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Abstract. We use the circle method to obtain tight bounds on the Lp norm

of an exponential sum involving the divisor function for p > 2.

1. Introduction

Let X ≥ 1 be sufficiently large. For a function f : N→ C, let

Mf (α) =
∑
n≤X

f(n)e(nα)

where as usual, e(α) := e2πiα. Information on the structure of f(n) can be obtained
by studying the size of Lp-integrals of Mf (α), and bounds on them are often useful
in applications of the circle method. Write

(1.1) If (p) :=

∫ 1

0

|Mf (α)|pdα.

In the case p = 1, f = τ , it was shown in [GP] that

(1.2)
√
X � Iτ (1)�

√
X logX.

where

τ(n) :=
∑
d|n

1.

For sequences other than τ(n), similar results have been established in the case
p = 1. For example, with µ the Möbius function, we have that X1/6 � Iµ(1) �
X1/2 where the upper bound follows from Parseval’s identity, and the lower bound
follows from Theorem 3 in [BR]. Estimates for If (1) in the case f is an indicator
function for the primes have been obtained by Vaughan [Va1] and Goldston [Go],
and in the case f is the indicator function for integers not divisible by the rth
power of any prime by Balog and Ruzsa [BR] (in fact, a result of Keil [Ke] finds the
exact order of magnitude for all moments but 1 + 1

r in which case the exact order
of magnitude is found within a factor of logX).
In this paper, we shall focus on the case f = τ , the divisor function. Note that we
have that by Parseval’s identity

(1.3) Iτ (2) =
∑
n≤X

τ(n)2 ∼ 1

π2
X(logX)3.

In this paper, we shall obtain tight estimates on Iτ (p) for p > 2. In particular, we
prove the following result.
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Theorem 1.1. We have that for p > 2

(1.4)

∫ 1

0

|Mτ (α)|pdα �p Xp−1(logX)p.

Throughout this paper, all implied constants will be assumed to depend only on p
unless otherwise specified.

2. Preliminaries and setup

Note that we have that
(2.1)

Mτ (α) =
∑
n≤X

τ(n)e(nα) =
∑
uv≤X

e(αuv) = 2
∑
uv≤X
u<v

e(αuv)+
∑
uv≤X
u=v

e(αuv) = 2T (α)+E(α)

where

T (α) :=
∑

u≤X1/2

∑
u<v≤X/u

e(αuv), E(α) :=
∑

u≤X1/2

e(αu2).

Also, let

v(β) :=
∑
n≤X

e(nβ).

We record the following well-known bound on v(β) which we will use later.

Lemma 2.1. We have that for β 6∈ Z, v(β) � min(X, ‖β‖−1) where for α ∈ R, we
let ‖α‖ := infn∈Z |α− n|.

In addition, we shall also use the following result on moments of v(β).

Lemma 2.2. For p > 2, we have that∫ 1

0

|v(β)|p � Xp−1.

Proof. Note that by Lemma 2.1, we have that

(2.2)

∫ 1

0

|v(β)|pdβ ≥
∫ X−1

−X−1

|v(β)|pdβ �
∫ X−1

X−1

Xpdβ � Xp−1.

In addition, note that for positive integers s, by considering the underlying Dio-
phantine system, we have that∫ 1

0

|v(β)|2sdβ ∼ CsX2s−1

so the desired result follows from Hölder’s inequality. �

We will use the circle method to prove the main result. To that end, let

M(q, a) = {α ∈ [0, 1] : |qα− a| ≤ PX−1}

with P = Xν for ν > 0 sufficiently small, and let

M =
⋃
q≤P

q⋃
a=1

(a,q)=1

M(q, a),m = [0, 1] \M.
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For any measurable B ⊆ [0, 1), let

If (p;B) :=

∫
B

|Mf (α)|dα.

We shall prove Theorem 1.1 by using the fact that Iτ (p) = Iτ (p;M)+Iτ (p;m), show-
ing that Iτ (p;m) = o(Xp−1(logX)p) and showing that Iτ (p;M) � Xp−1(logX)p.

3. The minor arcs

Our bound on the minor arcs will depend on the following result, which is nontrivial
for Xε � q � X1−ε.

Proposition 3.1. If |qα− a| ≤ q−1 for some (a, q) = 1, q ≥ 1, then

(3.1) Mτ (α)� X log(2Xq)(q−1 +X−1/2 + qX−1).

Proof. We have that by (2.1) and the trivial bound |E(α)| ≤ X1/2

Mτ (α) = 2T (α) +O(X1/2)

so it suffices to show that T (α) � X log(2Xq)(q−1 + X−1/2 + qX−1), since we
can absorb the O(X1/2) into the bound since X log(2Xq)(q−1 +X−1/2 + qX−1)�
X1/2 logX.
To this end, note that by the triangle inequality

|T (α)| ≤
∑

u≤X−1

∣∣∣∣ ∑
u<v≤X/u

e(αuv)

∣∣∣∣� ∑
u≤X1/2

min(X/u, ‖αu‖−1).

The desired result then follows from Lemma 2.2 in [Va]. �

From this, the following result follows.

Lemma 3.1. We have that

(3.2) Iτ (p;m)� Xp−1−ν/2(logX)4.

Proof. Note that we have that∫
m

|Mτ (α)|pdα ≤
(

sup
α∈m
|Mτ (α)|

)p−2 ∫
m

|Mτ (α)|2dα� X(logX)3
(

sup
α∈m
|Mτ (α)|

)p−2
.

Suppose that α ∈ m. Then, by Dirichlet’s theorem, we have that there exist a, q
s.t. (a, q) = 1, q ≤ P−1X, |qα − a| ≤ P−1X, so it follows that q > P . Then,
by Proposition 3.1, we have that |Mτ (α)| � X1−ν/2 logX, and the desired result
follows. �

Now, we proceed to estimate the major arcs. To that end, we first record the
following estimate.

Proposition 3.2. For (a, q) = 1, q ≥ 1, we have∑
n≤X

τ(n)e

(
an

q

)
=
X

q

(
log

X

q2
+ 2γ − 1

)
+O((X1/2 + q) log 2q).
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Proof. This is shown in the proof of Lemma 2.5 in [PV]. We shall reproduce its
proof below. Note that we have that∑

n≤X

τ(n)e

(
an

q

)
=

∑
u≤X1/2

 ∑
v≤X/u

2−
∑

v≤X1/2

1

 e(auv/q).

For q - u, we have that the inner sums are � ‖au/q‖−1. The contribution from the
remaining terms is then

X

q

(
log

X

q2
+ 2γ − 1

)
+O(X1/2)

from which the desired result follows. �

Now, it follows then from this and partial summation that for α ∈M(q, a), we have

(3.3) Mτ (α) =
1

q

(
log

X

q2
+ 2γ − 1

)
v(α− a/q) +O(X1/2+ν logX).

Therefore, we have that (by using the binomial theorem for p ∈ Z+, and then using
Hölder’s inequality to bound the remaining error terms)

|Mτ (α)|p = q−p(logX − 2 log q + 2γ − 1)p|v(α− a/q)|p +O(Xp−1/2+ν(logX)p)

so it follows that

(3.4)

∫
M

|Mτ (α)|pdα =

∑
q≤P

q∑
a=1

(a,q)=1

∫ PX−1

−PX−1

q−p(logX−2 log q+2γ−1)p|v(α−a/q)|pdβ+O(Xp−3/2+4ν(logX)p)

= S(X,P )

∫ PX−1

−PX−1

|v(β)|pdβ +O(Xp−3/2+4ν(logX)p)

where
S(X,P ) :=

∑
q≤P

ϕ(q)q−p(logX − 2 log q + 2γ − 1)p.

It is easy to show that

(3.5) S(X,P ) � (logX)p.

Also, note that since |v(β)| ≤ min(X, ‖β‖−1), we have that∫ PX−1

−PX−1

|v(β)|pdβ �
∫ 1/(4X)

0

Xpdβ � Xp−1.

By considering the underlying diohantine equation, it is quite easy to show that for
positive integers s > 0, we have that∫ 1

0

|v(α)|2sdα ∼ CsX2s−1

for some Cs > 0. It therefore follows that by Hölder’s inequality since p > 2∫ 1

0

|v(β)|pdβ � Xp−1.

Theorem 1.1 then follows.
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