Invariant uniformization and reducibility

Alexander S. Kechris and Michael Wolman

May 7, 2024

Abstract

Standard results in descriptive set theory provide sufficient conditions for a set $P \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ to admit a Borel uniformization, namely, when P has "small" sections or "large" sections. We consider an invariant analogue of these results: Given a Borel equivalence relation E and an E-invariant set P with "small" or "large" sections, does P admit an E-invariant Borel uniformization?

Given E, we show that every such P admits an E-invariant Borel uniformization if and only if E is smooth. We also compute the definable complexity of counterexamples in the case where E is not smooth, using category, measure, and Ramsey-theoretic methods.

We provide two new proofs of a dichotomy of Miller classifying the pairs (E, P) such that P admits an E-invariant uniformization, for P with countable sections. In the process, we prove an \aleph_{0}-dimensional $\left(G_{0}, H_{0}\right)$ dichotomy, generalizing dichotomies of Miller and Lecomte. We also show that the set of pairs (E, P) such that P has "large" sections and admits an E-invariant Borel uniformization is $\boldsymbol{\Sigma}_{2}^{1}$-complete; in particular, there is no analog of Miller's dichotomy for P with "large" sections.

Finally, we consider a less strict notion of invariant uniformization, where we select a countable nonempty subset of each section instead of a single point.

1 Introduction

1.1 Invariant uniformization and smoothness

Given sets X, Y and $P \subseteq X \times Y$ with $\operatorname{proj}_{X}(P)=X$, a uniformization of P is a function $f: X \rightarrow Y$ such that $\forall x \in X((x, f(x)) \in P)$. If now E is an equivalence relation on X, we say that P is \boldsymbol{E}-invariant if $x_{1} E x_{2} \Longrightarrow$ $P_{x_{1}}=P_{x_{2}}$, where $P_{x}=\{y:(x, y) \in P\}$ is the x-section of P. Equivalently this means that P is invariant under the equivalence relation $E \times \Delta_{Y}$ on $X \times Y$, where Δ_{Y} is the equality relation on Y. In this case an \boldsymbol{E}-invariant uniformization is a uniformization f such that $x_{1} E x_{2} \Longrightarrow f\left(x_{1}\right)=f\left(x_{2}\right)$.

Also if E, F are equivalence relations on sets X, Y, resp., a homomorphism of E to F is a function $f: X \rightarrow Y$ such that $x_{1} E x_{2} \Longrightarrow f\left(x_{1}\right) F f\left(x_{2}\right)$. Thus an invariant uniformization is a uniformization that is a homomorphism of E to Δ_{Y}.

Consider now the situation where X, Y are Polish spaces and P is a Borel subset of $X \times Y$. In this case standard results in descriptive set theory provide conditions which imply the existence of Borel uniformizations. These fall mainly into two categories, see [Kec95, Section 18]: "small section" and "large section" uniformization results. We will concentrate here on the following standard instances of these results:

Theorem 1.1 (Measure uniformization). Let X, Y be Polish spaces, μ a probability Borel measure on Y and $P \subseteq X \times Y$ a Borel set such that $\forall x \in$ $X\left(\mu\left(P_{x}\right)>0\right)$. Then P admits a Borel uniformization.

Theorem 1.2 (Category uniformization). Let X, Y be Polish spaces and $P \subseteq X \times Y$ a Borel set such that $\forall x \in X\left(P_{x}\right.$ is non-meager $)$. Then P admits a Borel uniformization.

Theorem 1.3 (K_{σ} uniformization). Let X, Y be Polish spaces and $P \subseteq$ $X \times Y$ a Borel set such that $\forall x \in X\left(P_{x}\right.$ is non-empty and $\left.K_{\sigma}\right)$. Then P admits a Borel uniformization.

A special case of Theorem 1.3 is the following:
Theorem 1.4 (Countable uniformization). Let X, Y be Polish spaces and $P \subseteq X \times Y$ a Borel set such that $\forall x \in X\left(P_{x}\right.$ is non empty and countable $)$. Then P admits a Borel uniformization.

Suppose now that E is a Borel equivalence relation on X and P in any one of these results is E-invariant. When does there exist a Borel \boldsymbol{E}-invariant uniformization, i.e., a Borel uniformization that is also a homomorphism of E to Δ_{Y} ? We say that E satisfies measure (resp., category, $\boldsymbol{K}_{\boldsymbol{\sigma}}$, countable) invariant uniformization if for every Y, μ, P as in the corresponding uniformization theorem above, if P is moreover E-invariant, then it admits a Borel E-invariant uniformization.

The following gives a complete answer to this question. Recall that a Borel equivalence relation E on X is smooth if there is a Polish space Z and a Borel function $S: X \rightarrow Z$ such that $x_{1} E x_{2} \Longleftrightarrow S\left(x_{1}\right)=S\left(x_{2}\right)$.

Theorem 1.5. Let E be a Borel equivalence relation on a Polish space X. Then the following are equivalent:
(i) E is smooth;
(ii) E satisfies measure invariant uniformization;
(iii) E satisfies category invariant uniformization;
(iv) E satisfies K_{σ} invariant uniformization;
(v) E satisfies countable invariant uniformization.

One can compute the exact definable complexity of counterexamples to invariant uniformization. Let E_{0} denote the non-smooth Borel equivalence relation on $2^{\mathbb{N}}$ given by $x E_{0} y \Longleftrightarrow \exists m \forall n \geq m\left(x_{n}=y_{n}\right)$. In the proof of Theorem 1.5, it is shown that for $E=E_{0}$ on $X=2^{\mathbb{N}}$ we have the following:
(1) Failure of measure invariant uniformization: There are Y, μ, E-invariant $P \in F_{\sigma}$ with $\mu\left(P_{x}\right)=1$, for all $x \in X$, which has no Borel E-invariant uniformization.
(2) Failure of category invariant uniformization: There is Y and an E invariant $Q \in G_{\delta}$ with Q_{x} comeager, for all $x \in X$, which has no Borel E-invariant uniformization.
(3) Failure of countable invariant uniformization: There is Y and an E invariant $P \in F_{\sigma}$ such that P_{x} is non-empty and countable, for all $x \in X$, which has no Borel E-invariant uniformization.

The definable complexity of Q, P in (2), (3) is optimal. In the case of measure invariant uniformization, however, there are counterexamples which are G_{δ}, and this together with (1) gives the optimal definable complexity of counterexamples to measure invariant uniformization. These results are the contents of Theorems 1.6 and 1.7.

Theorem 1.6. Let $X \subseteq 2^{\mathbb{N}}$ be the sequences with infinitely many ones. There is a Polish space Y, a probability Borel measure μ on Y and an E_{0}-invariant G_{δ} set $P \subseteq X \times Y$ with P_{x} comeager and $\mu\left(P_{x}\right)=1$, for all $x \in X$, which has no Borel E_{0}-invariant uniformization.

Theorem 1.7. Let X, Y be Polish spaces, E a Borel equivalence relation on X and $P \subseteq X \times Y$ an E-invariant Borel relation. Suppose one of the following holds:
(i) $P_{x} \in \boldsymbol{\Delta}_{\mathbf{2}}^{\mathbf{0}}$ and $\mu_{x}\left(P_{x}\right)>0$, for all $x \in X$, and some Borel assignment $x \mapsto \mu_{x}$ of probability Borel measures μ_{x} on Y;
(ii) $P_{x} \in F_{\sigma}$ and P_{x} non-meager, for all $x \in X$;
(iii) $P_{x} \in G_{\delta}$ and P_{x} non-empty and K_{σ} (in particular countable), for all $x \in X$.

Then there is a Borel E-invariant uniformization.
The proof of Theorem 1.6 uses the Ramsey property.

1.2 Local dichotomies

The equivalence of (i) and (v) in Theorem 1.5 essentially reduces to the fact that if E is a countable Borel equivalence relation (i.e., one for which all of its equivalence classes are countable) which is not smooth, then the relation

$$
(x, y) \in P \Longleftrightarrow x E y
$$

is clearly E-invariant with countable nonempty sections but has no E-invariant uniformization. Considering the problem of invariant uniformization "locally", Miller [Milc] recently proved the following dichotomy that shows that this is essentially the only obstruction to (v). Below $E_{0} \times I_{\mathbb{N}}$ is the equivalence relation on $2^{\mathbb{N}} \times \mathbb{N}$ given by $(x, m) E_{0} \times I_{\mathbb{N}}(y, n) \Longleftrightarrow x E_{0} y$. Also if E, F are equivalence relations on spaces X, Y, resp., an embedding of E into F is an injection $\pi: X \rightarrow Y$ such that $x_{2} E x_{2} \Longleftrightarrow \pi\left(x_{1}\right) F \pi\left(x_{2}\right)$.

Theorem 1.8 ([Milc, Theorem 2]). Let X, Y be Polish spaces, E a Borel equivalence relation on X and $P \subseteq X \times Y$ an E-invariant Borel relation with countable non-empty sections. Then exactly of the following holds:
(1) There is a Borel E-invariant uniformization,
(2) There is a continuous embedding $\pi_{X}: 2^{\mathbb{N}} \times \mathbb{N} \rightarrow X$ of $E_{0} \times I_{\mathbb{N}}$ into E and a continuous injection $\pi_{Y}: 2^{\mathbb{N}} \times \mathbb{N} \rightarrow Y$ such that for all $x, x^{\prime} \in 2^{\mathbb{N}} \times \mathbb{N}$,

$$
\neg\left(x E_{0} \times I_{\mathbb{N}} x^{\prime}\right) \Longrightarrow P_{\pi_{X}(x)} \cap P_{\pi_{X}\left(x^{\prime}\right)}=\emptyset
$$

and

$$
P_{\pi_{X}(x)}=\pi_{Y}\left([x]_{E_{0} \times I_{\mathrm{N}}}\right) .
$$

We provide a different proof of this dichotomy, using Miller's $\left(G_{0}, H_{0}\right)$ dichotomy [Mil12] and Lecomte's \aleph_{0}-dimensional hypergraph dichotomy [Lec09]. Our proof relies on the following strengthening of $(i) \Longrightarrow(v)$ of Theorem 1.5, which is interesting in its own right:

Theorem 1.9. Let F be a smooth Borel equivalence relation on a Polish space X, Y be a Polish space, and $P \subseteq X \times Y$ be a Borel set with countable sections. Suppose that

$$
\bigcap_{x \in C} P_{x} \neq \emptyset
$$

for every F-class C. Then P admits a Borel F-invariant uniformization.
We also prove an \aleph_{0}-dimensional $\left(G_{0}, H_{0}\right)$-type dichotomy, which generalizes Lecomte's dichotomy in the same way that the $\left(G_{0}, H_{0}\right)$ dichotomy generalizes the G_{0} dichotomy, and use this to give still another proof of Theorem 1.8.

In the case of countable uniformization, the Lusin-Novikov theorem asserts that P can be covered by the graphs of countably-many Borel functions. When E is smooth, the proof of Theorem 1.5 gives an invariant analogue of this fact (cf. Theorem 2.2). De Rancourt and Miller [dRM21] have shown that E_{0} is essentially the only obstruction to invariant Lusin-Novikov:

Theorem 1.10 ([dRM21, Theorem 4.11]). Let X, Y be Polish spaces, E a Borel equivalence relation on X and $P \subseteq X \times Y$ an E-invariant Borel relation with countable non-empty sections. Then exactly one of the following holds:
(1) There is a sequence $g_{n}: X \rightarrow Y$ of Borel E-invariant uniformizations with $P=\bigcup_{n} \operatorname{graph}\left(g_{n}\right)$,
(2) There is a continuous embedding $\pi_{X}: 2^{\mathbb{N}} \rightarrow X$ of E_{0} into E and a continuous injection $\pi_{Y}: 2^{\mathbb{N}} \rightarrow Y$ such that for all $x \in 2^{\mathbb{N}}, P\left(\pi_{X}(x), \pi_{Y}(x)\right)$.

We provide a different proof of this theorem in Section 4.4, directly from Miller's $\left(G_{0}, H_{0}\right)$ dichotomy.

1.3 Anti-dichotomy results

Our next result can be viewed as a sort of anti-dichotomy theorem for large-section invariant uniformizations (see also the discussion in [TV21, Section 1]). Informally, dichotomies such as Theorem 1.8 provide upper bounds on the complexity of the collection of Borel sets satisfying certain combinatorial properties. Thus, one method of showing that there is no analogous dichotomy is to provide lower bounds on the complexity of such sets.

In order to state this precisely, we first fix a "nice" parametrization of the Borel relations on $\mathbb{N}^{\mathbb{N}}$, i.e., a Π_{1}^{1} set $D \subseteq 2^{\mathbb{N}}$ and a map $D \ni d \mapsto D_{d}$ such that each $D_{d} \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}, d \in D$ is Borel, each Borel set in $\mathbb{N}^{\mathbb{N}}$ appears as some D_{d}, and so that these satisfy some natural definability properties (cf. [AK00, Section 5]).

Define now

$$
\mathcal{P}=\left\{(d, e): D_{d} \text { is an equivalence relation on } \mathbb{N}^{\mathbb{N}} \text { and } D_{e} \text { is } D_{d} \text {-invariant }\right\},
$$

and let $\mathcal{P}^{\text {unif }}$ denote the set of pairs $(d, e) \in \mathcal{P}$ for which D_{e} admits a $D_{d^{-}}$ invariant uniformization. More generally, for any set A of properties of sets $P \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$, let \mathcal{P}_{A} (resp. $\mathcal{P}_{A}^{\text {unif }}$) denote the set of pairs (d, e) in \mathcal{P} (resp. $\mathcal{P}^{\text {unif }}$) such that D_{e} satisfies all of the properties in A. Let $\mathcal{P}_{\text {ctble }}$ (resp. $\left.\mathcal{P}_{\text {ctble }}^{\text {unif }}\right)$ denote $\mathcal{P}_{A}\left(\right.$ resp. $\left.\mathcal{P}_{A}^{\text {unif }}\right)$ for A consisting of the property that P has countable sections.

One can easily check that \mathcal{P} is $\boldsymbol{\Pi}_{1}^{1}$ and that $\mathcal{P}^{u n i f}$ is $\boldsymbol{\Sigma}_{\mathbf{2}}^{\mathbf{1}}$. The same is true for $\mathcal{P}_{\text {ctble }}$ and $\mathcal{P}_{\text {ctble }}^{u n i f}$. In the latter case, however, the effective version of Theorem 1.8 (see Theorem 4.14) gives a better bound on the complexity:

Proposition 1.11. The set $\mathcal{P}_{\text {ctble }}^{u n i f}$ is $\boldsymbol{\Pi}_{1}^{1}$.
By contrast, in the case of large sections, we prove the following, where a set B in a Polish space X is called $\boldsymbol{\Sigma}_{2}^{1}$-complete if it is $\boldsymbol{\Sigma}_{2}^{1}$, and for all zero-dimensional Polish spaces Y and Σ_{2}^{1} sets $C \subseteq Y$ there is a continuous function $f: Y \rightarrow X$ such that $C=f^{-1}(B)$.

Theorem 1.12. The set $\mathcal{P}_{A}^{\text {unif }}$ is $\boldsymbol{\Sigma}_{\mathbf{2}}^{1}$-complete, where A is one of the following sets of properties of $P \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$:

1. P has non-meager sections;
2. P has non-meager G_{δ} sections;
3. P has non-meager sections and is G_{δ};
4. P has μ-positive sections for some probability Borel measure μ on $\mathbb{N}^{\mathbb{N}}$;
5. P has μ-positive F_{σ} sections for some probability Borel measure μ on $\mathbb{N}^{\mathbb{N}}$;
6. P has μ-positive sections for some probability Borel measure μ on $\mathbb{N}^{\mathbb{N}}$ and is F_{σ}.

The same holds for comeager instead of non-meager, and μ-conull instead of μ-positive.

In fact, there is a hyperfinite Borel equivalence relation E with code $d \in D$ such that for all such A above, the set of $e \in D$ such that $(d, e) \in \mathcal{P}_{A}^{\text {unif }}$ is Σ_{2}^{1}-complete.

Problem 1.13. Is there an analogous dichotomy or anti-dichotomy result for the case where P has K_{σ} sections?

While we do not know the answer to this problem, we note that Theorem 1.9 is false when the sections are only assumed to be K_{σ} :

Proposition 1.14. There is a smooth countable Borel equivalence relation F on $\mathbb{N}^{\mathbb{N}}$ and an open set $P \subseteq \mathbb{N}^{\mathbb{N}} \times 2^{\mathbb{N}}$ such that

$$
\bigcap_{x \in C} P_{x} \neq \emptyset
$$

for every F-class C, but which does not admit a Borel F-invariant uniformization.

1.4 Invariant countable uniformization

We next consider a somewhat less strict notion of invariant uniformization, where instead of selecting a single point in each section we select a countable nonempty subset. More precisely, given Polish spaces X, Y, a Borel equivalence relation E on X and an E-invariant Borel set $P \subseteq X \times Y$, with $\operatorname{proj}_{X}(P)=X$, a Borel \boldsymbol{E}-invariant countable uniformization is a Borel function $f: X \rightarrow Y^{\mathbb{N}}$ such that $\forall x \in X \forall n \in \mathbb{N}\left(\left(x, f(x)_{n}\right) \in P\right)$ and
$x_{1} E x_{2} \Longrightarrow\left\{f\left(x_{1}\right)_{n}: n \in \mathbb{N}\right\}=\left\{f\left(x_{2}\right)_{n}: n \in \mathbb{N}\right\}$. Equivalently, if for each Polish space Y, we denote by $E_{c t b l e}^{Y}$ the equivalence relation on $Y^{\mathbb{N}}$ given by

$$
\left(x_{n}\right) E_{\text {ctble }}^{Y}\left(y_{n}\right) \Longleftrightarrow\left\{x_{n}: n \in \mathbb{N}\right\}=\left\{y_{n}: n \in \mathbb{N}\right\}
$$

then an E-invariant countable uniformization is a Borel homomorphism f of E to $E_{\text {ctble }}^{Y}$ such that for each x, n, we have that $\left(x, f(x)_{n}\right) \in P$.

We say that E satisfies measure (resp., category, $\boldsymbol{K}_{\boldsymbol{\sigma}}$) countable invariant uniformization if for every Y, μ, P as in the corresponding uniformization theorem above, if P is moreover E-invariant, then it admits a Borel E-invariant countable uniformization.

Recall that a Borel equivalence relation E on X is reducible to countable if there is a Polish space Z, a countable Borel equivalence relation F on Z and a Borel function $S: X \rightarrow Z$ such that $x_{1} E x_{2} \Longleftrightarrow S\left(x_{1}\right) F S\left(x_{2}\right)$.

As in the proof below of Theorem 1.5, part (A), one can see that if a Borel equivalence relation E on X is reducible to countable, then E satisfies measure (resp. category, K_{σ}) countable invariant uniformization. We conjecture the following:

Conjecture 1.15. Let E be a Borel equivalence relation on a Polish space X. Then the following are equivalent:
(a) E is reducible to countable;
(b) E satisfies measure countable invariant uniformization;
(c) E satisfies category countable invariant uniformization;
(d) E satisfies K_{σ} countable invariant uniformization.

We discuss some partial results in Section 5.

1.5 Further invariant uniformization results and smoothness

We have so far considered the existence of Borel invariant uniformizations, generalizing the standard "small section" and "large section" uniformization theorems. One can also consider invariant analogues of uniformization theorems for more general pointclasses, such as the following:

Theorem 1.16 (Jankov, von Neumann uniformization [Kec95, 18.1]). Let X, Y be Polish spaces and $P \subseteq X \times Y$ be a $\boldsymbol{\Sigma}_{1}^{1}$ set such that P_{x} is nonempty, for all $x \in X$. Then P has a uniformization function which is $\sigma\left(\boldsymbol{\Sigma}_{\mathbf{1}}^{\mathbf{1}}\right)$ measurable.

Theorem 1.17 (Novikov-Kondô uniformization [Kec95, 36.14]). Let X, Y be Polish spaces and $P \subseteq X \times Y$ be $a \Pi_{1}^{1}$ set such that P_{x} is non-empty, for all $x \in X$. Then P has a uniformizatoin function whose graph is $\boldsymbol{\Pi}_{1}^{1}$.

Let E be a Borel equivalence relation on X. We say E satisfies Jankovvon Neumann (resp. Novikov-Kondô) invariant uniformization if for every Y, P as in the corresponding uniformization theorem above, if P is moreover E-invariant, then it admits an E-invariant uniformization which is definable in the same sense as in the corresponding uniformization theorem.

The following characterization of those Borel equivalence relations that satisfy these properties essentially follows from the proof of Theorem 1.5.

Theorem 1.18. Let E be a Borel equivalence relation on a Polish space X. Then the following are equivalent:
(i) E is smooth;
(ii) E satisfies Jankov-von Neumann invariant uniformization;
(iii) E satisfies Novikov-Kondô invariant uniformization.

1.6 Remarks on invariant uniformization over products

One can consider more generally the question of invariant uniformization over products. Let X, Y be Polish spaces, E a Borel equivalence on X, F a Borel equivalence on Y, and $P \subseteq X \times Y$ an $E \times F$-invariant set. In this case, one can ask whether there is an $E \times F$-invariant Borel set $U \subseteq P$ so that each section U_{x} intersects one, or even finitely-many, F-classes. This paper then considers the special case where $F=\Delta_{Y}$ is equality.

In the case where P has countable sections and F is smooth, one can reduce this to the case where F is equality to get analogues of Theorems 1.8 and 1.10.

Miller [Milc, Theorem 2.1] has proved a generalization of Theorem 1.8 where P has countable sections and the equivalence classes of F are countable, and de Rancourt and Miller [dRM21, Theorem 4.11] have proved a generalization of Theorem 1.10 where the sections of P are contained in countably many F-classes (but are not necessarily countable).

The problem of invariant uniformization is also discussed in [Mye76; BM75] where they consider the question of invariant uniformization over products when E, F come from Polish group actions, and specifically when
E, F are the isomorphism relation on a class of structures. Myers [Mye76, Theorem 10] gives an example in which there is no Baire-measurable invariant uniformization, so that in particular the invariant Jankov-von Neumann and invariant Novikov-Kondô uniformization don't hold.

Acknowledgments. Research partially supported by NSF Grant DMS1950475. We would like to thank Todor Tsankov who asked whether measure invariant uniformization holds for countable Borel equivalence relations. We would also like to thank Ben Miller for useful comments and discussion.

2 Proof of Theorem 1.5

(A) We first show that (i) implies (ii), the proof that (i) implies (iii) being similar. Fix a Polish space Z and a Borel function $S: X \rightarrow Z$ such that $x_{1} E x_{2} \Longleftrightarrow S\left(x_{1}\right)=S\left(x_{2}\right)$. Fix also Y, μ, P as in the definition of measure invariant uniformization. Define $P^{*} \subseteq Z \times Y$ as follows:

$$
(z, y) \in P^{*} \Longleftrightarrow \forall x \in X(S(x)=z \Longrightarrow(x, y) \in P)
$$

Then P^{*} is $\boldsymbol{\Pi}_{\mathbf{1}}^{1}$ and we have that

$$
\begin{aligned}
& S(x)=z \Longrightarrow P_{z}^{*}=P_{x} \\
& z \notin S(X) \Longrightarrow P_{z}^{*}=Y
\end{aligned}
$$

Thus $\forall z \in Z\left(\mu\left(P_{z}^{*}\right)>0\right)$. Then, by [Kec95, 36.24], there is a Borel function $f^{*}: Z \rightarrow Y$ such that $\forall z \in Z\left(\left(z, f^{*}(z)\right) \in P^{*}\right)$. Put

$$
f(x)=f^{*}(S(x)) .
$$

Then f is an E-invariant uniformization of P.
We next prove that (i) implies (iv) (and therefore (v)). Fix Z, S as in the previous case and Y, P as in the definition of K_{σ} invariant uniformization. Define P^{*} as before. Then $A=\{(z, y): \exists x \in X(S(x)=z \& P(x, y))\}$ is a Σ_{1}^{1} subset of P^{*}, so by the Lusin separation theorem there is a Borel subset $P^{* *}$ of P^{*} such that $A \subseteq P^{* *}$. By [Kec95, 35.47], the set C of all $z \in Z$ such that $P_{z}^{* *}$ is K_{σ} is $\boldsymbol{\Pi}_{1}^{1}$ and contains the $\boldsymbol{\Sigma}_{1}^{1}$ set $S(X)$, so by separation there is a Borel set B with $A \subseteq B \subseteq C$. Then if $Q \subseteq Z \times Y$ is defined by

$$
(z, y) \in Q \Longleftrightarrow z \in B \&(z, y) \in P^{* *}
$$

we have that

$$
S(x)=z \Longrightarrow Q_{z}=P_{x}
$$

and every Q_{z} is K_{σ}. It follows, by [Kec95, 35.46], that $D=\operatorname{proj}_{Z}(Q)$ is Borel and there is a Borel function $g: D \rightarrow Y$ such that $\forall z \in D(z, g(z)) \in Q$. Since $f(X) \subseteq D$, the function

$$
f(x)=g(S(x))
$$

is an E-invariant uniformization of P.
(B) We will next show that \neg (i) implies \neg (ii), \neg (iii) and \neg (v) (and thus also \neg (iv)). We will use the following lemma. Below for Borel equivalence relations E, E^{\prime} on Polish spaces X, X^{\prime}, resp., we write $E \leq_{B} E^{\prime}$ iff there is a Borel map $f: X \rightarrow X^{\prime}$ such that $x_{1} E x_{2} \Longleftrightarrow f\left(x_{1}\right) E^{\prime} f\left(x_{2}\right)$, i.e., E can be Borel reduced to E^{\prime} (via the reduction f).

Lemma 2.1. Let E, E^{\prime} be Borel equivalence relations on Polish spaces X, X^{\prime}, resp., such that $E \leq_{B} E^{\prime}$. If E fails (ii) (resp., (iii), (iv), (v)), so does E^{\prime}.

Proof. Let $f: X \rightarrow X^{\prime}$ be a Borel reduction of E into E^{\prime}. Assume first that E fails (ii) with witness Y, μ, P. Define $P^{\prime} \subseteq X^{\prime} \times Y$ by

$$
\left(x^{\prime}, y\right) \in P^{\prime} \Longleftrightarrow \forall x \in X\left(f(x) E^{\prime} x^{\prime} \Longrightarrow(x, y) \in P\right)
$$

Then note that

$$
\begin{gathered}
f(x) E^{\prime} x^{\prime} \Longrightarrow P_{x^{\prime}}^{\prime}=P_{x}, \\
x^{\prime} \notin[f(X)]_{E^{\prime}} \Longrightarrow P_{x^{\prime}}^{\prime}=Y .
\end{gathered}
$$

Now clearly P^{\prime} is Π_{1}^{1} and invariant under the Borel equivalence relation $E^{\prime} \times \Delta_{Y}$. Then by a result of Solovay (see [Kec95, 34.6]), there is a $\boldsymbol{\Pi}_{1}^{1}$-rank $\varphi: P^{\prime} \rightarrow \omega_{1}$ which is $E^{\prime} \times \Delta_{Y}$-invariant. Consider then the Σ_{1}^{1} subset $P^{\prime \prime}$ of P^{\prime} defined by:

$$
\left(x^{\prime}, y\right) \in P^{\prime \prime} \Longleftrightarrow \exists x \in X\left(f(x) E^{\prime} x^{\prime} \&(x, y) \in P\right)
$$

By boundedness there is a Borel $E^{\prime} \times \Delta_{Y}$-invariant set $P^{\prime \prime \prime}$ with $P^{\prime \prime} \subseteq P^{\prime \prime \prime} \subseteq$ P^{\prime}. Let now $Z \subseteq X^{\prime}$ be defined by

$$
x^{\prime} \in Z \Longleftrightarrow \mu\left(P_{x^{\prime}}^{\prime \prime \prime}\right)>0 .
$$

Then Z is Borel and E^{\prime}-invariant and contains $[f(X)]_{E^{\prime}}$. Finally define $Q \subseteq$ $X^{\prime} \times Y$ by

$$
\left(x^{\prime}, y\right) \in Q \Longleftrightarrow\left(x^{\prime} \in Z \&\left(x^{\prime}, y\right) \in P^{\prime \prime \prime}\right) \text { or } x^{\prime} \notin Z
$$

Then $f(x)=x^{\prime} \Longrightarrow Q_{x^{\prime}}=P_{x}$, so Y, μ, Q witnesses the failure of (ii) for E^{\prime}.
The case of (iii) is similar and we next consider the case of (iv). Repeat then the previous argument for case (ii) until the definition of $P^{\prime \prime \prime}$. Then define $Z^{\prime} \subseteq X^{\prime}$ by

$$
x^{\prime} \in Z^{\prime} \Longleftrightarrow P_{x^{\prime} \prime \prime \prime}^{\prime \prime} \text { is } K_{\sigma} \text { and nonempty. }
$$

Then Z^{\prime} is $\boldsymbol{\Pi}_{\mathbf{1}}^{\mathbf{1}}$, by $[\operatorname{Kec} 95,35.47]$ and the relativization of the fact that every nonempty $\Delta_{1}^{1} K_{\sigma}$ set contains a Δ_{1}^{1} member, see [Mos09, 4F.15]. It is also E^{\prime}-invariant and contains $[f(X)]_{E^{\prime}}$. Let then Z be E^{\prime}-invariant Borel with $[f(X)]_{E^{\prime}} \subseteq Z \subseteq Z^{\prime}$ and define Q as before but replacing " $x^{\prime} \notin Z$ " by " $\left(x^{\prime} \notin Z\right.$ and $\left.y=y_{0}\right)$ ", for some fixed $y_{0} \in Y$. Then Y, Q witnesses the failure of (iv) for E^{\prime}.

Finally, the case of (v) is similar to (iv) by now defining

$$
x^{\prime} \in Z^{\prime} \Longleftrightarrow P_{x^{\prime}}^{\prime \prime \prime} \text { is countable and nonempty. }
$$

and using that Z^{\prime} is $\boldsymbol{\Pi}_{1}^{1}$ by [Kec95, 35.38] (and [Mos09, 4F.15] again).
Assume now that E is not smooth. Then by [HKL90] we have $E_{0} \leq_{B} E$. Thus by Lemma 2.1 it is enough to show that E_{0} fails (ii), (iii), and (v) (thus also (iv)).

We first prove that E_{0} fails (ii). We view here $2^{\mathbb{N}}$ as the Cantor group $(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{N}}$ with pointwise addition + and we let μ be the Haar measure, i.e., the usual product measure. Let then $A \subseteq(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{N}}$ be an F_{σ} set which has μ-measure 1 but is meager. Let $X=Y=(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{N}}$ and define $P \subseteq X \times Y$ as follows:

$$
(x, y) \in P \Longleftrightarrow \exists x^{\prime} E_{0} x\left(x^{\prime}+y \in A\right)
$$

Clearly P is F_{σ} and, since $P_{x}=\bigcup_{x^{\prime} E_{0} x}\left(A-x^{\prime}\right)$, clearly $\mu\left(P_{x}\right)=1$. Moreover P is E_{0}-invariant. Assume then, towards a contradiction that f is a Borel E_{0}-invariant uniformization. Since $x E_{0} x^{\prime} \Longrightarrow f(x)=f\left(x^{\prime}\right)$, by generic ergodicity of E_{0} there is a comeager Borel E_{0}-invariant set $C \subseteq X$ and y_{0} such that $\forall x \in C\left(f(x)=y_{0}\right)$, thus $\forall x \in C\left(x, y_{0}\right) \in P$, so $\forall x \in C \exists x^{\prime} E_{0} x\left(x^{\prime} \in\right.$ $\left.A-y_{0}\right)$. If $G \subseteq(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{N}}$ is the subgroup consisting of the eventually 0
sequences, then $x E_{0} y \Longleftrightarrow \exists g \in G(g+x=y)$, thus $C=\bigcup_{g \in G}\left(g+\left(A-y_{0}\right)\right)$, so C is meager, a contradiction.

To show that E_{0} fails (v), define

$$
(x, y) \in P \Longleftrightarrow x E_{0} y
$$

Then any Borel E_{0}-invariant uniformization of P gives a Borel selector for E_{0}, a contradiction.

Finally to see that E_{0} fails (iii), use above $B=(\mathbb{Z} / 2 \mathbb{Z})^{\mathbb{N}} \backslash A$, instead of A, to produce a G_{δ} set Q as follows:

$$
(x, y) \in Q \Longleftrightarrow \forall x^{\prime} E_{0} x\left(x^{\prime}+y \in B\right)
$$

Then Q is E_{0}-invariant and has comeager sections. If g is a Borel E_{0}-invariant uniformization, then by the ergodicity of E_{0}, there is a μ-measure 1 set D and y_{0} such that $\forall x \in D \forall x^{\prime} E_{0} x\left(x^{\prime} \in B-y_{0}\right)$, so $D \subseteq B-y_{0}$, thus $\mu(D)=0$, a contradiction.

This completes the proof of Theorem 1.5.
(C) We note the following strengthening of Theorem 1.5 in the case that E is smooth, where $K(Y)$ denotes the Polish space of compact subsets of Y [Kec95, 4.F]:

Theorem 2.2. Let X, Y be Polish spaces, E be a smooth Borel equivalence relation on X, and $P \subseteq X \times Y$ be a Borel E-invariant set with non-empty sections.

1. If P has countable sections, then $P=\bigcup_{n} \operatorname{graph}\left(g_{n}\right)$ for a sequence of E-invariant Borel maps $g_{n}: X \rightarrow Y$.
2. If P has K_{σ} sections, then $P_{x}=\bigcup_{n} K_{n}(x)$ for a sequence of E-invariant Borel maps $K_{n}: X \rightarrow K(Y)$.
3. If P has comeager sections, then $P \supseteq \bigcap_{n} U_{n}$ for a sequence of E invariant Borel sets $U_{n} \subseteq X \times Y$ with dense open sections. Moreover, if P has dense G_{δ} sections, we can find such U_{n} with $P=\bigcap_{n} U_{n}$.

Proof. The first two assertions follow from [Kec95, 18.10, 35.46] applied to Q from the proof of (i) \Longrightarrow (iv) of Theorem 1.5.

For the third, let $Z, S, P^{*}, P^{* *}$ be as in the proof of (i) \Longrightarrow (iv). By [Kec95, 16.1] the set C of all z for which $P_{z}^{* *}$ is comeager is Borel, so
$Q(z, y) \Longleftrightarrow\left[C(z) \Longrightarrow P^{* *}(z, y)\right]$ is Borel with comeager sections and $S(x)=z \Longrightarrow P_{x}=Q_{z}$.

If moreover P has G_{δ} sections, we instead let A be the set of all z for which $P_{z}^{* *}$ is comeager and G_{δ}, which is Π_{1}^{1} by [Kec95, 35.47]. Then $S(X) \subseteq A$ is Σ_{1}^{1}, so by the Lusin separation theorem there is a Borel set $S(X) \subseteq C \subseteq A$. We then define Q as above, so that Q moreover has G_{δ} sections.

The result then follows by [Kec95, 35.43].
(D) Theorems 1.1-1.3 are effective, meaning that whenever P is (lightface) Δ_{1}^{1} and satisfies the hypotheses of one of these theorems, then P admits a Δ_{1}^{1} uniformization (cf. [Mos09, 4F.16, 4F.20] and the discussion afterwards). Similarly, [HKL90] implies that if E is smooth and Δ_{1}^{1} then it has a Δ_{1}^{1} reduction to $\Delta\left(2^{\mathbb{N}}\right)$. The proof of Theorem 1.5 therefore gives the following effective refinement:

Theorem 2.3. Let E be a smooth Δ_{1}^{1} equivalence relation on $\mathbb{N}^{\mathbb{N}}$ and $P \subseteq$ $\mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ be Δ_{1}^{1} and E-invariant. Then P admits a $\Delta_{1}^{1} E$-invariant uniformization whenever one of the following holds:
(i) P has μ-positive sections, for some Δ_{1}^{1} probability measure μ on $\mathbb{N}^{\mathbb{N}}$;
(ii) P has non-meager sections;
(iii) P has non-empty K_{σ} sections;
(iv) P has non-empty countable sections.

In (i) above, we identify probability Borel measures on $\mathbb{N}^{\mathbb{N}}$ with points in $[0,1]^{\mathbb{N}<\mathbb{N}}[K e c 95,17.7]$.

It is also interesting to consider whether the converse holds. For example, let E be a Δ_{1}^{1} equivalence relation on $\mathbb{N}^{\mathbb{N}}$, and suppose that for every $\Delta_{1}^{1} E$ invariant set $P \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ which satisfies one of (i)-(iv) above, P admits a $\Delta_{1}^{1} E$-invariant uniformization. Must it be the case that E is smooth?

If we replace Δ_{1}^{1} by Borel, then E must indeed be smooth by Theorem 1.5. However, to prove this we use the fact that every non-smooth Δ_{1}^{1} equivalence relation embeds E_{0} [HKL90], and this is not effective: There are non-smooth Δ_{1}^{1} equivalence relations on $\mathbb{N}^{\mathbb{N}}$ which do not admit Δ_{1}^{1} embeddings of E_{0}.

Restricting our attention to those P which have countable sections, it turns out that the converse to Theorem 2.3 is false. In fact, using the theory of turbulence, one can construct the following very strong counterexample:

Theorem 2.4. There is a Π_{1}^{0} set $N \subseteq \mathbb{N}^{\mathbb{N}}$ and a Δ_{1}^{1} equivalence relation E on N which is not smooth, and such that every Δ_{1}^{1} E-invariant set $P \subseteq N \times \mathbb{N}^{\mathbb{N}}$
with non-empty countable sections is invariant, meaning that $P_{x}=P_{x^{\prime}}$ for all $x, x^{\prime} \in N$.

Corollary 2.5. There is a Δ_{1}^{1} equivalence relation F on $\mathbb{N}^{\mathbb{N}}$ which is not smooth, and such that every $\Delta_{1}^{1} F$-invariant set $P \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ with nonempty countable sections admits a $\Delta_{1}^{1} F$-invariant uniformization.

Proof. Let N, E be as in Theorem 2.4 and define

$$
x F x^{\prime} \Longleftrightarrow\left(x=x^{\prime}\right) \vee\left(x, x^{\prime} \in N \& x E x^{\prime}\right)
$$

Suppose now that $P \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ were Δ_{1}^{1} and F-invariant. Let $y \in A \Longleftrightarrow$ $\exists x \in N(P(x, y)) \Longleftrightarrow \forall x \in N(P(x, y))$. Then A is countable and Δ_{1}^{1}, and $P_{x}=A$ for all $x \in N$. In particular, A contains a Δ_{1}^{1} point, say y_{0}.

By the effective Lusin-Novikov theorem, there is a Δ_{1}^{1} uniformization f of P. Letting $g(x)=f(x)$ for $x \notin N$, and $g(x)=y_{0}$ otherwise, gives a Δ_{1}^{1} F-invariant uniformization of P.

Proof of Theorem 2.4. Consider the group $\mathbb{R}^{\mathbb{N}}$ and the translation action of $\ell^{1} \subseteq \mathbb{R}^{\mathbb{N}}$ on $\mathbb{R}^{\mathbb{N}}$, which is turbulent by [Kec03, Section $\left.10(\mathrm{ii})\right]$. Let F be the induced equivalence relation, which is clearly Δ_{1}^{1}.

Let $\mathbb{F} \subseteq \mathbb{N}$ be the Π_{1}^{1} set of codes for the Δ_{1}^{1} functions from $\mathbb{R}^{\mathbb{N}}$ to $\mathbb{N}^{\mathbb{N}}$, and for $n \in \mathbb{F}$ let f_{n} be the function that it codes. Let also $\mathbb{H} \subseteq \mathbb{F}$ be the Π_{1}^{1} set of those n for which f_{n} is a homomorphism of F into $E_{c t b l e}^{\mathbb{N}^{\mathbb{N}}}$.

Finally, let $\mathbb{D} \subseteq \mathbb{N}$ denote the usual Π_{1}^{1} set of codes for the Δ_{1}^{1} subsets of $\mathbb{R}^{\mathbb{N}}$, and for $n \in \mathbb{D}$ let \mathbb{D}_{n} be the set that it codes.

By the proof of $[K e c 03$, Theorem 12.5(i) \Longrightarrow (ii)], for each $n \in \mathbb{H}$ there is Δ_{1}^{1} comeager F-invariant set $C_{n} \subseteq \mathbb{R}^{\mathbb{N}}$ which f_{n} maps to a single $E_{\text {ctble }}^{\mathbb{N}^{\mathbb{N}}}$-class. Moreover, there is a computable map $n \mapsto n^{*}$ such that if $n \in \mathbb{H}$ then $n^{*} \in \mathbb{D}$ and $C_{n}=\mathbb{D}_{n^{*}}$.

Put $C=\bigcap_{n \in \mathbb{H}} C_{n} \subseteq \mathbb{R}^{\mathbb{N}}$. Then C is comeager, F-invariant and Σ_{1}^{1}, since

$$
a \in C \Longleftrightarrow \forall n\left(n \in \mathbb{H} \Longrightarrow a \in \mathbb{D}_{n^{*}}\right)
$$

Moreover, for each Δ_{1}^{1} homomorphism f of F to $E_{c t b l e}^{\mathbb{N}^{\mathbb{N}}}, f \upharpoonright C$ maps into a single $E_{\text {ctble }}^{\mathbb{N}^{\mathbb{N}}}$-class.

Let now $N \subseteq \mathbb{N}^{\mathbb{N}}$ be Π_{1}^{0} and $c: N \rightarrow \mathbb{R}^{\mathbb{N}}$ be a Δ_{1}^{1} map such that $c(N)=C$. Define the Δ_{1}^{1} equivalence relation E on N by

$$
x E x^{\prime} \Longleftrightarrow c(x) F c\left(x^{\prime}\right)
$$

We will show that this E works.
Let $P \subseteq N \times \mathbb{N}^{\mathbb{N}}$ be E-invariant with non-empty countable sections. Define $Q \subseteq C \times \mathbb{N}^{\mathbb{N}}$ by

$$
\begin{aligned}
(a, y) \in Q & \Longleftrightarrow a \in C \& \exists x \in N(c(x)=a \& P(x, y)) \\
& \Longleftrightarrow a \in C \& \forall x \in N(c(x)=a \Longrightarrow P(x, y)) .
\end{aligned}
$$

Note that Q is F-invariant. Moreover, Q is Δ_{1}^{1} on the Σ_{1}^{1} set $C \times \mathbb{N}^{\mathbb{N}}$, i.e., it is the intersection of $C \times \mathbb{N}^{\mathbb{N}}$ with a Σ_{1}^{1} set in $\mathbb{R}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ as well as with a Π_{1}^{1} set in $\mathbb{R}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$. By Σ_{1}^{1} separation, there is a Δ_{1}^{1} set $R \subseteq \mathbb{R}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ such that $R \cap\left(C \times \mathbb{N}^{\mathbb{N}}\right)=Q$.

Let now $C^{*} \subseteq \mathbb{R}^{\mathbb{N}}$ be defined by
$a \in C^{*} \Longleftrightarrow \forall a^{\prime}\left[a F a^{\prime} \Longrightarrow R_{a}=R_{a^{\prime}} \& R_{a}\right.$ is countable and non-empty $]$.
Then C^{*} is Π_{1}^{1}, F-invariant and contains C, so there is a Δ_{1}^{1} set B which is F-invariant and such that $C \subseteq B \subseteq C^{*}$. Finally, define $S \subseteq \mathbb{R}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ by

$$
(a, y) \in S \Longleftrightarrow[a \in B \quad \& \quad R(a, y)] \vee\left[a \notin B \quad \& \quad y=y_{0}\right]
$$

for some fixed Δ_{1}^{1} point y_{0} in $\mathbb{N}^{\mathbb{N}}$. Then S is Δ_{1}^{1}, F-invariant, and has nonempty countable sections.

Let $s: \mathbb{R}^{\mathbb{N}} \rightarrow\left(\mathbb{N}^{\mathbb{N}}\right)^{\mathbb{N}}$ be a Δ_{1}^{1} homomorphism of F to $E_{c t b l e}^{\mathbb{N}^{\mathbb{N}}}$ for which $S_{a}=\left\{s(a)_{n}\right\}$ for all $a \in \mathbb{R}^{\mathbb{N}}$, which exists by the effective Lusin-Novikov theorem. By the definition of C, we have that $s\left\lceil C\right.$ maps into a single $E_{c t b l e}^{\mathbb{N}^{\mathbb{N}}}$ class. Let A be the corresponding countable set. Then for $a \in C$ and any $x \in N$ with $c(x)=a$,

$$
A=S_{a}=R_{a}=Q_{a}=P_{x}
$$

so $P_{x}=A$ for all $x \in N$.
It remains to check that E is not smooth. To see this, note that $F \upharpoonright C$ has at least two classes (as every F-class is meager), and hence so does E. If E were smooth, then there would be a Δ_{1}^{1} map $f: N \rightarrow \mathbb{N}^{\mathbb{N}}$ for which

$$
x E x^{\prime} \Longleftrightarrow f(x)=f\left(x^{\prime}\right)
$$

But then $\operatorname{graph}(f)$ would be Δ_{1}^{1}, E-invariant, have non-empty countable sections, and satisfy $P_{x} \neq P_{x^{\prime}}$ for some $x, x^{\prime} \in N$, a contradiction.

Problem 2.6. Is there a Δ_{1}^{1} equivalence relation E on $\mathbb{N}^{\mathbb{N}}$ which is not smooth, and such that all Δ_{1}^{1} E-invariant sets $P \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ satisfying one of (i)-(iii) in Theorem 2.3 admit a $\Delta_{1}^{1} E$-invariant uniformization?

Finally, we remark that if E is a Δ_{1}^{1} equivalence relation which is not smooth, then there is a continuous embedding of E_{0} into E which is $\Delta_{1}^{1}(\mathcal{O})$. In particular, the converse of Theorem 2.3 holds if we consider all such $P \in$ $\Delta_{1}^{1}(\mathcal{O})$.

3 Proofs of Theorems 1.6 and 1.7

(A) We first prove Theorem 1.7.

Let $F(Y)$ denote the Effros Borel space of closed subsets of Y (cf. [Kec95, 12.C]). Suppose $P_{x} \in F_{\sigma}$, for all $x \in X$, and that there is an E-invariant Borel map $x \mapsto F_{x} \in F(Y)$ such that P_{x} is non-meager in F_{x} for all $x \in X$. By [Kec95, 12.13], there is a sequence of E-invariant Borel functions $y_{n}: X \rightarrow Y$ such that $\left\{y_{n}(x)\right\}$ is dense in F_{x} for all $x \in X$. Since P_{x} is non-meager and F_{σ} in F_{x}, P_{x} contains an open set in F_{x}, and in particular contains some $y_{n}(x)$. Thus the map taking x to the least $y_{n}(x)$ such that $P\left(x, y_{n}(x)\right)$ is an E-invariant Borel uniformization of P.

It remains only to show that in each of the cases (i), (ii), (iii), such an assignment $x \mapsto F_{x}$ exists. In (ii), we can take $F_{x}=Y$.

Consider case (i), that there is a Borel assignment $x \mapsto \mu_{x}$ of probability Borel measures on Y such that $P_{x} \in \Delta_{2}^{\mathbf{0}}$ and $\mu_{x}\left(P_{x}\right)>0$, for all $x \in X$. Let ν_{x} denote the probability Borel measure μ_{x} restricted to P_{x}, i.e., $\nu_{x}(A)=$ $\mu_{x}\left(A \cap P_{x}\right) / \mu_{x}\left(P_{x}\right)$, and define F_{x} to be the support of ν_{x}, i.e., the smallest ν_{x}-conull closed set in Y.

Since F_{x} is the support of ν_{x}, any open set in F_{x} is ν_{x}-positive, and therefore any ν_{x}-null F_{σ} set in F_{x} is meager. Now P_{x} is G_{δ} and ν_{x}-conull in F_{x}, so P_{x} is comeager in F_{x}, for all $x \in X$. Thus it remains only to show that the map $x \mapsto F_{x}$ is Borel. To see this, we observe that

$$
F_{x} \cap U \neq \emptyset \Longleftrightarrow \nu_{x}(U)>0 \Longleftrightarrow \mu_{x}\left(U \cap P_{x}\right)>0
$$

is Borel, by [Kec95, 17.25].
Finally, consider case (iii), that $P_{x} \in G_{\delta}$ and P_{x} is non-empty and K_{σ} for all $x \in X$. Let F_{x} be the closure of P_{x} in Y. Then P_{x} is dense G_{δ} in F_{x}, so it remains to check that $x \mapsto F_{x}$ is Borel. Indeed,

$$
F_{x} \cap U \neq \emptyset \Longleftrightarrow P_{x} \cap U \neq \emptyset
$$

and this is Borel by the Arsenin-Kunugui theorem [Kec95, 18.18], as $P_{x} \cap U$ is K_{σ} for all $x \in X$.
(B) We now prove Theorem 1.6.

Let $X=[\mathbb{N}]^{\aleph_{0}}$ denote the space of infinite subsets of \mathbb{N}. By identifying subsets of \mathbb{N} with their characteristic functions, we can view X as an $E_{0^{-}}$ invariant G_{δ} subspace of $2^{\mathbb{N}}$. Note that this is a dense G_{δ} in $2^{\mathbb{N}}$, and it is μ-conull, where μ is the uniform product measure on $2^{\mathbb{N}}$. We let E denote the equivalence relation E_{0} restricted to X.

Let $Y=2^{\mathbb{N}}$, and define $P \subseteq X \times Y$ by

$$
P(A, B) \Longleftrightarrow|A \backslash B|=|A \cap B|=\aleph_{0}
$$

Then P is G_{δ} and E-invariant, and P_{x} is comeager for all $x \in X$. By the Borel-Cantelli lemma, one easily sees that $\mu\left(P_{x}\right)=1$ for all $x \in X$.

We claim that P does not admit an E-invariant Borel uniformization. Indeed, suppose such a uniformization $f: X \rightarrow Y$ existed. By [Kec95, 19.19], there is some $A \in X$ such that $f \upharpoonright[A]^{\aleph_{0}}$ is continuous, where $[A]^{\aleph_{0}}$ denotes the space of infinite subsets of A. Since E-classes are dense in $[A]^{\aleph_{0}}$, $f \upharpoonright[A]^{\aleph_{0}}$ is constant, say with value B. Then $f(A)=B$, so $P(A, B)$ and $A \cap B$ is infinite. But then $A \cap B \in[A]^{\aleph_{0}}$, so $f(A \cap B)=B$. But $(A \cap B) \backslash B$ is not infinite, so $\neg P(A \cap B, B)$, a contradiction.

Remark 3.1. Using the same Ramsey-theoretic arguments, one can show that the following examples also do not admit E-invariant uniformizations:

1. Let Y be the space of graphs on \mathbb{N} and set $Q(A, G)$ iff for all finite disjoint sets $x, y \subseteq \mathbb{N}$ there is some $a \in A$ which is adjacent (in G) to every element of x and no element of y, i.e., A contains witnesses that G is the random graph.
2. Let $Y=[\mathbb{N}]^{\aleph_{0}}$, and for $B \in Y$ let $f_{B}: \mathbb{N} \rightarrow \mathbb{N}$ denote its increasing enumeration. Then take $R(A, B)$ iff $f_{B}(A)$ contains infinitely many even and infinitely many odd elements.

As with P above, Q, R both have μ-conull dense G_{δ} sections.

4 Dichotomies and anti-dichotomies

4.1 Proof of Theorem 1.8

Here we derive Miller's dichotomy Theorem 1.8 for sets with countable sections, from Miller's $\left(G_{0}, H_{0}\right)$ dichotomy [Mil12] and Lecomte's \aleph_{0}-dimensional hypergraph dichotomy [Lec09].

We begin by noting the following equivalent formulations of the second alternative in Theorem 1.8.

Proposition 4.1. Let X, Y be Polish spaces, E a Borel equivalence relation on X and $P \subseteq X \times Y$ an E-invariant Borel relation with countable non-empty sections. Then the following are equivalent:
(2) There is a continuous embedding $\pi_{X}: 2^{\mathbb{N}} \times \mathbb{N} \rightarrow X$ of $E_{0} \times I_{\mathbb{N}}$ into E and a continuous injection $\pi_{Y}: 2^{\mathbb{N}} \times \mathbb{N} \rightarrow Y$ such that for all $x, x^{\prime} \in 2^{\mathbb{N}} \times \mathbb{N}$,

$$
\neg\left(x E_{0} \times I_{\mathbb{N}} x^{\prime}\right) \Longrightarrow P_{\pi_{X}(x)} \cap P_{\pi_{X}\left(x^{\prime}\right)}=\emptyset
$$

and

$$
P_{\pi_{X}(x)}=\pi_{Y}\left([x]_{E_{0} \times I_{\mathbb{N}}}\right) .
$$

(3) There is a continuous embedding $\pi_{X}: 2^{\mathbb{N}} \rightarrow X$ of E_{0} into E and a continuous injection $\pi_{Y}: 2^{\mathbb{N}} \rightarrow Y$ such that for all $x, x^{\prime} \in 2^{\mathbb{N}}$,

$$
\neg\left(x E_{0} x^{\prime}\right) \Longrightarrow P_{\pi_{X}(x)} \cap P_{\pi_{X}\left(x^{\prime}\right)}=\emptyset
$$

and

$$
\pi_{Y}(x) \in P_{\pi_{X}(x)}
$$

(4) There is a continuous embedding $\pi_{X}: 2^{\mathbb{N}} \rightarrow X$ of E_{0} into E such that for all $x, x^{\prime} \in 2^{\mathbb{N}}$,

$$
\neg\left(x E_{0} x^{\prime}\right) \Longrightarrow P_{\pi_{X}(x)} \cap P_{\pi_{X}\left(x^{\prime}\right)}=\emptyset .
$$

Proof. Clearly $(2) \Longrightarrow(3) \Longrightarrow$ (4). Assume now that (4) holds, and is witnessed by π_{X}. Let g be a uniformization of P and $\pi_{Y}=g \circ \pi_{X}$. Since π_{Y} is countable-to-one, by the Lusin-Novikov theorem there is a Borel nonmeager set $B \subseteq 2^{\mathbb{N}}$ on which π_{Y} is injective. We then recursively construct a continuous embedding of E_{0} into $E_{0} \upharpoonright B$, and compose this with π_{X}, π_{Y} to get maps witnessing (3).

Now suppose (3) holds, and is witnessed by π_{X}, π_{Y}. Let h be a continuous embedding of $E_{0} \times I_{\mathbb{N}}$ into E_{0}, and let $\tilde{\pi}_{X}=\pi_{X} \circ h$. Let F be the equivalence relation on Y defined by $y F y^{\prime}$ iff $y=y^{\prime}$ or there is some $x \in 2^{\mathbb{N}} \times \mathbb{N}$ such that $P\left(\tilde{\pi}_{X}(x), y\right)$ and $P\left(\tilde{\pi}_{X}(x), y^{\prime}\right)$. If $y \neq y^{\prime}$, then the set of x witnessing that $y F y^{\prime}$ is a single $E_{0} \times I_{\mathbb{N}^{-}}$class, so by Lusin-Novikov F is Borel. Thus, $\pi_{Y} \circ h$ is an embedding of $E_{0} \times I_{\mathbb{N}}$ into the countable Borel equivalence relation F, and by compressibility we can turn this into an invariant Borel embedding $\tilde{\pi}_{Y}$.

Now $\tilde{\pi}_{X}, \tilde{\pi}_{Y}$ would be witnesses to (2), except that $\tilde{\pi}_{Y}$ is not necessarily continuous. However, $\tilde{\pi}_{Y}$ is continuous when restricted to an $E_{0} \times I_{\mathbb{N}}$-invariant comeager Borel set C, so it suffices to find a continuous invariant embedding of $E_{0} \times I_{\mathbb{N}}$ into $\left(E_{0} \times I_{\mathbb{N}}\right) \upharpoonright C$. One gets such an embedding by applying [Milc, Proposition 1.4] to the relation $x R x^{\prime}$ iff $x\left(E_{0} \times I_{\mathbb{N}}\right) x^{\prime}$ or $x \notin C$ or $x^{\prime} \notin C$.

Remark 4.2. From the proof of (3) \Longrightarrow (2), one sees that if E is a countable Borel equivalence relation then actually one can strengthen (2) so that π_{X} is a continuous invariant embedding of $E_{0} \times I_{\mathbb{N}}$ into E, i.e., a continuous embedding such that additionally $\pi_{X}\left([x]_{E_{0} \times I_{\mathbb{N}}}\right)=\left[\pi_{X}(x)\right]_{E}$, for all $x \in 2^{\mathbb{N}} \times I_{\mathbb{N}}$.

The next two results will be used in the proof of Theorem 1.8.
Theorem 4.3 (Theorem 1.9). Let F be a smooth Borel equivalence relation on a Polish space X, Y be a Polish space, and $P \subseteq X \times Y$ be a Borel set with countable sections. Suppose that

$$
\bigcap_{x \in C} P_{x} \neq \emptyset
$$

for every F-class C. Then P admits a Borel F-invariant uniformization.
Proof. Let Z be a Polish space and $S: X \rightarrow Z$ be a Borel map such that $x F x^{\prime} \Longleftrightarrow S(x)=S\left(x^{\prime}\right)$. Define $P^{*} \subseteq Z \times Y$ by

$$
P^{*}(z, y) \Longleftrightarrow \forall x(S(x)=z \Longrightarrow P(x, y))
$$

Note that P^{*} is Π_{1}^{1}, and that if $S(x)=z$ then

$$
P_{z}^{*}=\bigcap_{x F x^{\prime}} P_{x^{\prime}}
$$

is non-empty and countable.

By Lusin-Novikov, fix a sequence g_{n} of Borel maps $g_{n}: X \rightarrow Y$ such that $P=\bigcup_{n} \operatorname{graph}\left(g_{n}\right)$. Define $Q(x, n) \Longleftrightarrow P^{*}\left(S(x), g_{n}(x)\right)$. Then Q is $\boldsymbol{\Pi}_{\mathbf{1}}^{\mathbf{1}}$, so by the number uniformization property [Kec95, 35.1] we can fix a Borel map h uniformizing Q.

Let now $A(z, y) \Longleftrightarrow \exists x\left(S(x)=z \& y=g_{h(x)}(x)\right)$. Then $A \subseteq P^{*}$ is Σ_{1}^{1}, so by the Lusin separation theorem there is a Borel set $A \subseteq P^{* *} \subseteq P^{*}$. By [Kec95, 18.9], the set

$$
C=\left\{z \mid P_{z}^{* *} \text { is countable }\right\}
$$

is $\boldsymbol{\Pi}_{1}^{1}$, and it contains $S(X)$, so by the Lusin separation theorem again there is some Borel set $S(X) \subseteq B \subseteq C$.

By Lusin-Novikov, there is a Borel uniformization f of $R(z, y) \Longleftrightarrow$ $B(z) \& P^{* *}(z, y)$. Then $f \circ S$ is an F-invariant Borel uniformization of P.

Proposition 4.4. Let E be an analytic equivalence relation on a Polish space $X, F \supseteq E$ be a smooth Borel equivalence relation on X, Y be a Polish space, and $P \subseteq X \times Y$ be a Borel E-invariant set with countable sections. Suppose that

$$
x F x^{\prime} \Longrightarrow P_{x} \cap P_{x^{\prime}} \neq \emptyset
$$

for all $x, x^{\prime} \in X$. Then there is a smooth equivalence relation $E \subseteq F^{\prime} \subseteq F$ such that

$$
\bigcap_{x \in C} P_{x} \neq \emptyset
$$

for every F^{\prime}-class C.
Proof. Let $G \subseteq X^{\mathbb{N}}$ be the \aleph_{0}-dimensional hypergraph of F-equivalent sequences x_{n} such that $\bigcap_{n} P_{x_{n}}=\emptyset$. By Lusin-Novikov, G is Borel.

We claim that G has a countable Borel colouring. By [Lec09, Lemma 2.1 and Theorem 1.6], it suffices to show that G has a countable $\sigma\left(\boldsymbol{\Sigma}_{\mathbf{1}}^{\mathbf{1}}\right)$-colouring. Let S be a $\sigma\left(\boldsymbol{\Sigma}_{\mathbf{1}}^{\mathbf{1}}\right)$-measurable selector for F and g_{n} be a sequence of Borel functions such that $P=\bigcup_{n} \operatorname{graph}\left(g_{n}\right)$. Then the function $f(x)$ assigning to x the least n such that $P\left(x, g_{n}(S(x))\right)$ is such a colouring. (In fact, $x \mapsto$ $g_{f(x)}(S(x))$ is a $\sigma\left(\Sigma_{1}^{1}\right)$-measurable F-invariant uniformization of P.)

If A is G-independent, then so is $[A]_{E}$. Thus, by repeated application of the first reflection theorem, any G-independent analytic set is contained in an E-invariant G-independent Borel set. We may therefore fix a countable cover B_{n} of X by E-invariant G-independent Borel sets.

Define $x F^{\prime} x^{\prime} \Longleftrightarrow x F x^{\prime} \& \forall n\left(x \in B_{n} \Longleftrightarrow x^{\prime} \in B_{n}\right)$. Then F^{\prime} is a smooth Borel equivalence relation and $E \subseteq F^{\prime} \subseteq F$. Fix $x=x_{0} \in X$, in order to show that

$$
\bigcap_{x F^{\prime} x^{\prime}} P_{x^{\prime}} \neq \emptyset
$$

Fix an enumeration $y_{n}, n \geq 1$ of P_{x}, and suppose for the sake of contradiction that this intersection is empty. Then for each n, there is some $x_{n} F^{\prime} x$ with $y_{n} \notin P_{x_{n}}$. Also, $x \in B_{k}$ for some k. But then $x_{n} \in B_{k}$ for all k, so B_{k} is not G-independent, a contradiction.

Proof of Theorem 1.8. Clearly the two cases are mutually exclusive. To see that at least one of them holds, define the graph G on X by $x G x^{\prime} \Longleftrightarrow$ $P_{x} \cap P_{x^{\prime}}=\emptyset$. By Lusin-Novikov, this is a Borel graph. We now apply the $\left(G_{0}, H_{0}\right)$ dichotomy [Mil12, Theorem 25] to (G, E), and consider the two cases.

Case 1: There is a countable Borel colouring of $G \cap F$, where $F \supseteq E$ is smooth. Let A be Borel and $(G \cap F)$-independent. By repeated applications of the first reflection theorem, we may assume that A is E-invariant. We can therefore refine F to a smooth equivalence relation $F^{\prime} \supseteq E$ such that $x F^{\prime} x^{\prime} \Longrightarrow P_{x} \cap P_{x^{\prime}} \neq \emptyset$. The result now follows from Theorem 4.3 and Proposition 4.4.

Case 2: Let f be a continuous homorphism from $\left(G_{0}, H_{0}\right)$ to (G, E). It suffices to show that (4) holds in Proposition 4.1. To see this, consider $F=(f \times f)^{-1}(E), R=(f \times f)^{-1}(G)$. Then $H_{0} \subseteq F$ and each F-section is G_{0}-independent, hence meager, so F is meager. We claim R is comeager. To see this, fix $x \in 2^{\mathbb{N}}$ and consider $R_{x}^{c}=\left\{x^{\prime}: P_{f(x)} \cap P_{f\left(x^{\prime}\right)} \neq \emptyset\right\}$. Fix an enumeration y_{n} of $P_{f(x)}$, and let $A_{n}=\left\{x^{\prime}: y_{n} \in P_{f\left(x^{\prime}\right)}\right\}$. Then each A_{n} is $G_{0^{-}}$ independent, hence meager, and $R_{x}^{c}=\bigcup_{n} A_{n}$. Thus R has comeager sections, and by Kuratowski-Ulam R is comeager. One can now recursively construct a continuous homomorphism g from $\left(\left(\Delta_{2^{\mathbb{N}}}\right)^{c}, E_{0}^{c}, E_{0}\right)$ to $\left((f \times f)^{-1}\left(\Delta_{X}\right)^{c}, R, E_{0}\right)$, see e.g. [Mila, Proposition 11]. Then $f \circ g$ satisfies (4).

4.2 An \aleph_{0}-dimensional $\left(G_{0}, H_{0}\right)$ dichotomy

In this section we state and prove an \aleph_{0}-dimensional analogue of Miller's $\left(G_{0}, H_{0}\right)$ dichotomy [Mil12, Theorem 25]. This dichotomy generalizes Lecomte's \aleph_{0}-dimensional G_{0} dichotomy [Lec09] (see also [Mil11]) in the same way that Miller's $\left(G_{0}, H_{0}\right)$ dichotomy generalizes the G_{0} dichotomy [KST99]. We then
state an effective analogue of this theorem, and indicate the changes that must be made to prove it.
(A) Fix a strictly increasing sequence $\alpha \in \mathbb{N}^{\mathbb{N}}$ and dense sets $S \subseteq \bigcup_{n} \mathbb{N}^{2 n}$, $T \subseteq \bigcup_{n} \mathbb{N}^{2 n+1} \times \mathbb{N}^{2 n+1}$, i.e., sets such that for all $u \in \mathbb{N}<\mathbb{N}$ there is some $s \in S$ with $s \subseteq u$, and for all $(u, v) \in \mathbb{N}<\mathbb{N} \times \mathbb{N}<\mathbb{N}$ there is some $t=\left(t_{0}, t_{1}\right) \in T$ such that $t_{0} \subseteq u, t_{1} \subseteq v$.

Let $X_{\alpha}=\left\{x \in \mathbb{N}^{\mathbb{N}}: \forall n \exists m \geq n\left(x\left\lceil m \in \alpha(m)^{m}\right)\right\}\right.$. Note that X_{α} is dense G_{δ} in $\mathbb{N}^{\mathbb{N}}$.

Define the Borel \aleph_{0}-dimensional directed hypergraph G_{0}^{ω} on X_{α} by

$$
G_{0}^{\omega}\left(\left(x_{n}\right)\right) \Longleftrightarrow \exists s \in S \exists z \in \mathbb{N}^{\mathbb{N}} \forall n\left(x_{n}=s n^{\frown} z\right),
$$

and the Borel directed graph H_{0}^{ω} on X_{α} by

$$
x H_{0}^{\omega} y \Longleftrightarrow \exists\left(t_{0}, t_{1}\right) \in T \exists z \in \mathbb{N}^{\mathbb{N}}\left(x=t_{0} 0^{\frown} z \& y=t_{1}^{\frown} 1 \frown z\right)
$$

We say $A \subseteq X_{\alpha}$ is G_{0}^{ω}-independent if $x \in A^{\mathbb{N}} \Longrightarrow \neg G_{0}^{\omega}(x)$.
Proposition 4.5 ([Lec09, Lemma 2.1]). Let $A \subseteq X_{\alpha}$ be Baire measurable and G_{0}^{ω}-independent. Then A is meager.
Proof. Suppose A is non-meager, and fix an open set $N_{s}=\left\{x \in \mathbb{N}^{\mathbb{N}}: s \subseteq x\right\}$ in which A is comeager. By density of S, we may assume wlog that $s \in S$. For each n, the set $A_{n}=\left\{x \in \mathbb{N}^{\mathbb{N}}: s^{\frown} n^{\frown} x \in A\right\}$ is comeager, so there is some $x \in \bigcap_{n} A_{n}$. But then $x_{n}=s^{\frown} n^{\frown} x \in A$, and $G_{0}^{\omega}\left(\left(x_{n}\right)\right)$, so A is not G_{0}^{ω}-independent.

Let R be a quasi-order on a Polish space X. We let \equiv_{R} denote the equivalence relation $x \equiv_{R} y \Longleftrightarrow x R y \& y R x$. We say R is lexicographically reducible if there is a Borel reduction of R to the lexicographic order $\leq_{\text {lex }}$ on 2^{α}, for some $\alpha<\omega_{1}$. If $A \subseteq X$, we let $[A]^{R}=\{y: \exists x \in A(x R y)\},[A]_{R}=$ $\{y: \exists x \in A(y R x)\}$, and say A is closed upwards (resp. downward) for R if $A=[A]^{R}$ (resp. $A=[A]_{R}$). If $A, B \subseteq X$, we say (A, B) is R-independent if $A \times B \cap R=\emptyset$.
Proposition 4.6 (Ess. [Milb, Proposition 5]). Let $A \subseteq X_{\alpha}$ be Baire measurable and $\equiv_{H_{0}^{\omega}}$-invariant. Then A is either meager or comeager.
Proof. Suppose A is non-meager, and fix an open set N_{u} in which A is comeager. We show that A is non-meager in N_{v} for all $v \in \mathbb{N}<\mathbb{N}$. By density of T, it suffices to show this assuming that $(u, v) \in T$. The set $A_{0}=\left\{x \in \mathbb{N}^{\mathbb{N}}: u^{\frown} 0^{\frown} x \in A\right\}$ is comeager, and $x \in A_{0} \Longrightarrow v^{\wedge} 1^{\wedge} x \in A$, so A is comeager in $N_{v \sim 1}$.

Proposition 4.7 ([Milb, Proposition 1]). Let R be an analytic quasi-order on a Polish space X and $A_{0}, A_{1} \subseteq X$ be analytic such that $\left(A_{0}, A_{1}\right)$ is R independent. Then there are Borel sets $A_{i} \subseteq B_{i}$ such that $\left(B_{0}, B_{1}\right)$ is R independent, B_{0} is closed upwards for R and B_{1} is closed downwards for R.

Proof. Note that $\left(\left[A_{0}\right]^{R},\left[A_{1}\right]_{R}\right)$ is R-independent, and these sets are analytic. By the first reflection theorem, we can recursively construct a sequence of Borel sets B_{n}^{i} such that $A_{i} \subseteq B_{0}^{i},\left[B_{n}^{0}\right]^{R} \subseteq B_{n+1}^{0},\left[B_{n}^{1}\right]_{R} \subseteq B_{n+1}^{1}$, and (B_{n}^{0}, B_{n}^{1}) are R-independent. Take $B_{i}=\bigcup_{n} B_{n}^{i}$.

Let F be an equivalence relation on X and G be an \aleph_{0}-dimensional directed hypergraph on X. We call $A \subseteq X F$-locally G-independent if there is no sequence $x_{n} \in A$ of pairwise F-equivalent points with $G\left(\left(x_{n}\right)\right)$, and we call $c: X \rightarrow Y$ an F-local colouring of G if $c^{-1}(y)$ is F-locally G-independent for all $y \in Y$.

Theorem 4.8. Let G be an analytic \aleph_{0}-dimensional directed hypergraph on a Polish space X, and R an analytic quasi-order on X. Then exactly one of the following holds:
(1) There is a lexicographically reducible quasi-order R^{\prime} on X such that $R \subseteq R^{\prime}$ and there is a countable Borel $\equiv_{R^{\prime}}$-local colouring of G.
(2) There is a continuous homomorphism from $\left(G_{0}^{\omega}, H_{0}^{\omega}\right)$ to (G, R).

Proof. To see these are mutually exclusive, it suffices to show that there is no smooth equivalence relation $F \supseteq \equiv_{H_{0}^{\omega}}$ such that there is a countable Borel F-local colouring $c: X_{\alpha} \rightarrow \mathbb{N}$ of G_{0}^{ω}. Arguing by contradiction, suppose such F, c existed. By Proposition 4.6, we can fix $n \in \mathbb{N}$ and a single F-class C such that $A=c^{-1}(n) \cap C$ is non-meager. But then by Proposition 4.5, A is not G_{0}^{ω}-independent, a contradiction.

We now show that at least one of these alternatives hold. Fix continuous maps $\pi_{G}, \pi_{R}: \mathbb{N}^{\mathbb{N}} \rightarrow X$ such that $G=\pi_{G}\left(\mathbb{N}^{\mathbb{N}}\right), R=\pi_{R}\left(\mathbb{N}^{\mathbb{N}}\right)$. Let d denote the usual metric on $\mathbb{N}^{\mathbb{N}}$, and d_{X} be a complete metric compatible with the Polish topology on X.

Let V be a set, H_{0} be an \aleph_{0}-dimensional directed hypergraph on V with edge set E_{0}, and H_{1} be a directed graph on V with edge set E_{1}. A copy
of $\left(H_{0}, H_{1}\right)$ in (G, R) is a triple $\varphi=\left(\varphi_{X}, \varphi_{G}, \varphi_{R}\right)$ where $\varphi_{X}: V \rightarrow X, \varphi_{G}:$ $E_{0} \rightarrow \mathbb{N}^{\mathbb{N}}, \varphi_{R}: E_{1} \rightarrow \mathbb{N}^{\mathbb{N}}$, such that

$$
e=\left(v_{n}\right) \in E_{0} \Longrightarrow \varphi_{G}(e)=\left(\varphi_{X}\left(v_{n}\right)\right)_{n \in \mathbb{N}},
$$

and

$$
e=(v, u) \in E_{1} \Longrightarrow \varphi_{R}(e)=\left(\varphi_{X}(v), \varphi_{X}(u)\right) .
$$

Let $\operatorname{Hom}\left(H_{0}, H_{1} ; G, R\right)$ denote the set of all copies of $\left(H_{0}, H_{1}\right)$ in (G, R). Note that if V, E_{0}, E_{1} are countable, then $\operatorname{Hom}\left(H_{0}, H_{1} ; G, R\right) \subseteq X^{V} \times\left(\mathbb{N}^{\mathbb{N}}\right)^{E_{0}} \times$ $\left(\mathbb{N}^{\mathbb{N}}\right)^{E_{1}}$ is closed, hence Polish.

Suppose now we have H_{0}, H_{1} as above, with V, E_{0}, E_{1} countable, and consider $\mathcal{H} \subseteq \operatorname{Hom}\left(H_{0}, H_{1} ; G, R\right)$. Let $\mathcal{H}(v)=\left\{\varphi_{X}(v): \varphi \in \mathcal{H}\right\}$ for $v \in V$, and note that $\mathcal{H}(v)$ is analytic whenever \mathcal{H} is analytic. Define $\mathcal{H}(e) \subseteq \mathbb{N}^{\mathbb{N}}$ similarly for $e \in E_{0} \cup E_{1}$. Now call a set \mathcal{H} tiny if it is Borel and there is a lexicographically reducible quasi-order R^{\prime} on X such that $R \subseteq R^{\prime}$ and one of the following holds:
(1) $\mathcal{H}(v)$ is $\equiv_{R^{\prime}}$-locally G-independent for some $v \in V$.
(2) $\forall \varphi \in \mathcal{H} \exists u, v \in V\left(\varphi_{X}(u) \not \equiv_{R^{\prime}} \varphi_{X}(v)\right)$.

In this case, we call R^{\prime} a witness that \mathcal{H} is tiny, and say \mathcal{H} is tiny of type 1 (resp. 2) if \mathcal{H} satisfies (1) (resp. (2)). Finally, we say \mathcal{H} is small if it is in the σ-ideal generated by the tiny sets, and otherwise we call \mathcal{H} large.

Finally, fix H_{0}, H_{1} as above with V, E_{0}, E_{1} countable. For $v \in V$, we define the \aleph_{0}-dimensional directed hypergraph $\oplus_{v} H_{0}$ and the directed graph $\oplus_{v} H_{1}$ by taking a countable disjoint union of H_{0} (resp. H_{1}), on vertex set $V \times \mathbb{N}$, and adding the edge $\left(v^{\frown} n\right)_{n \in \mathbb{N}}$ to $\oplus_{v} H_{0}$. Similarly, for $u, v \in V$, we define the \aleph_{0}-dimensional directed hypergraph $H_{0}{ }_{u}+{ }_{v} H_{0}$ and the directed graph $H_{1 u_{u}}+{ }_{v} H_{1}$ by taking a countable disjoint union of H_{0} (resp. H_{1}), on vertex set $V \times \mathbb{N}$, and adding the edge $\left(u^{\smile} 0, v \frown 1\right)$ to $H_{1 u_{u}+}^{v} H_{1}$. Note that there are natural continuous projection maps

$$
\operatorname{Hom}\left(\oplus_{v} H_{0}, \oplus_{v} H_{1} ; G, R\right) \rightarrow \operatorname{Hom}\left(H_{0}, H_{1} ; G, R\right)
$$

and

$$
\operatorname{Hom}\left(H_{0}{ }_{u}+_{v} H_{0}, H_{1 u}+{ }_{v} H_{1} ; G, R\right) \rightarrow \operatorname{Hom}\left(H_{0}, H_{1} ; G, R\right),
$$

for all $n \in \mathbb{N}$, taking φ to its restriction φ^{n} to $V \times\{n\}$. If $\mathcal{H} \subseteq \operatorname{Hom}\left(H_{0}, H_{1} ; G, R\right)$, we let

$$
\begin{aligned}
\oplus_{v} \mathcal{H} & =\left\{\varphi \in \operatorname{Hom}\left(\oplus_{v} H_{0}, \oplus_{v} H_{1} ; G, R\right): \forall n\left(\varphi^{n} \in \mathcal{H}\right)\right\} \\
\mathcal{H}_{u}+{ }_{v} \mathcal{H} & =\left\{\varphi \in \operatorname{Hom}\left(H_{0}+{ }_{v} H_{0}, H_{1}+{ }_{v} H_{1} ; G, R\right): \forall n\left(\varphi^{n} \in \mathcal{H}\right)\right\} .
\end{aligned}
$$

Claim 4.9. If $\operatorname{Hom}(\cdot, \cdot ; G, R)$ is small, then there is a lexicographically reducible quasi-order R^{\prime} on X such that $R \subseteq R^{\prime}$ and there is a countable Borel $\equiv_{R^{\prime}}$-local colouring of G.

Proof. Note that $\operatorname{Hom}(\cdot, \cdot ; G, R)$ can be naturally identified with X, so that our assumption implies that X can be covered by countably-many Borel sets A_{n} such that for each n, there is a lexicographically reducible quasi-order R_{n} such that $R \subseteq R_{n}$ and A_{n} is $\equiv_{R_{n}}$-locally G-independent.

Let $f_{n}: X \rightarrow 2^{\alpha_{n}}$ be a Borel reduction of R_{n} to the lexicographic ordering on $2^{\alpha_{n}}, \alpha_{n}<\omega_{1}$. Let $\alpha=\sum_{n} \alpha_{n}$, and consider the map $f: X \rightarrow 2^{\alpha}, f(x)=$ $f_{0}(x) \frown f_{1}(x) \frown f_{2}(n) \frown \cdots$. Then f is Borel, so $x R^{\prime} y \Longleftrightarrow f(x) \leq_{\text {lex }} f(y)$ is a lexicographically reducible quasi-order containing R. Note also that $\equiv_{R^{\prime}}=\bigcap_{n} \equiv_{R_{n}}$. It follows that the map taking x to the least n for which $x \in A_{n}$ is a countable Borel $\equiv_{R^{\prime}}$-local colouring of G.

Claim 4.10. Let H_{0}, H_{1} be as above with V, E_{0}, E_{1} countable, $F \subseteq V \cup E_{0} \cup E_{1}$ be finite, $\varepsilon>0$, and $\mathcal{H} \subseteq \operatorname{Hom}\left(H_{0}, H_{1} ; G, R\right)$ be large and Borel. Then there is a large Borel set $\mathcal{H}^{\prime} \subseteq \mathcal{H}$ for which $\operatorname{diam}_{d_{X}}\left(\mathcal{H}^{\prime}(v)\right)<\varepsilon$ for all $v \in F \cap V$ and $\operatorname{diam}_{d}\left(\mathcal{H}^{\prime}(e)\right)<\varepsilon$ for all $e \in F \cap\left(E_{0} \cup E_{1}\right)$.

Proof. This follows from the fact that we can cover $X, \mathbb{N}^{\mathbb{N}}$ with countably many sets of small diameter, and the small sets form a σ-ideal.

Claim 4.11. Let H_{0}, H_{1} be as above with V, E_{0}, E_{1} countable, and suppose $\mathcal{H} \subseteq \operatorname{Hom}\left(H_{0}, H_{1} ; G, R\right)$ is Borel and large. Then $\oplus_{v} \mathcal{H}, \mathcal{H}_{u}+{ }_{v} \mathcal{H}$ are Borel and large.

Proof. That these sets are Borel is clear. Now suppose $\oplus_{v} \mathcal{H}$ is small and write $\oplus_{v} \mathcal{H}=\bigcup_{i \in 2, n \in \mathbb{N}} \mathcal{F}_{n}^{i}$, with F_{n}^{i} tiny of type i and witness R_{n}^{i}. Arguing as in the proof of Claim 4.9, we may assume that $R_{n}^{i}=R^{\prime}$ for a single quasiorder R^{\prime}. Let $v_{n} \in V$ be such that $\mathcal{F}_{n}^{0}\left(v_{n}\right)$ is $\equiv_{R^{\prime}}$-locally G-independent. By the first reflection theorem, we may fix Borel sets $\mathcal{F}_{n}^{0}\left(v_{n}\right) \subseteq A_{n}$ which are $\equiv_{R^{\prime}}$ locally G-independent. Define $\mathcal{H}_{n}=\left\{\varphi \in \mathcal{H}: \varphi_{X}\left(v_{n}\right) \in A_{n}\right\}$, and let

$$
\mathcal{H}^{\prime}=\mathcal{H} \backslash\left(\left\{\varphi \in \mathcal{H}: \exists u, v \in V\left(\varphi_{X}(u) \not 三_{R^{\prime}} \varphi_{X}(v)\right)\right\} \cup \bigcup_{n} \mathcal{H}_{n}\right)
$$

We claim \mathcal{H}^{\prime} is tiny, which implies that \mathcal{H} is small. Clearly \mathcal{H}^{\prime} is Borel, and we claim $\mathcal{H}^{\prime}(v)$ is $\equiv_{R^{\prime}}$ locally G-independent. Indeed, if $\varphi_{n} \in \mathcal{H}^{\prime}$ and $G\left(\left(\left(\varphi_{n}\right)_{X}(v)\right)_{n \in \mathbb{N}}\right)$, then there is some $\varphi \in \oplus_{v} \mathcal{H}$ with $\varphi^{n}=\varphi_{n}$ for all n. But
then $\varphi \in \mathcal{F}_{n}^{1}$ for some n, so there are $u, w \in V \times \mathbb{N}$ such that $\varphi_{X}(u) \not \equiv_{R^{\prime}}$ $\varphi_{X}(w)$. Since $\varphi^{n} \in \mathcal{H}^{\prime}$ for all n, we may assume that $u=v^{\frown} i, w=v^{\frown} j$ for some $i \neq j$. But then $\varphi_{X}^{i}(v)=\left(\varphi_{i}\right)_{X}(v) \not 三_{R^{\prime}}\left(\varphi_{j}\right)_{X}(v)=\varphi_{X}^{j}(v)$.

Next suppose $\mathcal{H}_{u}+{ }_{v} \mathcal{H}$ is small and write $\mathcal{H}_{u}+{ }_{v} \mathcal{H}=\bigcup_{i \in 2, n \in \mathbb{N}} \mathcal{F}_{n}^{i}$, with \mathcal{F}_{n}^{i} tiny of type i and witness R_{n}^{i}. As before, we may assume $R_{n}^{i}=R^{\prime}$, and we define $\mathcal{H}_{n}, \mathcal{H}^{\prime}$ in the same way, so that it suffices to show that \mathcal{H}^{\prime} is tiny of type 2 .

Let $\varphi_{i} \in \mathcal{H}^{\prime}, i \in 2$, and suppose $\left(\varphi_{0}\right)_{X}(u) R\left(\varphi_{1}\right)_{X}(v)$. Then there is some $\varphi \in \mathcal{H}_{u}+{ }_{v} \mathcal{H}$ with $\varphi^{0}=\varphi_{0}$ and $\varphi^{i}=\varphi_{1}$ for $i>0$. As before, we find that we must have $\varphi_{X}(u \frown 0) \not \equiv 三_{R^{\prime}} \varphi_{X}\left(v^{\frown} 1\right)$, so that $\left(\varphi_{0}\right)_{X}(u) \not \equiv_{R^{\prime}}\left(\varphi_{1}\right)_{X}(v)$. Thus, $\left(\mathcal{H}^{\prime}(u), \mathcal{H}^{\prime}(v)\right)$ is $\left(R \cap \equiv_{R^{\prime}}\right)$-independent, and by Proposition 4.7 we can find Borel sets $\mathcal{H}^{\prime}(u) \subseteq A, \mathcal{H}^{\prime}(v) \subseteq B$ such that A is closed upwards for $R \cap \equiv_{R^{\prime}}$, B is closed downwards for $R \cap \equiv_{R^{\prime}}$, and (A, B) is ($R \cap \equiv_{R^{\prime}}$)-independent. Then

$$
x Q y \Longleftrightarrow x R^{\prime} y \&\left(x \equiv_{R^{\prime}} y \& x \in A \Longrightarrow y \in A\right)
$$

is a lexicographically reducible quasi-order containing R, and \mathcal{H}^{\prime} is tiny of type 2 with witness Q.

If $\operatorname{Hom}(\cdot, \cdot ; G, R)$ is small, then by Claim 4.9 we are done. Suppose now that $\operatorname{Hom}(\cdot, \cdot ; G, R)$ is large. We define a sequence G_{n} of \aleph_{0}-dimensional directed graphs on \mathbb{N}^{n} and a sequence H_{n} of directed graphs on \mathbb{N}^{n} as follows:

$$
\begin{aligned}
& G_{n}\left(x_{i}\right) \Longleftrightarrow \exists k<n \exists s \in\left(S \cap \mathbb{N}^{k}\right) \exists u \in \mathbb{N}^{n-k-1} \forall i\left(x_{i}=s \frown i \frown u\right), \\
& x H_{n} y \Longleftrightarrow \exists k<n \exists\left(t_{0}, t_{1}\right) \in\left(T \cap \mathbb{N}^{k} \times \mathbb{N}^{k}\right) \\
& \quad \exists u \in \mathbb{N}^{n-k-1}\left(x=t_{0}^{\frown} 0^{\frown} u \& y=t_{1}^{\frown} 1 \frown y\right) .
\end{aligned}
$$

Note that if $s \in S \cap \mathbb{N}^{n}$ then $G_{n+1}=\oplus_{s} G_{n}$ and $H_{n+1}=\oplus_{s} H_{n}$, and if $\left(t_{0}, t_{1}\right) \in T \cap \mathbb{N}^{n} \times \mathbb{N}^{n}$ then $G_{n+1}=G_{n} t_{0}+_{t_{1}} G_{n}$ and $H_{n+1}=H_{n} t_{0}+_{t_{1}} H_{n}$. Also,

$$
G_{0}^{\omega}\left(\left(x_{i}\right)_{i \in \mathbb{N}}\right) \Longleftrightarrow \exists N \forall n \geq N\left(G_{n}\left(\left(x_{i} \upharpoonright n\right)_{i \in \mathbb{N}}\right)\right)
$$

and

$$
x H_{0}^{\omega} y \Longleftrightarrow \exists N \forall n \geq N\left(x \upharpoonright n H_{n} y \upharpoonright n\right),
$$

and G_{n}, H_{n} have countably many vertices and edges.
By Claims 4.10 and 4.11, we can recursively construct a sequence of large Borel sets $\mathcal{H}_{n} \subseteq \operatorname{Hom}\left(G_{n}, H_{n} ; G, R\right)$ such that $\mathcal{H}_{n+1} \subseteq \mathcal{H}_{n} \oplus_{s} \mathcal{H}_{n}$ for $s \in$ $S \cap \mathbb{N}^{n}, \mathcal{H}_{n+1} \subseteq \mathcal{H}_{n} t_{0}+{ }_{t_{1}} \mathcal{H}_{n}$ for $\left(t_{0}, t_{1}\right) \in T \cap \mathbb{N}^{n} \times \mathbb{N}^{n}, \operatorname{diam}_{d_{X}}\left(\mathcal{H}_{n}(x)\right)<2^{-n}$ for all $x \in \alpha(n)^{n}$, and $\operatorname{diam}_{d}(\mathcal{H}(e))<2^{-n}$ for all $e \in G_{n} \cup H_{n}$ with $e_{0} \in \alpha(n)^{n}$,
where e_{0} denotes the first vertex in e. It follows that $\{f(x)\}=\bigcap_{n} \overline{\mathcal{H}_{n}(x \upharpoonright n)}$ exists and is well defined for $x \in X_{\alpha}$, and that this map $f: X_{\alpha} \rightarrow X$ is continuous. To see that it is a homomorphism of G_{0}^{ω} to G, suppose $G_{0}^{\omega}\left(\left(x_{i}\right)_{i \in \mathbb{N}}\right)$ and let N be sufficiently large that $G_{N}\left(\left(x_{i} \upharpoonright N\right)_{i \in \mathbb{N}}\right)$. Then $\{y\}=$ $\bigcap_{n>N} \frac{\mathcal{H}_{n}\left(\left(x_{i}\lceil n)_{i \in \mathbb{N}}\right)\right.}{}$ exists and is well defined, and by continuity we have $\left(f\left(x_{i}\right)\right)_{i \in \mathbb{N}}=\pi_{G}(y) \in G$. A similar argument shows that f is a homomorphism from H_{0}^{ω} to R.
(B) This dichotomy admits the following effective refinement:

Theorem 4.12. Let G be a $\Sigma_{1}^{1} \aleph_{0}$-dimensional directed hypergraph on a Polish space X, and R a Σ_{1}^{1} partial order on X. Then exactly one of the following holds:

1. There is a quasi-order R^{\prime} on X such that $R \subseteq R^{\prime}$, there is a countable $\Delta_{1}^{1} \equiv_{R^{\prime}}$-local colouring of G, and there is a Δ_{1}^{1} reduction of R^{\prime} to the lexicographic order $\leq_{\text {lex }}$ on 2^{α}, for some $\alpha<\omega_{1}^{C K}$.
2. There is a continuous homomorphism from $\left(G_{0}^{\omega}, H_{0}^{\omega}\right)$ to (G, R).

To prove this, we make the following modifications to the proof of Theorem 4.8. First, we choose π_{G}, π_{H} to be computable (restricting their domains appropriately to Π_{1}^{0} sets). We then replace "Borel" with " Δ_{1}^{1} " and "lexicographically reducible" with "admitting a Δ_{1}^{1} reduction to $\leq_{\text {lex }}$ on 2^{α}, for some $\alpha<\omega_{1}^{C K}$ " in the definition of tiny sets.

We now have the following:
Lemma 4.13. Let V be a set, H_{0} be an \aleph_{0}-dimensional directed hypergraph on V with edge set E_{0} and H_{1} be a directed graph on V with edge set E_{1}, with V, E_{0}, E_{1} countable. Suppose $\mathcal{H} \subseteq \operatorname{Hom}\left(H_{0}, H_{1} ; G, R\right)$ is small and Δ_{1}^{1}. Then one can find:
(1) a uniformly Δ_{1}^{1} sequence of tiny sets $\left(\mathcal{F}_{n}^{i}\right)_{i \in 2, n \in \mathbb{N}}$ covering \mathcal{H},
(2) a uniformly Δ_{1}^{1} sequence $\left(R_{n}^{i}\right)_{i \in 2, n \in \mathbb{N}}$ of quasi-orders on \mathbb{N},
(3) a uniformly Δ_{1}^{1} sequence of ordinals $\alpha_{n}^{i}<\omega_{1}^{C K}$,
(4) a uniformly Δ_{1}^{1} sequence $\left(f_{n}^{i}\right)_{i \in 2, n \in \mathbb{N}}$ of maps $f_{n}^{i}: \mathbb{N}^{\mathbb{N}} \rightarrow 2^{\alpha_{n}^{i}}$, and
(5) a uniformly Δ_{1}^{1} sequence $v_{n} \in V$,
such that the sets \mathcal{F}_{n}^{i} are pairwise disjoint, $R \subseteq R_{n}^{i}$ for all i, n, each f_{n}^{i} is a reduction of R_{n}^{i} to $\leq_{\text {lex }}$ on $2^{\alpha_{n}^{i}}, \mathcal{F}_{n}^{0}\left(v_{n}\right)$ are $\equiv_{R_{n}^{0}}$-locally G-independent, and $\forall \varphi \in \mathcal{H} \exists u, v \in V\left(\varphi_{X}(u) \not \equiv_{R_{n}^{1}} \varphi_{X}(v)\right)$.

Proof sketch. Fix a nice coding $D \ni n \mapsto D_{n}$ of the Δ_{1}^{1} sets. The assertion that $\left(\mathcal{F}, R^{\prime}, \alpha, f, v, i\right)$ is a witness that \mathcal{F} is tiny of type i is Π_{1}^{1}-on- Δ_{1}^{1}. It follows that the relation " $\varphi \notin \mathcal{H}$ or $n \in D$ codes such a tuple with $\varphi \in \mathcal{F}$ " is Π_{1}^{1}, and hence by the number uniformization theorem for Π_{1}^{1} there is a Δ_{1}^{1} map $g: \mathcal{H} \rightarrow D$ taking each $\varphi \in \mathcal{H}$ to such a tuple. The image of \mathcal{H} under g is Σ_{1}^{1}, so by the Lusin separation theorem there is a Δ_{1}^{1} set $A \subseteq D$ containing $g(\mathcal{H})$ and such that every element in A codes a tuple as above. One can then fix a Δ_{1}^{1} enumeration of A, which satisfies all of the above conditions except maybe pairwise disjointness of the family \mathcal{F}_{n}^{i}, and this can be fixed by a straightforward recursive construction.

The effective analogue of Claim 4.9 follows immediately. We note that the first reflection theorem is effective enough that the proof of Proposition 4.7 is effective as well. Claim 4.11 now follows using Lemma 4.13. The rest of the proof is identical to that of Theorem 4.8.

4.3 Proof of Theorem 1.8 from the \aleph_{0}-dimensional $\left(G_{0}, H_{0}\right)$ dichotomy

(A) Clearly the two cases are mutually exclusive. To see that at least one of them holds, define the \aleph_{0}-dimensional hypergraph G on X by $G\left(x_{n}\right) \Longleftrightarrow$ $\bigcap_{n} P_{x_{n}}=\emptyset$. By Lusin-Novikov, G is Borel. We now apply Theorem 4.8 to (G, E), and consider the two cases.

Case 1: There is a lexicographically reducible quasi-order R containing E and a countable Borel \equiv_{R}-local colouring of G. Let $F=\equiv_{R}$, so that $E \subseteq F$ and F is smooth. Since P is E-invariant, if A is F-locally G-independent then so is $[A]_{E}$. It follows that there is a countable Borel E-invariant F-local colouring of G, so that after refining F with this colouring we may assume that X is F-locally G-independent, i.e., $\bigcap_{x \in C} P_{x} \neq \emptyset$ for every F-class C. Then P admits a Borel F-invariant uniformization by Theorem 4.3.

Case 2: There is a continuous homomorphism $\pi: X_{\alpha} \rightarrow X$ of $\left(G_{0}^{\omega}, H_{0}^{\omega}\right)$ to (G, E). We will show that (4) holds in Proposition 4.1. To see this, consider $F=(\pi \times \pi)^{-1}(E)$ and $R=(\pi \times \pi)^{-1}\left(R^{\prime}\right)$, where $x R^{\prime} x^{\prime} \Longleftrightarrow$ $P_{x} \cap P_{x^{\prime}}=\emptyset$. Note that R^{\prime} is Borel by Lusin-Novikov, and hence so is R. Also, $H_{0}^{\omega} \subseteq F$ and $F \cap R=\emptyset$.

We claim that R is comeager. To see this, fix $x \in X_{\alpha}$ and consider

$$
R_{x}^{c}=\left\{x^{\prime} \in X_{\alpha}: P_{\pi(x)} \cap P_{\pi\left(x^{\prime}\right)} \neq \emptyset\right\}
$$

Fix an enumeration y_{n} of $P_{\pi(x)}$, and let $A_{n}=\left\{x^{\prime} \in X_{\alpha}: y_{n} \in P_{\pi\left(x^{\prime}\right)}\right\}$. Then each A_{n} is G_{0}^{ω}-independent, hence meager, and hence so is $R_{x}^{c}=\bigcup_{n} A_{n}$. Thus R_{x} is comeager for all $x \in X_{\alpha}$, and by Kuratowski-Ulam R is comeager.

One can now recursively construct a continuous homomorphism $f: 2^{\omega} \rightarrow$ X_{α} from $\left(\Delta\left(2^{\omega}\right)^{c}, E_{0}^{c}, E_{0}\right)$ to $\left((\pi \times \pi)^{-1}(\Delta(X))^{c}, R, F\right)$, see e.g. [Mila, Proposition 11]. Then $\pi \circ f$ satisfies (4).
(B) We note the following effective version of Theorem 1.8:

Theorem 4.14. Let E be a Δ_{1}^{1} equivalence relation on $\mathbb{N}^{\mathbb{N}}$ and $P \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ an E-invariant Δ_{1}^{1} relation with countable non-empty sections. Then exactly one of the following holds:

1. There is a $\Delta_{1}^{1} E$-invariant uniformization,
2. There is a continuous embedding $\pi_{X}: 2^{\mathbb{N}} \times \mathbb{N} \rightarrow X$ of $E_{0} \times I_{\mathbb{N}}$ into E and a continuous injection $\pi_{Y}: 2^{\mathbb{N}} \times \mathbb{N} \rightarrow Y$ such that for all $x, x^{\prime} \in 2^{\mathbb{N}} \times \mathbb{N}$,

$$
\neg\left(x E_{0} \times I_{\mathbb{N}} x^{\prime}\right) \Longrightarrow P_{\pi_{X}(x)} \cap P_{\pi_{X}\left(x^{\prime}\right)}=\emptyset
$$

and

$$
P_{\pi_{X}(x)}=\pi_{Y}\left([x]_{E_{0} \times I_{\mathbb{N}}}\right) .
$$

This follows from the above proof, Theorem 4.12, and the fact that the proof of Theorem 4.3 is effective.

4.4 Proof of Theorem 1.10

(A) Note first that (1) is equivalent to the existence of a smooth Borel equivalence $F \supseteq E$ for which P is F-invariant, by Theorem 2.2.

To see that these are mutually exclusive, let $F \supseteq E$ be smooth so that P is F-invariant, and suppose that π_{X}, π_{Y} witness (2). Then there is a comeagre E_{0}-invariant set C that π_{X} maps into a single F-class, so $\pi_{Y}(C)$ is contained in a single P-section, a contradiction.

Now define the graph $x G x^{\prime} \Longleftrightarrow P_{x} \neq P_{x^{\prime}}$. This graph is Borel by Lusin-Novikov. Apply the $\left(G_{0}, H_{0}\right)$ dichotomy to (G, E).

Case 1: There is a smooth $F \supseteq E$ such that G admits a countable Borel F-local colouring. If A is analytic and F-locally G-independent, then so is $[A]_{E}$, so by repeated applications of the first reflection theorem it is contained in a Borel E-invariant F-locally G-independent set. Thus we may assume
that G admits a countable Borel E-invariant F-local colouring, and hence by refining F with this colouring we may assume that actually $G \cap F=\emptyset$, i.e., P is F-invariant. Thus (1) holds.

Case 2: There is a continuous homomorphism $\varphi: 2^{\mathbb{N}} \rightarrow X$ of $\left(G_{0}, H_{0}\right)$ to (G, E). Define $R(x, y) \Longleftrightarrow P(\varphi(x), y)$, and let

$$
Q(x, y) \Longleftrightarrow R(x, y) \& \forall^{*} x^{\prime} \neg R\left(x^{\prime}, y\right),
$$

where $\forall^{*} x A(x)$ means A is comeager for $A \subseteq 2^{\mathbb{N}}$. Let $A=\operatorname{proj}(Q)$ and $x S x^{\prime} \Longleftrightarrow Q_{x} \cap Q_{x^{\prime}} \neq \emptyset$. Then R is Borel with countable sections, and it follows that Q, A, S are Borel as well. Additionally, R, Q are E_{0}-invariant.

We claim that A is comeager and S is meager. Granted this, we can find a continuous homomorphism $\psi: 2^{\mathbb{N}} \rightarrow A$ of $\left(E_{0}, E_{0}^{c}\right)$ to $\left(E_{0}^{\prime}, S^{c}\right)$ such that $\varphi \circ \psi$ is injective, where E_{0}^{\prime} is the smallest equivalence relation containing H_{0} (cf. [Mila, Proposition 11]). Now the set $Q^{\prime}(x, y) \Longleftrightarrow Q(\psi(x), y)$ has countable sections, so it admits a Borel uniformization g. Since ψ is a homomorphism from E_{0}^{c} to S^{c}, g is countable-to-one, so by Lusin-Novikov it is injective and continuous on a non-meager set B. Let τ be a continuous embedding of E_{0} into $E_{0} \upharpoonright B$. Then $\pi_{X}=\varphi \circ \psi \circ \tau, \pi_{Y}=g \circ \tau$ satisfy (2).

Now suppose that A is comeager, in order to show that S is meager. By Kuratowski-Ulam, it suffices to show that S_{x} is meager for all $x \in A$. So consider $x \in A$, and let $y \in Q_{x}$ be arbitrary. Then $y \notin R_{x^{\prime}}$ for comeagerlymany x^{\prime}, and so $y \notin Q_{x^{\prime}}$ for comeagerly-many x^{\prime}. Since Q_{x} is countable, it follows that $Q_{x} \cap Q_{x^{\prime}}=\emptyset$ for comeagerly-many x^{\prime}, and so S_{x} is meager.

It remains to show that A is comeager. To see this, define $x B x^{\prime} \Longleftrightarrow$ $R_{x} \subseteq R_{x^{\prime}}$. For any $x, B_{x}=\bigcap_{y \in R_{x}}\left\{x^{\prime}: R\left(x^{\prime}, y\right)\right\}$, so if B_{x} is meager then there is some $y \in R_{x}$ for which $\left\{x^{\prime}: R\left(x^{\prime}, y\right)\right\}$ is not comeager. But this set is Borel and E_{0}-invariant, so it is meager, and hence $y \in Q_{x}$ and $x \in A$. Thus by Kuratowski-Ulam it suffices to show that B is meager.

Suppose for the sake of contradiction that B is non-meager. Let C be the set of all x so that B_{x} is non-meager. Since B_{x} is E_{0}-invariant, it must be comeager for all $x \in C$. Moreover C is non-meager and E_{0}-invariant, hence it is comeager. It follows that B is comeager, and hence so is $B^{\prime}\left(x, x^{\prime}\right) \Longleftrightarrow$ $B\left(x, x^{\prime}\right) \& B\left(x^{\prime}, x\right)$. In particular, $B_{x}^{\prime}=C$ is comeager for some x. But then $x, x^{\prime} \in C \Longrightarrow R_{x}=R_{x^{\prime}}$, hence C is G_{0}-independent, a contradiction.

Remark 4.15. This proof actually shows that in case (2), we can take π_{X}, π_{Y} so that additionally $\pi_{Y}(x) \in P_{\pi_{X}\left(x^{\prime}\right)} \Longleftrightarrow x E_{0} x^{\prime}$.
(B) This proof can also be made effective, by Theorem 4.12:

Theorem 4.16. Let E be a Δ_{1}^{1} equivalence relation on X and $P \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ an E-invariant Δ_{1}^{1} relation with countable non-empty sections. Then exactly one of the following holds:
(1) There is a uniformly Δ_{1}^{1} sequence $g_{n}: X \rightarrow Y$ of E-invariant uniformizations with $P=\bigcup_{n} \operatorname{graph}\left(g_{n}\right)$,
(2) There is a continuous embedding $\pi_{X}: 2^{\mathbb{N}} \rightarrow X$ of E_{0} into E and a continuous injection $\pi_{Y}: 2^{\mathbb{N}} \rightarrow Y$ such that for all $x \in 2^{\mathbb{N}}, P\left(\pi_{X}(x), \pi_{Y}(x)\right)$.

4.5 Proofs of Proposition 1.11 and Theorem 1.12

Let us fix a parametrization of the Borel relations on $\mathbb{N}^{\mathbb{N}}$, as in [AK00, Section 5] (see also [Mos09, Section 3H]). This consists of a set $D \subseteq 2^{\mathbb{N}}$ and two sets $S, P \subseteq\left(\mathbb{N}^{\mathbb{N}}\right)^{3}$ such that
(i) D is Π_{1}^{1}, S is Σ_{1}^{1} and P is Π_{1}^{1};
(ii) for $d \in D, S_{d}=P_{d}$, and we denote this set by D_{d};
(iii) every Borel set in $\left(\mathbb{N}^{\mathbb{N}}\right)^{2}$ appears as D_{d} for some $d \in D$; and
(iv) if $B \subseteq X \times\left(\mathbb{N}^{\mathbb{N}}\right)^{2}$ is Borel, X a Polish space, there is a Borel function $p: X \rightarrow 2^{\mathbb{N}}$ so that $B_{x}=D_{p(x)}$ for all $x \in X$.

Define
$\mathcal{P}=\left\{(d, e): D_{d}\right.$ is an equivalence relation on $\mathbb{N}^{\mathbb{N}}$ and D_{e} is D_{d}-invariant $\}$,
and let $\mathcal{P}^{\text {unif }}$ denote the set of pairs $(d, e) \in \mathcal{P}$ for which D_{e} admits a $D_{d^{-}}$ invariant uniformization. More generally, for any set A of properties of sets $P \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$, let $\mathcal{P}_{A}\left(\right.$ resp. $\left.\mathcal{P}_{A}^{\text {unif }}\right)$ denote the set of pairs (d, e) in \mathcal{P} (resp. $\mathcal{P}^{\text {unif }}$) such that D_{e} satisfies all of the properties in A. Let $\mathcal{P}_{\text {ctble }}$ (resp. $\left.\mathcal{P}_{\text {ctble }}^{\text {unif }}\right)$ denote $\mathcal{P}_{A}\left(\right.$ resp. $\left.\mathcal{P}_{A}^{\text {unif }}\right)$ for A consisting of the property that P has countable sections.

We are interested in properties asserting that D_{e}, or its sections, are G_{δ}, F_{σ}, comeager, non-meager, μ-positive, μ-conull, countable, or K_{σ}, where μ varies over probability Borel measures on $\mathbb{N}^{\mathbb{N}}$. It is straightforward to check, using [Kec95, 16.1, 17.25, 18.9, 35.47], that for all such sets of properties A, \mathcal{P}_{A} is $\boldsymbol{\Pi}_{1}^{1}$ and $\mathcal{P}_{A}^{\text {unif }}$ is $\boldsymbol{\Sigma}_{2}^{1}$.

By Theorem 4.14, we can bound the complexity of $\mathcal{P}_{\text {ctble }}^{\text {unif }}$:

Proposition 4.17 (Proposition 1.11). The set $\mathcal{P}_{\text {ctble }}^{\text {unif }}$ is $\boldsymbol{\Pi}_{1}^{1}$.
Proof. By Theorem 4.14, $(d, e) \in \mathcal{P}_{\text {ctble }}^{\text {unif }}$ iff $(d, e) \in \mathcal{P}_{\text {ctble }}$ and there exists a $\Delta_{1}^{1}(d, e)$ function f which is a D_{d}-invariant uniformization of D_{e}. The assertion that a $\Delta_{1}^{1}(d, e)$ function f is a D_{d}-invariant uniformization of D_{e} is $\Pi_{1}^{1}(d, e)$, so by bounded quantification for $\Delta_{1}^{1}[\operatorname{Mos} 09,4 \mathrm{D} .3], \mathcal{P}_{c t b l e}^{u n i f}$ is Π_{1}^{1}.

Recall that a set B in a Polish space X is called $\boldsymbol{\Sigma}_{\mathbf{2}}^{\mathbf{1}}$-complete if it is $\boldsymbol{\Sigma}_{\mathbf{2}}^{\mathbf{1}}$, and for all zero-dimensional Polish spaces Y and $\boldsymbol{\Sigma}_{2}^{\mathbf{1}}$ sets $C \subseteq Y$ there is a continuous function $f: Y \rightarrow X$ such that $C=f^{-1}(B)$. Note that by [Paw14], one could equivalently take f to be Borel in this definition.

The following computes the exact complexity of the sets $\mathcal{P}_{A}^{\text {unif }}$, when A asserts that D_{e} has "large" sections.

Theorem 4.18 (Theorem 1.12). The set $\mathcal{P}_{A}^{\text {unif }}$ is $\boldsymbol{\Sigma}_{2}^{1}$-complete, where A is one of the following sets of properties of $P \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$:

1. P has non-meager sections;
2. P has non-meager G_{δ} sections;
3. P has non-meager sections and is G_{δ};
4. P has μ-positive sections for some probability Borel measure μ on $\mathbb{N}^{\mathbb{N}}$;
5. P has μ-positive F_{σ} sections for some probability Borel measure μ on $\mathbb{N}^{\mathbb{N}}$;
6. P has μ-positive sections for some probability Borel measure μ on $\mathbb{N}^{\mathbb{N}}$ and is F_{σ}.

The same holds for comeager instead of non-meager, and μ-conull instead of μ-positive.

In fact, there is a hyperfinite Borel equivalence relation E with code $d \in D$ such that for all such A above, the set of $e \in D$ such that $(d, e) \in \mathcal{P}_{A}^{\text {unif }}$ is Σ_{2}^{1}-complete.

Proof. We will show this first when A asserts that P is G_{δ} and has comeager sections. Since $\mathbb{N}^{\mathbb{N}}$ is Borel isomorphic to $\mathbb{N}^{\mathbb{N}} \times 2^{\mathbb{N}}$, we may assume that D_{d} is instead an equivalence relation on $\mathbb{N}^{\mathbb{N}} \times 2^{\mathbb{N}}$, and that $D_{e} \subseteq\left(\mathbb{N}^{\mathbb{N}} \times 2^{\mathbb{N}}\right) \times \mathbb{N}^{\mathbb{N}}$.

Let E be the hyperfinite Borel equivalence relation on $\mathbb{N}^{\mathbb{N}} \times 2^{\mathbb{N}}$ given by

$$
(x, y) E\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow x=x^{\prime} \& y E_{0} y^{\prime},
$$

fix a code $d \in D$ for E, and let $\mathcal{P}_{A}^{u n i f}(E)$ denote the set of all $e \in D$ so that $(d, e) \in \mathcal{P}_{A}^{\text {unif }}$. We will show that $\mathcal{P}_{A}^{\text {unif }}(E)$ is Σ_{2}^{1}-complete.

Let now T be a tree on $\mathbb{N} \times \mathbb{N}$ (cf. [Kec95, 2.C]). Each such tree T defines a closed subset $[T] \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ given by

$$
[T]=\left\{(x, y) \in \mathbb{N}^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}: \forall n((x \upharpoonright n, y\lceil n) \in T)\}\right.
$$

We say $[T]$ admits a full Borel uniformization if there is a Borel map $f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ so that $(x, f(x)) \in[T]$ for all $x \in \mathbb{N}^{\mathbb{N}}$, and we denote by FBU the set of trees on $\mathbb{N} \times \mathbb{N}$ which admit full Borel uniformizations.

By the proof of Theorem 1.5, and considering $\mathbb{N}^{\mathbb{N}}$ as a co-countable set in $2^{\mathbb{N}}$, there is a G_{δ} set $P \subseteq 2^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ with comeager sections which is E_{0} invariant, and so that

$$
\bigcap_{x \in C} P_{x}=\emptyset
$$

whenever $C \subseteq 2^{\mathbb{N}}$ is μ-positive, where μ is the uniform product measure on $2^{\mathbb{N}}$. Given a tree T on $\mathbb{N} \times \mathbb{N}$, define $P_{T} \subseteq\left(\mathbb{N}^{\mathbb{N}} \times 2^{\mathbb{N}}\right) \times \mathbb{N}^{\mathbb{N}}$ by

$$
P_{T}(x, y, z) \Longleftrightarrow P(y, z) \vee(x, z) \in[T]
$$

Note that P_{T} is G_{δ}, E-invariant, and has comeager sections.
Claim 4.19. $[T]$ admits a full Borel uniformization iff P_{T} admits a Borel E-invariant uniformization.

Proof. If f is a full Borel uniformization of [T], then $g(x, y)=f(x)$ is an E-invariant Borel uniformization of P_{T}. Conversely, suppose g were an E invariant Borel uniformization of P_{T}. For $x \in \mathbb{N}^{\mathbb{N}}$, let $g_{x}(y)=g(x, y)$. Then $g_{x}: 2^{\mathbb{N}} \rightarrow \mathbb{N}^{\mathbb{N}}$ is E_{0}-invariant, hence constant on a μ-conull set $C \subseteq 2^{\mathbb{N}}$. Since

$$
\bigcap_{y \in C} P_{y}=\emptyset
$$

we cannot have $P\left(y, g_{x}(y)\right)$ for all $y \in C$, and so $\left(x, g_{x}(y)\right) \in[T]$ for all $y \in C$. Thus

$$
f(x)=z \Longleftrightarrow \forall_{\mu}^{*} y(g(x, y)=z)
$$

is a full Borel uniformization of $[T]$ (cf. [Kec95, 17.26] and the paragraphs following it).

By identifying trees on $\mathbb{N} \times \mathbb{N}$ with their characteristic functions, we can view the space of trees as a closed subset of $2^{\mathbb{N}}$. The set B given by

$$
B(T, x, y, z) \Longleftrightarrow T \text { is a tree and } P_{T}(x, y, z)
$$

is clearly Borel, so there is a Borel map p such that for each tree $T, p(T) \in D$ and $D_{p(T)}=P_{T}$. It follows by Claim 4.19 that $\mathrm{FBU}=p^{-1}\left(\mathcal{P}_{A}^{\text {unif }}(E)\right)$. By [AK00, Lemma 5.3], the set FBU is $\boldsymbol{\Sigma}_{2}^{1}$-complete, and hence so is $\mathcal{P}_{A}^{u n i f}(E)$.

The cases $1-3$ follow from this as well. For 4-6, simply replace P in the above proof with an F_{σ} set $Q \subseteq 2^{\mathbb{N}} \times \mathbb{N}^{\mathbb{N}}$ with μ-conull sections which is E_{0}-invariant, and so that

$$
\bigcap_{x \in C} Q_{x}=\emptyset
$$

whenever $C \subseteq 2^{\mathbb{N}}$ is non-meager, which exists by the proof of Theorem 1.5.

Remark 4.20. We do not know the complexity of $\mathcal{P}_{A}^{\text {unif }}$ when A asserts that P is G_{δ} and has comeager μ-conull sections for a probability Borel measure μ. By the proof of Theorem 1.6, there is an E_{0}-invariant G_{δ} set $R \subseteq[\mathbb{N}]^{\aleph_{0}} \times \mathbb{N}^{\mathbb{N}}$ with comeager μ-conull sections, such that

$$
\bigcap_{x \in C} P_{x}=\emptyset
$$

for all Ramsey-positive sets $C \subseteq[\mathbb{N}]^{\aleph_{0}}$. One can define P_{T} for a tree T on $\mathbb{N} \times \mathbb{N}$ as in the proof of Theorem 1.12, however the "if" direction of our proof of Claim 4.19 no longer works (cf. [Sab12]).

4.6 Proof of Proposition 1.14

By $[\operatorname{Kec} 95,18.17]$, there is a G_{δ} set $R \subseteq \mathbb{N}^{\mathbb{N}} \times 2^{\mathbb{N}}$ with $\operatorname{proj}_{\mathbb{N}^{\mathbb{N}}}(R)=\mathbb{N}^{\mathbb{N}}$ which does not admit a Borel uniformization. Write $R=\bigcap_{n} Q_{n}, Q_{n} \subseteq \mathbb{N}^{\mathbb{N}} \times 2^{\mathbb{N}}$ open, and define P by

$$
P(n, x, y) \Longleftrightarrow Q_{n}(x, y)
$$

Let $(n, x) F\left(m, x^{\prime}\right) \Longleftrightarrow x=x^{\prime}$. Then F is a smooth countable Borel equivalence relation, P is open, and if $C=[(n, x)]_{F}$ is an F-class then

$$
\bigcap_{u \in C} P_{u}=\bigcap_{n} P_{(n, x)}=\bigcap_{n}\left(Q_{n}\right)_{x}=R_{x} \neq \emptyset .
$$

Suppose now towards a contradiction that $g: \mathbb{N} \times \mathbb{N}^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ is an F invariant uniformization of P. Define $f: \mathbb{N}^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ by $f(x)=g(0, x)$. Then $f(x)=g(0, x)=g(n, x) \in P_{(n, x)}$ for all n, so $f(x) \in \bigcap_{n} P_{(n, x)}=R_{x}$, a contradiction.

5 On Conjecture 1.15

Concerning Conjecture 1.15, we first note the following analog of Lemma 2.1.
Lemma 5.1. Let E, F be Borel equivalence relations on Polish spaces X, X^{\prime}, resp., such that $E \leq_{B} E^{\prime}$. If E fails (b) (resp., (c), (d)), so does E^{\prime}.

The proof is identical to that of Lemma 2.1. Note now that any countable Borel equivalence relation E trivially satisfies (b), (c), and (d), so by Lemma 5.1, in Conjecture 1.15, (a) implies (b), (c) and (d).

To verify then Conjecture 1.15 , one needs to show that if E is not reducible to countable, then (b), (c) and (d) fail. It is an open problem (see [HK01, end of Section 6]) whether the following holds:

Problem 5.2. Let E be a Borel equivalence relation which is not reducible to countable. Then one of the following holds:
(1) $E_{1} \leq_{B} E$, where E_{1} is the following equivalence relation on $\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$:

$$
x E_{1} y \Longleftrightarrow \exists m \forall n \geq m\left(x_{n}=y_{n}\right) ;
$$

(2) There is a Borel equivalence relation F induced by a turbulent continuous action of a Polish group on a Polish space such that $F \leq_{B} E$;
(3) $E \leq_{B} E$, where $E_{0}^{\mathbb{N}}$ is the following equivalence relation on $\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$:

$$
x E_{0}^{\mathbb{N}} y \Longleftrightarrow \forall n\left(x_{n} E_{0} y_{n}\right) .
$$

It is therefore interesting to show that (b), (c) and (d) fail for E_{1}, F as in (2) above, and $E_{0}^{\mathbb{N}}$. Here are some partial results.

Proposition 5.3. Let E be a Borel equivalence relation which is not reducible to countable but is Borel reducible to a Borel equivalence relation F with K_{σ} classes. Then E fails (d). In particular, E_{1} and E_{2} fail (d), where E_{2} is the following equivalence relation on $2^{\mathbb{N}}$:

$$
x E_{2} y \Longleftrightarrow \sum_{n: x_{n} \neq y_{n}} \frac{1}{n+1}<\infty
$$

Proof. Suppose E, F live on the Polish spaces X, Y, resp., and let $g: X \rightarrow Y$ be a Borel reduction of E to F. Define $P \subseteq X \times X$ as follows:

$$
(x, y) \in P \Longleftrightarrow g(x) F y
$$

Clearly P is E-invariant and has K_{σ} sections. Suppose then that P admitted a Borel E-invariant countable uniformization $f: X \rightarrow Y^{\mathbb{N}}$. Then define $h: X \rightarrow X$ by $g(x)=f(x)_{0}$. Then by [Kec24, Proposition 3.7], h shows that E is reducible to countable, a contradiction.

Concerning (b) and (c) for E_{1}, the following is a possible example for their failure.

Problem 5.4. Let $X=\left(2^{\mathbb{N}}\right)^{\mathbb{N}}, Y=2^{\mathbb{N}}$ and define $P \subseteq X \times Y$ as follows:

$$
(x, y) \in P \Longleftrightarrow \exists m \forall n \geq m\left(x_{n} \neq y\right)
$$

so that P is E_{1}-invariant and each section P_{x} is co-countable, so has μ measure 1 (for μ the product measure on Y) and is comeager. Is there a Borel E_{1}-invariant countable uniformization of P?

One can show the following weaker result, which provides a Borel antidiagonalization theorem for E_{1}.
Proposition 5.5. Let $f:\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ be a Borel function such that $x E_{1} y \Longrightarrow$ $f(x)=f(y)$. Then there is $x \in\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$ such that for infinitely many n, $f(x)=x_{n}$.

Thus if X, Y, P are as in Problem 5.4, P does not admit a Borel E_{1} invariant uniformization.

Proof. For any nonempty countable set $S \subseteq 2^{\mathbb{N}}$ consider the product space $S^{\mathbb{N}}$ with the product topology, where S is taken to be discrete. Denote by $E_{0}(S)$ the equivalence relation on $S^{\mathbb{N}}$ given by $x E_{0}(S) y \Longleftrightarrow \exists m \forall n \geq m\left(x_{n}=y_{n}\right)$. This is generically ergodic and for $x, y \in S^{\mathbb{N}}$ we have that $x E_{0}(S) y \Longrightarrow$ $f(x)=f(y)$, so there is (unique) $x_{S} \in 2^{\mathbb{N}}$ such that $f(x)=x_{S}$, for comeager many $x \in S^{\mathbb{N}}$. Clearly x_{S} can be computed in a Borel way given any $x \in\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$ with $S=\left\{x_{n}: n \in \mathbb{N}\right\}$, i.e., we have a Borel function $F:\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ such that

$$
\left\{x_{n}: n \in \mathbb{N}\right\}=\left\{y_{n}: n \in \mathbb{N}\right\}=S \Longrightarrow F\left(\left(x_{n}\right)\right)=F\left(\left(y_{n}\right)\right)=x_{S}
$$

We now use the following Borel anti-diagonalization theorem of H. Friedman, see [Sta85, Theorem 2, page 23]:

Theorem 5.6 (H. Friedman). Let E be a Borel (even analytic) equivalence relation on a Polish space X. Let $F: X^{\mathbb{N}} \rightarrow X$ be a Borel function such that

$$
\left\{\left[x_{n}\right]_{E}: n \in \mathbb{N}\right\}=\left\{\left[y_{n}\right]_{E}: n \in \mathbb{N}\right\} \Longrightarrow F\left(\left(x_{n}\right)\right) E F\left(\left(y_{n}\right)\right) .
$$

Then there is $x \in X^{\mathbb{N}}$ and $i \in \mathbb{N}$ such that $F(x) E x_{i}$.
Applying this to E being the equality relation on $2^{\mathbb{N}}$ and F as above, we conclude that for some S, we have that $x_{S} \in S$. Then for comeager many $x \in S^{\mathbb{N}}$ we have that $x_{n}=x_{S}$, for infinitely many n, and also $\left(x, x_{S}\right) \in P$, a contradiction.

In response to a question by Andrew Marks, we note the following version of Proposition 5.5 for E_{1} restricted to injective sequences. Below $\left[2^{\mathbb{N}}\right]^{\mathbb{N}}$ is the Borel subset of $\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$ consisting of injective sequences and $x \leq_{T} y$ means that x is recursive in y.

Proposition 5.7. Let $g:\left[2^{\mathbb{N}}\right]^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ be a Borel function such that $x E_{1} y \Longrightarrow$ $g(x)=g(y)$. Then there is $y \in\left[2^{\mathbb{N}}\right]^{\mathbb{N}}$ such that for all $n, g(y) \leq_{T} y_{n}$.

Proof. Fix a recursive bijection $x \mapsto\langle x\rangle$ from $\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$ to $2^{\mathbb{N}}$ and for each $i \in \mathbb{N}$ let $\bar{i} \in 2^{\mathbb{N}}$ be the characteristic function of $\{i\}$. Then for each $x \in\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$ and $i \in \mathbb{N}$, put

$$
\bar{x}^{i}=\left\langle\bar{i}, x_{i}, x_{i+1}, \ldots\right\rangle \in 2^{\mathbb{N}}
$$

and

$$
x^{\prime}=\left\langle\bar{x}^{0}, \bar{x}^{1}, \ldots\right\rangle \in\left[2^{\mathbb{N}}\right]^{\mathbb{N}}
$$

Note that $x E_{1} y \Longrightarrow x^{\prime} E_{1} y^{\prime}$. Finally define $f:\left(2^{\mathbb{N}}\right)^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ by $f(x)=g\left(x^{\prime}\right)$. Then by Proposition 5.5 , there is $x \in\left(2^{\mathbb{N}}\right)^{\mathbb{N}}$ such that for infinitely many n we have that $f(x)=x_{n}$. Let $y=x^{\prime}$.

If n is such that $f(x)=g(y)=x_{n}$, then as $x_{n} \leq_{T} \bar{x}^{k}=y_{k}, \forall k \leq n$, we have that $g(y) \leq_{T} y_{k}, \forall k \leq n$. Since this happens for infinitely many n, we have that $g(y) \leq_{T} y_{n}$, for all n.

We do not know anything about $E_{0}^{\mathbb{N}}$ but if we let $E_{\text {ctble }}$ be the equivalence relation $E_{\text {ctble }}^{2^{\mathbb{N}}}$ (so that $E_{0}^{\mathbb{N}}<{ }_{B} E_{\text {ctble }}$), we have:

Proposition 5.8. $E_{\text {ctble }}$ fails (b) and (c).

Proof. We will prove that $E_{\text {ctble }}$ fails (b), the proof that it also fails (c) being similar. Let $X=\left(2^{\mathbb{N}}\right)^{\mathbb{N}}, Y=2^{\mathbb{N}}$, let μ be the usual product measure on Y and put $E=E_{\text {ctble }}$. Define $P \subseteq X \times Y$ by

$$
(x, y) \in P \Longleftrightarrow y \notin\left\{x_{n}: n \in \mathbb{N}\right\} .
$$

Clearly $\mu\left(P_{x}\right)=1$ and P is E-invariant. Assume now, towards a contradiction, that there is a Borel function $f: X \rightarrow Y^{\mathbb{N}}$ such that $\forall x \in X \forall n \in$ $\mathbb{N}\left(\left(x, f(x)_{n}\right) \in P\right)$ and $x_{1} E x_{2} \Longrightarrow\left\{f\left(x_{1}\right)_{n}: n \in \mathbb{N}\right\}=\left\{f\left(x_{2}\right)_{n}: n \in \mathbb{N}\right\}$. Then

$$
\forall x \in X\left(\left\{f(x)_{n}: n \in \mathbb{N}\right\} \cap\left\{x_{n}: n \in \mathbb{N}\right\}=\emptyset\right)
$$

Define $F: X^{\mathbb{N}} \rightarrow Y^{\mathbb{N}}$ as follows: Fix a bijection $(i, j) \mapsto\langle i, j\rangle$ from \mathbb{N}^{2} to \mathbb{N} and for $n \in \mathbb{N}$ put $n=\left\langle n_{0}, n_{1}\right\rangle$. Given $x \in X^{\mathbb{N}}$, define $x^{\prime} \in X$ by $x_{n}^{\prime}=\left(x_{n_{0}}\right)_{n_{1}}$. Then let $F(x)=f\left(x^{\prime}\right)$. First notice that for $x=\left(x_{n}\right), y=\left(y_{n}\right) \in X^{\mathbb{N}}$,

$$
\left\{\left[x_{n}\right]_{E}: n \in \mathbb{N}\right\}=\left\{\left[y_{n}\right]_{E}: n \in \mathbb{N}\right\} \Longrightarrow x^{\prime} E y^{\prime} \Longrightarrow F(x) E F(y)
$$

Thus by Theorem 5.6, there is some $x \in X^{\mathbb{N}}$ and $i \in \mathbb{N}$ such that $F(x) E x_{i}$, i.e., $f\left(x^{\prime}\right) E x_{i}$ or $\left\{f\left(x^{\prime}\right)_{n}: n \in \mathbb{N}\right\}=\left\{\left(x_{i}\right)_{n}: n \in \mathbb{N}\right\}=\left\{x_{\langle i, n\rangle}^{\prime}: n \in \mathbb{N}\right\}$. Thus $\left\{f\left(x^{\prime}\right)_{n}: n \in \mathbb{N}\right\} \cap\left\{x_{n}^{\prime}: n \in \mathbb{N}\right\} \neq \emptyset$, a contradiction.

We do not know if $E_{\text {ctble }}$ fails (d). We also do not know anything about equivalence relations induced by turbulent continuous actions of Polish groups on Polish spaces.

Finally, we note that by the dichotomy theorem of Hjorth concerning reducibility to countable (see [Hjo05] or [Kec24, Theorem 3.8]), in order to prove Conjecture 1.15 for Borel equivalence relations induced by Borel actions of Polish groups, it would be sufficient to prove it for Borel equivalence relations induced by stormy such actions.

References

[AK00] S. Adams and A. S. Kechris, Linear algebraic groups and countable Borel equivalence relations, J. Amer. Math. Soc. 13(4) (2000), 909-943. 6, 32, 35
[BM75] John Burgess and Douglas Miller, Remarks on invariant descriptive set theory, Fund. Math. 90(1) (1975), 53-75. 9
[dRM21] N. de Rancourt and B. D. Miller, The Feldman-Moore, GlimmEffros, and Lusin-Novikov theorems over quotients, 2021, arXiv: 2105.05374 [math.LO]. 5, 9
[HKL90] L. A. Harrington, A. S. Kechris, and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc. 3(4) (1990), 903-928. 12, 14
[Hjo05] G. Hjorth, A dichotomy theorem for being essentially countable, in Contemporary Mathematics, ed. by A. Blass and Y. Zhang, vol. 380, 2005, 109-127. 39
[HK01] G. Hjorth and A. S. Kechris, Recent developments in the theory of Borel reducibility, Fund. Math. 170(1) (2001), 21-52. 36
[Kec95] A. S. Kechris, Classical descriptive set theory, Graduate texts in mathematics 156, New York: Springer-Verlag, 1995. 2, 8-14, 17, 18, 21, 32, 34, 35
[Kec03] A. S. Kechris, "Actions of Polish Groups and Classification Problems", in, Analysis and Logic, Cambridge University Press, 2003, 115-187. 15
[Kec24] A. S. Kechris, The theory of countable Borel equivalence relations, 2024, URL: https://pma.caltech.edu/documents/5921/CBER. pdf (03/09/2024). 37, 39
[KST99] A. S. Kechris, S. Solecki, and S. Todorčević, Borel Chromatic Numbers, Adv. Math. 141(1) (1999), 1-44. 22
[Lec09] D. Lecomte, A dichotomy characterizing analytic digraphs of uncountable Borel chromatic number in any dimension, Trans. Amer. Math. Soc. 361(8) (2009), 4181-4193. 5, 19, 21-23
[Mil11] B. D. Miller, Dichotomy theorems for countably infinite dimensional analytic hypergraphs, Ann. Pure Appl. Logic 162(7) (2011), 561-565. 22
[Mil12] B. D. Miller, The graph-theoretic approach to descriptive set theory, Bull. Symb. Log. 18(4) (2012), 554-575. 5, 19, 22
[Mila] B. D. Miller, "Forceless, ineffective, powerless proofs of descriptive dichotomy theorems, lecture III", URL: https://glimmeffros. github.io/unpublished/paristhree.pdf (02/22/2024). 22, 30, 31
[Milb] B. D. Miller, "Forceless, ineffective, powerless proofs of descriptive dichotomy theorems, lecture IV", URL: https://glimmeffros. github.io/unpublished/parisfour.pdf (02/22/2024). 23, 24
[Milc] B. D. Miller, "Invariant uniformizations and quasi-transversals", URL: https://glimmeffros.github.io/recent/uniformization. pdf (02/22/2024). 4, 9, 20
[Mos09] Y. N. Moschovakis, Descriptive set theory, 2nd ed, Mathematical surveys and monographs v. 155, Providence, R.I: American Mathematical Society, 2009. 12, 14, 32, 33
[Mye76] Dale Myers, Invariant uniformization, Fund. Math. 91(1) (1976), 65-72. 9, 10
[Paw14] J. Pawlikowski, On the concept of analytic hardness, Proc. Amer. Math. Soc. 143(4) (2014), 1745-1747. 33
[Sab12] M. Sabok, Complexity of Ramsey null sets, Adv. Math. 230(3) (2012), 1184-1195. 35
[Sta85] L. J. Stanley, Borel Diagonalization and Abstract Set Theory: Recent Results of Harvey Friedman, in Harvey Friedman's Research on the Foundations of Mathematics, ed. by L. A. Harrington et al., North-Holland, 1985, 11-86. 37
[TV21] S. Todorčević and Z. Vidnyánszky, A complexity problem for Borel graphs, Invent. Math. 226(1) (2021), 225-249. 6

Department of Mathematics
California Institute of Technology
Pasadena, CA 91125
kechris@caltech.edu
mwolman@caltech.edu

