Up to All Courses for 2017-18 Show Filters

Geology (Ge) Courses (2017-18)

Ge/Ay 11 c. Introduction to Earth and Planetary Sciences: Planetary Sciences. 9 units (3-0-6): third term. A broad introduction to the present state and early history of the solar system, including terrestrial planets, giant planets, moons, asteroids, comets, and rings. Earth-based observations, observations by planetary spacecraft, study of meteorites, and observations of extrasolar planets are used to constrain models of the dynamical and chemical processes of planetary systems. Although Ge 11 abcd is designed as a sequence, any one term may be taken as a standalone course. Physicists and astronomers are particularly welcome. Instructor: Brow.
Ge/Ay 117. Bayesian Statistics and Data Analysis. 9 units (3-0-6): second term. In modern fields of planetary science and astronomy, vast quantities of data are often available to researchers. The challenge is converting this information into meaningful knowledge about the universe. The primary focus of this course is the development of a broad and general tool set that can be applied to the student's own research. We will use case studies from the astrophysical and planetary science literature as our guide as we learn about common pitfalls, explore strategies for data analysis, understand how to select the best model for the task at hand, and learn the importance of properly quantifying and reporting the level of confidence in one's conclusions. Instructor: Knutson.
Ge/Ay 132. Atomic and Molecular Processes in Astronomy and Planetary Sciences. 9 units (3-0-6): first term. Fundamental aspects of atomic and molecular spectra that enable one to infer physical conditions in astronomical, planetary, and terrestrial environments. Topics will include the structure and spectra of atoms, molecules, and solids; transition probabilities; photoionization and recombination; collisional processes; gas-phase chemical reactions; and isotopic fractionation. Each topic will be illustrated with applications in astronomy and planetary sciences, ranging from planetary atmospheres and dense interstellar clouds to the early universe. Given in alternate years; not offered 2017-18. Instructor: Blake.
Ge/Ay 133. The Formation and Evolution of Planetary Systems. 9 units (3-0-6): third term. Review current theoretical ideas and observations pertaining to the formation and evolution of planetary systems. Topics to be covered include low-mass star formation, the protoplanetary disk, accretion and condensation in the solar nebula, the formation of gas giants, meteorites, the outer solar system, giant impacts, extrasolar planetary systems. Instructors: Batygin, Knutson.
Ge/Ay 137. Planetary Physics. 9 units (3-0-6): second term. A quantitative review of dynamical processes that characterize long-term evolution of planetary systems. An understanding of orbit-orbit resonances, spin-orbit resonances, secular exchange of angular momentum and the onset of chaos will be developed within the framework of Hamiltonian perturbation theory. Additionally, dissipative effects associated with tidal and planet-disk interactions will be considered. Instructor: Batygin.
Ge/Ay 159. Planetary Evolution and Habitability. 9 units (3-0-6): second term. Photochemistry of planetary atmospheres, comparative planetology, atmospheric evolution. What makes Earth habitable? Remote sensing of extrasolar planets, biosignatures. Given in alternate years; offered 2017-18. Instructor: Yung.
Ay/Ge 198. Special Topics in the Planetary Sciences. 9 units (3-0-6): third term. Topic for 2015-16 is Extrasolar Planets. Thousands of planets have been identified in orbit around other stars. Astronomers are now embarking on understanding the statistics of extrasolar planet populations and characterizing individual systems in detail, namely star-planet, planet-planet and planet-disk dynamical interactions, physical parameters of planets and their composition, weather phenomena, etc. Direct and indirect detection techniques are now completing the big picture of extra-solar planetary systems in all of their natural diversity. The seminar-style course will review the state of the art in exoplanet science, take up case studies, detail current and future instrument needs, and anticipate findings. Instructors: Howard, Mawe.