MOMENTS OF AN EXPONENTIAL SUM RELATED TO THE DIVISOR FUNCTION

MAYANK PANDEY

Abstract

We use the circle method to obtain tight bounds on the L^{p} norm of an exponential sum involving the divisor function for $p>2$.

1. Introduction

Let $X \geq 1$ be sufficiently large. For a function $f: \mathbb{N} \rightarrow \mathbb{C}$, let

$$
M_{f}(\alpha)=\sum_{n \leq X} f(n) e(n \alpha)
$$

where as usual, $e(\alpha):=e^{2 \pi i \alpha}$. Information on the structure of $f(n)$ can be obtained by studying the size of L^{p}-integrals of $M_{f}(\alpha)$, and bounds on them are often useful in applications of the circle method. Write

$$
\begin{equation*}
I_{f}(p):=\int_{0}^{1}\left|M_{f}(\alpha)\right|^{p} d \alpha \tag{1.1}
\end{equation*}
$$

In the case $p=1, f=\tau$, it was shown in [GP] that

$$
\begin{equation*}
\sqrt{X} \ll I_{\tau}(1) \ll \sqrt{X} \log X \tag{1.2}
\end{equation*}
$$

where

$$
\tau(n):=\sum_{d \mid n} 1
$$

For sequences other than $\tau(n)$, similar results have been established in the case $p=1$. For example, with μ the Möbius function, we have that $X^{1 / 6} \ll I_{\mu}(1) \ll$ $X^{1 / 2}$ where the upper bound follows from Parseval's identity, and the lower bound follows from Theorem 3 in $[\mathrm{BR}]$. Estimates for $I_{f}(1)$ in the case f is an indicator function for the primes have been obtained by Vaughan [Va1] and Goldston [Go], and in the case f is the indicator function for integers not divisible by the r th power of any prime by Balog and Ruzsa $[\mathrm{BR}]$ (in fact, a result of Keil [Ke] finds the exact order of magnitude for all moments but $1+\frac{1}{r}$ in which case the exact order of magnitude is found within a factor of $\log X$).
In this paper, we shall focus on the case $f=\tau$, the divisor function. Note that we have that by Parseval's identity

$$
\begin{equation*}
I_{\tau}(2)=\sum_{n \leq X} \tau(n)^{2} \sim \frac{1}{\pi^{2}} X(\log X)^{3} \tag{1.3}
\end{equation*}
$$

In this paper, we shall obtain tight estimates on $I_{\tau}(p)$ for $p>2$. In particular, we prove the following result.

Theorem 1.1. We have that for $p>2$

$$
\begin{equation*}
\int_{0}^{1}\left|M_{\tau}(\alpha)\right|^{p} d \alpha \asymp_{p} X^{p-1}(\log X)^{p} \tag{1.4}
\end{equation*}
$$

Throughout this paper, all implied constants will be assumed to depend only on p unless otherwise specified.

2. Preliminaries and setup

Note that we have that
$M_{\tau}(\alpha)=\sum_{n \leq X} \tau(n) e(n \alpha)=\sum_{u v \leq X} e(\alpha u v)=2 \sum_{\substack{u v \leq X \\ u<v}} e(\alpha u v)+\sum_{\substack{u v \leq X \\ u=v}} e(\alpha u v)=2 T(\alpha)+E(\alpha)$
where

$$
T(\alpha):=\sum_{u \leq X^{1 / 2}} \sum_{u<v \leq X / u} e(\alpha u v), E(\alpha):=\sum_{u \leq X^{1 / 2}} e\left(\alpha u^{2}\right) .
$$

Also, let

$$
v(\beta):=\sum_{n \leq X} e(n \beta)
$$

We record the following well-known bound on $v(\beta)$ which we will use later.
Lemma 2.1. We have that for $\beta \notin \mathbb{Z}, v(\beta) \asymp \min \left(X,\|\beta\|^{-1}\right)$ where for $\alpha \in \mathbb{R}$, we let $\|\alpha\|:=\inf _{n \in \mathbb{Z}}|\alpha-n|$.
In addition, we shall also use the following result on moments of $v(\beta)$.
Lemma 2.2. For $p>2$, we have that

$$
\int_{0}^{1}|v(\beta)|^{p} \asymp X^{p-1}
$$

Proof. Note that by Lemma 2.1, we have that

$$
\begin{equation*}
\int_{0}^{1}|v(\beta)|^{p} d \beta \geq \int_{-X^{-1}}^{X^{-1}}|v(\beta)|^{p} d \beta \gg \int_{X^{-1}}^{X^{-1}} X^{p} d \beta \gg X^{p-1} \tag{2.2}
\end{equation*}
$$

In addition, note that for positive integers s, by considering the underlying Diophantine system, we have that

$$
\int_{0}^{1}|v(\beta)|^{2 s} d \beta \sim C_{s} X^{2 s-1}
$$

so the desired result follows from Hölder's inequality.
We will use the circle method to prove the main result. To that end, let

$$
\mathfrak{M}(q, a)=\left\{\alpha \in[0,1]:|q \alpha-a| \leq P X^{-1}\right\}
$$

with $P=X^{\nu}$ for $\nu>0$ sufficiently small, and let

$$
\mathfrak{M}=\bigcup_{q \leq P} \bigcup_{\substack{a=1 \\(a, q)=1}}^{q} \mathfrak{M}(q, a), \mathfrak{m}=[0,1] \backslash \mathfrak{M}
$$

For any measurable $\mathfrak{B} \subseteq[0,1)$, let

$$
I_{f}(p ; \mathfrak{B}):=\int_{\mathfrak{B}}\left|M_{f}(\alpha)\right| d \alpha
$$

We shall prove Theorem 1.1 by using the fact that $I_{\tau}(p)=I_{\tau}(p ; \mathfrak{M})+I_{\tau}(p ; \mathfrak{m})$, showing that $I_{\tau}(p ; \mathfrak{m})=o\left(X^{p-1}(\log X)^{p}\right)$ and showing that $I_{\tau}(p ; \mathfrak{M}) \asymp X^{p-1}(\log X)^{p}$.

3. The minor arcs

Our bound on the minor arcs will depend on the following result, which is nontrivial for $X^{\varepsilon} \ll q \ll X^{1-\varepsilon}$.

Proposition 3.1. If $|q \alpha-a| \leq q^{-1}$ for some $(a, q)=1, q \geq 1$, then

$$
\begin{equation*}
M_{\tau}(\alpha) \ll X \log (2 X q)\left(q^{-1}+X^{-1 / 2}+q X^{-1}\right) \tag{3.1}
\end{equation*}
$$

Proof. We have that by (2.1) and the trivial bound $|E(\alpha)| \leq X^{1 / 2}$

$$
M_{\tau}(\alpha)=2 T(\alpha)+O\left(X^{1 / 2}\right)
$$

so it suffices to show that $T(\alpha) \ll X \log (2 X q)\left(q^{-1}+X^{-1 / 2}+q X^{-1}\right)$, since we can absorb the $O\left(X^{1 / 2}\right)$ into the bound since $X \log (2 X q)\left(q^{-1}+X^{-1 / 2}+q X^{-1}\right) \gg$ $X^{1 / 2} \log X$.
To this end, note that by the triangle inequality

$$
|T(\alpha)| \leq \sum_{u \leq X^{-1}}\left|\sum_{u<v \leq X / u} e(\alpha u v)\right| \ll \sum_{u \leq X^{1 / 2}} \min \left(X / u,\|\alpha u\|^{-1}\right)
$$

The desired result then follows from Lemma 2.2 in [Va].
From this, the following result follows.
Lemma 3.1. We have that

$$
\begin{equation*}
I_{\tau}(p ; \mathfrak{m}) \ll X^{p-1-\nu / 2}(\log X)^{4} \tag{3.2}
\end{equation*}
$$

Proof. Note that we have that
$\int_{\mathfrak{m}}\left|M_{\tau}(\alpha)\right|^{p} d \alpha \leq\left(\sup _{\alpha \in \mathfrak{m}}\left|M_{\tau}(\alpha)\right|\right)^{p-2} \int_{\mathfrak{m}}\left|M_{\tau}(\alpha)\right|^{2} d \alpha \ll X(\log X)^{3}\left(\sup _{\alpha \in \mathfrak{m}}\left|M_{\tau}(\alpha)\right|\right)^{p-2}$.
Suppose that $\alpha \in \mathfrak{m}$. Then, by Dirichlet's theorem, we have that there exist a, q s.t. $(a, q)=1, q \leq P^{-1} X,|q \alpha-a| \leq P^{-1} X$, so it follows that $q>P$. Then, by Proposition 3.1, we have that $\left|M_{\tau}(\alpha)\right| \ll X^{1-\nu / 2} \log X$, and the desired result follows.

Now, we proceed to estimate the major arcs. To that end, we first record the following estimate.

Proposition 3.2. For $(a, q)=1, q \geq 1$, we have

$$
\sum_{n \leq X} \tau(n) e\left(\frac{a n}{q}\right)=\frac{X}{q}\left(\log \frac{X}{q^{2}}+2 \gamma-1\right)+O\left(\left(X^{1 / 2}+q\right) \log 2 q\right)
$$

Proof. This is shown in the proof of Lemma 2.5 in [PV]. We shall reproduce its proof below. Note that we have that

$$
\sum_{n \leq X} \tau(n) e\left(\frac{a n}{q}\right)=\sum_{u \leq X^{1 / 2}}\left(\sum_{v \leq X / u} 2-\sum_{v \leq X^{1 / 2}} 1\right) e(a u v / q)
$$

For $q \nmid u$, we have that the inner sums are $\ll\|a u / q\|^{-1}$. The contribution from the remaining terms is then

$$
\frac{X}{q}\left(\log \frac{X}{q^{2}}+2 \gamma-1\right)+O\left(X^{1 / 2}\right)
$$

from which the desired result follows.
Now, it follows then from this and partial summation that for $\alpha \in \mathfrak{M}(q, a)$, we have

$$
\begin{equation*}
M_{\tau}(\alpha)=\frac{1}{q}\left(\log \frac{X}{q^{2}}+2 \gamma-1\right) v(\alpha-a / q)+O\left(X^{1 / 2+\nu} \log X\right) \tag{3.3}
\end{equation*}
$$

Therefore, we have that (by using the binomial theorem for $p \in \mathbb{Z}^{+}$, and then using Hölder's inequality to bound the remaining error terms)

$$
\left|M_{\tau}(\alpha)\right|^{p}=q^{-p}(\log X-2 \log q+2 \gamma-1)^{p}|v(\alpha-a / q)|^{p}+O\left(X^{p-1 / 2+\nu}(\log X)^{p}\right)
$$

so it follows that
$\int_{\mathfrak{M}}\left|M_{\tau}(\alpha)\right|^{p} d \alpha=$
$\sum_{q \leq P} \sum_{\substack{a=1 \\(a, q)=1}}^{q} \int_{-P X^{-1}}^{P X^{-1}} q^{-p}(\log X-2 \log q+2 \gamma-1)^{p}|v(\alpha-a / q)|^{p} d \beta+O\left(X^{p-3 / 2+4 \nu}(\log X)^{p}\right)$

$$
=\mathfrak{S}(X, P) \int_{-P X^{-1}}^{P X^{-1}}|v(\beta)|^{p} d \beta+O\left(X^{p-3 / 2+4 \nu}(\log X)^{p}\right)
$$

where

$$
\mathfrak{S}(X, P):=\sum_{q \leq P} \varphi(q) q^{-p}(\log X-2 \log q+2 \gamma-1)^{p}
$$

It is easy to show that

$$
\begin{equation*}
\mathfrak{S}(X, P) \asymp(\log X)^{p} \tag{3.5}
\end{equation*}
$$

Also, note that since $|v(\beta)| \leq \min \left(X,\|\beta\|^{-1}\right)$, we have that

$$
\int_{-P X^{-1}}^{P X^{-1}}|v(\beta)|^{p} d \beta \gg \int_{0}^{1 /(4 X)} X^{p} d \beta \gg X^{p-1}
$$

By considering the underlying diohantine equation, it is quite easy to show that for positive integers $s>0$, we have that

$$
\int_{0}^{1}|v(\alpha)|^{2 s} d \alpha \sim C_{s} X^{2 s-1}
$$

for some $C_{s}>0$. It therefore follows that by Hölder's inequality since $p>2$

$$
\int_{0}^{1}|v(\beta)|^{p} d \beta \asymp X^{p-1}
$$

Theorem 1.1 then follows.

References

[BR] A. Balog, I. Z. Ruzsa, On the exponential sum over r-free integers. Acta Math. Hungar. 90 (2001), no. 3, 219230.
[GP] D. A. Goldston, M. Pandey, On the L^{1} norm of an exponential sum involving the divisor function, preprint.
[Go] D. A. Goldston, The major arcs approximation of an exponential sum over primes. Acta Arith. 92 (2), 169 (2000).
[Ke] E. Keil, Moment estimates for exponential sums over k-free numbers. Int. J. Number Theory, 9, (2013), 607619.
[PV] P. Pongsriiam and R. C. Vaughan, The divisor function on residue classes I, Acta. Arith. 168 (2015), 369381
[Va1] R. C. Vaughan, The L^{1} mean of exponential sums over primes. Bull. London Math. Soc. 20, $121 \quad 123$ (1988).
[Va] Vaughan, R. C., The Hardy-Littlewood Method Cambridge Tracts in Mathematics. 125 (2nd ed.). Cambridge University Press, 1997.

