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1. INTRODUCTION

For a sequence (an)n≥1 of arithmetical interest, it is often desirable in additive
number theory to have, for large X, an understanding of the Lp norms of the ex-
ponential sum M(α) = ∑n≤X ane(nα). A sufficiently good understanding of these
can also lead to estimates for the measure of {α ∈ [0, 1] : |M(α)| > λ} for λ of an
appropriate size.

The case of L1 norms has recieved particular attention, and there are few tools
to study them. For these problems, obtaining good lower bounds is particularly
difficult in many cases as the main contribution to the L1 norm is not dominated
by large values on a small portion of the interval [0, 1]. As a result, a large portion
of the contribution may to the L1 norm may end up coming from points far from
those at which the exponential sum is easy to estimate (typically rationals with
small denominator). We mention here some of the previous work on the topic.

Littlewood conjectured, and McGehee, Pigno, and Smith [11] proved that if S is
some set of n integers, then

∫ 1
0 |∑n 1S(n)e(nα)|dα� log n.

For specific sequences, and in particular those for which an is related to the
multiplicative structure of n, one expects the true value of the L1 norm to be closer
to the upper bound one obtains from Cauchy-Schwarz and Parseval. This is what
happens in the case of sequences with elements chosed uniformly at random from
{−1, 1} by Khintchine’s inequality. Because of this, it is reasonable to expect that
in many cases, if the coefficients have some multiplicative structure, then they
should behave randomly with regards to additive considerations.

In the case that an = Λ(n), the Von-Mangoldt function, it was shown by Vaughan
[12] that

∫ 1
0 |∑n≤X Λ(n)e(nα)|dα �

√
X, and it was shown by Goldston [6] that∫ 1

0 |∑n≤X Λ(n)e(nα)|dα ≤
(√

2
2 + o(1)

)√
X log X.

In the case that an is the indicator function for r-free integers, Balog and Ruzsa

[4] showed that
∫ 1

0 |∑n≤X ane(nα)|dα � X
1

r+1 , improving on work of Brüdern,
Granville, Perelli, Vaughan, and Wooley [2].

In the case of the Möbius function, Balog and Ruzsa [4] have shown that∫ 1
0 |∑n≤X µ(n)e(nα)|dα� X1/6, improving on previous results of Balog and Perelli

[3] and Balog and Ruzsa [5] who obtained the lower bounds � exp( c log X
log log X ),�

X1/8−ε respectively.
In the case of GL(1) objects, it is easy to show that if χ is some Dirichlet character

modulo q, then
∫ 1

0 |∑n≤X χ(n)e(nα)|dα ∼ Cq log X for some Cq > 0.
1
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In this paper, we make a contribution to the GL(2) case by studying the divisor
function τ(n) = ∑d|n 1. In particular, with

M(α) = ∑
n≤X

τ(n)e(nα),

we prove the following result.

Theorem 1. We have that∫ 1

0
|M(α)| = C

√
X log X + O(

√
X)

where

C =
18
π3 −

6 log 2
π3 − 1

4π
≈ 0.366 . . . .

This improves on the bound
√

X �
∫ 1

0
|M(α)|dα�

√
X log X.

obtained by Goldston and the author in [7]. This problem was previously at-
tempted by Brüdern [1], who claimed to have shown that

∫ 1
0 |M(α)| �

√
X. It

turned out that there was an error in the proof of a key lemma, which turned out
to be false.

Let us now briefly describe the main ideas of the proof. We use Klooster-
man’s refinement of the circle method. This leads us to require good estimates
on M

(
a
q + β

)
for q ≤

√
X, |β| � (q

√
X)−2.

To do so, we must first replace the cutoff 1[1,X](n) with w
( n

X
)

for w some
smooth function supported on [0, 1] equal to 1 on (η, 1− η) for some sufficiently
small η. Due to the fact that the size of τ(n) may be large for various points, we
require that η depends on X and is at most o

(
1

log X

)
. The fact that we cannot sup-

pose that the derivatives w(j) are Oj(1) for all j requires us to be quite careful in
some parts of the argument.

At this point, we use Voronoi summation to obtain that the exponential sum in
question is equal to a relatively easily understood main term plus an error term
roughly of the form X

q ∑n τ(|n|)e
(

an
q

)
fq,β(n) where fq,β is some reasonably well-

understood function that can be thought of as (with the dependence on β largely
coming from bounds on derivatives of w) being concentrated near the points |n| �
q2

X · Xε. We may bound this error term quite straightforwardly, using integration
by parts to control the complications that arise if β is large, though even assuming
that w does not depend on X, the bound one obtains is off from what we desire by
about log2 X.

However, we may note that fq,β does not depend on a, so on average, as a
ranges over coprime residue classes mod q, there must be cancellation between
summands in the error term for most a. This is expoited by Cauchy-Schwarz and
orthogonality, giving a saving of q1/2 for all somewhat large n which still con-
tribute a nonnegligible amount, and further concentrates the relevant mass of f
near 0, enough so that the potentially large size of τ at some points ceases to be a
issue, removing the problematic factor of log2 X by allowing us to treat the very
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first few terms differently so as to avoid the issues that come from smoothing. In
the end, when β = 0, we obtain a bound of O(X1/2) on average for the error term,
which suffices.

Obtaining an asymptotic formula when an = λ f (n), the nth Fourier coefficient
of some holomorphic cusp form f , seems significantly harder, as the exponen-
tial sum is small everywhere, and there is no “main term” around rationals with
small denominators like we have in the case of the divisor function. Determin-
ing the L1 norm up to a constant factor however, is quite easy. In particular, the
estimate

∫ 1
0 |∑n≤X λ f (n)e(nα)|dα �

√
X follows from Hölder’s inequality, the

asymptotic∑n≤X |λ f (n)|2 ∼ c f X, and the pointwise bound ∑n≤X λ f (n)e(nα) �√
X of Jutila [8].
Another natural extension is to instead of τ(n), consider τ3(n) = ∑d1d2d3=n 1.

The problem becomes significantly harder in this case however, since the effective
length of the error term from Voronoi summation is significantly longer.

2. SETUP

Let Y = X1−δ with δ = 1
100 , and let w be a smooth function taking values in

[0, 1] supported on [1/2, X] such that

w(u) = 1 for 1 ≤ u ≤ X−Y

w(j)(u)� Y−j for j ∈ {0, 1, 2}, u ≥ 1

Instead of working with the L1-norm of M(α), it suffices to work with the L1-norm
of

M∗(α) = ∑
n≤X

τ(n)w(n)e(nα)

since we have that by Parseval and Cauchy-Schwarz∣∣∣∣ ∫ 1

0
|M(α)|dα−

∫ 1

0
|M∗(α)|dα

∣∣∣∣
≤
∫ 1

0

∣∣∣∣ ∑
X−Y<n≤X

|1− w(n)|τ(n)e(nα)

∣∣∣∣dα

≤
( ∫ 1

0

∣∣∣∣ ∑
X−Y<n≤X

|1− w(n)|τ(n)e(nα)

∣∣∣∣2dα

)1/2

≤
(

∑
X−Y<n≤X

τ(n)2
)1/2

� X1/2−δ/2+ε.

Let Q =
√

X. Then, we have by (20.9) and the proof of 20.7 in [10]
(2.1)∫ 1

0
|M∗(α)|dα = ∑

q≤Q
∑

Q<a≤q+Q
(a,q)=1

∫ 0

−1/(aq)

∣∣∣∣M∗ ( a
q
+ β

) ∣∣∣∣dβ+
∫ 1/(aq)

0

∣∣∣∣M∗ (− a
q
+ β

) ∣∣∣∣dβ.
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where a is so that aa ≡ 1 (mod q). From (4.49) in [10], we have that for all β and
q ≤ Q, (a, q) = 1

M∗
(

a
q
+ β

)
= ∑

n≥1
τ(n)e

(
an
q

)
w(n)e(nβ) =

1
q

∫ ∞

0
(log x + 2γ− 2 log q)w(x)e(xβ)dx

+ ∑
n∈Z

e
(
− an

q

)
∆(n, q, β)

where here

∆(n, q, β) =


− 2πτ(n)

q
∫

w(x)e(xβ)Y0

(
4π
√

xn
q

)
dx n ≥ 1

0 n = 0

− 4τ(−n)
q

∫
w(x)e(xβ)K0

(
4π
√

x|n|
q

)
dx n < 0.

Here, Yν, Kν are the standard Bessel functions. It follows that∫ 1

0
M∗(α)dα = E + R

where

E = ∑
q≤Q

∑
Q<a≤q+Q
(a,q)=1

∫ 1/(aq)

−1/(aq)
|Iq(β)|dβ

with

Iq(β) =
∫ ∞

0
(log x + 2γ− 2 log q)w(x)e(xβ)dx,

and

R ≤ ∑
q≤Q

∑
a(q)

∗
∫ 1/(qQ)

−1/(qQ)
|Ra,q(β)|dβ

where

Ra,q(β) = ∑
n

e
(
− an

q

)
∆(n, q, β).

Then, the main theorem follows from the following two lemmas, which we prove
in the next two sections.

Lemma 2. We have

R�
√

X.

Lemma 3. We have

E = C
√

X log X + O(
√

X).
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3. THE ERROR TERM

In order to prove Lemma 2, we shall in fact show the following.

Lemma 4. We have that for all q ≤ Q, |β| ≤ 1/(qQ)

∑
a(q)

∗|Ra,q(β)| � q2 + qX1/2 + X2δq3/2+ε + |β|2q5/2X7/4 + |β|2q3/2+εX7/4+2δ.

Proof of Lemma 2 assuming Lemma 4. Clearly, we have that by Lemma 4

R = ∑
q≤Q

∑
a(q)

∗
∫ 1/(qQ)

−1/(qQ)
|Ra,q(β)|dβ

� ∑
q≤Q

∫ 1/(qQ)

−1/(qQ)
q2 + qX1/2 + X2δq3/2+ε + |β|2q5/2X7/4 + |β|2q3/2+εX7/4+2δdβ

� ∑
q≤Q

1 +
q
Q

+
q1/2+ε

Q
X2δ +

q−1/2

Q3 X7/4 +
q−3/2+ε

Q3 X7/4+2δ

� Q + Q1/2X2δ + Q−5/2X7/4 + X7/4−3/2+2δ � X1/2

and the desired result follows. �

Proof of Lemma 4. Note that by Cauchy-Schwarz, we have

Rq(β) = ∑
a(q)

∗
∣∣∣∣∑

n
e
(
− an

q

)
∆(n, q, β)

∣∣∣∣
≤ ∑

m∈Z

∑
a(q)

∗
∣∣∣∣ ∑

qm≤n<q(m+1)
e
(
− an

q

)
∆(n, q, β)

∣∣∣∣
≤ ∑

m∈Z

q1/2

∑
a(q)

∗
∣∣∣∣ ∑

qm≤n<q(m+1)
e
(
− an

q

)
∆(n, q, β)

∣∣∣∣2
1/2

Let

Bq,m(β) = ∑
a(q)

∗
∣∣∣∣ ∑

qm≤n<q(m+1)
e
(
− an

q

)
∆(n, q, β)

∣∣∣∣2.

Note that then we have

Bq,m(β) = ∑
a(q)

∗
∣∣∣∣ ∑

qm≤n<q(m+1)
e
(
− an

q

)
∆(n, q, β)

∣∣∣∣2 ≤ ∑
a(q)

∣∣∣∣ ∑
qm≤n<q(m+1)

e
(
− an

q

)
∆(n, q, β)

∣∣∣∣2
= ∑

a(q)
∑

qm≤n1,n2<q(m+1)
e
(
− a(n1 − n2)

q

)
∆(n1, q, β)∆(n2, q, β)

= ∑
qm≤n1,n2<q(m+1)

∆(n1, q, β)∆(n2, q, β)∑
a(q)

e
(
− a(n1 − n2)

q

)
= q ∑

qm≤n<q(m+1)
|∆(n, q, β)|2
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so it follows that

(3.1) Rq(β) ≤ ∑
m∈Z

q

 ∑
qm≤n<q(m+1)

|∆(n, q, β)|2
1/2

.

Integrating by parts twice, and noting that w is supported on [1/2, X] we obtain
(with Bν denoting either Yν or Kν depending on the sign of n) that for all n 6= 0∫ ∞

0
e(xβ)w(x)B0

(
4π
√

x|n|
q

)
dx

=
q2

4π2|n|

∫ ∞

1/2
e(xβ)(w′′ + 4πiβw′ − 4π2β2w)(x)

(
xB2

(
4π
√

x|n|
q

))
dx.(3.2)

We have that from the bounds on w that

(w′′ + 4πiβw′ − 4π2β2w)(x)� X2δ(|β|2 + (|β|x−1 + x−2)1x∈[1/2,1]∪[X−Y,X])

� X2δ(|β|2 + 1x∈[1/2,1]∪[X−Y,X]x
−2).(3.3)

so from (3.2) we obtain that for |n| � q2, by (4.9) in [13]∫ ∞

0
e(xβ)w(x)B0

(
4π
√

x|n|
q

)
dx

� q2

|n|

∫ ∞

1/2
X2δ(x|β|2 + 1x∈[1/2,1]∪[X−Y,X]x

−1)

∣∣∣∣B2

(
4π
√

x|n|
q

) ∣∣∣∣dx

� q2

|n|X
2δ

( ∫ X

1/2
x|β|2q1/2x−1/4|n|−1/4dx +

∫
[1/2,1]∪[X−Y,X]

x−1q1/2x−1/4|n|−1/4dx
)

� q5/2|n|−5/4|β|2X7/4+2δ + q5/2|n|−5/4X2δ

so by the divisor bound τ(n)�ε nε we have that

∆(n, q, β)� |n|εq3/2|n|−5/4|β|2X7/4+2δ + q3/2|n|−5/4+εX2δ.

It follows that for |m| > q

∑
qm≤n<q(m+1)

|∆(n, q, β)|2 � X4δ|m|ε(q4(q|m|)−5/2 + |β|4q4X7/2(q|m|)−5/2)

� (q3/2 + |β|4q3/2X7/2)X4δ|m|−5/2+ε

so

(3.4) ∑
|m|>q

(
∑

qm≤n<q(m+1)
|∆(n, q, β)|2

)1/2

� X2δ(q1/2+ε + |β|2q1/2+εX7/4).

From now on, until specified otherwise, we shall restrict ourselves to |n| ≤ q2,
|m| � q.

For n 6= 0, by integration by parts

∆(n, q, β)� τ(n)
q

(|∆1(n)|+ |∆2(n)|+ |∆3(n)|)
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where

∆1 = ∆1(n, q, β) =
qβ√
|n|

∫ ∞

0
e(xβ)w(x)x1/2B1

(
4π
√

x|n|
q

)
dx

∆2 = ∆2(n, q, β) =
q√
|n|

∫ X

X−Y
e(xβ)w′(x)x1/2B1

(
4π
√

x|n|
q

)
dx

∆3 = ∆3(n, q, β) =
q√
|n|

∫ 1

1/2
e(xβ)w′(x)x1/2B1

(
4π
√

x|n|
q

)
dx.

We have, from (4.9) in [13] and integration by parts that

∆1 =
q2β

|n|

∫
(2πiβe(xβ)w(x) + e(xβ)w′(x))

(
xB2

(
4π
√

x|n|
q

))
dx

� q2|β||n|−5/4
( ∫ X

q2/|n|
(|β|+ |w′(x)|)q1/2x3/4dx + |n|−3/4

∫ q2/|n|

1/2
(|β|+ |w′(x)|)q2dx

)
.

The first integral is

� q1/2X3/4
∫ X

X−Y
|w′(x)|dx + q1/2|β|X3/4

∫ X

1
dx � q1/2X3/4 + q1/2X7/4|β|

while the second one is

� |β|q4|n|−1 + q2 � |β|q1/2X7/4 + q1/2X3/4.

Combining these, we obtain that

(3.5) ∆1 � |β|q5/2X3/4|n|−5/4 + |β|2q5/2X7/4|n|−5/4.

Similarly, integrating by parts, we obtain that

∆2 �
q2

|n|

∫ X

X−Y
(|β||w′(x)|+ |w′′(x)|)xB2

(
4π
√

x|n|
q

)
dx

� q2

|n|

∫ X

X−Y
(|β|Y−1 + Xδ−1Y−1)xB2

(
4π
√

x|n|
q

)
dx

� |β|q5/2X3/4|n|−5/4 + q5/2X−1/4+δ|n|−5/4.(3.6)

In addition, we have from (2.5) in [13] the bound B1(x) � x−1/2 for x � 1, so we
obtain that

∆2 �
q√
|n|

∫ X

X−Y
(Y−1q1/2x−1/4)x1/2|n|−1/4dx � q3/2X1/4|n|−3/4.(3.7)

Also, from the bound B1(y)� y−1, we obtain that

(3.8) ∆3 �
q2

|n| .
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Therefore, combining (3.5), (3.7), (3.6, and (3.8) we have that

|∆(n, q, β)| � τ(|n|)
(

q
|n| + |β|q

3/2X3/4|n|−5/4 + |β|2q3/2X7/4|n|−5/4

+ min(q3/2X−1/4+δ|n|−5/4, q1/2X1/4|n|−3/4)

)
,

so we have that

∑
|n|≤2q

|∆(n, q, β)|2 � ∑
0<n≤2q

q2 τ(n)2

n2 + |β|2q3X3/2 τ(n)2

n5/2 + |β|4q3X7/2 τ(n)2

n5/2 + qX1/2 τ(n)2

n3/2

� q2 + |β|2q3X3/2 + |β|4q3X7/2 + qX1/2,(3.9)

and for 1 < |m| ≤ q

∑
qm≤n<q(m+1)

|∆(n, q, β)|2

� q1+ε

(
q2 · 1
|m|2q2 + |β|4q3X3/2 · 1

|m|5/2q5/2 + q3X−1/2+2δ · 1
q5/2|m|5/2

)
� q1+ε

|m|2 +
|β|4q1/2X3/2

|m|5/2 +
q3/2X−1/2+2δ

|m|5/2 .

Therefore, it follows that

∑
1<|m|≤q

q
(

∑
qm≤n<q(m+1)

|∆(n, q, β)|2
)1/2

� q ∑
1<|m|≤q

q1/2+ε 1
|m| + |β|

2q1/4+εX3/4 1
|m|5/4 + q3/4X−1/4+δ 1

|m|5/4

� q3/2+ε + |β|2q5/4+εX3/4 + q7/4X−1/4+δ.

Putting this bound together with (3.9), (3.4), and (3.1) yields that

(3.10) Rq(β)� q2 + qX1/2 + |β|2q5/2X7/4 + X2δq3/2+ε + |β|2q3/2+εX7/4+2δ.

The desired result follows. �

THE MAIN TERM

In this section, we prove Lemma 3. Note that we have that

E = ∑
q≤Q

∑
Q<a≤q+Q
(a,q)=1

∫ 1/(aq)

−1/(aq)

1
q
|Iq(β)|dβ = 2 ∑

q≤Q

1
q ∑

Q<a≤q+Q
(a,q)=1

∫ 1/(aq)

0
|Iq(β)|dβ



ON THE MEAN VALUE OF THE MAGNITUDE OF AN EXPONENTIAL SUM 9

For β < 1/X, q ≤ Q, we have that by the triangle inequality

|Iq(β)| ≤
∫ X

1/2
| log x + 2γ− 2 log q|dx

�
∫ q2

1/2
log(q2/x)dx +

∫ X

q2
log(x/q2)dx + O(X)

= q2 log(q2)− (q2 log(q2)− q2) + X log X− X− q2 log q2 + q2 − (X− q2) log q2 + O(X)

= X log(X/q2) + O(X).

It can then be checked that the contribution due to β < 1/X can be disregarded.
Indeed, we have that

∑
q≤Q

ϕ(q)
q

∫ 1/X

0
|Iq(β)|dβ ≤ 1

X ∑
q≤Q

X(log(X/q2) + 1)� X1/2.

We shall therefore now restrict our attention to β ≥ 1/X. Note that we have that
by integration by parts

Iq(β) =
∫
(log x + 2γ− 2 log q)w(x)e(xβ)dβ = I1

q (β) + I2
q (β)

where

I1
q (β) =

1
2πiβ

∫ w(x)
x

e(xβ)dx

I2
q (β) =

1
2πiβ

∫ X

X−Y
(log x + 2γ− 2 log q)w′(x)e(xβ)dx.

We have that

I2
q (β)� 1

βY

∫ X

X−Y
log x + 2γ− 2 log qdx � 1

β
(log(X/q2) + 2γ).

Also, we have that

I1
q (β) =

1
2πiβ

∫ β−1

1/2

w(x)
x

dx+O

(
β−1

∫ β−1

1/2

|e(xβ)− 1|
x

dx + β−1
∣∣∣∣ ∫ X

β−1

w(x)
x

e(xβ)dx
∣∣∣∣
)

.

From the inequality |e(α)− 1| ≤ |α|, it follows that∫ β−1

1/2

|e(xβ)− 1|
x

dx ≤ 1

and by integration by parts, we have that for β > 1/X∫ X

β−1

w(x)
x

e(xβ)dx =
1

2πi
w(β−1) +

1
2πiβ

∫ X

β−1

w(x)
x2 e(xβ)dx− 1

2πiβ

∫ X

X−Y

w′(x)
x

e(xβ)dx

� 1 + β−1
∫ X

β−1

1
x2 dx + β−1

∫ X

X−Y
Y−1x−1dx � 1.

Therefore, we have that

I1
q (β) =

log(β−1)

2πiβ
+ O(β−1)
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so

E = 2 ∑
q≤Q

1
q ∑

Q<a≤q+Q
(a,q)=1

∫ 1/(aq)

1/X
|Iq(β)|dβ

=
1
π ∑

q≤Q

1
q ∑

Q<a≤q+Q
(a,q)=1

1
q

∫ 1/(aq)

1/X

log(β−1)

β
dβ + O

(
∑

q≤Q

ϕ(q)
q

∫ 1/(qQ)

1/X

1
β
(log(X/q2) + 1)dβ

)
.

The term inside the O(−) is

� ∑
q≤Q

log(X/q2)2 + log(X/q2)�
√

X.

At this point, the lower bound of�
√

X log X follows. Indeed, we have

∑
q≤Q

1
q ∑

Q<a≤q+Q
(a,q)=1

1
q

∫ 1/(aq)

1/X

log(β−1)

2πβ
dβ� ∑

q≤Q

ϕ(q)
q

((log X)2− log(2qQ)2)�
√

X log X

by partial summation.
Now we shall show that with

S =
1
π ∑

q≤Q

1
q ∑

Q<a≤q+Q
(a,q)=1

∫ 1/(aq)

1/X

log(β−1)

β
dβ

=
1

2π ∑
q≤Q

1
q ∑

Q<a≤q+Q
(a,q)=1

log2 X− log2(aq),

S = C
√

X log X + O(
√

X) with C =.
From the identity

1(a,q)=1 = ∑
d|a
d|q

µ(d)

we obtain that

S = ∑
q≤Q

∑
Q<a≤q+Q

(log2 X− log(aq))∑
d|a
d|q

µ(d) = S2 + S3

where

S2 =
1

2π ∑
Q≥d>X1/4

µ(d) ∑
q≤Q
d|q

1
q ∑

Q<a≤q+Q
d|a

log2 X− log2(aq),

and

S3 =
1

2π ∑
d≤X1/4

µ(d) ∑
q≤Q
d|q

1
q ∑

Q<a≤q+Q
d|a

log2 X− log2(aq).
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Note that

S2 � log2 X ∑
Q≥d>X1/4

∑
q≤Q
d|q

1
q ∑

Q<a≤q+Q
d|a

1

� log2 X ∑
Q≥d>X1/4

∑
q≤Q
d|q

1
q
· Q

d

� Q log3 X ∑
Q≥d>X1/4

1
d2

� X1/4 log3 X.(3.11)

In addition, we have that

S3 =
1

2π ∑
d≤X1/4

µ(d) ∑
q≤Q
d|q

1
q ∑

Q<a≤q+Q
d|a

log2 X− log2(aq)

=
1

2π ∑
d≤X1/4

µ(d) ∑
q0≤Q/d

1
q0d ∑

Q/d<a0≤q0+Q/d
log2 X− log2(a0q0d2)

=
1

2π ∑
d≤X1/4

µ(d) ∑
q0≤Q/d

1
q0d

( ∫ q0+Q/d

Q/d
log2 X− log2(yq0d2)dy + O(log2 X)

)

=
1

2π ∑
d≤X1/4

µ(d) ∑
q0≤Q/d

1
q0d

∫ q0+Q/d

Q/d
log2 X− log2(yq0d2)dy + O(−)

where the error in the O(−) is

� log2 X ∑
d≤X1/4

∑
q0≤Q/d

1
q0d
� log3 X ∑

d≤X1/4

1
d2 � log3 X.

The main term is equal to S4 − S5 with

S4 =
1

2π ∑
d≤X1/4

µ(d)
d ∑

q0≤Q/d
log2 X,

S5 =
1

2π ∑
d≤X1/4

µ(d)
d ∑

q0≤Q/d

1
q0

∫ q0+Q/d

Q/d
log2(yq0d2)dy.

Note that
(3.12)

S4 =
1

2π
Q log2 X ∑

d≤X1/4

µ(d)
d2 (1+O(X−1/4)) =

1
2πζ(2)

√
X log2 X+O(X1/4 log2 X).

In addition, we have that

S5 =
Q
2π ∑

d≤X1/4

µ(d)
d2 ∑

q0≤Q/d

1
q0

∫ 1+dq0/Q

1
log2(ydq0Q)dy.
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With A = dq0Q, the inner integral is equal to[
y(log2(Ay)− 2 log(Ay) + 2)

]1+dq0/Q

1

=

[
y(log2 y + 2(log A− 1) log y + 2− 2 log A + log2 A)

]1+dq0/Q

1

=
dq0

Q
(2− 2 log A + log2 A) +

(
1 +

dq0

Q

)(
log2

(
1 +

dq0

Q

)
+ 2(log A− 1) log

(
1 +

dq0

Q

))
so by various manipulations including the identities∫ Q/d

1
log(1 + td/Q) log(tdQ)

dt
t
= −Li2(−1) log X + O(1)

and
d
Q

∫ Q/d

1
log(1 + td/Q) log(tdQ)dt = (2 log 2− 2) log X + O(1)

where Lis is the polylogarithm function, we obtain that

S5 =
Q
2π ∑

d≤X1/4

µ(d)
d2

∫ Q/d

1

d
Q
(2− 2 log(tdQ) + log2(tdQ))

+

(
1
t
+

d
Q

)(
log2

(
1 +

dt
Q

)
+ 2(log(tdQ)− 1) log

(
1 +

dt
Q

))
dt + O(X1/4+ε)

=
Q
2π ∑

d≤X1/4

µ(d)
d2

∫ Q/d

1

d
Q
(−2 log(tdQ) + log2(tdQ))

+

(
1
t
+

d
Q

)(
2 log(tdQ) log

(
1 +

dt
Q

))
dt + O(X1/2)

=
Q

2πζ(2)
(log2 X− 4 log X + (2 log 2− 2) log X− Li2(−1) log X) + O(X1/2)

=
1

2πζ(2)

√
X log2 X− C

√
X log X + O(X1/2)

where

C =
3

π3 (4 + 2− 2 log 2 + Li2(−1)) =
18
π3 −

6 log 2
π3 − 1

4π
≈ 0.366 . . . .

The desired result then follows.
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[1] Brüdern, Jörg: Exponential sums over products and their L1-norm. Arch. Math. 76 (2001), 196201.
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