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Introduction

The simplest form of the Kummer Congruences were first proven in 1851 by
Ernst Eduard Kummer in [2]. They state that given a prime p and even positive
integers r, s with r not a multiple of p− 1 such that r ≡ s mod p− 1, then

Br

r
≡ Bs

s
mod p

where Bn denotes the nth Bernoulli number. A stronger version of this result
was first obtained by Voronoi in [3] using power sum identities and then later
by Kubota-Leopoldt in [1] using the theory of p-adic L-functions, proving that
given a prime p, a nonnnegative integer a, and even positive integers r, s with r
not a multiple of p− 1 such that r ≡ s mod pa(p− 1), then

(1− pr−1)
Br

r
≡ (1− ps−1)

Bs

s
mod pa+1

In particular, Kubota-Leopoldt cast this classical result in a more natural light,
as it in fact becomes the input for the proof of the continuity of the p-adic zeta
function.

In this paper, we develop a structure theory that again recasts this result
in a new way, shedding light on the element-wise behavior of a special class
of polynomials mod powers of p through a series of new results about the
“pseudo-multiplicative” structure these polynomials have by analyzing the sta-
bilizers of the natural multiplication action on the resulting sets of values. As a
result of this approach, we also deduce a new proof of the Kummer Congruences.

We start by introducing some preliminary results, well-known in the literature:

Lemma 1

Let p > 3 be a prime, a a positive integer, and r a positive even integer. We
have that

pa∑
n=1

nr ≡ paBr mod p2a+vp(r)+1
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Lemma 2

Let p be an odd prime and a and n be positive integers and k a positive integer
with k ≥ r + a, pr|k, and p− 1 not dividing k. Then we have that

pa∑
n=1

nk ≡ 0 mod pr+a

Lemma 3 (Adams’ Theorem)

For any even integer s with s not a multiple of p− 1, vp(
Bs

s ) ≥ 0 (in particular,
Bs

s is a p-integer).

In addition to the first three lemmas, this next lemma will be a crucial in-
gredient for analyzing the polynomials of interest.

Lemma 4

Let p be an odd prime and set f(x) = x(k+pa(p−1))pt

+x(k−pa(p−1))pt

as polyno-
mials. Suppose p2a+1|k and let v = min(vp(k)−2a−1, t). Then for any positive
integers m,n with n coprime to p, we have that vp(f

(m)(n)) ≥ 2a+ t+ v. Fur-
thermore, if m = 1, we have that vp(f

(m)(n)) ≥ 2a + t + 1 + v, with equality
always holding if v < t. For m = 2, we have that vp(f

(m)(n)) = 2a+ 2t if v = t
and that vp(f

(m)(n) ≥ 2a+ t+ v + 1 if v < t. Finally, for m = 3 and v = t, we
have that vp(f

(m)(n)) = 2a+ 2t unless p = 3, in which case it is ≥ 2a+ 2t+ 1,
and for v < t, vp(f

(m)(n)) ≥ 2a+ t+ v + 1.

Proof. Expanding f (m)(n), we get

n(k+pa(p−1))pt−m
m−1∏
i=0

((k+pa(p−1))pt−i)+n(k−pa(p−1))pt−m
m−1∏
i=0

((k−pa(p−1))pt−i)

Since m is a positive integer, each product has valuation at least a + t, and so
Euler’s Theorem implies that this is just

nkpt−m(

m−1∏
i=0

((k+ pa(p− 1))pt − i) +

m−1∏
i=0

((k− pa(p− 1))pt − i)) mod p2a+2t+1

Then note that the sum of products is just

pa+t(p−1)(

m−1∏
i=1

(pa+t(p−1)− i)+(−1)m
m−1∏
i=1

(pa+t(p−1)+ i)) mod p2a+t+1+v

Plugging in m = 1 immediately gives the inequality in the second statement.
For the equality case, plugging in m = 1 into the expression

nkpt−m(

m−1∏
i=0

((k + pa(p− 1))pt − i) +

m−1∏
i=0

((k − pa(p− 1))pt − i))
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gives f ′(n) ≡ 2nkpt−mkpt mod p2a+2t+1, and if vp(k) < 2a + 1 + t, then
vp(kp

t) < 2a+2t+1, so the valuation of f ′(n) is exactly vp(k)+t = 2a+t+1+v
in this case.

For the case ofm = 2, we have that the expression is 2p2a+2t(p−1) mod p2a+t+v+1.
If t = v, then we get that 2p2a+2t(p − 1) mod p2a+2t+1, and so vp(f

′′(n)) =
2a+ 2t. If v < t, note that 2a+ 2t ≥ 2a+ t+ v + 1, and so 2p2a+2t(p− 1) ≡ 0
mod p2a+t+v+1, as desired.

Plugging in m = 3, pa+t(p − 1)((pa+t(p − 1) − 1)(pa+t(p − 1) − 2) − (pa+t(p −
1)+ 1)(pa+t(p− 1)+ 2)) ≡ −6p2(a+t)(p− 1)2 mod p2a+t+v+1. If v = t, then we
conclude that f ′′′(n) has valuation 2a+2t for p ̸= 3 and vanishes mod p2a+2t+1

for p = 3. If v < t, then f ′′′(n) automatically vanishes mod p2a+t+v+1 once
again.

For the first, it suffices to show that

m−1∏
i=1

(pa+t(p− 1)− i) + (−1)m
m−1∏
i=1

(pa+t(p− 1) + i) ≡ 0 mod pa+v

Reducing mod pa+v gives

(−1)m−1(m− 1)! + (−1)m(m− 1)! ≡ 0 mod pa+v

as desired.

Corollary 1

For any integer s coprime to p, f(s+ pkx) ≡ f(s) + f ′(s)pkx mod p2a+t+v+2k.
Furthermore, if v < t, then we have the stronger f(s+ pkx) ≡ f(s) + f ′(s)pkx
mod p2a+t+v+2k+1

Proof. Let deg(f) = w. We have that for any positive integer k,

f(s+ pkx) =

w∑
n=0

f (n)(s)
(pkx)n

n!

Lemma 4 implies that f (n)(s) ≥ 2a + t + v, and so for n > 1, we have that

vp(f
(n)(s) (p

kx)n

n! ) ≥ 2a+ t+ v + 2k, and so

f(s+ pkx) ≡ f(s) + f ′(s)pkx mod p2a+t+v+2k

Now suppose that v < t. Then we claim that vp(f
(n)(s) (p

kx)n

n! ) ≥ 2a+t+v+2k+

1 for all n ≥ 2. For n = 2 or 3, Lemma 4 implies that vp(f
(n)(s)) ≥ 2a+t+v+1,

and so vp(f
(n)(s) (p

kx)n

n! ) ≥ 2a+t+v+1+2k for n = 2 and 2a+t+v+1+3k−1 ≥
2a + t + v + 1 + 2k for n = 3, proving the claim in these cases. For n > 3, we

have that vp(f
(n)(s) (p

kx)n

n! ) ≥ 2a+ t+ v+4k− 1 ≥ 2a+ t+ v+2k+1, finishing
the proof in all cases and concluding the case v < t.
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We start by showing that certain special multisets are stabilized by nontrivial
residue classes upon the natural multiplication action. This will be the first hint
of local information (namely the individual values of the polynomial mod
powers of p) having rich internal structure that explains global phenomena, one
of which will be a precursor to the Kummer Congruences.

Theorem 1

Let p be an odd prime, a, t nonnegative integers, and k a positive integer with
p2a+1|k. Let d = p−1

gcd(k,p−1) and g a dth root of unity mod p3a+t+v+2. In addi-

tion, let S be the multiset consisting of the invertible residues mod p3a+t+v+2

attained by n(k+pa(p−1))pt

+n(k−pa(p−1))pt

as n varies from 1 to pa+1 with mul-
tiplicity. Then gS = S.

Proof. We show that gS ⊂ S, from which it follows that gS = S as they
are multisets of the same size. Each element s of S corresponds to some pos-
itive integer n with 1 ≤ n < pa+1 with n(k+pa(p−1))pt

+ n(k−pa(p−1))pt ≡ s
mod p3a+t+v+2 by construction. For this n, we find an associated n′ such that
n′(k+pa(p−1))pt

+ n′(k−pa(p−1))pt ≡ gs mod p3a+t+v+2.

Let k = prk′ with p ∤ k′. First we show that there is a solution to xk′ ≡ g
mod pa+1. Note that gcd(k′, p − 1) = gcd(k, p − 1), and so xk′

and xgcd(k,p−1)

generate the same residue classes mod pa+1, so it suffices to show the result for
xgcd(k,p−1). Let g′ be a primitive root mod pa+1 and write g ≡ g′b mod pa+1

for some b. Then since gd ≡ 1 mod pa+1, we conclude that p − 1|db, which
implies that p−1

d |b, which gives that gcd(k, p− 1)|b by definition and hence that

g ≡ xgcd(p−1,k) mod pa+1 for some x.

Now pick a fixed solution x′ to xk′ ≡ g mod pa+1. For each n, we let n′

be the unique positive integer ≤ pa+1 such that n′ ≡ nx′ mod pa+1, and we
show that n′(k+pa(p−1))pt

+ n′(k−pa(p−1))pt ≡ gs mod p3a+t+v+2 under this as-
sumption. Note that this is a bijection since x′ is coprime to p.

First note that

(nx′)(k+pa(p−1))pt

+(nx′)(k−pa(p−1))pt

= (n′+pa+1c)(k+pa(p−1))pt

+(n′+pa+1c)(k−pa(p−1))pt

but then Corollary 1 implies that this is f(n′) + cpa+1f ′(n′) mod p3a+t+v+2.
In addition, Lemma 4 implies that f ′(n′) vanishes mod p2a+t+1+v and so
cpa+1f ′(n′) vanishes mod p3a+t+v+2, and thus we get that

(nx′)(k+pa(p−1))pt

+(nx′)(k−pa(p−1))pt

≡ n′(k+pa(p−1))pt

+n′(k−pa(p−1))pt

mod p3a+t+v+2

Hence it suffices to show that

(nx′)(k+pa(p−1))pt

+(nx′)(k−pa(p−1))pt

≡ g(n(k+pa(p−1))pt

+n(k−pa(p−1))pt

) mod p3a+t+v+2
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We analyze

n(k+pa(p−1))pt

(x′(k+pa(p−1))pt

− g) + n(k−pa(p−1))pt

(x′(k−pa(p−1))pt

− g)

Euler’s Theorem implies that x′(k+pa(p−1))pt ≡ x′(k+rp3a+v+1(p−1)+pa(p−1))pt

mod p3a+t+v+2

for any r, but then notice that we can choose r such that k′|rp3a+v+1(p− 1) +

pa(p−1) (as p is invertible mod k′). For this r, we have that (k+rp3a+v+1(p−1)+pa(p−1))pt

k′ ≡
1 + (rp3a+v+1(p−1)+pa(p−1))pt

k′ mod d. Since k′|(p− 1)(rp3a+v+1 + pa)pt, we can
write k′ = k1k2 with k1|p− 1 and k2|(rp3a+v+1 + pa)pt. For this k1, we see that

k1| gcd(k, p−1), and so d|p−1
k1

, immediately implying that d| (rp
3a+v+1(p−1)+pa(p−1))pt

k′ .

Therefore, (k+rp3a+v+1(p−1)+pa(p−1))pt

k′ ≡ 1 mod d. Letting u = (k+rp3a+v+1(p−1)+pa(p−1))pt

k′ ,

x′(k+pa(p−1))pt

− g ≡ (x′k′
− g)(

u−1∑
i=0

x′k′(u−1−i)gi) mod p3a+t+v+2

Similarly, letting u′ = (k+r′p3a+v+1(p−1)−pa(p−1))pt

k′ for some r′ with k′|(r+r′)(p−
1), we have

x′(k−pa(p−1))pt

− g ≡ (x′k′
− g)(

u′−1∑
i=0

x′k′(u′−1−i)gi) mod p3a+t+v+2

and so it remains to show that

n(k+pa(p−1))pt

(

u−1∑
i=0

x′k′(u−1−i)gi)+n(k−pa(p−1))pt

(

u′−1∑
i=0

x′k′(u′−1−i)gi) ≡ 0 mod p2a+t+v+1

Now since
u−1∑
i=0

x′k′(u−1−i)gi =
x′uk′ − gu

x′k′ − g

lifting implies that the sum vanishes mod pvp(u) = pa+t, and so

n(k+pa(p−1))pt

(

u−1∑
i=0

x′k′(u−1−i)gi) ≡ nkpt

(

u−1∑
i=0

x′k′(u−1−i)gi) mod p2a+2t+1

by Euler’s Theorem. t ≥ v gives this relation mod p2a+t+1+v, and now repeat-
ing this process with

n(k−pa(p−1))pt

(

u′−1∑
i=0

x′k′(u′−1−i)gi)

gives that it suffices to show

u−1∑
i=0

x′k′(u−1−i)gi +

u′−1∑
i=0

x′k′(u′−1−i)gi ≡ 0 mod p2a+t+v+1
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Write u = pa+t+vq + y and u′ = pa+t+vq′ + y′ with 0 ≤ y, y′ < pa+t+v.

First we claim that our expression is just

(q+q′)

pa+t+v−1∑
i=0

x′k′(pa+t+v−1−i)gi+gq
y−1∑
i=0

x′k′(y−1−i)gi+gq
′
y′−1∑
i=0

x′k′(y′−1−i)gi mod p2a+1+t+v

We have that for any positive integer c,

(c+1)pa+t+v−1∑
i=cpa+t+v

x′k′(u−1−i)gi =

pa+t+v−1∑
i=0

x′k′(u−1−cpa+t+v−i)gi+cpa+t+v

By lifting, we have that x′k′pa+t+v ≡ gp
a+t+v

mod p2a+t+v+1, and so

pa+t+v−1∑
i=0

x′k′(u′−1−cpa+t+v−i)gi+cpa+t+v

≡
pa+t+v−1∑

i=0

x′k′(u−1−i)gi mod p2a+t+v+1

Then note that

pa+t+v−1∑
i=0

x′k′(u−1−i)gi−x′k′(pa+t+v−1−i)gi = (x′k′(u−pa+t+v)−1)

pa+t+v−1∑
i=0

x′k′(pa+t+v−1−i)gi

We have that vp(x
′k′(u−pa+t+v) − 1) ≥ a+ 1 + a+ t, and

vp(

pa+t+v−1∑
i=0

x′k′(pa+t+v−1−i)gi) ≥ a+ t+ v

by lifting, so

pa+t+v−1∑
i=0

x′k′(u−1−i)gi − x′k′(pa+t+v−1−i)gi ≡ 0 mod p3a+2t+v+1

showing that

pa+t+v−1∑
i=0

x′k′(u−1−i)gi ≡
pa+t+v−1∑

i=0

x′k′(pa+t+v−1−i)gi mod p2a+t+v+1

In all, we get that

qpa+t+v−1∑
i=0

x′k′(u−1−i)gi ≡ q

pa+t+v−1∑
i=0

x′k′(pa+t+v−1−i)gi mod p2a+t+v+1

Now we know that

u−1∑
i=qpa+t+v

x′k′(u−1−i)gi ≡ gq
y−1∑
i=0

x′k′(y−1−i)gi mod p2a+t+v+1
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by shifting since

u−1∑
i=qpa+t+v

x′k′(u−1−i)gi ≡
y−1∑
i=0

x′k′(y−1−i)gi+q mod p2a+t+v+1

Repeating the same arguments for u′ and adding finishes the proof of the claim.

Now we claim that this is just

u+ u′

pa+t+v

pa+t+v−1∑
i=0

x′k′(pa+t+v−1−i)gi mod p2a+1+t+v

If v = 0, then since pa+t|u, u′ it immediately follows that y = y′ = 0 and

q + q′ = u+u′

pa+t+v , proving the claim. Now suppose v > 0, meaning that pa+t+v ∤
u, u′. Since 0 < y+y′ < 2pa+t+v and pa+t+v|y+y′, it follows that y+y′ = pa+t+v

and so q + q′ = u+u′

pa+t+v − 1. Hence it suffices to show that

gq
y−1∑
i=0

x′k′igy−1−i+gq
′
y′−1∑
i=0

x′k′igy
′−1−i−

pa+t+v−1∑
i=0

x′k′igp
a+t+v−1−i ≡ 0 mod p2a+t+v+1

Note that

y−1∑
i=0

x′k′igp
a+t+v−1−i−gqx′k′igy−1−i ≡ −(gqp

a+t+v+y−gp
a+t+v

)

y−1∑
i=0

x′k′ig−1−i ≡ 0 mod p2a+v+t+1

after noting that qpa+t+v + y ≡ u ≡ 1 mod d. In addition, since

pa+t+v−1∑
i=y

x′k′igp
a+t+v−1−i =

y′−1∑
i=0

x′k′(i+y)gy
′−1−i

pa+t+v−1∑
i=y

x′k′igp
a+t+v−1−i − gq

′
y′−1∑
i=0

x′k′igy
′−1−i

just becomes

(x′k′y − gq
′
)

y′−1∑
i=0

x′k′igy
′−1−i mod p2a+t+v+1

Now noting that gq
′ ≡ gq

′pa+t+v ≡ x′k′q′pa+t+v ≡ x′k′(u′−y′) mod p2a+t+v+1, it
remains to show that

(x′k′y − x′k′(u′−y′))

y′−1∑
i=0

x′k′igy
′−1−i ≡ 0 mod p2a+t+v+1
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However, vp(x
′k′y − x′k′(u′−y′)) = vp(x

′k′(u′−pa+t+v) − 1) ≥ a+ 1 + a+ t and

y′−1∑
i=0

x′k′igy
′−1−i ≡ 0 mod pa+t

so at last we conclude that

pa+t+v−1∑
i=y

x′k′igp
a+t+v−1−i − gq

′
y′−1∑
i=0

x′k′igy
′−1−i ≡ 0 mod p2a+t+v+1

completing the proof of the claim.

Therefore, the whole problem reduces to showing that

u+ u′

pa+t+v

pa+t+v−1∑
i=0

x′k′(pa+t+v−1−i)gi ≡ 0 mod p2a+1+t+v

Note that u+u′ has valuation at least 2a+1+ t+v, and so u+u′

pa+t+v has valuation
at least a+ 1, so it reduces to showing that

pa+t+v−1∑
i=0

x′k′(pa+t+v−1−i)gi ≡ 0 mod pa+t+v

which is an immediate consequence of lifting.

Corollary 2

Let p be an odd prime and x, y mod p be residues such that x ≡ yµ mod p for
some gcd(k, p − 1)th root of unity µ. Let Sx denote the multiset of residues

mod p3a+t+v+2 attained by n(k+pa(p−1))pt

+n(k−pa(p−1))pt

(k, a, t as in Theorem
1) as n ≡ x mod p varies from 1 to pa+1 with multiplicity and similarly for Sy.
Then Sx = Sy.

Proof. The main content of Theorem 1 shows that if x′k′ ≡ g mod pa+1, then
for any invertible n and n′ with n′ ≡ nx′ mod pa+1,

n′(k+pa(p−1))pt

+n′(k−pa(p−1))pt

≡ g(n(k+pa(p−1))pt

+n(k−pa(p−1))pt

) mod p3a+t+v+2

Setting g ≡ 1 mod pa+1 and noting that x′k′ ≡ 1 mod pa+1 iff x′ gcd(p−1,k) ≡ 1
mod pa+1 (as gcd(p−1, k) = gcd(p−1, k′), it follows that for any gcd(p−1, k)th
root of unity x′ mod pa+1,

n′(k+pa(p−1))pt

+n′(k−pa(p−1))pt

≡ n(k+pa(p−1))pt

+n(k−pa(p−1))pt

mod p3a+t+v+2

Now reducing the gcd(p − 1, k)th roots of unity mod p shows that their re-
ductions are gcd(p − 1, k)th roots of unity mod p. Furthermore, if two were
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congruent mod p, say y, y′, then ygcd(p−1,k) − y′ gcd(p−1,k) ≡ 0 mod pa+1 im-
plies that y ≡ y′ mod pa+1 by lifting. Hence their reductions represent each
gcd(p − 1, k)th root of unity mod p exactly once, and so let x′ be the unique
gcd(p − 1, k)th root of unity mod pa+1 with x′ ≡ µ mod p. Then note that
associating n and n′ gives a bijection between positive integers ≤ pa+1 with
n ≡ x mod pa+1 and n′ ≡ y mod pa+1 since the map is injective and the sets
are the same size, but then since

n′(k+pa(p−1))pt

+n′(k−pa(p−1))pt

≡ n(k+pa(p−1))pt

+n(k−pa(p−1))pt

mod p3a+t+v+2

each corresponding pair yields the same element mod p3a+t+v+2, immediately
showing Sx = Sy.

We can also now prove a congruence that will be useful for the “hard” case
of the Kummer Congruences.

Corollary 3

Let a, b, t be nonnegative integers with pa+t|b and p− 1 ∤ b. Then we have that

pa+1∑
n=1

nb(npa+t(p−1) − 1)2 ≡ 0 mod p3a+t+v+2

Proof. Choose k as in Theorem 1 and suppose p − 1 ∤ k. Let S be the sum
of all elements in S mod p3a+t+v+2 for some k. As p − 1 ∤ k, we can find a
primitive dth root of unity mod p3a+t+v+2 such that gS = S for some d > 1,
implying that S ≡ gS mod p3a+t+v+2. It suffices to show that g ̸≡ 1 mod p.
Suppose it is and note that p3a+t+v+2|gd− 1 = (g− 1)(gd−1+ · · ·+1). We have
that gd−1 + · · ·+ 1 ≡ d mod p, which implies the second term is coprime to p,
showing that p3a+t+v+2|g−1, contradiction. Thus S ≡ 0 mod p3a+t+v+2. Now

if n(k+pa(p−1))pt

+ n(k−pa(p−1))pt

is noninvertible, then taking mod p implies
p|n, but since 2pa+t ≥ 3a+ 2t+ 2, we get that it is 0 mod p3a+t+v+2. Hence

pa+1∑
n=1

n(k+pa(p−1))pt

+ n(k−pa(p−1))pt

≡ 0 mod p3a+t+v+2

and so Lemma 2 implies that

pa+1∑
n=1

n(k−pa(p−1))pt

(npa+t(p−1) − 1)2 ≡ 0 mod p3a+t+v+2

Now since pa+t|b, then b ≡ kpt mod pa+t(p − 1) for some k with p2a+1|k, and
so writing b = kpt + lpa+t(p− 1) for some integer v and noting p− 1 ∤ k means
that our sum is just

pa+1∑
n=1

nkpt+lpa+t(p−1)(npa+t(p−1)−1)2−nkpt−pa+t(p−1)(npa+t(p−1)−1)2 mod p3a+t+v+2
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However, noting that n|l+1|pa+t(p−1) − 1 is divisible by npa+t(p−1) − 1, the sum
becomes

pa+1∑
n=1

nkpt+min(l,−1)pa+t(p−1)f(n)(npa+t(p−1) − 1)3

for some f(n) in Z, which vanishes mod p3a+t+v+2 by Euler’s Theorem.

From this, we can deduce a linearity relation that will quickly imply the
Kummer congruences.

Theorem 2

Let k be a positive integer not divisible by p− 1 with 2p2a+1|k. Then we have
that for any nonnegative integer t and integer r such that k + pa(p− 1)r > 0,

pa+1∑
n=1

n(k+pa(p−1)r)pt

≡ r

pa+1∑
n=1

n(k+pa(p−1))pt

mod p3a+t+v+2

Proof. By Lemma 2, we have

pa+1∑
n=1

nkpt

≡ 0 mod p3a+t+v+2

and so the claim holds for r = 0.

Now we suppose it holds for r− 1, r. We show that it holds for r+1. Corollary
3 tells us that

pa+1∑
n=1

nk+pa(p−1)(r−1)pt

(npa+t(p−1) − 1)2 ≡ 0 mod p3a+t+v+2

and so

pa+1∑
n=1

n(k+pa(p−1)(r+1))pt

≡
pa+1∑
n=1

2n(k+pa(p−1)r)pt

−n(k+pa(p−1)(r−1))pt

mod p3a+t+v+2

By the induction hypothesis, we get

pa+1∑
n=1

2n(k+pa(p−1)r)pt

−nk+pa(p−1)(r−1))pt

≡ (r+1)

pa+1∑
n=1

n(k+pa(p−1))pt

mod p3a+t+v+2

as desired. A similar argument going backwards shows the claim for all negative
r with k + pa(p− 1)r > 0 since k + pa(p− 1)r > 0 implies (k + pa(p− 1)r)pt ≥
2pa+t ≥ 3a+ 2t+ 2.

10



The Proof of the Congruences

To prove the general case, we break it into three cases, the first of which is
independent of the other two and the other two of which we glue together at
the end. Throughout the proof, we also assume s > r.

Proof. Firstly, note that the 1 − ps−1 term can always be excluded from the
proofs assuming s > r since then s ≥ r + pa(p − 1) > a + 2, and so Lemma 3
implies (1− ps−1)Bs

s ≡ Bs

s mod pa+1.

Case 1: vp(r) < a (which means vp(s) = vp(r) < a).

For the sake of this case, we assume that the congruences hold mod pa when
proving them mod pa+1, noting that this case is empty for a = 0.

Consider the sum
pa∑
n=1

nr(npa−1(p−1) − 1)p

For the terms with p not dividing n, Euler’s Theorem implies that each term is
divisible by pap and hence p2a+vp(r)+1. Now if p|n, since pa−1(p−1) ≥ 4(5a−1) >
3a, we conclude that

pa−1∑
m=1

(pm)r((pm)p
a−1(p−1) − 1)p ≡ −pr

pa−1∑
m=1

mr mod p2a+vp(r)+1

Now as before, the sum expands to

pa∑
n=1

p∑
i=0

(
p

i

)
(−1)p−inr+ipa−1(p−1)

Applying Lemma 1 and noting r ≥ 2, we get that

Br+pa(p−1) −Br +

p−1∑
i=1

(
p

i

)
(−1)p−iBr+ipa−1(p−1) ≡ −pr−1Br mod pa+vp(r)+1

Now we have that

(1− pr−1)
Br

r
≡

Br+ipa−1(p−1)

r + ipa−1(p− 1)
mod pa

so

Br+ipa−1(p−1) ≡ (1− pr−1)(r + ipa−1(p− 1))
Br

r
mod pa+vp(r)

since vp(r + ipa−1(p − 1)) ≥ vp(r). Now mod pa+vp(r)+1, Lemma 3 and the
fact that r ≥ vp(r) + 2 imply that

p−1∑
i=1

(
p

i

)
(−1)p−iBr+ipa−1(p−1) ≡

p−1∑
i=1

(
p

i

)
(−1)p−i(r + ipa−1(p− 1))

Br

r

11



which gives −pa(p− 1)Br

r . Lemma 3 and the fact that r ≥ 2 imply that pa(p−
1)(pr−1Br) vanishes mod pa+vp(r)+1, and so putting everything together gives

Br+pa(p−1) ≡ (r + pa(p− 1))
Br

r
− (r + pa(p− 1))pr−1Br

r
mod pa+vp(r)+1

Finally, since vp(r) = vp(r + pa(p− 1)), we conclude that

Br+pa(p−1)

r + pa(p− 1)
≡ (1− pr−1)

Br

r
mod pa+1

finishing this case by iterating this congruence if necessary.

Note that the 1 − pr−1 may now also similarly be excluded from now on since
r ≥ 2pa ≥ a+ 2.

Case 2: vp(r) = vp(s) ≥ a.

Theorem 2 immediately implies that mod p4a+t+2,

(k + pa(p− 1))

pa+1∑
n=1

n(k+pa(p−1)u)pt

≡ (k + upa(p− 1))

pa+1∑
n=1

n(k+pa(p−1))pt

Now, by Lemma 1, we have that

(k + pa(p− 1))B(k+upa(p−1))pt ≡ (k + upa(p− 1))B(k+pa(p−1))pt mod p3a+t+1

and since the assumption implies u is not a multiple of p, dividing by pt(k +
pa(p− 1))(k+ upa(p− 1)) (of valuation 2a+ t) immediately gives the theorem.

Case 3: Branching

The key now is to consider the object

pa+1∑
n=1

nkpt

(npa+t−1(p−1) − 1)p

which vanishes mod pp(a+t) and hence mod p3a+t+2. By the binomial theo-
rem, we have that this is just

pa+1∑
n=1

n(k+pa(p−1))pt

− nkpt

+

pa+1∑
n=1

p−1∑
i=1

(
p

i

)
(−1)p−inkpt+ipa+t−1(p−1)

The double sum is just

p−1∑
i=1

(
p

i

)
(−1)p−i(

k

pa
+ i)

pa+1∑
n=1

n(k+pa(p−1))pt−1

mod p3a+t+2

12



by Theorem 2, so the whole sum just reduces to

−p

pa+1∑
n=1

n(k+pa(p−1))pt−1

mod p3a+t+2

This implies that

pa+1∑
n=1

n(k+pa(p−1))pt

≡ p

pa+1∑
n=1

n(k+pa(p−1))pt−1

mod p3a+t+2

Using Lemma 1 once again and dividing by (k+pa(p−1))pt (of valuation a+ t)
immediately gives

B(k+pa(p−1))pt

(k + pa(p− 1))pt
≡

B(k+pa(p−1))pt−1

(k + pa(p− 1))pt−1
mod pa+1

completing the branching step and hence the proof of the full Kummer congru-
ences.

Thus we’ve completed our goal of proving the Kummer Congruences by un-
derstanding the local behavior and interpreting that in the context of a global
sum.

Notice that the set S comes equipped with a (Z/p3a+t+v+2Z)∗ action and that
the content of Theorem 3 is that the subgroup µd of dth roots of unity is con-
tained in Stab(S) under this action. We now classify Stab(S) more completely.
We need another lemma.

Before starting the proof, we make a quick note about p-adic valuations and
polynomials. For a polynomial g(x), we say that for a residue class s mod pk,
vp(g(s)) ≥ l iff g(s′) ≡ 0 mod pl for every positive integer s′ in the residue class
s mod pk (in general, we can say that vp(g(s)) = mins′≡s mod pk vp(g(s

′)).

Lemma 5

Suppose v = t. Then for each nonnegative integer s with 0 ≤ s ≤ a, there
exist exactly pa−s(p − 1) positive integers u ≤ pa+1 with u coprime to p and
vp(f

′(u)) ≥ 2a+ 2t+ s+ 1.

Proof. We show by induction that there are p − 1 solutions u mod ps+1 to
f ′(x) ≡ 0 mod p2a+2t+s+1 for any nonnegative integer s. The base case of
s = 0 is immediate from Lemma 4. Suppose that the statement holds for s− 1
and let u′ be a solution to f ′(x) ≡ 0 mod p2a+2t+s. We show that u′ can
be lifted to u mod ps+1 with f ′(u) ≡ 0 mod p2a+2t+s+1. By Taylor series
expansion, we have that

f ′(u′ + psx) =

w−1∑
n=0

f (n+1)(u′)
(psx)n

n!

13



Taking out the first two terms gives

f ′(u′) + f ′′(u′)psx+

w−1∑
n=2

f (n+1)(u′)
(psx)n

n!

Lemma 4 implies that for any n, f (n+1)(u′) vanishes mod p2a+2t, and since

for n > 1 we have that vp(
(psx)n

n! ) ≥ 2s ≥ s + 1 since s ≥ 1 by assumption,

f (n+1)(u′) (p
sx)n

n! vanishes mod p2a+2t+s+1. Hence f ′(u′ + psx) ≡ f ′(u′) +
f ′′(u′)psx mod p2a+2t+s+1, immediately implying that there is a unique lift of
u′. Furthermore, for any u′ mod ps with f ′(u′) ̸≡ 0 mod p2a+2t+s, we have
that

f ′(u′ + psx) ≡ f ′(u′) + f ′′(u′)psx mod p2a+2t+s+1

but then vp(f
′(u′)) < vp(f

′′(u′)ps), and so there is no lift giving a solution here,
meaning that all solutions mod ps+1 are lifts of solutions mod ps. With this
proven, then note that there are pa−s(p − 1) positive integers k ≤ pa+1 with
k ≡ u mod pa+1, completing the proof.

Theorem 3

Given the conditions of Theorem 1, Stab(S) = µn where n = dpa if v < t and
n = d if v = t.

Proof. Since Stab(S) is defined by the group action of (Z/p3a+t+v+2Z)∗ on
S, we have that Stab(S) is a subgroup of (Z/p3a+t+v+2Z)∗, and so is in par-
ticular cyclic. Letting P be the p-Sylow subgroup of Stab(S), we can write
Stab(S) = PG for some abelian group G of order coprime to p (where the
product is isomorphic to a direct one). G, then, consists of all elements of order
coprime to p and hence is of order dividing p− 1.

Since p is odd, the subgroup of such elements is automatically µp−1 since
(Z/p3a+t+v+2Z)∗ is cyclic. Now note that if g ∈ Stab(S), its reduction g′

mod p is automatically in Stab(S′), where S′ is S defined mod p. We have
that

n(k+pa(p−1))pt

+ n(k−pa(p−1))pt

≡ 2nk′
mod p

and so S′ consists of elements of the form 2ngcd(k,p−1), which is a coset of µ′
d.

Hence Stab(S′) = µ′
d, meaning g′ ∈ µ′

d. However since ordp(g)|ordp3a+t+v+2(g)
and ordp3a+t+v+2(g) is coprime to p, lifting implies that ordp(g) = ordp3a+t+v+2(g)
and hence g ∈ µd. Theorem 1 then implies that µd ⊂ Stab(S) and in particular
that µd ⊂ G, so we conclude that G = µd.

It remains to analyze P . First we find a characterization for when P has or-
der ≥ pr for some nonnegative integer r. We claim that this holds iff for each
element s ∈ S and any element s′ with s′ ≡ s mod p3a+2+t+v−r, s and s′ ap-
pear the same number of times in S. Recalling that the stabilizer is cyclic, the

14



condition is equivalent to there being an element of order pr. If g were some
element of order pr, then it would necessarily be 1 mod p3a+t+v+2−r, so for any
element s ∈ S, the orbit of s under the subgroup generated by g would be the
set consisting of s+ p3a+2+t+v−rx mod p3a+t+v+2 for 0 ≤ x ≤ pr+1 − 1. Hence
each element s′ with s′ ≡ s mod p3a+2+t+v−r must appear the same number
of times in S. Conversely, if for each s ∈ S, we had that each element s′ with
s′ ≡ s mod p3a+2+t+v−r appeared the same number of times in S, then given
a g of order pr, which must be 1 mod p3a+t+v+r+2−r, multiplication by g on S
would send each copy of some s to some s′ with s′ ≡ s mod p3a+2+t+v−r, and
since these appear the same number of times, it follows that gS ⊂ S. As these
are multisets of the same size, we conclude that gS = S. Thus Stab(S) would
have an element of order pr in this case.

Now we introduce some terminology. Given nonnegative integers i ≥ k and
a particular residue s mod pk, we define the values of g(s) mod p2a+t+1+v+i

on the pi−k lifts of s mod pi to be the branches of g(s) of level i. Furthermore,
we define the layer i of such an s to be the multiset of all branches of level i
(taken mod p2a+t+1+v+i). For t > j, we call a multiset T mod pt j-balanced
if for any element s in T, the pj lifts of its reduction mod pt−j appear an equal
number of times in T. Furthermore, we say the j-character of a multiset is good
if it is j-balanced and bad otherwise. Note that deleting a good multisubset
never changes the j-character of the multiset.

Under these definitions, we have that P has size ≥ pr iff S is r-balanced. Now
note that S is the disjoint union of Sx as x ranges over the invertible residues
mod p. Let s1, ..., sd be a set of coset representatives of µgcd(p−1,k) in (Z/pZ)∗

By Corollary 2, S is just gcd(p − 1, k) copies of the multiset
∐d

i=1 Ssi . Let

V =
∐d

i=1 Ssi . It immediately follows that V is r+1-balanced iff S is. Noting
again that

n(k+pa(p−1))pt

+ n(k−pa(p−1))pt

≡ 2nk′
mod p

if x ̸≡ yµ mod p for some gcd(p−1, k)th root of unity µ, it follows that Sx and
Sy are disjoint even upon restricting mod p. Hence for any s ∈ Sx, no element
s′ with s′ ≡ s mod p3a+1+t−r can appear in Sy, and so V is r + 1-balanced iff
for each x and s ∈ Sx, all s

′ appear the same number of times in Sx, which is
precisely equivalent to Sx being r+1-balanced for each x. Finally, note that if
Sx is r+1-balanced, then it follows that S′

x is r+1− q-balanced, where S′
x is

the reduction of Sx mod p3a+t+v+2−q.

Case 1: v < t

In this case, we show that P is cyclic of order pa. To show that P has size
pa, we show that each Sx is a-balanced but not a + 1-balanced. To show
that Sx is not a + 1-balanced, note that taking k = 1 in Corollary 1 gives
f(s + px) ≡ f(s) + f ′(s)px ≡ f(s) mod p2a+t+v+2, so the reduction of Sx

mod p2a+t+v+2 fails to be 1-balanced, implying thatSx fails to be a+1-balanced
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for each x.

Now we show that each Sx is a-balanced. Consider the sequence of positive
integers given by an = ⌈a+1

2n ⌉ for all n ≥ 0. Noting that 2⌈x⌉ ≥ ⌈2x⌉, we
see that 2an ≥ an−1, and so we have that f(s + panx) ≡ f(s) + f ′(s)panx
mod p2a+t+v+an−1+1 for each positive integer n by the stronger version of Corol-
lary 1. We now show that Sx is a0 − ak = a+1− ak balanced for each positive
integer k. We pick a residue s mod pak and count how many times a fixed
lift u of f(s) mod p2a+t+v+ak+1 appears in the a+ 1 layer of s. To do this, it
suffices to find the number of s′ mod pa+1 with s′ ≡ s mod pak and f(s′) ≡ u
mod p3a+t+v+2. We show by induction that there is a unique lift s′ of s mod par

that u ≡ f(s′) mod p2a+t+v+ar+1 for all 0 ≤ r ≤ k. The base case of r = k is
immediate. Now suppose that it holds for n and we show it for n − 1. Let sn
be the unique lift of s mod pan such that u ≡ f(sn) mod p2a+t+v+an+1. Then
we have that f(sn + panx) ≡ f(sn) + f ′(sn)p

anx mod p2a+t+v+an−1+1. As
vp(f

′(sn)p
an) = 2a+ t+ v + an + 1, this uniquely determines x mod pan−1−an

and hence uniquely determines sn−1. Therefore, s0 is uniquely determined
mod pa+1, showing that there is exactly 1 lift of s mod pa+1 corresponding to
a given u. Hence Sx is a0 − ak = a + 1 − ak balanced. Taking k large enough
implies that Sx is a-balanced.

Case 2: t = v

From Corollary 1, given that vp(f
′(s)) = 2a + 2t + 1 + u for some nonnega-

tive integer u, f(s + pkx) ≡ f(s) mod p2a+2t+k+u+1 for all k with k ≥ u + 1,
showing that for s′ the reduction of s mod pk, f(s′) is constant on its k + u
branches for such k. However, we also have f(s + pkx) ≡ f(s) + f ′(s)pkx
mod p2a+2t+k+u+2 for k ≥ u+ 2, so for such k, while the k + u+ 1 branches of
f(s′) of a given k + u branch of f(s′) are constant, the k + u + 1 branches of
different k+u branches are distinct, hence comprising all lifts mod p2a+k+u+1

of the k+ u branch of f(s′) once each, implying that the k+ u+1 layer of s′ is
1-balanced.

Now suppose that for some positive integer u ≤ ⌊a
2 ⌋, we have an s mod pu+1

with vp(f
′(s)) < 2a + 2t + u + 1. Then the first condition and the proof of

Lemma 5 imply that for any lift s′ mod pk of s, we have vp(f
′(s′)) = vp(f

′(s)).
Letting vp(f

′(s)) = 2a + 2t + 1 + w, w < u implies that w ≤ ⌊a
2 ⌋ − 1. In par-

ticular, selecting k = 3a+ 2t+ 1− vp(f
′(s′)), the inequality on w implies that

k = a−w ≥ w+2, so the above applies and hence the a+1 layer lying above s′

mod pk is 1-balanced, noting that vp(f
′(s)) = vp(f

′(s′)), and so the a+ 1 layer
of s, which is the disjoint union of the a + 1 layers of its lifts mod pk, is also
balanced. Looking at each individual Sx, Lemma 5 now allows us to remove
the a + 1 layers above all but 1 element mod p⌊

a
2 ⌋+1 without changing the

1-quality of S, so it remains to show that the a+1 layer above any (though we
show each) exceptional element mod p⌊

a
2 ⌋+1 isn’t 1-balanced. By Corollary 1,

we have that for any such exceptional s, f(s+ p⌊
a
2 ⌋+1x) ≡ f(s) + f ′(s)p⌊

a
2 ⌋+1x
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mod p2a+2t+2⌊ a
2 ⌋+2, but then since f ′(s) ≡ 0 mod p2a+2t+⌊ a

2 ⌋+1, we just get
f(s+ p⌊

a
2 ⌋+1x) ≡ f(s) mod p2a+2t+2⌊ a

2 ⌋+2.

If a is even, 2a + 2t + 2⌊a
2 ⌋ + 2 = 3a + 2t + 2, and so all a + 1 branches of

each exceptional s are the same, immediately implying that no Sx is 1-balanced.

It remains to handle the case of a odd. Taking an exceptional element s

mod p
a+1
2 , it once again suffices to show that its a + 1 layer is not 1-balanced.

By the proof of Lemma 5, we can choose a positive integer s′ with reduction s

mod p
a+1
2 such that f ′(s′) ≡ 0 mod p

5a+3
2 +2t. By Taylor series expansion, we

have that

f(s′ + p
a+1
2 x) =

w∑
n=0

f (n)(s′)
(p

a+1
2 x)n

n!

For n > 2, we claim that vp(f
(n)(s′) (p

a+1
2 x)n

n! ) ≥ 3a+2t+2. For n > 3, note that

since Lemma 4 implies vp(f
(n)(s′)) ≥ 2a+2t, vp(f

(n)(s′) (p
a+1
2 x)n

n! ) ≥ 4a+2t+1 ≥
3a+2t+2 since a ≥ 1. For n = 3 and p > 3, the inequality vp(f

(n)(s′) ≥ 2a+2t

again gives vp(f
(n)(s′) (p

a+1
2 x)n

n! ) ≥ 2a+ 2t+ 3(a+1
2 ) ≥ 3a+ 2t+ 2. Finally, for

n = 3, p = 3, Lemma 4 implies vp(f
(n)(s′)) ≥ 2a+2t+1, and so we still recover

vp(f
(n)(s′) (p

a+1
2 x)n

n! ) ≥ 2a+ 2t+ 3(a+1
2 ) ≥ 3a+ 2t+ 2, proving the claim.

Hence we conclude that

f(s′ + p
a+1
2 x) = f(s′) + f ′(s′)p

a+1
2 x+ f ′′(s′)

pa+1x2

2
mod p3a+2t+2

By construction of s′, vp(f
′(s′)p

a+1
2 x) ≥ 5a+3

2 + 2t+ a+1
2 = 3a+ 2t+ 2, and so

f(s′ + p
a+1
2 x) = f(s′) + f ′′(s′)

pa+1x2

2
mod p3a+2t+2

It suffices to show that f ′′(s′)p
a+1x2

2 cannot attain all residues of the form
p3a+2t+1k mod p3a+2t+2, which is an immediate consequence of the fact that
the map x2 mod p fails to be surjective, completing the proof.
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