Caltech Home > PMA Home > Master Calendar > Analysis Seminar  Friday, November 22, 2019
3:00 PM - 4:00 PM
Linde Hall 255

# Analysis Seminar

Fourier uncertainty principles, interpolation and uniqueness sets
João Pedro Ramos, Mathematical Institute, University of Bonn,

A classical result in the theory of entire functions of exponential type, Shannonâ€™s interpolation formula predicates that, given a function whose Fourier transform vanishes outside the interval $[-1/2,1/2]$, it is possible to recover it from its values at the integers. More specifically, it holds, in a suitable sense of convergence, that $$f(x) = \sum_{n \in \mathbb{Z}} f(n) \frac{\sin(\pi(x-n))}{\pi(x -n)}.$$ This formula is unfortunately unavailable for arbitrary Schwartz functions on the real line, but a recent result of Radchenko and Viazovska provides us with an explicit construction of an interpolation basis for even Schwartz functions. It states, in a nutshell, that we can recover explicitly the function given its values at the squares of roots of integers. We will discuss a bit these two results, and explore, in connection to classical Fourier uncertainty results, the question of determining which pairs of sets $(A,B)$ satisfy that, if a Schwartz function $f$ vanishes on A and its Fourier transform vanishes on B, then $f \equiv 0.$ In particular, we will give sufficient conditions on $(\alpha,\beta)$ pairs of positive numbers so that, if $f$ vanishes at $\pm n^{\alpha}$ and its Fourier transform vanishes at $\pm n^{\beta}$, then $f$ is identically zero.