, which more accurately should be written as $\pi \times \pi: E \rightarrow F$, indicates that π is a homomorphism of E into F.)
(2) In the second category, the morphisms $\pi:(X, \mu, E) \rightarrow(Y, \nu, F)$ are measure preserving Borel maps $\pi:(X, \mu) \rightarrow(Y, \nu)$ such that if $\mathcal{A} \subseteq$ MALG_{μ} is the σ-algebra associated to π, then $[E]^{\mathcal{A}}$ generates E and $\hat{\pi}\left([E]^{\mathcal{A}}\right)$ generates F (or equivalently there is Borel action a of a countable group Γ preserving \mathcal{A}, such that $E_{a}=E$ and $E_{\hat{\pi}(a)}=F$).

Robin Tucker-Drob (unpublished) considered the following two additional categories with the same objects (X, μ, E).
(3) In the third category, the morphisms $\pi:(X, \mu, E) \rightarrow(Y, \nu, F)$ are measure preserving Borel maps $\pi:(X, \mu) \rightarrow(Y, \nu)$ with $\pi: E \rightarrow F$ a classsurjective homomorphism, i.e., for each $x \in X, \pi$ is a surjection of $[x]_{E}$
with $[\pi(x)]_{E}$. Note that a class-surjective homomorphism is a morphism in the sense of the second category (i.e., that of Section 17.1) iff the homomorphism $\hat{\pi}:[E]^{\mathcal{A}} \rightarrow[F]$ is surjective. One direction follows from Proposition 17.1. For the other direction, recall that $x R_{\pi} y \Longleftrightarrow \pi(x)=\pi(y)$ and $E_{\pi}=E \cap R_{\pi}$. Let $S_{0}, S_{1}, \cdots \in[F]$ generate F and let $T_{0}, T_{1}, \cdots \in[E]^{\mathcal{A}}$ be such that $\hat{\pi}\left(T_{i}\right)=S_{i}$. Let also $U_{0}, U_{1}, \cdots \in\left[E_{\pi}\right]$ generate E_{π}. Then $T_{0}, T_{1}, \ldots, U_{0}, U_{1}, \ldots$ generate E and of course $\hat{\pi}\left(T_{0}\right), \hat{\pi}\left(T_{1}\right), \ldots$ generate F.
(4) Finally, in the fourth category, the morphisms

$$
\pi:(X, \mu, E) \rightarrow(Y, \nu, F)
$$

are measure preserving Borel maps $\pi:(X, \mu) \rightarrow(Y, \nu)$ with $\pi: E \rightarrow F$ a surjective homomorphism (i.e., $(\pi \times \pi)(E)=F)$.

Note that the categories above have the same objects but increasingly more general morphisms.

17.4 An application to soficity

We start with the following proposition.
Proposition 17.19. Let $\pi: E \rightarrow F$ be a class-surjective homomorphism. Assume that F is treeable. Then the following are equivalent:
(i) F is a factor of E via π.
(ii) There is Borel $E^{\prime} \subseteq E$ such that F is a class-bijective factor of E^{\prime} via π and $E=E^{\prime} \vee E_{\pi}$.

Proof. (ii) \Longrightarrow (i): Let $T_{0}, T_{1}, \cdots \in\left[E_{\pi}\right]$ generate E_{π}. If \mathcal{A} is the σ-algebra corresponding to π, clearly $T_{n} \in[E]_{\mathcal{A}}$. Let also $T_{0}^{\prime}, T_{1}^{\prime}, \cdots \in\left[E^{\prime}\right]^{\mathcal{A}} \subseteq[E]^{\mathcal{A}}$ generate E^{\prime} with $\hat{\pi}\left(T_{0}^{\prime}\right), \hat{\pi}\left(T_{1}^{\prime}\right), \ldots$ generating F. Then $T_{0}, T_{1}, \ldots, T_{0}^{\prime}, T_{1}^{\prime}, \ldots$ generate E. Note that we have only used that F is a factor of E^{\prime} here.
(i) \Longrightarrow (ii): Fix a Borel treeing of F (i.e, a Borel acyclic graph whose connected components are the F-classes). Using a Borel edge coloring of this treeing with countably many colors (see [KST, Proposition 4.10]), we can find a (finite or infinite) sequence S_{0}, S_{1}, \ldots of Borel involutions generating this treeing, so that if $m \neq n$ and $S_{m}(x)=y$ with $x \neq y$, then $S_{n}(x) \neq y$.

By Proposition 17.3, let $T_{n} \in[E]^{\mathcal{A}}$ be an involution such that $\hat{\pi}\left(T_{n}\right)=$ S_{n}. We can clearly assume that T_{n} is chosen so that $T_{n}(x)=x$ if $S_{n}(\pi(x))=$
$\pi(x)$. Let E^{\prime} be the equivalence relation generated by the T_{n}, so that $E^{\prime} \subseteq$ E. We will show that π is a class-bijective homomorphism of E^{\prime} to F.

Clearly π is a class-surjective homomorphism of E^{\prime} to F. To check that it is class-bijective, let $x^{\prime} E^{\prime} y^{\prime}, x^{\prime} \neq y^{\prime}$ but, towards a contradiction, $\pi\left(x^{\prime}\right)=$ $\pi\left(y^{\prime}\right)$. Let n be least such that we can find $T_{i_{1}}, T_{i_{2}}, \ldots, T_{i_{n}}$ with $T_{i_{1}} \circ T_{i_{2}} \circ \cdots \circ$ $T_{i_{n}}\left(x^{\prime}\right)=y^{\prime}$ and therefore $S_{i_{1}} \circ S_{i_{2}} \circ \cdots \circ S_{i_{n}}\left(\pi\left(x^{\prime}\right)\right)=\pi\left(y^{\prime}\right)$, contradicting the acyclicity of the treeing.

Finally $E=E^{\prime} \vee E_{\pi}$ follows from Proposition 17.2.

Definition 17.20. Let F be a countable measure preserving Borel equivalence relation on (Y, ν). We say that F is unfoldable if for any E on (X, μ) which factors to F via $\pi:(X, \mu) \rightarrow(Y, \nu)$, there is $E^{\prime} \subseteq E$ such that F is a classbijective factor of E^{\prime} via π.

Thus every treeable equivalence relation is unfoldable. For the next result recall the notion of a sofic equivalence relation introduced in [EL]. See also [CKT, Definition 10.1] for an alternative description due to Ozawa that we will use below.

Proposition 17.21. Every unfoldable equivalence relation is sofic.
Proof. First notice that every F is a factor of an E that is given by a free action of \mathbb{F}_{∞}. Indeed let a be an action of \mathbb{F}_{∞} such that $F=E_{a}$ and let b be a free action of \mathbb{F}_{∞}. Then take $E=E_{a \times b}$. Since E is given by a free action of the group \mathbb{F}_{∞}, E is sofic (this follows from the fact that \mathbb{F}_{∞} has property MD - see the first two paragraphs of [CKT, Section 10.3])

Assume now that F is unfoldable and let $E^{\prime} \subseteq E$ be such that F is a class-bijective factor of E^{\prime}. Then clearly $\left[\left[E^{\prime}\right]\right] \subseteq[[E]]$ and, since F is a classbijective factor of E^{\prime}, there is a canonical embedding of $[[F]]$ into $\left[\left[E^{\prime}\right]\right]$ and thus into $[[E]]$, so, by the definition of soficity, F is sofic.

The combination of Proposition 17.19, Proposition 17.21 gives then a new proof of the following result of Elek-Lippner (another proof is also given in [CKT, Section 10.3]).

Corollary 17.22 (Elek-Lippner, [EL]). Every treeable equivalence relation is sofic.

17.5 Relative hyperfiniteness

We consider here the following question:
Suppose E is hyperfinite and generated by a non-atomic σ-subalgebra \mathcal{A}, i.e., E is generated by a countable group of transformations that are \mathcal{A}-measurable (i.e., preserve \mathcal{A}). Can we find a single \mathcal{A}-measurable transformation that generates E, i.e., is E hyperfinite relative to \mathcal{A} ?

The answer is in general negative as the following example shows: Consider $\left(2^{\mathbb{N}}, \mu\right)$, where μ is the usual product measure, and the equivalence relation E_{0} of eventual equality. Let $E=E_{0} \times E_{0}$ be the product equivalence relation, let $\pi: 2^{\mathbb{N}} \times 2^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ be the first projection and \mathcal{A} the corresponding σ-algebra. Clearly E is generated by \mathcal{A}. Suppose, towards a contradiction, that there is a T which preserves \mathcal{A} and generates E. Then T sends vertical lines (i.e., sets of the form $\pi^{-1}(x)$) to vertical lines and $\hat{\pi}(T)$ generates E_{0}, so it is aperiodic, thus T fixes no vertical line. But in every vertical line there are distinct E-inequivalent elements, so T cannot generate E.

The following result provides the next possible answer.
Theorem 17.23. Let E be hyperfinite and generated by a non-atomic σ-subalgebra \mathcal{A}. Then
(i) There are $T_{1}, T_{2} \in[E]^{\mathcal{A}}$ that generate E.
(ii) If E is ergodic, then there is $T \in[E]^{\mathcal{A}}$ that generates E iff the factor corresponding to \mathcal{A} is class-bijective.

Proof. (i) Let $\pi: X \rightarrow Y$ be the map associated to \mathcal{A} and F the corresponding factor equivalence relation on Y. Then, by Proposition 17.9, F is hyperfinite. Say $F=E_{S}$, where $S \in[F]$. Let $T_{1} \in[E]^{\mathcal{A}}$ be such that $\hat{\pi}\left(T_{1}\right)=S$ and let $E^{\prime}=E_{T_{1}}$. Then by Proposition 17.2, $E=E^{\prime} \vee E_{\pi}$. Clearly E_{π} is generated by some $T_{2} \in[E]^{\mathcal{A}}$, so E is generated by T_{1}, T_{2}.
(ii) If the factor corresponding to \mathcal{A} is class-bijective, then, since the factor equivalence relation F is hyperfinite, clearly there is $T \in[E]^{\mathcal{A}}$ that generates E. Conversely, assume that there is $T \in[E]^{\mathcal{A}}$ that generates E and, towards a contradiction, that $E_{\pi} \neq i d$. Then for a positive measure set of x, there is $n \neq 0, n \in \mathbb{Z}$ such that $\pi\left(T^{n}(x)\right)=\pi(x)$. Now $\hat{\pi}(T)=$ S generates F and $S^{n}(\pi(x))=\pi(x)$, therefore $[\pi(x)]_{F}$ is finite. But F is ergodic, so aperiodic, a contradiction.

Ben Miller raised the following questions:
Problem 17.24. i) Let E be a hyperfinite equivalence related generated by a nonatomic σ-subalgebra \mathcal{A}. Is there is an increasing sequence $E_{0} \subseteq E_{1} \subseteq \ldots$ of finite equivalence relations which are generated by \mathcal{A} with $E=\bigcup_{n} E_{n}$?
ii) What if we assume the stronger hypothesis that $E=E_{T}$, for some $T \in$ $[E]^{\mathcal{A}}$?

We have the following result which provides a weaker version of a positive answer to part i) of Problem 17.24 and a positive answer to part ii)..

Proposition 17.25. i) Let E be hyperfinite and generated by a non-atomic σ subalgebra \mathcal{A}. Then there is an increasing sequence $E_{0} \subseteq E_{1} \subseteq \ldots$ of equivalence relations, which are generated by \mathcal{A}, with $E=\bigcup_{n} E_{n}$ and for each n an increasing sequence $E_{n, 0} \subseteq E_{n, 1} \subseteq \ldots$ of finite equivalence relations which are generated by \mathcal{A} such that $E_{n}=\bigcup_{m} E_{n, m}$.

In particular, E is the limit (in the topology of $S(E)$) of a sequence of finite subequivalence relations which are generated by \mathcal{A}.
ii) If moreover $E=E_{T}$, for some $T \in[E]^{\mathcal{A}}$, then then there is an increasing sequence $E_{0} \subseteq E_{1} \subseteq \ldots$ of finite equivalence relations, which are generated by \mathcal{A}, with $E=\bigcup_{n} E_{n}$.
Proof. i) Consider the factor map π associated with \mathcal{A} and the factor equivalence relation F. Then F is hyperfinite, by Proposition 17.9, so we can write it as $F=\bigcup_{n} F_{n}$, with $F_{0} \subseteq F_{1} \subseteq \ldots$ finite equivalence relations. Let also, by Proposition $17.19, E^{\prime} \subseteq$ be such that F is a class-bijective factor of E^{\prime} via π and $E=E^{\prime} \vee E_{\pi}$. Let $x F_{n}^{\prime} y \Longleftrightarrow x E^{\prime} y \& \pi(x) F_{n} \pi(y)$ and put $E_{n}=F_{n}^{\prime} \vee E_{\pi}$. Clearly E_{n} is generated by \mathcal{A}, increasing, and $\bigcup_{n} E_{n}=E$.

Fix now n in order to define $E_{n, m}$. Let B be a Borel selector for F_{n}, i.e., a Borel set meeting every F_{n}-class in exactly one point. For each F_{n}-class C let y_{C} be the point of B in C. Write also $E_{\pi}=\bigcup_{m} E_{\pi, m}$, with $E_{\pi, m}$ finite and increasing. Clearly each $E_{\pi, m}$ is generated by \mathcal{A}. Define now $E_{n, m}$ as follows:

Given x with $\pi(x)=y_{C}$ and any $y \in C$, there is a unique point $\theta_{y}(x)$ such that $\pi\left(\theta_{y}(x)\right)=y$ and $x F_{n}^{\prime} \theta_{y}(x)$. Define now the equivalence relation $E_{\pi, n, m}$ by letting $z E_{\pi, n, m} w$ iff $z E_{\pi} w$ and if C is the F_{n}-class of $\pi(z)=\pi(w)(=$ y), then there are z^{\prime}, w^{\prime} with $z^{\prime} E_{\pi, m} w^{\prime}$ and $\theta_{y}\left(z^{\prime}\right)=z, \theta_{y}\left(w^{\prime}\right)=w$.

Clearly $E_{\pi, n, m}$ is finite and, since it is contained in E_{π}, it is generated by \mathcal{A}. Finally let $E_{n, m}=E_{\pi, n, m} \vee F_{n}^{\prime}$. This works.
ii) Let π, F be as in i) and let $S=\hat{\pi}(T)$. Denote by P the Borel set which is the union of the set of finite F-classes and let Q be the complement of P. Let $A=\pi^{-1}(P), B=\pi^{-1}(Q)$. These are both in \mathcal{A}. Clearly $F \mid Q$ is a classbijective factor of $E \mid B$, so since $F \mid Q$ is the union an increasing sequence of finite equivalence equivalence relations, $E \mid B$ is the union an increasing sequence of finite equivalence equivalence relations, which are generated by $\mathcal{A} \mid B$. It is thus enough to show that $E \mid A$ is the union an increasing sequence of finite equivalence equivalence relations, which are generated by $\mathcal{A} \mid A$. This can be done exactly as in the construction of the $E_{n, m}$ from F_{n} in part i).

One can also ask if a kind of converse of the Problem 17.24, ii) is true: If there is an increasing sequence $E_{0} \subseteq E_{1} \subseteq \ldots$ of finite equivalence relations, which are generated by \mathcal{A}, with $E=\bigcup_{n} E_{n}$, is there $T \in[E]^{\mathcal{A}}$ such that $E=E_{T}$? The example given before Theorem 17.23 shows that this fails in general.

Remark 17.26. Let E be a measure preserving countable Borel equivalence relation on (X, μ). Then of course the following are equivalent:
a) $E=E_{T}$ for some $T \in \operatorname{Aut}(X, \mu)$,
b) E is the union of an increasing sequence of finite Borel equivalence relations.

The preceding show that when relativized to a σ-subalgebra \mathcal{A}, a) implies b) but not vice versa.

17.6 Relative cost

Let E be a measure preserving countable Borel equivalence relation on (X, μ) and let \mathcal{A} be a non-atomic σ-subalgebra of MALG such that E is generated by \mathcal{A}. Let $\pi: X \rightarrow Y$ be the associated to \mathcal{A} factor map and F the factor equivalence relation. Define the relative to \mathcal{A} full pseudogroup of E, in symbols $[[E]]^{\mathcal{A}}$, as the set of all partial Borel bijections $\theta \in[[E]]$, $\theta: A \rightarrow B$, such that $A, B \in \mathcal{A}$, and for any $A^{\prime} \subseteq A, B^{\prime} \subseteq B, A^{\prime}, B^{\prime} \in \mathcal{A}$, we have $\theta\left(A^{\prime}\right), \theta^{-1}\left(B^{\prime}\right) \in \mathcal{A}$. If $\theta \in[[E]]^{\mathcal{A}}, \theta: A \rightarrow B$, and $A=\pi^{-1}(C), B=$ $\pi^{-1}(D)$, then, as in Section 17.1, we have an element $\hat{\pi}(\theta) \in[[F]]$ such that $\hat{\pi}(\theta): C \rightarrow D$ and $\hat{\pi}(\theta)(\pi(x))=\pi(\theta(x))$, for $x \in A$. Moreover, as in the proof of Proposition 17.1, the map $\hat{\pi}:[[E]]^{\mathcal{A}} \rightarrow[[F]]$ is surjective and preserves composition.

Next define the cost of E relative to \mathcal{A} by

$$
C^{\mathcal{A}}(E)=\inf \left\{\sum_{i \in I} \mu\left(A_{i}\right): \theta_{i}: A_{i} \rightarrow B_{i} \in[[E]]^{\mathcal{A}},\left(\theta_{i}\right)_{i \in I} \text { generates } E\right\}
$$

(where I varies over countable index sets).
Clearly $C^{\mathcal{A}}(E) \geq C(E)$. Also notice that if $\left(\theta_{i}\right)_{i \in I}$ generates E, then $\left(\hat{\pi}\left(\theta_{i}\right)\right)_{i \in I}$ generates F, therefore $C^{\mathcal{A}}(E) \geq C(F)$.

Below we say that an equivalence relation E on (X, μ) is finitely generated if it is of the form $E=E_{T_{1}, \ldots, T_{n}}$, for some $T_{1}, \ldots, T_{n} \in \operatorname{Aut}(X, \mu)$.

Theorem 17.27. Let E be a measure preserving countable Borel equivalence relation on (X, μ) and let \mathcal{A} be a non-atomic σ-subalgebra of MALG that generates E. Let $\pi:(X, \mu) \rightarrow(Y, \nu)$ be the associated to \mathcal{A} factor map and F the factor equivalence relation. If F is aperiodic (e.g., if E is ergodic) and E_{π} is finitely generated, then $C^{\mathcal{A}}(E)=C(F)$.

Proof. We have already seen that $C^{\mathcal{A}}(E) \geq C(F)$. If $C(F)=\infty$, then $C^{\mathcal{A}}(E)=C(F)=\infty$. So we can assume that $C(F)<\infty$. We will show then that $C^{\mathcal{A}}(E) \leq C(F)$.

Let $\epsilon>0$ and find a graphing $\left(\eta_{i}\right)_{i \in I}$ of F (where $\left.\eta_{i} \in[[F]]\right)$ such that $\sum_{i} \nu\left(\operatorname{dom}\left(\eta_{i}\right)\right)<C(F)+\epsilon$. Let $\theta_{i} \in[[E]]^{\mathcal{A}}$ be such that $\hat{\pi}\left(\theta_{i}\right)=\eta_{i}$. Then $\sum_{i} \mu\left(\operatorname{dom}\left(\theta_{i}\right)\right)<C(F)+\epsilon$.

Let $E^{\prime} \subseteq E$ be the equivalence relation generated by $\left(\theta_{i}\right)_{i \in I}$. We claim that $E=E^{\prime} \vee E_{\pi}$. Indeed let $x E y$. Then $\pi(x) F \pi(y)$, so there are i_{1}, \ldots, i_{n} such that $\eta_{i_{1}}^{ \pm 1} \circ \cdots \circ \eta_{i_{n}}^{ \pm 1}(\pi(x))=\pi\left(\theta_{i_{1}}^{ \pm 1} \circ \cdots \circ \theta_{i_{n}}^{ \pm 1}(x)\right)=\pi(y)$, so $\theta_{i_{1}}^{ \pm 1} \circ \cdots \circ$ $\theta_{i_{n}}^{ \pm 1}(x) E_{\pi} y$.

Since F is aperiodic, fix a Borel complete section B of F with $\nu(B)<\epsilon$, so that if $A=\pi^{-1}(B)$, then $\mu(A)<\epsilon$. Let

$$
E_{A}=E_{\pi}|A \sqcup \mathrm{id}|(X \backslash A) .
$$

Since A is R_{π}-invariant, so E_{π}-invariant, E_{A} is generated by the maps $T_{1}\left|A, \ldots, T_{n}\right| A$, which belong to $\left[\left[E_{A}\right]\right]^{\mathcal{A}} \subseteq[[E]]^{\mathcal{A}}$ (note that $T_{i}(C)=C$, for any $C \in \mathcal{A}$).

We next claim that $E=E^{\prime} \vee E_{A}$. Indeed it is enough to show that $E_{\pi} \subseteq E^{\prime} \vee E_{A}$. Let $x E_{\pi} y$. Since B is a complete section of F, there are i_{1}, \ldots, i_{n} such that $\eta_{i_{1}}^{ \pm 1} \circ \cdots \circ \eta_{i_{n}}^{ \pm 1}(\pi(x)) \in B$, so $\theta_{i_{1}}^{ \pm 1} \circ \cdots \circ \theta_{i_{n}}^{ \pm 1}(x) \in A$. Also $\theta_{i_{1}}^{ \pm 1} \circ \cdots \circ \theta_{i_{n}}^{ \pm 1}(x) E_{\pi} \theta_{i_{1}}^{ \pm 1} \circ \cdots \circ \theta_{i_{n}}^{ \pm 1}(y) \in A$, thus $x E^{\prime} \theta_{i_{1}}^{ \pm 1} \circ \cdots \circ \theta_{i_{n}}^{ \pm 1}(x) E_{A} \theta_{i_{1}}^{ \pm 1} \circ$ $\cdots \circ \theta_{i_{n}}^{ \pm 1}(y) E^{\prime} y$.

We now have that E is generated by the $\theta_{i}, i \in I$, and $T_{1}\left|A, \ldots, T_{n}\right| A$ which are all in $[[E]]^{\mathcal{A}}$ and the sum of the measure of their domains is $<C(F)+(n+1) \epsilon$, thus, letting $\epsilon \rightarrow 0$, we have that $C^{\mathcal{A}}(E) \leq C(F)$.

Corollary 17.28. Let E, \mathcal{A}, π, F be as in Theorem 17.27. Then if E_{π} is hyperfinite, $C^{\mathcal{A}}(E)=C(F)$. In particular, if E is ergodic hyperfinite, then $C^{\mathcal{A}}(E)=1$.

Although for E ergodic hyperfinite there might not be a single automorphism $T \in[E]^{\mathcal{A}}$ that generates E (see Theorem 17.23), Corollary 17.28 shows that $C^{\mathcal{A}}(E)$ is still equal to 1 .

It turns out that the hypothesis that E_{π} is finitely generated is needed in Theorem 17.27. This can be seen from the following example:

Let N be a non-trivial, normal subgroup of \mathbb{F}_{2} of infinite index, so that N is a free group of infinite rank. Let $\Gamma=\mathbb{F}_{2} / N$. Let b^{\prime} be a free action in $A(\Gamma, Y, \nu)$ and then let $b \in A\left(\mathbb{F}_{2}, Y, \nu\right)$ be the (non-free) action of \mathbb{F}_{2} induced by b^{\prime} and the surjective homomorphism of \mathbb{F}_{2} onto Γ. Then for each $y \in Y$ the stabilizer of y in the action b is equal to N. Let now c be a free action in $A\left(\mathbb{F}_{2}, Z, \eta\right)$ and let $a=b \times c$, which is a free action of \mathbb{F}_{2} on $(X=Y \times Z, \mu=$ $\nu \times \eta$). Let $\pi(y, z)=y$ and let \mathcal{A} be the associated σ-subalgebra. Letting $E=E_{a}, F=E_{b}$, all the conditions of Theorem 17.27 are satisfied, except for E_{π} being finitely generated. Indeed notice that E_{π} is generated by the free action of N on X, so has infinite cost, thus cannot be finitely generated. We will now see that the conclusion of Theorem 17.27 fails. First notice that $2=C(E) \leq C^{\mathcal{A}}(E) \leq 2$, since the two generators of \mathbb{F}_{2} (acting on X), say T_{1}, T_{2}, are in $[E]^{\mathcal{A}}$. Thus if the conclusion of Theorem 17.27 was true, we would have $C(F)=2$. Consider then the graphing of F given by $\hat{\pi}\left(T_{1}\right), \hat{\pi}\left(T_{2}\right)$. It has cost 2 , so it attains the cost of F, thus it is a treeing (Gaboriau, see, e.g., [KM, 19.1]), which implies that the action of \mathbb{F}_{2} on Y is free, a contradiction.

We next consider the question of when the infimum in the definition of $C^{\mathcal{A}}(E)$ is attained.

Proposition 17.29. Let E, \mathcal{A}, π, F be as in Theorem 17.27. Then
i) If π is class-bijective and F is treeable, the infimum in the definition of $C^{\mathcal{A}}(E)$ is attained.
ii) Conversely, if the infimum in the definition of $C^{\mathcal{A}}(E)$ is attained and F has finite cost, F is treeable and π is class-bijective.

Proof. i) Note that if $\left(\eta_{i}\right)$ is a treeing of F, which therefore attains the cost
of F (Gaboriau, see, e.g., $[K M, 27.10]$), and $\hat{\pi}\left(\theta_{i}\right)=\eta_{i}$, with $\theta_{i} \in[[E]]^{\mathcal{A}}$, then $\left(\theta_{i}\right)$ attains $C^{\mathcal{A}}(E)=C(F)$.
ii) Assume now $\left(\theta_{i}\right)$ attains $C^{\mathcal{A}}(E)=C(F)$. Then if $\hat{\pi}\left(\theta_{i}\right)=\eta_{i},\left(\eta_{i}\right)$ generates F and attains the cost of F, so it is a treeing of F, since F has finite cost (Gaboriau, see, e.g., [KM, 19.1]). If now $E_{\pi} \neq i d$, towards a contradiction, let $x E_{\pi} y, x \neq y$. Then there are i_{1}, \ldots, i_{n} such that $\theta_{i_{1}}^{ \pm 1} \circ \cdots \circ$ $\theta_{i_{n}}^{ \pm 1}(x)=y$, thus $\eta_{i_{1}}^{ \pm 1} \circ \cdots \circ \eta_{i_{n}}^{ \pm 1}(\pi(x))=\pi(x)=\pi(y)$, a contradiction.

In particular, using also Proposition 17.9, if E is ergodic hyperfinite, then the infimum in the definition of $C^{\mathcal{A}}(E)=1$ is attained iff π is classbijective.

Let E be a measure preserving countable Borel equivalence relation. We define the cost spectrum of E, in symbols $\operatorname{CSp}(E)$, as the set of all $C^{\mathcal{A}}(E)$, where \mathcal{A} varies over all the non-atomic σ-subalgebras of MALG such that E is generated by \mathcal{A}. (Thus $\operatorname{CSp}(E) \subseteq[C(E), \infty]$.) Clearly the cost spectrum is an invariant of isomorphism among equivalence relations. It might therefore be interesting to study its structure.

For example, if E is ergodic hyperfinite, then $C S p(E)=\{1\}$. Is it true that if E is ergodic, non-hyperfinite but has cost 1 , then $\operatorname{CSp}(E) \neq\{1\}$? If in fact for every ergodic, non-hyperfinite E of cost 1 , one has an \mathcal{A}, π such that actually E_{π} is finitely generated and $C^{\mathcal{A}}(E)>1$, then it follows that for every ergodic, non-hyperfinite E there is a subequivalence relation induced by a free action of \mathbb{F}_{2} (which answers positively [KM, 28.14]). Indeed if that is the case, every ergodic, non-hyperfinite E would have a factor F of cost >1, so that by $[K M, 28.8]$ it would have a subequivalence relation induced by a free action of \mathbb{F}_{2}, which then could be lifted to such an action of \mathbb{F}_{2} whose corresponding equivalence relation is included in E.

It is actually easy, using Theorem 17.27, to construct examples of ergodic, non-hyperfinite E of cost 1 , whose cost spectrum contains any finite set of reals >1. Given $1<c_{1}<\cdots<c_{n}$, simply take ergodic, finitely generated equivalence relations E_{1}, \ldots, E_{n} with $C\left(E_{i}\right)=c_{i}$ (Gaboriau, see, e.g., $\left[\mathrm{KM}\right.$, page 125 , line 3]) and let $E=E_{1} \times \cdots \times E_{n}$. Then E has cost 1 (Gaboriau, see, e.g., [KM, 24.9]) but, using Theorem 17.27 and considering the factors corresponding to the projection functions, we see that $\operatorname{CSp}(E) \supseteq\left\{c_{1}, \ldots, c_{n}\right\}$.

17.7 Topological rank of relative full groups

Recall that a topological generator of a topological group Γ is a subset Γ_{0} of Γ such that the subgroup generated by Γ_{0} is dense in Γ. The topological rank of Γ, denoted by $t(\Gamma)$, is the smallest cardinality of a topological generator of Γ. Thus if Γ is Polish, then $t(\Gamma) \leq \aleph_{0}$. It is easy to see that if Γ is a Polish group, $N \triangleleft \Gamma$ a closed normal subgroup and $H=\Gamma / N$, then $t(\Gamma) \leq t(N)+t(H)$. Indeed, if N_{0} is a topological generator of N and H_{0} a topological generator of H, then choose for each coset in H_{0} a representative and let $\hat{H}_{0} \subseteq \Gamma$ consist of these representatives. Then $N_{0} \cup \hat{H}_{0}$ is a topological generator for Γ.

Let now E be a countable measure preserving Borel equivalence relation on (X, μ), let \mathcal{A} be a non-atomic σ-subalgebra of MALG, with associated map π, such that E is generated by \mathcal{A}, and let F be the factor of E determined by \mathcal{A}. Then we have that

$$
t([F]) \leq t\left([E]^{\mathcal{A}}\right) \leq t([F])+t\left(\left[E_{\pi}\right]\right) .
$$

If then F, E_{π} are aperiodic, we have $t([F]), t\left(\left[E_{\pi}\right]\right)=2$ (see [LeM, p. 263]), so $t\left([E]^{\mathcal{A}}\right) \leq 4$. We do not know if 4 here can be lowered to 2 .

18. The space of graphs

Consider again a measure preserving countable Borel equivalence relation E on (X, μ). Denote by $G r(E)$ the set of all (simple, undirected) Borel graphs G on X such that $G \subseteq E$, where again we identify two such graphs if they agree a.e.

For any $G \in G r(E)$ and $T \in[E]$, let again

$$
A_{T, G}=\{x:(x, T(x)) \in G\}
$$

and define the strong topology on $G r(E)$ as the one generated by the maps

$$
\begin{aligned}
G & \mapsto A_{T, G} \\
G r(E) & \rightarrow \text { MALG }
\end{aligned}
$$

for $T \in[E]$.
Note that we have the obvious analog of Proposition 4.11 (in relation to a generating sequence for E) and the following analog of Lemma 4.12.

Lemma 18.1. Let Γ be a group, $a: \Gamma \times X \rightarrow X$ an action of Γ on a set X and put $a(g, x)=g \cdot x$. Let E_{a} be the induced equivalence relation on X and let $G \subseteq E_{a}$ be a graph. For $g \in \Gamma$, let

$$
A_{g, G}^{a}=A_{g, G}=\{x:(x, g \cdot x) \in G\} .
$$

Then

1. $A_{1, G}=\emptyset$,
2. $A_{g, G} \subseteq g^{-1} \cdot A_{g^{-1}, G}$,
3. $A_{h, G} \cap \operatorname{Fix}\left(h^{-1} g\right) \subseteq A_{g, G}$,
where

$$
\operatorname{Fix}(p)=\{x: p \cdot x=x\} .
$$

Conversely, if $\left(A_{g}\right)_{g \in \Gamma}$ is a family of sets satisfying 1.-2. above, then the relation

$$
x G y \Longleftrightarrow \exists g\left(g \cdot x=y \vee x \in A_{g}\right)
$$

defines a graph contained in E_{a} and if 3. also holds we have that $A_{g}=A_{g, G}$.
Therefore the proofs in Chapter 4 show that this topology is Polish. We will simply call it the topology of $G r(E)$. For this topology we have the following:

$$
\begin{aligned}
G_{n} \rightarrow G & \Longleftrightarrow \forall i\left(A_{T_{i}, G_{n}} \xrightarrow{\mathrm{MALG}} A_{T_{i}, G}\right) \\
& \Longleftrightarrow \forall T \in[E]\left(A_{T, G_{n}} \xrightarrow{\mathrm{MALG}} A_{T, G}\right) \\
& \Longleftrightarrow \forall \varphi \in[[E]]\left(A_{\varphi, G_{n}} \xrightarrow{\text { MALG }} A_{\varphi, G}\right),
\end{aligned}
$$

where, as usual, $\left(T_{i}\right)_{i \in \mathbb{N}}$ generates E and for $\left.\varphi \in[[E]]\right), A_{\varphi, G}=\{x \in$ $\operatorname{dom}(\varphi):(x, \varphi(x)) \in G\}$. Again as in Chapter 4, we can also view $G r(E)$ as a closed subspace of MALG ${ }_{E}$ with the induced topology. Note also that if $G_{0} \subseteq G_{1} \subseteq \ldots, G=\bigcup_{n} G_{n}$, then $G_{n} \rightarrow G$ and similarly if $G_{0} \supseteq G_{1} \ldots, G=$ $\bigcap_{n} G_{n}$.

One can also define the weak topology on $G r(E)$ as the topology generated by the maps $G \mapsto \mu\left(A_{T, G}\right), G r(E) \rightarrow[0,1]$, for $T \in[E]$. Anush Tserunyan pointed out that the proof of Theorem 4.15 shows that this topology coincides with the above (strong) topology. Indeed, let $G_{n} \rightarrow G$ in the weak topology and let $T \in[E]$ be an involution. Let $A=A_{T, G}$, which is T-invariant, and let $S \in[E]$ agree with T on A and be equal to the identity in its complement. Then $A_{S, G_{n}} \subseteq A$ (since $x \in A_{S, G_{n}} \Longrightarrow x \neq S(x)$) and so $\mu\left(A \backslash A_{S, G_{n}}\right) \rightarrow 0$, since $A_{S, G}=A$. Also $A_{T, G} \backslash A_{T, G_{n}}=A \backslash A_{S, G_{n}}$, so $\mu\left(A_{T, G} \backslash A_{T, G_{n}}\right) \rightarrow 0$. As in the proof of Theorem 4.15 this implies that $\mu\left(A_{T, G_{n}} \backslash A_{T, G}\right) \rightarrow 0$, so $A_{T, G_{n}} \xrightarrow{\text { MALG }} A_{T, G}$.
Remark 18.2. On the set of bounded degree graphs in $\operatorname{Gr}(E)$ one can also define the metric

$$
D(G, H)=M(G \triangle H)=\int|G(x) \triangle H(x)| d \mu(x)
$$

(see Lovász [L, page 352]), where M is the measure on E defined in Section 4.4, (1), and $G(x)=\{y:(x, y) \in G\}$ is the set of neighbors of x in G.

This gives rise to another topology on this set of graphs, for which is easy to check that it is at least as strong as the relative topology inherited from $G r(E)$ (i.e., contains the relative topology). However, even for graphs of degree at most 2 , it is easy to see that it may be actually strictly stronger. For example, take E to be the equivalence relation generated by a free, measure preserving action of the free group \mathbb{F}_{∞}, with infinitely many generators a_{0}, a_{1}, \ldots Let G_{n} be the graph induced by the action of a_{n}, let $\mathbb{F}_{\infty}=\left\{g_{0}, g_{1}, \ldots\right\}$ and put $T_{i}(x)=g_{i} \cdot x$. Then $A_{T_{i}, G_{n}}=X$, if $g_{i}=a_{n}$, while $A_{T_{i}, G_{n}}=\emptyset$, if $g_{i} \neq a_{n}$. Thus G_{n} converges to the empty graph in $\operatorname{Gr}(E)$ but it is discrete in the metric D.

However if we consider the set of all d-regular graphs, for fixed $d \geq 2$, the D-topology on that set agrees with its relative topology from $\operatorname{Gr}(E)$. Indeed assume that G_{n}, G are d-regular and $G_{n} \rightarrow G$. Let $\varphi_{1}, \ldots, \varphi_{d} \in$ $((E))$ be such that for each $x, \varphi_{1}(x), \ldots, \varphi_{d}(x)$ are exactly the G-neighbors of x. Then for each $i \leq d, \mu\left(A_{\varphi_{i}, G_{n}}\right) \rightarrow \mu\left(A_{\varphi_{i}, G}\right)=1$. So given $\epsilon>0$, find N large enough so that for $n \geq N, \mu\left(A_{\varphi_{i}, G_{n}}\right)>1-\frac{\epsilon}{d}$. Since the $\varphi_{1}(x), \ldots, \varphi_{d}(x)$ are distinct and G_{n} is d-regular, it follows that for $x \in \bigcap_{i \leq d} A_{\varphi_{i}, G_{n}}$, we have $\left(G_{n}\right)(x)=G(x)$ and thus $D\left(G_{n}, G\right) \leq 2 d \epsilon$, i.e., $D\left(G_{n}, G\right) \xrightarrow{\rightarrow} 0$.

We also have the following analog of Theorem 5.1.
Theorem 18.3. Let $G_{n}, G \in G r(E)$ and $G_{n} \rightarrow G$. Then for each i, there is an increasing sequence $n_{0}^{(i)}<n_{1}^{(i)}<\ldots$, so that $\left(n_{m}^{(i+1)}\right)_{m \in \mathbb{N}}$ is a subsequence of $\left(n_{m}^{(i)}\right)_{m \in \mathbb{N}}$ and

$$
G=\bigcup_{m} \bigcap_{k \geq m} G_{n_{k}^{(m)}} .
$$

Proof. Let $\left(\varphi_{i}\right)_{i \in \mathbb{N}}$ be a sequence in $[[E]]$ such that $(x, y) \in G \Longleftrightarrow \exists i\left(\varphi_{i}(x)=\right.$ $y)$. Then repeat the proof of Theorem 5.1 to define $\left(n_{m}^{(i)}\right)_{m \in \mathbb{N}}$ and show that $G \subseteq \bigcup_{m} \bigcap_{k \geq m} G_{n_{k}^{(m)}}$. For the converse again repeat the proof of Theorem 5.1 by showing that if $H=\bigcup_{m} \bigcap_{k \geq m} G_{n_{k}^{(m)}}$ and $\left(\psi_{i}\right)_{i \in \mathbb{N}}$ is a sequence in [[E]] such that $(x, y) \in H \Longleftrightarrow \exists i\left(\psi_{i}(x)=y\right)$, then for $x \in \operatorname{dom}\left(\psi_{i}\right)$, we have $\left(x, \psi_{i}(x)\right) \in G$.

Again as in the paragraph following the proof of Theorem 5.1, Le Maître in [LeM1], showed that one has the following stronger form:

Let $G_{n}, G \in G r(E)$ and $G_{n} \rightarrow G$. Then there is an increasing sequence
$n_{0}<n_{1}<\ldots$, so that

$$
G=\bigcup_{m} \bigcap_{k \geq m} G_{n_{k}} .
$$

For $\mathcal{G} \subseteq G r(E)$ we define $\mathcal{G}_{\uparrow}, \mathcal{G}_{\downarrow}$ as in the case of equivalence relations. Then we have:

Theorem 18.4. If $\mathcal{G} \subseteq G r(E)$ is closed under finite intersections, then $\overline{\mathcal{G}}=$ $\left(\mathcal{G}_{\downarrow}\right)_{\uparrow}$. In particular, if \mathcal{G} is hereditary, $\overline{\mathcal{G}}=\mathcal{G}_{\uparrow}$.

A locally countable Borel graph G on X is ($\mu-$)measure preserving if any partial Borel isomorphism $\varphi: A \rightarrow B$ such that $\operatorname{graph}(\varphi) \subseteq G$ is measure preserving. This is equivalent to saying that the equivalence relation generated by G (i.e., the equivalence relation whose equivalence classes are the connected components of G) is measure preserving. Denote by $\mathcal{G} \mathcal{R}$ the set of all Borel locally countable, measure preserving graphs on (X, μ), where as usual we identify two such graphs if they agree a.e. Then $G r(E)=\{G \in \mathcal{G \mathcal { R }}: G \subseteq E\}$ and $\mathcal{G} \mathcal{R}=\bigcup_{E \in \mathcal{E}} G r(E)$. As in Theorem 6.1, we can see that if $E \subseteq F$, then $\operatorname{Gr}(E)$ is a closed subset of $\operatorname{Gr}(F)$ and the topology of $G r(E)$ is the relative topology it inherits form $G r(F)$. Thus, as in Chapter 6, we can define the topology on $\mathcal{G} \mathcal{R}$ which is the topological union of the topologies on $\operatorname{Gr}(E), E \in \mathcal{E}$.

Remark 18.5. As a final comment, we mention that ultraproducts of graphs can be defined as in Chapter 16 using Lemma 18.1. Also the uniform topology on $G r(E)$ can be defined as in Section 4.6.

19. More complexity calculations

For each $G \in G r(E)$, let $G^{*} \in S(E)$ be the equivalence relation generated by G. The argument in the paragraph preceding Proposition 4.29 shows that the operation $G \in G r(E) \mapsto G^{*} \in S(E)$ is not continuous. Indeed, in the notation used there, we can take $G_{n}=F_{n} \backslash i d$ and $G=F \backslash i d$. Then $H_{n}=G_{n} \cup G$ is decreasing and $\bigcap_{n} H_{n}=G$, so $H_{n} \rightarrow G$, while $H_{n}^{*}=E_{S}$ and $G^{*}=E_{S^{3}}$. By a proof similar to that of Proposition 4.29 we also have the following:

Proposition 19.1. The map $G r(E) \ni G \mapsto G^{*} \in S(E)$ is of Baire class 1.
We call $G \in G r(E)$ a graphing of E is $G^{*}=E$.
Theorem 19.2. The set $\{G \in G r(E): G$ is a graphing of $E\}$ is G_{δ} in $G r(E)$. If E is aperiodic, it is also dense in $\operatorname{Gr}(E)$.

Proof. That it is G_{δ} follows from the preceding proposition, since G is a graphing of E iff $G^{*}=E$.

Assume now E is aperiodic in order to show that $\{G: G$ is a graphing of $E\}$ is dense in $\operatorname{Gr}(E)$. A typical basic open set in $G r(E)$ has the form

$$
U_{G_{0}, T_{1}, \ldots, T_{n}, \epsilon}=\left\{G \in G r(E): \forall 1 \leq i \leq n\left(\mu\left(A_{T_{i}, G} \Delta A_{T_{i}, G_{0}}\right)<\epsilon\right)\right\}
$$

where $G_{0} \in \operatorname{Gr}(E), T_{1}, \ldots, T_{n} \in[E]$ and $\epsilon>0$. We will show that any such set contains a graphing of E. Since E is aperiodic, let $S_{1}, S_{2}, \cdots \in[E]$ be aperiodic with $E_{S_{1}, S_{2}, \ldots}=E$ (see $[K, 8.5]$). For each $1 \leq i \leq n, 1 \leq$ $j<\infty, k \in \mathbb{Z}$, let $A_{i, j, k}=\left\{x: T_{i}(x)=S_{j}^{k}(x)\right\}$. For fixed i, j, the sets $\left\{A_{i, j, k}\right\}_{k=1}^{\infty}$ are pairwise disjoint, so for any $\delta>0$ there is $N_{0}(i, j, \delta)$ such that $\mu\left(\bigcup_{|k| \geq N_{0}(i, j, \delta)} A_{i, j, k}\right)<\delta$. Let $M_{0}(j, \delta)=\max _{1 \leq i \leq n} N_{0}(i, j, \delta)$.

Now define for each $1 \leq j<\infty$ a graph $G_{j} \in G r(E)$ as follows:

$$
(x, y) \in G_{j} \Longleftrightarrow y=S_{j}^{ \pm k}(x) \vee y=S_{j}^{ \pm(k+1)}(x)
$$

where $k=M_{0}\left(j, \delta_{j}\right)$ with $\delta_{j}=\frac{\epsilon}{2^{j+1}}$. Let $G=G_{0} \cup \bigcup_{j=1}^{\infty} G_{j}$. We claim that $G \in U_{G_{0}, T_{1}, \ldots, T_{n}, \epsilon}$ and G is a graphing of E.
(1) $G \in U_{G_{0}, T_{1}, \ldots, T_{n}, \epsilon}$ Let $1 \leq i \leq n$. Then $A_{T_{i}, G}=A_{T_{i}, G_{0}} \cup \bigcup_{j=1}^{\infty} A_{T_{i}, G_{j}}$. If $x \in A_{T_{i}, G_{j}}$, then there is $|k| \geq M_{0}\left(j, \delta_{j}\right)$, with $T_{i}(x)=S_{j}^{k}(x)$, so $x \in$ $\bigcup_{|k| \geq N_{0}\left(i, j, \delta_{j}\right)} A_{i, j, k}$, therefore $\mu\left(A_{T_{i}, G_{j}}\right)<\delta_{j}$ and so

$$
\begin{aligned}
\mu\left(A_{T_{i}, G} \Delta A_{T_{1}, G_{0}}\right) & \leq \mu\left(\bigcup_{j=1}^{\infty} A_{T_{i}, G_{j}}\right) \\
& \leq \sum_{j=1}^{\infty} \delta_{j}=\frac{\epsilon}{2}<\epsilon .
\end{aligned}
$$

(2) $G^{*}=E$: It is enough to show that for $x \in X$ and $1 \leq j<\infty$, we have $\left(x, S_{j}(x)\right) \in G_{j}^{*}$. Let $k=M_{0}\left(j, \delta_{j}\right)$. Then $\left(x, S_{j}^{k+1}(x)\right) \in G_{j}$ and $\left(S_{j}(x), S_{j}^{k+1}(x)\right) \in G_{j}$, so $\left(x, S_{j}(x)\right) \in G_{j}^{*}$.

As in Chapter 8 , if $\mathcal{G} \subseteq \mathcal{G} \mathcal{R}$ is a class of measure preserving locally countable Borel graphs and $E \in \mathcal{E}$, we let

$$
\mathcal{G}_{E}=\mathcal{G} \cap G r(E) .
$$

In particular, $\mathcal{G} \mathcal{R}_{E}=\operatorname{Gr}(E)$.
We call $G \in \mathcal{G} \mathcal{R}$ acyclic if for (almost) all x, there is no sequence $x=$ $x_{0}, x_{1}, x_{2}, \ldots, x_{n}$, with $n \geq 2$, of distinct points with $\left(x_{0}, x_{1}\right) \in G,\left(x_{1}, x_{2}\right) \in$ $G, \ldots,\left(x_{n-1}, x_{n}\right) \in G,\left(x_{n}, x_{0}\right) \in G$. We denote by $\mathcal{T} \mathcal{R}$ the class of acyclic graphs.
Theorem 19.3. The set $\mathcal{T} \mathcal{R}_{E}=\{G \in G r(E): G$ is acyclic $\}$ is closed in $G r(E)$.
Proof. This follows from Theorem 18.4, but here is also a direct proof. Note that G is not acyclic iff $\exists n \geq 2 \exists T_{1}, T_{2}, \ldots, T_{n} \in[E](\mu(\{x$: For all $0 \leq i<$ $\left.\left.\left.\left.j \leq n\left(x \notin \operatorname{Fix}\left(T_{i}^{-1} T_{j}\right)\right) \& \forall i<n\left(x \in A_{T_{i}, T_{i+1}, G}\right) \& x \in A_{T_{n}, T_{0}, G}\right)\right\}\right)>0\right)$ where $T_{0}=i d$ and for $T \in[E], \operatorname{Fix}(T)=\{x: T(x)=x\}$, so

$$
\{G: G \text { is not acyclic }\}=
$$

$$
\begin{aligned}
& \bigcup_{n \geq 2} \bigcup_{T_{1}, \ldots, T_{n} \in[E]}\left\{G: \mu\left(\bigcap_{0 \leq i<j \leq n}\left(X \backslash \operatorname{Fix}\left(T_{i}^{-1} T_{j}\right)\right) \cap\right.\right. \\
& \left.\left.\bigcap_{i<n} A_{T_{i}, T_{i+1}, G} \cap A_{T_{n}, T_{0}, G}\right)>0\right\},
\end{aligned}
$$

which is clearly open.

A treeing G of E is an acyclic graphing of E.
Corollary 19.4. The set $\{G \in G r(E): G$ is a treeing of $E\}$ is a G_{δ} set in $G r(E)$.
Similarly we define what it means to say that $G \in G r(E)$ is a graphing of $F \in S(E)$ (namely $G^{*}=F$) or a treeing of F. We thus have:

Corollary 19.5. The set $\{(G, F): G$ is a graphing of $F\}$ is G_{δ} in $G r(E) \times S(E)$. Similarly for $\{(G, F): G$ is a treeing of $F\}$. In particular $\{F \in S(E): F$ is treeable\} is analytic in $S(E)$.

Proof. Let $\left\{U_{n}\right\}$ be a countable open basis for $S(E)$. Then $G^{*}=F \Longleftrightarrow$ $\forall n\left(G^{*} \in U_{n} \Rightarrow F \in U_{n}\right)$.

The following is a basic open problem.
Problem 19.6. Is $\{F \in S(E)$: F is treeable\} Borel? Is there a Borel function $f:\{F \in S(E): F$ is treeable $\} \rightarrow G r(E)$ such that $f(F)$ is a treeing of F, if F is treeable.

We next have the following fact, where for each $d \geq 1$, we let $\mathcal{G} \mathcal{R}_{d}=$ $\{G \in \mathcal{G R}: G$ has degree $\leq d\}$.

Proposition 19.7. The set $\mathcal{G} \mathcal{R}_{d, E}=\{G \in G r(E): G$ has degree $\leq d\}$ is closed in $\operatorname{Gr}(E)$, for any $d \geq 1$.

Proof. Again this follows from Theorem 18.4, but we can also give a direct proof. Note that

$$
\begin{aligned}
G r(E) \backslash\{G: \text { has degree } \leq d\}= & \bigcup_{T_{1}, \ldots, T_{d+1} \in[E]}\{G: \\
& \mu\left(\bigcap_{1 \leq i<j \leq d+1}\left(X \backslash \operatorname{Fix}\left(T_{i}^{-1} T_{j}\right)\right)\right. \\
& \left.\left.\cap \bigcap_{1 \leq i \leq d+1} A_{T_{i}, G}\right)>0\right\} .
\end{aligned}
$$

Now let $\mathcal{B D G}=\{G \in \mathcal{G \mathcal { R }}: G$ has bounded degree $\}$.
Corollary 19.8. The set $\mathcal{B D} \mathcal{G}_{E}=\{G \in G r(E): G$ has bounded degree\} is dense F_{σ} in $\operatorname{Gr}(E)$. Moreover, if E is aperiodic, then its complement is dense in $\operatorname{Gr}(E)$, so $\mathcal{B D \mathcal { G } _ { E }}$ is in $F_{\sigma} \backslash G_{\delta}$.

Proof. It is clear that $\mathcal{B D} \mathcal{G}_{E}$ is F_{σ} by Proposition 19.7. Density is also easy, since if $\left(T_{n}\right)$ is a uniquely generating sequence of Borel involutions for E, then for any $G \in G r(E)$, if $G_{n}=G \cap \bigcup_{k \leq n} \operatorname{graph}\left(T_{k}\right)$, then $G_{n} \rightarrow G$. Finally if E is aperiodic, put $H_{n}=G \cup \bigcup_{k \geq n}\left\{(x, y): x \neq y \& T_{k}(x)=y\right\}$. Then $H_{n} \rightarrow G$.

We also have, letting $\mathcal{I D G}=\{G \in \mathcal{G} \mathcal{R}: G$ has infinite degree $\}:$
Proposition 19.9. The set $\mathcal{I D} \mathcal{G}_{E}=\{G \in G r(E): G$ has infinite degree $\}$ is G_{δ} in $G r(E)$ and, if E is aperiodic, it is dense in $G r(E)$.

Proof. Let $\left(T_{i}\right)_{i \in \mathbb{N}}$ be a generating sequence for E. Let also for each $n, \mathcal{D}_{n}=$ $\left\{T_{0}, \ldots, T_{n-1}\right\}$. Finally let $\operatorname{deg}_{G}(x)$ be the degree of x in G. We have

$$
\begin{aligned}
\left\{x: \operatorname{deg}_{G}(x) \geq d\right\}= & \bigcup_{n} \bigcup_{S_{1}, \ldots S_{d} \in \mathcal{D}_{n}} \\
& {\left[\bigcap_{1 \leq i<j \leq d}\left(X \backslash \operatorname{Fix}\left(S_{i}^{-1} S_{j}\right)\right) \cap \bigcap_{1 \leq i \leq d} A_{S_{i}, G}\right], }
\end{aligned}
$$

and

$$
G \in \mathcal{I D} \mathcal{G}_{E} \Longleftrightarrow \forall d \geq 1 \forall \epsilon \in \mathbb{Q}^{+}\left(\mu\left(\left\{x: \operatorname{deg}_{G}(x) \geq d\right\}\right)>1-\epsilon\right)
$$

therefore $G \in \mathcal{I D} \mathcal{G}_{E}$ iff the following holds: $\forall d \geq 1 \forall \epsilon \in \mathbb{Q}^{+} \exists n$

$$
\mu\left(\bigcup_{S_{1}, \ldots S_{d} \in \mathcal{D}_{n}}\left[\bigcap_{1 \leq i<j \leq d}\left(X \backslash \operatorname{Fix}\left(S_{i}^{-1} S_{j}\right)\right) \cap \bigcap_{1 \leq i \leq d} A_{S_{i}, G}\right]\right)>1-\epsilon
$$

so $\mathcal{I D \mathcal { G } _ { E }}$ is in G_{δ}.
Density in case of aperiodic E follows from the proof of Corollary 19.8, since the graphs H_{n} defined there are in $\mathcal{I D} \mathcal{G}_{E}$.

Finally we have, letting $\mathcal{L F} \mathcal{F}=\{G \in \mathcal{G} \mathcal{R}: G$ is locally finite $\}$:
Proposition 19.10. The set $\mathcal{L F} \mathcal{G}_{E}=\{G \in G r(E): G$ is locally finite $\}$ is $F_{\sigma \delta}$ in $\operatorname{Gr}(E)$. Both $\mathcal{L \mathcal { F } \mathcal { G } _ { E }}$ and its complement are dense in $G r(E)$, if E is aperiodic. Moreover if E is ergodic, $\mathcal{L F} \mathcal{G}_{E}$ is in $F_{\sigma \delta} \backslash G_{\delta \sigma}$.

Proof. Using the notation of the proof of Proposition 19.9 we have

$$
\begin{aligned}
G \text { is locally finite } \Longleftrightarrow & \forall \epsilon \in \mathbb{Q}^{+} \exists d \in \mathbb{N} \\
& \mu\left(\left\{x: \operatorname{deg}_{G}(x)<d\right\}\right) \geq 1-\epsilon,
\end{aligned}
$$

so it is enough to show that for each fixed $d \in \mathbb{N}$,

$$
\{G: \mu(\{x: \operatorname{deg}(x)<d\}) \geq 1-\epsilon\}
$$

is closed. Note that

$$
\begin{aligned}
\left\{x: \operatorname{deg}_{G}(x)<d\right\}= & \bigcap_{n} \bigcap_{S_{1}, \ldots, S_{d} \in \mathcal{D}_{n}} \\
& {\left[\bigcup_{1 \leq i<j \leq d} \operatorname{Fix}\left(S_{i}^{-1} S_{j}\right) \cup \bigcup_{1 \leq i \leq d}\left(X \backslash A_{S_{i}, G}\right)\right], }
\end{aligned}
$$

and

$$
\begin{aligned}
&\left.\mu\left(\left\{x: \operatorname{deg}_{G}(x)\right)<d\right\}\right) \geq 1-\epsilon \\
& \Longleftrightarrow \\
& \forall n\left[\mu \left(\bigcap _ { S _ { n } , \ldots , S _ { d \in \mathcal { D } _ { n } } } \left[\bigcup_{1 \leq i<j \leq d} \operatorname{Fix}\left(S_{i}^{-1} S_{j}\right) \cup\right.\right.\right. \\
&\left.\left.\bigcup_{1 \leq i \leq d}\left(X \backslash A_{S_{i}, G}\right]\right) \geq 1-\epsilon\right]
\end{aligned}
$$

which is clearly a closed condition on G.
By Corollary 19.8 and Proposition 19.9 both $\mathcal{L F} \mathcal{G}_{E}$ and its complement are dense in $G r(E)$, if E is aperiodic.

Assume now that E is ergodic. Then the argument in the proof of Theorem 8.6 shows that $\mathcal{L F} \mathcal{G}_{E}$ is not in $G_{\delta \sigma}$.

Denote by $C(G)$ the cost of G, i.e., $C(G)=\frac{1}{2} \int \operatorname{deg}_{G}(x) d \mu(x) \in[0, \infty]$.
Proposition 19.11. The function $G \in G r(E) \mapsto C(G)$ is lower semicontinuous, i.e., for every $r \in \mathbb{R},\{G \in G r(E): C(G)>r\}$ is open. In particular, $\{G \in$ $G r(E): C(G)=\infty\}$ is G_{δ}.
Proof. We will show that for each $r \in \mathbb{R},\{G \in G r(E): C(G) \leq r\}$ is closed. This follows from Theorem 18.4, since $G \subseteq H \Rightarrow C(G) \leq C(H)$ and $G_{0} \subseteq$ $G_{1} \subseteq \cdots \Rightarrow C\left(\bigcup_{n} G_{n}\right)=\lim _{n \rightarrow \infty} C\left(G_{n}\right)$.

Theorem 19.12. If E is aperiodic, the set $\{G \in G r(E): C(G)=\infty\}$ is dense and therefore the generic $G \in G r(E)$ is a graphing of E of infinite cost.

Proof. Recall that E admits a measure M defined by

$$
M(A)=\int\left|A_{x}\right| d \mu(x)=\int\left|A^{y}\right| d \mu(y)
$$

for Borel $A \subseteq E$. Moreover for $G \in G r(E), C(G)=\frac{1}{2} M(G)$. Since E is aperiodic $M(E)=\infty$ and since $E=\bigcup_{n} \operatorname{graph}\left(f_{n}\right)$ for Borel functions $f_{n}: X \rightarrow X, M$ is σ-finite.

Let $G \in G r(E)$ in order to show that there is a sequence $G_{n} \in G r(E)$ with $C\left(G_{n}\right)=\infty$ and $G_{n} \rightarrow G$. We can assume of course that $C(G)<\infty$.

Write $E \backslash G=\bigsqcup_{n} A_{n}$, with $M\left(A_{n}\right)<\infty$. Let $B_{n}=G \cup \bigsqcup_{m>n} A_{m}$, so that $M\left(B_{n}\right)=\infty, B_{0} \supseteq B_{1} \supseteq \ldots, \bigcap_{n} B_{n}=G$. Let $G_{n}=\left(B_{n} \cup B_{n}^{\prime}\right) \backslash\{(x, x): x \in$ $X\}$, where $B_{n}^{\prime}=\left\{(x, y) \in E:(y, x) \in B_{n}\right\}$. Then $G_{n} \in \operatorname{Gr}(E), M\left(G_{n}\right)=$ $\infty, G_{0} \supseteq G_{1} \supseteq G_{2}, \ldots$ and moreover $\bigcap_{n} G_{n}=G$. Because if $(x, y) \in \bigcap_{n} G_{n}$, then $x \neq y$, and for infinitely many $n,(x, y) \in B_{n}$ or for infinitely many $n,(x, y) \in B_{n}^{\prime}$, i.e., $(y, x) \in B_{n}$, so $(x, y) \in G$. Then $G_{n} \rightarrow G$ and we are done.

It is also clear that the F_{σ} set $\{G \in G r(E): C(G)<\infty\}$ is dense, since every G can be written as the union of an increasing sequence G_{n} with $C\left(G_{n}\right)=\frac{1}{2} M\left(G_{n}\right)<\infty$. In particular, it follows that $\{G \in G r(E): C(G)<$ $\infty\}$ is in $F_{\sigma} \backslash G_{\delta}$.

Finally we have the following result concerning locally finite graphings of equivalence relations (see [JKL, Theorem 3.12]).

Proposition 19.13. There is a Borel function $\Lambda: S(E) \rightarrow G r(E)$ such that for any $F \in S(E), \Lambda(F)$ is a locally finite graphing of F.

Proof. Use Proposition 4.18 and [JKL, proof of Theorem 3.12].

20. Treeability

In view of the proof of Theorem 14.1 (in the ergodic case), one can try to approach Problem 19.6 by first trying to show an analog of Sublemma 14.3 for treeability. Recall that, by Theorem 19.3, the set

$$
\mathcal{T} \mathcal{R}_{E}=\{G \in G r(E): G \text { is acyclic }\}
$$

is closed in $G r(E)$. By Corollary 19.4, the set

$$
\operatorname{Treeing}(E)=\left\{G \in \mathcal{T} \mathcal{R}_{E}: G \text { is a treeing of } E\right\}
$$

is G_{δ} in $\mathcal{T} \mathcal{R}_{E}$. If E is not treeable, clearly this set is empty.
Problem 20.1. If E is ergodic, treeable, is Treeing (E) dense in $\mathcal{T} \mathcal{R}_{E}$?
We first note the following:
Proposition 20.2. If there is $G \in \mathcal{T} \mathcal{R}_{E}$ with $C(G)=\infty$, then

$$
\left\{G \in \mathcal{T} \mathcal{R}_{E}: C(G)=\infty\right\}
$$

is dense in $\mathcal{T} \mathcal{R}_{E}$.
Proof. The proof is analogous to that of Theorem 19.12. Let $G \in \mathcal{T} \mathcal{R}_{E}$ with $C(G)<\infty$. Fix $G_{\infty} \in \mathcal{T} \mathcal{R}_{E}$ with $C\left(G_{\infty}\right)=\infty$. Let $S=G_{\infty} \backslash G$, so that $C(G)=\infty$. Write $S=\bigsqcup_{n} G_{n}$, with $G_{n} \in \mathcal{T} \mathcal{R}_{E}$ and $C\left(G_{n}\right)<\infty$. Let $H_{n}=G \sqcup \bigsqcup_{m \geq n} G_{m}$. Then $C\left(H_{n}\right)=\infty$ and $H_{0} \supseteq H_{1} \supseteq \ldots, \bigcap_{n} H_{n}=G$, so $H_{n} \rightarrow G$.

Recall that $C(E)$ denotes the cost of the equivalence relation E.
Proposition 20.3. Let E be ergodic with $C(E)>1$. Then the set

$$
\left\{G \in \mathcal{T} \mathcal{R}_{E}: C(G)=\infty\right\}
$$

is dense G_{δ} in $\mathcal{T R}_{E}$. In particular if $1<C(E)<\infty$, then the generic $G \in \mathcal{T} \mathcal{R}_{E}$ is not a treeing of E.

Proof. By the proof of [KM, 28.8], since $C(E)>1$, there is a free action of \mathbb{F}_{2} on X whose equivalence relation is contained in E. Since $\mathbb{F}_{\infty} \subseteq \mathbb{F}_{2}$, this gives a $G \in \mathcal{T} \mathcal{R}_{E}$ with $C(G)=\infty$.

Thus Problem 20.1 has a negative answer if $C(E)<\infty$, but E is not hyperfinite (in which case $C(E)>1$). We next show that it has a positive answer if E is hyperfinite.

Proposition 20.4. Let E be ergodic, hyperfinite. Then Treeing (E) is dense in $\mathcal{T} \mathcal{R}_{E}$ and thus the generic $G \in \mathcal{T} \mathcal{R}_{E}$ is a treeing of E.

Proof. Let $G_{0} \in \mathcal{T} \mathcal{R}_{E}, T_{1}, \ldots, T_{n} \in[E]$ and $\epsilon>0$. We need to find $G \in \mathcal{T} \mathcal{R}_{E}$ which is a treeing of E and $\forall 1 \leq i \leq n\left(\mu\left(A_{T_{i}, G} \Delta A_{T_{i}, G_{0}}\right)<\epsilon\right)$.

First we claim that we can assume that G_{0}^{*} is a finite equivalence relation. Indeed $G_{0}^{*} \subseteq E$ is hyperfinite, so we can write $G_{0}^{*}=\bigcup_{n=1}^{\infty} E_{n}$, where $E_{1} \subseteq E_{2} \subseteq \ldots$ and each E_{n} is finite. Let $G_{i}=E_{i} \cap G_{0}$, for $i=1,2, \ldots$. Then $G_{i} \in \mathcal{T} \mathcal{R}_{E}, G_{i}^{*} \subseteq E_{i}$ is finite, $G_{1} \subseteq G_{2} \subseteq \ldots$ and $G_{0}=\bigcup_{n=1}^{\infty} G_{n}$, so $G_{n} \rightarrow G_{0}$.

Since E is aperiodic, it is clear that every E-class contains infinitely many G_{0}^{*}-classes. Let $Y \subseteq X$ be a Borel transversal for G_{0}^{*}. Clearly $\mu(Y)>$ 0 and Y meets every E-class infinitely often.

We claim that there is $T \in[E \mid Y]$ such that T generates $E \mid Y$ and moreover $\mu\left(\left\{x \in Y: \exists 1 \leq i \leq n\left(T(x)=T_{i}^{ \pm 1}(x)\right)\right\}\right)<\epsilon$. Granting this, let $G \in G r(E)$ be defined by

$$
(x, y) \in G \Longleftrightarrow(x, y) \in G_{0} \vee\left[x, y \in Y \& y=T^{ \pm 1}(x)\right]
$$

Then clearly $G \in \mathcal{T} \mathcal{R}_{E}$ and $G^{*}=E$. Moreover for any $1 \leq i \leq n$,

$$
A_{T_{i}, G}=A_{T_{i}, G_{0}} \sqcup\left\{x \in Y: T_{i}(x)=T^{ \pm 1}(x)\right\},
$$

thus

$$
\mu\left(A_{T_{i}, G} \Delta A_{T_{i}, G_{0}}\right)=\mu\left(\left\{x \in Y: T_{i}(x)=T^{ \pm 1}(x)\right\}<\epsilon .\right.
$$

It remains to prove the claim. It is enough to show that there is an aperiodic $S \in[E \mid Y]$ such that for each $1 \leq i \leq n, \mu(\{x \in Y: S(x)=$ $\left.\left.\left.T_{i}^{ \pm 1}(x)\right)\right\}\right)<\frac{\epsilon}{2 n}$, so that $\mu\left(\left\{x \in Y: \exists 1 \leq i \leq n\left(S(x)=T_{i}^{ \pm 1}(x)\right)\right\}\right)<\frac{\epsilon}{2}$. Because then applying the Conjugacy Lemma (see, $[\mathrm{K}, 3.4]$) to $[E \mid Y]$, we can find $T \in[E \mid Y]$ which generates $E \mid Y$ and $\mu(\{x \in Y: S(x) \neq T(x)\})<\frac{\epsilon}{2}$ and thus

$$
\mu\left(\left\{x \in Y: \exists 1 \leq i \leq n\left(T(x)=T_{i}^{ \pm 1}(x)\right)\right\}\right)<\epsilon .
$$

To find S, let $S_{0} \in[E \mid Y]$ be aperiodic and generate $E \mid Y$. Let for each $1 \leq i \leq n$,

$$
Z_{i}=\left\{x \in Y: T_{i}^{ \pm 1}(x) \in Y\right\} .
$$

If $x \in Z_{i}$, then $\left(x, T_{i}^{ \pm 1}(x)\right) \in E \mid Y$, so there is some $m \in \mathbb{Z}$ with $T_{i}^{ \pm 1}(x)=$ $S_{0}^{m}(x)$. Let for $N \in \mathbb{N}$,

$$
Z_{N, i}=\left\{x \in Y: \exists|m| \leq N\left(T_{i}^{ \pm 1}(x)=S_{0}^{m}(x)\right)\right\}
$$

Then $Z_{0, i} \subseteq Z_{1, i} \subseteq \ldots$ and $\bigcup_{N} Z_{N, i}=Z_{i}$. So find N_{0} large enough with

$$
\mu\left(Z_{i} \backslash Z_{N_{0}, i}\right)<\frac{\epsilon}{2 n}
$$

Let $S=S_{0}^{N_{0}+1} \in[E \mid Y]$, which is clearly aperiodic. If $x \in Y$ and $S(x)=$ $T_{i}^{ \pm 1}(x)$, then $T_{i}^{ \pm 1}(x)=S_{0}^{N_{0}+1}(x)$, so $x \in Z_{i} \backslash Z_{N_{0}, i}$, thus $\mu(\{x \in Y: S(x)=$ $\left.\left.T_{i}^{ \pm 1}(x)\right\}\right) \leq \mu\left(Z \backslash Z_{N_{0}}\right)<\frac{\epsilon}{2 n}$, and the proof is complete.

Corollary 20.5. Let E be ergodic, with finite cost. Then E is hyperfinite iff the generic $G \in \mathcal{T} \mathcal{R}_{E}$ is a treeing of E.

Thus the only remaining open case of Problem 20.1 is when $C(E)=\infty$.
There is actually a strengthening of Proposition 20.4, proved by Anush Tserunyan, with a simpler proof than the above. We will use below the following notation and terminology,.

We call $G \in G r(E)$ finite, smooth, hyperfinite if G^{*} is, resp., finite, smooth, hyperfinite. Let $\mathcal{F T} \mathcal{R}_{E}, \mathcal{S T} \mathcal{R}_{E}$ and $\mathcal{H} \mathcal{T} \mathcal{R}_{E}$ denote, resp., the set of finite, smooth, hyperfinite $G \in \mathcal{T} \mathcal{R}_{E}$. Note that by Theorem 18.4, $\mathcal{H T} \mathcal{R}_{E}$ is closed and $\overline{\mathcal{F T} \mathcal{R}_{E}}=\overline{\mathcal{S T R}} \mathcal{R}_{E}=\mathcal{H} \mathcal{R}_{E}$.

Proposition 20.6 (Tserunyan). Let E be aperiodic and treeable. For any $G_{0} \in$ $\mathcal{S T R} \mathcal{R}_{E}$ and $T_{1}, \ldots, T_{m} \in[E]$, there is a treeing $G \supseteq G_{0}$ of E such that $A_{T_{i}, G}=$ $A_{T_{i}, G_{0}}$, for all i.

Proof. Let Y be a transversal for G_{0}^{*} and take a group $\Gamma=\left\{g_{n}\right\}_{n \in \mathbb{N}} \subseteq[E]$ that generates E. We first handle two special cases and the general case will follow from them.
Case 1: $\left[E: G_{0}^{*}\right]<\infty$. Then $E \mid Y$ is a finite equivalence relation and hence there is a Borel selector $s: Y \rightarrow Y$ for $E \mid Y$ such that $[s(y)]_{G_{0}^{*}}$ is infinite for all $y \in Y$ (such s exists because E is aperiodic). Now define a function $g: Y \backslash s(Y) \rightarrow X$ by $g(y)=g_{n}(y)$, where n is the least such that $g_{n}(y) \in$
$[s(y)]_{G_{0}^{*}}$ and for any $i=1, \ldots, m, g_{n}(y) \neq T_{i}(y)$ and $T_{i}\left(g_{n}(y)\right) \neq y$ (such n exists since $[s(y)]_{G_{0}^{*}}$ is infinite). Finally, put $G=\{(y, g(y)),(g(y), y): y \in$ $Y \backslash s(Y)\} \cup G_{0}$. It is straightforward to check that G is a treeing of E satisfying the condition of the proposition.

Case 2: $\left[E: G_{0}^{*}\right]=\infty$. Let H be the graph on Y generated by T_{1}, \ldots, T_{m}, i.e. for $x, y \in Y$,

$$
x H y \Longleftrightarrow x \neq y \text { and } \exists i\left(T_{i}(x)=y \text { or } T_{i}(y)=x\right)
$$

Since H is locally finite, it admits a Borel countable coloring (actually a finite coloring), and thus there is a maximal independent Borel subset Z. For every E-class $C, Y \cap C$ is infinite (by the condition of the case), and hence $Z \cap C$ is infinite as well because otherwise there would be a point in $(Y \backslash Z) \cap C$ independent from $Z \cap C$ in H, contradicting the maximality of Z. Thus we can define a function $g: Y \backslash Z \rightarrow Z$ by $g(y)=g_{n}(y)$, where n is the least such that $g_{n}(y) \in Z$ and for any $i=1, \ldots, m, g_{n}(y) \neq T_{i}(y)$ and $T_{i}\left(g_{n}(y)\right) \neq y$. Put $G_{1}=\{(y, g(y)),(g(y), y): y \in Y \backslash Z\}$. Also, let G_{2} be a treeing of $E \mid Z$ (which exists because E is treeable). Finally, put $G=G_{0} \cup G_{1} \cup G_{2}$. Again, it is not hard to check that G is a treeing of E satisfying the condition of the proposition.

General case: Let

$$
X_{1}=\left\{x \in X:[x]_{E} \text { contains only finitely many } G_{0}^{*} \text { classes }\right\}
$$

and put

$$
X_{2}=X \backslash X_{1} .
$$

Then combine the treeings for $E \mid X_{1}$ and $E \mid X_{2}$ provided by cases 1 and 2.

Theorem 20.7 (Tserunyan). Let E be aperiodic and treeable. Then we have $\mathcal{H} \mathcal{T} \mathcal{R}_{E} \subseteq \overline{\text { Treeing }(E)}$. In particular, if E is hyperfinite, then Treeing (E) is dense in $\mathcal{T} \mathcal{R}_{E}$.

Proof. Fix $G_{0} \in \mathcal{H} \mathcal{T} \mathcal{R}_{E}$. Since G_{0} is hyperfinite, we have $G_{0}^{*}=\bigcup_{n \geq 1} E_{n}$, where E_{n} are increasing and finite. Letting $G_{n}=E_{n} \cap G_{0}$, we get $G_{0}=$ $\bigcup_{n \geq 1} G_{n}$ and thus $G_{n} \rightarrow G_{0}$. By Proposition 20.6, G_{n} is in $\overline{\text { Treeing }(E)}$, and hence so is G_{0}.

Remark 20.8. Note that Proposition 20.6 cannot be extended to graphs $G_{0} \in \mathcal{H} \mathcal{R}_{E}$, even if we drop the requirement about the T_{i} 's. Indeed, let E be aperiodic, hyperfinite and F a proper aperiodic, hyperfinite subequivalence relation of E. If G_{0} is a treeing of F, then it cannot be extended to a treeing G of E, since then the cost of G would be bigger than the cost of G_{0}, contradicting the fact that they are both equal to 1 .

Let $\operatorname{SubTreeing}(E)$ denote the set of all graphs in $\mathcal{T} \mathcal{R}_{E}$ that are contained in treeings of E, i.e.,

$$
\operatorname{SubTreeing}(E)=\left\{G_{0} \in \mathcal{T} \mathcal{R}_{E}: \exists G \in \operatorname{Treeing}(E)\left(G \supseteq G_{0}\right)\right\}
$$

Proposition 20.9 (Tserunyan). Let E be treeable. Then

$$
\mathcal{S T} \mathcal{R}_{E} \subseteq \operatorname{SubTreeing}^{(E)}
$$

Therefore, in particular, we have $\mathcal{H} \mathcal{T} \mathcal{R}_{E} \subseteq \overline{\operatorname{SubTreeing}(E)}$.
Proof. Fix $G_{0} \in \mathcal{S T} \mathcal{R}_{E}$ and let $Y \subseteq X$ be a Borel transversal for G_{0}^{*}. Since E is treeable, there is a treeing G of $E \mid Y$. It is clear that $G_{0} \cup G$ is a treeing of E.

Proposition 20.10. Let $G_{0} \in \operatorname{SubTreeing}(E)$.
(a) (Tserunyan) For any Borel set $A \subseteq X, G_{0} \mid A \in \operatorname{SubTreeing}(E \mid A)$.
(b) (Conley) For a Borel equivalence relation F with $G_{0}^{*} \subseteq F \subseteq E, G_{0} \in$ SubTreeing (F).

Proof. Let $G \supseteq G_{0}$ be a treeing of E. For (a), project G onto $G \mid A$ as described in the proof of [JKL, Proposition 3.3 (i)] to get $G^{\prime} \in \operatorname{Treeing}(E \mid A)$ such that $G^{\prime} \supseteq G \mid A$. Similarly, for (b), use the same method to project G onto $G \mid C$, for each F-class C, to get $G^{\prime} \in \operatorname{Treeing}(F)$ with $G^{\prime} \supseteq(G \cap F) \supseteq$ G_{0}. One could also note that (a) follows from (b).

Theorem 20.11 (Tserunyan). For any $G_{0} \in \operatorname{SubTreeing}(E)$ and automorphisms $T_{1}, \ldots, T_{m} \in[E]$, there is a treeing $G \supseteq G_{0}$ of E such that $A_{T_{i}, G}=$ $A_{T_{i}, G_{0}}$, for all i. In particular, Treeing (E) is dense in SubTreeing (E) and hence $\overline{\text { Treeing }(E)}=\overline{\text { SubTreeing }(E)}$.
Proof. Let X_{0} be the E-saturation of $\left\{x \in X:[x]_{G_{0}^{*}}\right.$ is infinite $\}$. Then X_{0} is E-invariant and $G_{0}^{*} \mid\left(X \backslash X_{0}\right)$ is a finite equivalence relation, so Proposition 20.6 applies to $G_{0} \mid\left(X \backslash X_{0}\right)$, and we may assume that $X_{0}=X$. Thus each E-class C contains an infinite G_{0}^{*}-class and hence

$$
A:=\left\{x \in X:[x]_{G_{0}^{*}} \text { is infinite }\right\}
$$

is a complete section. Note that $B:=X \backslash A$ is G_{0}^{*}-invariant and $G_{0}^{*} \mid B$ is a finite equivalence relation. Let Y be a transversal for $G_{0}^{*} \mid B$ and fix a group $\Gamma=\left\{g_{n}\right\}_{n \in \mathbb{N}} \subseteq[E]$ that generates E. Define $g: Y \rightarrow A$ by $g(y)=$ $g_{n}(y)$, where n is the least such that $g_{n}(y) \in A$ and for any $i=1, \ldots, m$, $g_{n}(y) \neq T_{i}(y)$ and $T_{i}\left(g_{n}(y)\right) \neq y$ (such n exists since $[y]_{E} \cap A$ is infinite). Put $G_{1}=\{(y, g(y)),(g(y), y): y \in Y\}$.

We now construct a treeing $G_{2} \supseteq G_{0} \mid A$ of $E \mid A$ such that $A_{T_{i}, G_{2}}=$ $A_{T_{i}, G_{0} \mid A}$, for all i. By (a) of Proposition 20.10, there is $G^{\prime} \in \operatorname{Treeing}(E \mid A)$ such that $G^{\prime} \supseteq G_{0} \mid A$. Fix a Borel linear ordering $<$ on X and define a function $f: G^{\prime} \backslash G_{0} \rightarrow E \mid A$ as follows: for $(x, y) \in G^{\prime} \backslash G_{0}$, let $x^{\prime}=\min _{<}(x, y)$ and $y^{\prime}=\max _{<}(x, y)$, and put

$$
f(x, y)=\left(x^{\prime}, g_{n}\left(x^{\prime}\right)\right),
$$

where n is the least such that $g_{n}\left(x^{\prime}\right) G_{0}^{*} y^{\prime}$ and for all $i=1, \ldots, m, g_{n}\left(x^{\prime}\right) \neq$ $T_{i}\left(x^{\prime}\right)$ and $T_{i}\left(g_{n}\left(x^{\prime}\right)\right) \neq x^{\prime}$ (such n exists since $\left[y^{\prime}\right]_{G_{0}^{*}}$ is infinite). Now let $G^{\prime \prime}$ denote the symmetrization of $f\left(G^{\prime} \backslash G_{0}\right)$ and put $G_{2}=G_{0} \mid A \cup G^{\prime \prime}$. To see that G_{2} is a treeing of $E \mid A$ note that $G_{2} \supseteq G_{0} \mid A$ and for any two $G_{0^{-}}$ connected components $D_{1}, D_{2} \subseteq A$, there is an edge between D_{1} and D_{2} in G_{2} if and only if there is one in G^{\prime} (in other words the projections of G_{2} and G^{\prime} on the quotient X / G_{0}^{*} coincide). Now it is clear that $G=G_{0} \cup G_{1} \cup G_{2}$ satisfies the condition of the lemma.

Let $\operatorname{Max} \operatorname{Tr}(E)$ denote the set of maximal (under inclusion) graphs in $\mathcal{T R}_{E}$; that is,

$$
\operatorname{MaxTr}(E)=\left\{G \in \mathcal{T} \mathcal{R}_{E}: \forall G^{\prime} \in \mathcal{T R}_{E}\left(G^{\prime} \supseteq G \Rightarrow G^{\prime}=G\right\}\right.
$$

Theorem 20.12 (Tserunyan). Let E be a (not necessarily treeable) equivalence relation. Then for any $G_{0} \in \mathcal{T} \mathcal{R}_{E}$ and $T_{1}, \ldots, T_{m} \in[E]$, there is $G \in \operatorname{MaxTr}(E)$ such that $G \supseteq G_{0}$ and $A_{T_{i}, G}=A_{T_{i}, G_{0}}$, for all i. In particular, $\operatorname{MaxTr}(E)$ is dense in $\mathcal{T} \mathcal{R}_{E}$.

Proof. Let $G^{\prime} \in \operatorname{Max} \operatorname{Tr}(E)$ with $G^{\prime} \supseteq G_{0}$ (it exists since, modulo a null set, any increasing wellordered chain stabilizes in countably many steps). Put $F=\left(G^{\prime}\right)^{*}$ and note that $G_{0} \in \operatorname{SubTreeing}(F)$. Let $S_{i} \in[F], 1 \leq i \leq m$, be such that $\left(x, T_{i}(x)\right) \in F \Longrightarrow S_{i}(x)=T_{i}(x)$, so that $A_{T_{i}, H}=A_{S_{i}, H}$, for any $H \in G r(F)$. Applying Theorem 20.11 to F and S_{1}, \ldots, S_{m} (in lieu of E and T_{1}, \ldots, T_{m}), we get $G \in \operatorname{Treeing}(F)$ such that $G \supseteq G_{0}$ and $A_{T_{i}, G}=$
$A_{T_{i}, G_{0}}$, for all i. It remains to show that G is maximal. Let $G_{1} \in \mathcal{T} \mathcal{R}_{E}$ be such that $G_{1} \supseteq G$. Note that because G and G^{\prime} have the same connected components, $G^{\prime} \cap\left(G_{1} \backslash G\right)=\emptyset$ and $G_{2}:=G^{\prime} \cup\left(G_{1} \backslash G\right) \in \mathcal{T} \mathcal{R}_{E}$. Thus, by the maximality of $G^{\prime}, G_{2}=G^{\prime}$. But $G_{2} \backslash G^{\prime}=G_{1} \backslash G$ and hence, $G_{1}=G$.

Let $\operatorname{SubTreeing}{ }^{*}(E)$ denote the set of all graphs in $\operatorname{SubTreeing}(E)$ that are not treeings anywhere; i.e.

$$
\text { SubTreeing }^{*}(E)=\left\{G \in \operatorname{SubTreeing}(E): \mu\left(\left\{x \in X:[x]_{E}=[x]_{G^{*}}\right\}\right)=0\right\} .
$$

Proposition 20.13 (Tserunyan). For any $G \in \operatorname{Treeing}(E)$ and $\epsilon>0$, there is $G_{0} \in$ SubTreeing $^{*}(E)$ with $G_{0} \subseteq G$ such that $\mu\left(A_{T, G} \backslash A_{T, G_{0}}\right)<\epsilon$, for all $T \in[E]$. In particular, SubTreeing* (E) is dense in Treeing (E).

Proof. Let $Y \subseteq X$ be a Borel complete section for E such that $\mu(Y)<\frac{\epsilon}{2}$ (which exists by the Marker Lemma, see [KM, 6.7]) and put

$$
G_{0}=\{(x, y) \in G: x, y \notin Y\}
$$

Clearly $G_{0} \in \operatorname{SubTreeing}^{*}(E)$, and for any $T \in[E]$,

$$
A_{T, G} \backslash A_{T, G_{0}} \subseteq Y \cup T^{-1}(Y)
$$

Thus $\mu\left(A_{T, G} \backslash A_{T, G_{0}}\right) \leq \mu(Y)+\mu\left(T^{-1}(Y)\right)<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$.
Theorem 20.11 and Proposition 20.13 together imply:
$\underline{\text { Theorem } 20.14}$ (Tserunyan). $\overline{\text { SubTreeing }}(E)=\overline{\operatorname{Treeing}(E)}=$ $\overline{\text { SubTreeing }(E)}$.

Bibliography

[AE] M. Abért and G. Elek, The space of actions, partition metric and combinatorial rigidity, arXiv:1108.21471v1. [110]
[AW] M. Abért and B. Weiss, Bernoulli actions are weakly contained in any free action, Ergodic Theory Dynam. Systems, 33 (2013), 323-333. [99]
[AS] S.R. Adams and R.J. Spatzier, Kazhdan groups, cocycles and trees, Amer. J. Math, 112 (1990), 271-287 [64]
[BK] H. Becker and A.S. Kechris, The Descriptive Set Theory of Polish Group Actions, Cambridge Univ. Press, 1996. [7]
[B] G. Beer, A Polish topology for the closed subsets of a Polish space, Proc. Amer. Math. Soc., 113 (4) (1991), 1123-1133. [7]
[Bo] L. Bowen, Every countably infinite group is almost Ornstein, Contemp. Math., 567 (2012), 67-78. [25]
[Bo1] L. Bowen, Simple and large equivalence relations, Proc. Amer. Math. Soc., 145(1) (2017), 215-224. [63, 65]
[BJ] C.M. Boykin and S. Jackson, Borel boundedness and the lattice rounding property, Contemp. Math., 425 (2007), 113-126. [35, 36]
[CK] R. Chen and A.S. Kechris, Structurable equivalence relations, Fund. Math., 242 (2018), 109-185. [91]
[CI] I. Chifan and A. Ioana, Ergodic subequivalence relations induced by a Bernoulli action, Geom. Funct. Anal., 20 (2010), 5367. [64]
[CKT] C.T. Conley, A.S. Kechris and R.D. Tucker-Drob, Ultraproducts of measure preserving actions and graph combinatorics, Ergodic Theory Dynam. Systems, 33, (2013), 334-374. [97, 98, 101, 110, 111, 117]
[CM] C.T. Conley and B.D. Miller, An antibasis theorem for graphs of infinite Borel chromatic number, Proc. Amer. Math. Soc., 142 (2014), 2123-2133. [41, 43, 70]
[CM1] C.T. Conley and B.D. Miller, Measure reducibility of countable Borel equivalence relations, Ann. of Math., 185(2) (2017), 347402. [22]
[DC] Y. de Cornulier, A note on quotients of word hyperbolic groups with property (T), arXiv:math/0504193v3. [63]
[DJK] R. Dougherty, S. Jackson and A.S. Kechris, The structure of hyperfinite Borel equivalence relations, Trans, Amer. Math. Soc., 341(1) (1994), 193-225. [89]
[D] J. Dugundji, Topology, Allyn and Bacon, 1966. [38]
[EL] G.Elek and G. Lippner, Sofic equivalence relations, J. Funct. Anal., 258 (2010), 1692-1708. [117]
[F] R.H. Farrell, Representation of invariant measures, Illinois. J. Math., 6 (1962), 447-467. [24]
[FSZ] J. Feldman, C.E. Sutherland and R.J. Zimmer, Subrelations of ergodic equivalence relations, Ergodic Theory Dynam. Systems, 9 (1989), 239-269. [63, 79, 80, 111]
[FW] M. Foreman and B. Weiss, An anti-classification theorem for ergodic measure preserving transformations, J. Eur. Math. Soc., 6 (2004), 277-292. [50]
[G1] D. Gaboriau, Invariants L^{2} de relations d'equivalence et des groupes, Publ. Math. Inst. Hautes Études Sci., 95 (2002), 93-150. [59]
[G2] D. Gaboriau, Orbit equivalence and measured group theory, Proc. Intern. Congress of Math., Vol. III, Hindustan Book Agency, 1501-1527, 2010. [60, 64]
[GL] D. Gaboriau and R. Lyons, A measurable-group-theoretic solution to von Neumann's problem, Invent. Math., 177(3) (2009), 533-540. [64]
[GT] D. Gaboriau and R.D. Tucker-Drob, Approximations of standard equivalence relations and Bernoulli percolation at $p_{u}, C . R$. Acad. Sci. Paris Sér. I Math., 354(11) (2016), 1114-1118. [69]
[Gl] E. Glasner, Ergodic Theory via Joinings, Amer. Math. Soc., 2003. [114]
[GW] E. Glasner and B. Weiss, Kazhdan's property T and the geometry of the collection of invariant measures, Geom. Funct. Anal., 7 (1997), 917-935. [96]
[H] L. Harrington, Analytic determinacy and 0\#, J. Symb. Logic, 43(4) (1978), 685-693. [44]
[HK] G. Hjorth and A.S. Kechris, Rigidity theorems for actions of product groups and countable Borel equivalence relations, Memoirs Amer. Math. Soc., 177 (833) (2005). [59, 60, 68, 72]
[IKT] A. Ioana, A.S. Kechris, and T. Tsankov, Subequivalence relations and positive-definite functions, Groups Geom. Dyn., 3 (2009), 579-625. [14, 69]
[JKL] S. Jackson, A.S. Kechris, and A. Louveau, Countable Borel equivalence relations, J. Math. Logic, 2 (1) (2002), 1-80. [134, 139]
[K] A.S. Kechris, Global aspects of ergodic group actions, Amer. Math. Soc., 2010. [5, 10, 15, 28, 38, 42, 45, 50, 51, 52, 56, 58, 68, 75, 76, $81,85,86,88,97,99,113,114,129,136]$
[K1] A.S. Kechris, Weak containment in the space of actions of a free group, Israel J. Math., 189 (2012), 461-507. [28]
[K2] A.S. Kechris, Classical Descriptive Set Theory, Springer, 1995. [8, 43, 58, 87, 88, 104]
[K3] A.S. Kechris, Global aspects of measure preserving equivalence relations and graphs, New Zealand J. Math., 52 (2021), 691-726. [6]
[K4] A.S. Kechris, The theory of countable Borel equivalence relations, preprint, posted in pma.caltech.edu/people/alexanderkechris [17, 30, 32, 89]
[KM] A.S. Kechris and B.D. Miller, Topics in Orbit Equivalence, Springer, 2004. [29, 50, 56, 57, 73, 74, 75, 91, 106, 109, 110, 122, 123, 136, 141]
[KST] A.S. Kechris, S. Solecki and S. Todorcevic, Borel chromatic numbers, Adv. Math., 141 (1999), 1-44. [17, 116]
[KT] J. Kittrell and T. Tsankov, Topological properties of full groups, Ergodic Theory Dynam. Systems, 30 (2010), 525-545. [10, 103]
[LeM] F. Le Maître, The number of topological generators for full groups of ergodic equivalence relations, Invent. Math., 198(2) (2014), 261-268. [124]
[LeM1] F. Le Maître, On dense orbits on the space of subequivalence relations, arXiv:2405.01806v1. [15, 16, 34, 59, 62, 127]
[L] L. Lovász, Large Networks and Graph Limits, Amer. Math. Soc., 2012. [126]
[M] B.D. Miller, Incomparable treeable equivalence relations, J. Math. Logic, 12(1) (2012), 125004-1-125004-11. [68]
[M1] B.D. Miller, Full groups, classification, and equivalence relations, Ph.D. Thesis, U.C. Berkeley, 2004. [10]
[M2] B.D. Miller, Composition of periodic automorphisms, preprint, posted in glimmeffros.github.io under Recent. [10]
[O] Yu. A. Olshanskii, On residualing homomorphisms and G subgroups of hyperbolic groups. Internat. J. Algebra Comput., 3(4) (1993), 365-409. [63]
[Po] S. Popa, Cocycle and orbit equivalence superrigidity for malleable actions of w-rigid groups, Invent. Math., 170(2) (2007), 243-295. [63, 65]
[S] R.M. Solovay, The independence of DC from AD, Cabal Seminar 76-77, Ed. by A.S. Kechris and Y.N. Moschovakis, Lecture Notes in Mathematics, No. 689, Springer, 1978, 171-184. [44]
[T] A. D. Törnquist, The Borel complexity of orbit equivalence, Ph.D. Thesis, UCLA, 2005. [43]
[T-D] R.D. Tucker-Drob, Shift-minimal groups, fixed price 1, and the unique trace property, arXiv:1211.6395v3. [91, 93]
[Va] S. Vaes, Explicit computations of all finite index bimodules for a family of $I I_{1}$ factors, Ann. Scient. Ecole Normal Sup., 4(1) (2008), 743-788. [65]
[V] V.S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc., 109 (1963), 191-220. [24]

Index

($(E)), 22$	${\text { Inf } \text { cost }_{E}, 73}^{\text {, }}$
($A(\Gamma, X, \mu), u), 28$	Inf Index (E), 61
$A(\Gamma, E), 28$	M (measure on E), 23
$A(\Gamma, X, \mu), 28$	$M_{E}, 23$
$A_{T, F}, 17$	$\operatorname{MaxTr}(E), 140$
$A_{T, G}, 125$	$N(E), 15$
$A_{T_{1}, T_{2}, F}, 30$	$R_{\pi}, 105$
$C(F), 73$	$S(E), 13$
$C(G), 133$	$S g(\Gamma), 7$
$\operatorname{CSp}(E), 123$	SubTreeing (E), 139
$C^{\mathcal{A}}(E), 120$	SubTreeing ${ }^{(E)}$, 141
E generated by $\mathcal{A}, 103$	Treeing (E), 135
E_{0}-ergodic, 68	$W^{y}, 23$
$E_{1} \circ E_{2}, 105$	$W_{x}, 23$
$E_{T}, 9,41$	[$E: F]$, 15, 61, 63, 79
$E_{\pi}, 105$	[E], 9
$E_{a}, 19,29,47$	$[E]^{\mathcal{A}}, 103$
$E_{A_{0}, A_{1}, \ldots A_{n-1}}, 63$	$[E]_{\mathcal{A}}, 105$
$E_{T_{1}, T_{2}, \ldots,}, 47$	[T], 9
$E_{\text {ctble }}, 42$	[[E]], 9, 51
$F \times{ }_{\alpha}(Z, \sigma), 114$	$[[E]]^{\mathcal{A}}, 120$
$F_{1} \vee F_{2}, 30$	$\mathcal{A}, 56$
$F_{\Gamma}, 103$	\mathcal{A} generates $E, 103$
FinCost $_{E}, 73$	$\mathcal{A \mathcal { E }} \mathcal{R G G}_{E}, 68$
FinIndex(E), 61	$\mathcal{B D G}, 131$
$G^{*}, 129$	$\mathcal{B D G}^{\prime}, 131$
$G r(E), 125$	$\mathcal{B F}, 55$

$\mathcal{B} \mathcal{F}_{E}, 55$
$\mathbb{F}_{\infty}, 28$
$\bigoplus_{n} E_{n}, 58$
$\bigvee_{j} F_{j}, 40$
$\mathcal{D}_{\infty}, 59$
$\mathcal{D}_{n}, 59$
$\mathcal{D}_{\infty, E}, 59$
$\mathcal{D}_{n, E}, 59$
$\mathcal{I D G}, 132$
$\mathcal{I D G}_{E}, 132$
$\mathcal{T}, 59$
$\mathcal{T R}$, 130
$\mathcal{T}_{E}, 59$
$\overline{\mathcal{R}}, 15$
$\delta_{\Gamma, \infty}(a, b), 51$
$\mathcal{E}, 37$
$\mathcal{E} \mathcal{R G}, 67$
$\mathcal{E R} \mathcal{G}_{E}, 67$
$\mathcal{E}_{0} \mathcal{R} \mathcal{G}, 68$
$\mathcal{E}_{0} \mathcal{R} \mathcal{G}_{E}, 68$
$\mathcal{F}, 55$
$\mathcal{F T R}_{E}, 137$
$\mathcal{F}^{*}(X), 7$
$\mathcal{F}_{E}, 55$
$\mathcal{F}_{n, E}, 76$
$\mathcal{G R}, 128$
$\mathcal{G R}_{d}, 131$
$\mathcal{G} \mathcal{R}_{d, E}, 131$
$\mathcal{G}^{\uparrow}, 128$
$\mathcal{G}_{E}, 130$
$\mathcal{G}_{\downarrow}, 128$
$\mathcal{G}_{\text {个 }}, 128$
$\mathcal{H}, 55$
$\mathcal{H} \mathcal{T} \mathcal{R}_{E}, 137$
$\mathcal{H}_{E}, 15,55$
$\mathcal{L F G}, 132$
$\leq_{c}, 42$
M, 26
ω-closed, 44
ω-continuous, 44
$\overline{\mathcal{R}}, 35$
$\mathcal{P}(\Gamma), 26$
$\mathcal{P}_{1}(\Gamma), 25$
$\mathcal{P}_{E}, 48$
$\mathcal{P}_{\aleph_{1}}(Z), 44$
$\perp, 29$
〔, 97
$\mathcal{R}^{*}, 35$
$\mathcal{R}_{*}, 36$
$\mathcal{R}_{E}, 55$
$\mathcal{R}_{\downarrow}, 35$
$\mathcal{R}_{\uparrow}, 35$
$\mathcal{S T R}_{E}, 137$
$\sigma\left(F_{1}, F_{2}\right), 22$
$\sim_{\Gamma}, 43$
$\sim_{\mathbb{F}_{\infty}}, 41$
$\simeq, 110$
$\tau^{\prime}\left(F_{1}, F_{2}\right), 31$
$\tau_{\infty}^{\prime}\left(F_{1}, F_{2}\right), 31$
$\tau\left(F_{1}, F_{2}\right), 31$
$\tau_{\infty}\left(F_{1}, F_{2}\right), 31$
$d(S, F), 14$
$d_{\mu}, 17$
$d_{u}, 9$
$\operatorname{deg}_{G}(x), 132$
$f^{\Gamma}, 103$
id, 15, 30
$t(\Gamma), 123$
u, 9, 28
$w, 14$
$\mathcal{A} \mathcal{E}_{0} \mathcal{R} \mathcal{G}, 68$
$\mathcal{E R G \mathcal { H }}, 71$
$\mathcal{E} \mathcal{R G H}{ }_{E}, 71$
$\operatorname{Aut}(X, \mu), 9$
ERGIRE(Г), 96
Eq(Г), 91
$\operatorname{FR}(\Gamma, X, \mu), 92$
$\operatorname{Fix}(p), 19$
$\operatorname{IRE}(\Gamma), 91$
IRS(Г), 93
MALG, 17
MALG $_{E}, 23$
MALG $_{\mu}, 17$
$\mathrm{Sg}(\Gamma), 93$
$\operatorname{supp}(T), 112$
acyclic, 130
anti- E_{0}-ergodic, 68
aperiodic, 15
aperiodic IRE, 93
bounded finite equivalence relation, 55
choice sequence, 63,79
class-bijective factor, 111
class-bijective homomorphism, 115
class-surjective, 104
class-surjective homomorphism, 115
coboundary, 80
commuting equivalence relations, 105
cost, 73, 133
cost relative, 120
cost spectrum, 123
degenerate, 63
direct sum, 58
equivalent measures, 22
Ergodic Decomposition, 24
ergodic dimension, 60
everywhere infinite index, 15
extension, 114
finite equivalence relation, 55
finite graph, 137
finite index IRE, 93
finite IRE, 93
finitely generated, 120
free action, 92
full group, 9
full pseudogroup, 9, 51
full pseudogroup relative, 120
generating sequence, 16
geometric dimension, 59
graphing, 129
hereditary, 35
homomorphism, 68, 104, 111
hyperfinite equivalence relation, 55
hyperfinite graph, 137
index, 63, 79
index cocycle, 63, 80
infinite index IRE, 93
invariant, random equivalence relation, 91
invariant, random subgroup, 93
IRE, 91
IRS, 93
kernel, 105
measurable subgroups, 25
measure algebra of $E, 23$
measure preserving graph, 128
non-approximable, 69
normalized, 93
relative to \mathcal{A} full group of $E, 103$
relatively hypersmooth, 63
relatively smooth, 63
restriction, 15
richly E_{0}-ergodic, 72
richly ergodic, 69
skew product, 113
smooth graph, 137
sofic, 117
strong topology, 18
strongly ergodic, 68
strongly increasing, 70
strongly treeable group, 115
surjective homomorphism, 116
the factor of E relative to $\mathcal{A}, 104$
topological generator, 123
topological rank, 123
topology of $\operatorname{Gr}(E), 126$
topology of $S(E), 22$
treeable group, 115
treeing, 131
type II, 75
unfoldable, 117
uniform metric, 9
uniform topology on $S(E), 32$
uniform topology on the space

$$
A(\Gamma, X, \mu), 28
$$

uniform topology on the space $\operatorname{Aut}(X, \mu), 9$
uniquely generating sequence, 17
weak equivalence, 110
weak topology on $\mathcal{E}, 37$
weak topology on $S(E), 14$
weakly contained, 97
Wijsman topology, 7

