ZACHARY CHASE

ABSTRACT. Let G be a finite Abelian group. For a subset $S \subseteq G$, let $T_3(S)$ denote the number of length three arithemtic progressions in S and $\operatorname{Prob}[S] = \frac{1}{|S|^2} \sum_{x,y \in S} \mathbb{1}_S(x+y)$. For any $q \ge 1$ and $\alpha \in [0,1]$, and any $S \subseteq G$ with $|S| = \frac{|G|}{q+\alpha}$, we show $\frac{T_3(S)}{|S|^2}$ and $\operatorname{Prob}[S]$ are bounded above by $\max\left(\frac{q^2-\alpha q+\alpha^2}{q^2}, \frac{q^2+2\alpha q+4\alpha^2-6\alpha+3}{(q+1)^2}, \gamma_0\right)$, where $\gamma_0 < 1$ is an absolute constant. As a consequence, we verify a graph theoretic conjecture of Gan, Loh, and Sudakov for Cayley graphs.

1. INTRODUCTION

The study of arithmetic progressions in subsets of integers and general Abelian groups is a central topic in additive combinatorics and has led to the development of many fascinating areas of mathematics. A famous result on three term arithmetic progressions (3APs) is Roth's theorem, which, in its finitary form, says that for each $\lambda > 0$, for N large, any subset $S \subseteq \{1, \ldots, N\}$ of size $|S| \ge \lambda N$ contains a 3AP.

Once Roth's theorem ensures that all subsets of a given size have a 3AP, one can generate many 3APs. For example, Varnavides [4] proved that for each $\lambda > 0$, there is some c > 0 so that for all large N, every subset $S \subseteq \{1, \ldots, N\}$ with $|S| \ge \lambda N$ contains at least cN^2 3APs. A natural question is then how many 3APs a subset of $\{1, \ldots, N\}$ of a prescribed size can have. We look at this question in the group theoretic setting.

Fix $\lambda \in (0, 1)$. Let p be a large prime and consider subsets $S \subseteq \mathbb{Z}_p$ of size $|S| = \lfloor \lambda p \rfloor$. If $T_3(S)$ denotes the number of 3APs in S, namely, the number of $x, d \in \mathbb{Z}_p$ with $x, x + d, x + 2d \in S$, then Croot [1] showed that

$$\lim_{p \to \infty} \max_{\substack{S \subseteq \mathbb{Z}_p \\ |S| = \lfloor \lambda p \rfloor}} \frac{T_3(S)}{|S|^2}$$

exists, and then Green and Sisask [2] proved that the limit is in fact $\frac{1}{2}$, for all λ less than some absolute constant. In \mathbb{Z}_n , for *n* not prime, the situation is quite different, since subgroups have many 3APs relative to their size. In this paper, we nevertheless get an upper bound, useful when the size of *S* is "far" from dividing *n*.

Date: September 11th, 2018.

Theorem 1. There is an absolute constant $\gamma_1 < 1$ so that for any finite Abelian group G of odd order, and for any $q \in \mathbb{N}, \alpha \in [0, 1]$,

$$\max_{\substack{S \subseteq G \\ |S| = \frac{|G|}{q+\alpha}}} \frac{T_3(S)}{|S|^2} \le \max\left(\frac{q^2 - \alpha q + \alpha^2}{q^2}, \frac{q^2 + 2\alpha q + 4\alpha^2 - 6\alpha + 3}{(q+1)^2}, \gamma_1\right).$$

Related to $\frac{T_3(S)}{|S|^2} = \frac{1}{|S|^2} \sum_{x,y \in S} \mathbb{1}_S(\frac{x+y}{2})$ is the quantity $\frac{1}{|S|^2} \sum_{x,y \in S} \mathbb{1}_S(x+y)$. This quantity, which we denote $\operatorname{Prob}[S]$, arises in the expression for the number of triangles in a Cayley graph with generating set S. Precisely, let G be an additive group of size n and $S \subseteq G$ a symmetric set not containing 0. Connect $x, y \in G$ iff $x-y \in S$. We obtain an undirected graph on G with no self loops. The number of triangles in our graph is

$$\frac{1}{6} \sum_{a,b,c \in G} 1_S(a-b) 1_S(b-c) 1_S(a-c).$$

Let x = a - b and y = b - c. Then ranging over c, b, a is equivalent to ranging over c, y, x and thus

$$|T| = \frac{1}{6} \sum_{x,y,c} \mathbb{1}_S(x) \mathbb{1}_S(y) \mathbb{1}_S(x+y) = \frac{1}{6} n \sum_{x,y \in S} \mathbb{1}_S(x+y) = \frac{1}{6} n |S|^2 \operatorname{Prob}[S].$$

Quite recently, Gan, Loh, and Sudakov [3] resolved a conjecture of Engbers and Galvin regarding the maximum number of independent sets of size 3 that a graph with a given minimum degree and fixed size can have. Phrased in complementary graphs, they showed that given a maximum degree d and a positive integer $n \leq d$ 2d+2, the maximum number of triangles that a graph on n vertices with maximum degree d can have is $\binom{d+1}{3} + \binom{n-(d+1)}{3}$. This immediately raised the question of what the maximum is for n > 2d + 2. They conjectured the following.

Conjecture (Gan-Loh-Sudakov). Fix $d \geq 2$. For any positive integer n, if we write n = q(d+1) + r for $0 \le r \le d$, then the maximum number of triangles that a graph on *n* vertices with maximum degree *d* can have is $q\binom{d+1}{3} + \binom{r}{3}$.

For each d, n, an example of a graph achieving $q\binom{d+1}{3} + \binom{r}{3}$ is simply a disjoint union of K_{d+1} 's and a K_r . The conjecture for a Cayley graph on an additive group G with generating set $S, |S| = \frac{|G|}{q+\alpha}$, takes the form $\operatorname{Prob}[S] \leq \frac{q+\alpha^3}{q+\alpha}$, up to smaller order terms. We verify the conjecture for Cayley graphs when $q \geq 7$.

Theorem 2. There is an absolute constant $\gamma_0 < 1$ so that the following holds. Let G be a finite Abelian group and take $q \in \mathbb{N}, \alpha \in [0,1]$. Then for any symmetric subset $S \subseteq G$ with $|S| = \frac{|\overline{G}|}{q+\alpha}$,

$$\frac{1}{|S|^2} \sum_{x,y \in S} 1_S(x+y) \le \max\left(\frac{q^2 - \alpha q + \alpha^2}{q^2}, \frac{q^2 + 2\alpha q + 4\alpha^2 - 6\alpha + 3}{(q+1)^2}, \gamma_0\right).$$

Consequently, the Gan-Loh-Sudakov conjecture holds for Cayley graphs with generating set $|S| \leq \frac{n}{7}$.

We give a fourier analytic proof of Theorems 1 and 2. Here is a quick highlevel overview of the argument. We express the relevant "probability" (either $\frac{1}{|S|^2} \sum_{x,y \in S} 1_S(\frac{x+y}{2})$ or $\frac{1}{|S|^2} \sum_{x,y \in S} 1_S(x+y)$ in terms of the fourier coefficients of 1_S . If the probability is large, then some nonzero fourier coefficient must be large. We deduce that (a dilate of) the residues of S of a certain modulus concentrate near 0. Since there won't be "wraparound" near 0, this allows us to transfer the problem to \mathbb{Z} , which is a setting where it's easier to bound the relevant probabilities. We can show from the result in \mathbb{Z} that we in fact must have many residues be 0. This allows us to conclude that S is very close to a subgroup. Induction and a purely combinatorial argument finish the job from there.

Here is an outline of the paper. We first set our notation for Fourier analysis on \mathbb{Z}_n . Then we give the proof of Theorems 1 and 2, modulo two Lemmas, which we prove afterwards. After, we show the calculations deducing the Gan-Loh-Sudakov conjecture from our main theorem. Finally, we prove Theorems 1 and 2 when q = 1.

2. Fourier Analysis on \mathbb{Z}_n

In this section, we briefly fix our notation for fourier analysis on \mathbb{Z}_n and obtain the fourier representation of the relevant quantities in the proofs to be given below. For a function $f : \mathbb{Z}_n \to \mathbb{C}$, define its (finite) fourier transform $\widehat{f} : \mathbb{Z}_n \to \mathbb{C}$ by

$$\widehat{f}(m) := \frac{1}{n} \sum_{x \in \mathbb{Z}_n} f(x) e^{-2\pi i \frac{xm}{n}}.$$

The following well-known equalities are straightforward.

$$\sum_{m \in \mathbb{Z}_n} |\widehat{f}(m)|^2 = \frac{1}{n} \sum_{x \in \mathbb{Z}_n} |f(x)|^2$$
$$f(x) = \sum_{m \in \mathbb{Z}_n} \widehat{f}(m) e^{2\pi i \frac{xm}{n}}.$$

Let S be a symmetric subset of \mathbb{Z}_n . Then, $\frac{1}{|S|^2} \sum_{x,y \in S} \mathbb{1}_S(x+y) =$

$$\frac{1}{|S|^2} \sum_{x,y \in \mathbb{Z}_n} \left[\sum_{m_1 \in \mathbb{Z}_n} \widehat{1}_S(m_1) e^{2\pi i \frac{xm_1}{n}} \right] \left[\sum_{m_2 \in \mathbb{Z}_n} \widehat{1}_S(m_2) e^{2\pi i \frac{ym_2}{n}} \right] \left[\sum_{m_3 \in \mathbb{Z}_n} \widehat{1}_S(m_3) e^{2\pi i \frac{(x+y)m_3}{n}} \right] \\ = \frac{1}{|S|^2} \sum_{m_1, m_2, m_3 \in \mathbb{Z}_n} \widehat{1}_S(m_1) \widehat{1}_S(m_2) \widehat{1}_S(m_3) \left[\sum_{x \in \mathbb{Z}_n} e^{2\pi i \frac{x(m_1+m_3)}{n}} \right] \left[\sum_{y \in \mathbb{Z}_n} e^{2\pi i \frac{y(m_2+m_3)}{n}} \right],$$

and using

$$\sum_{x \in \mathbb{Z}_n} e^{2\pi i \frac{xk}{n}} = \begin{cases} n & k \equiv 0 \pmod{n} \\ 0 & k \not\equiv 0 \pmod{n} \end{cases},$$

we obtain

$$\frac{1}{|S|^2} \sum_{x,y \in S} \mathbb{1}_S(x+y) = \frac{n^2}{|S|^2} \sum_{m \in \mathbb{Z}_n} \widehat{\mathbb{1}}_S(-m) \widehat{\mathbb{1}}_S(-m) \widehat{\mathbb{1}}_S(m).$$

However, the symmetry of S implies that $\widehat{1}_S(m) = \widehat{1}_S(-m)$ for each $m \in \mathbb{Z}_n$. Therefore,

$$\operatorname{Prob}[S] = \frac{1}{|S|^2} \sum_{x,y \in S} \mathbb{1}_S(x+y) = \frac{n^2}{|S|^2} \sum_{m \in \mathbb{Z}_n} \widehat{\mathbb{1}}_S(m)^3.$$

Similarly, for any subset $S \subseteq \mathbb{Z}_n$,

$$\frac{1}{|S|^2} \sum_{x,y \in S} \mathbb{1}_S(\frac{x+y}{2}) = \frac{n^2}{|S|^2} \sum_{m \in \mathbb{Z}_n} \widehat{\mathbb{1}_S(m)^2} \widehat{\mathbb{1}_S(-2m)}.$$

3. Proof of Theorems 1 and 2

We induct on q. We discuss the base case q = 1 in section 6. Take some $q \ge 2$ and $\alpha \in [0, 1]$. Let $S \subseteq \mathbb{Z}_n$ be a symmetric¹ subset with $|S| = \frac{n}{q+\alpha}$.

Let $\gamma = \max(\frac{q^2 - \alpha q + \alpha^2}{q^2}, \frac{q^2 + 2\alpha q + 4\alpha^2 - 6\alpha + 3}{(q+1)^2}, \gamma_0)$. Assume, for the sake of contradiction, that $\operatorname{Prob}[S] \geq \gamma$. Then, as explained in section 2,

$$\sum_{m} \widehat{1}_{S}(m)^{3} \ge \frac{d^{2}}{n^{2}}\gamma.$$

Note $\widehat{1}_{S}(0)^{3} = \frac{d^{3}}{n^{3}}$, so, since $\widehat{1}_{S}(m)$ is real for each m^{2} ,

$$\gamma \frac{d^2}{n^2} - \frac{d^3}{n^3} \le \sum_{m \ne 0} \widehat{1}_S(m)^3 \le \left(\sup_{m \ne 0} \widehat{1}_S(m) \right) \cdot \sum_{m \ne 0} \widehat{1}_S(m)^2 = \left(\sup_{m \ne 0} \widehat{1}_S(m) \right) \cdot \left[\frac{d}{n} - \frac{d^2}{n^2} \right],$$

where we used Plancherel in the last step. Take $m_0 \neq 0$ with

$$\widehat{l}_S(m_0) \ge \frac{d}{n} \frac{\gamma - \frac{d}{n}}{1 - \frac{d}{n}} =: \frac{d}{n} \mu.$$

Then,

$$\mu \le \frac{1}{d} \sum_{x \in S} e^{2\pi i \frac{m_0}{n}x} = \frac{1}{d} \sum_{x \in S} e^{2\pi i \frac{m_0/g}{n/g}x},$$

where $q := \gcd(m_0, n)$. Let

$$A = \{ x \in \mathbb{Z}_n : 2\pi \frac{m_0/g}{n/g} x \in [-2\pi/3, 2\pi/3] \pmod{2\pi} \}$$

¹In the 3AP setting, we do not assume S is symmetric. ²In the 3AP setting, we instead do $\gamma \frac{d^2}{n^2} - \frac{d^3}{n^3} \leq \sup_{m \neq 0} |\widehat{1_S}(-2m)| \cdot [\frac{d}{n} - \frac{d^2}{n^2}]$. Then we take m_0 with $|\widehat{1_S}(m_0)| \geq \frac{d}{n}\mu$. Finally, we can translate S so that $\widehat{1_S}(m_0)$ is real and positive.

$$B = \mathbb{Z}_{n/g} \setminus A.^3$$

Then, since $\widehat{1}_S(m_0)$ is real,

$$d\mu \le \sum_{x \in S} \cos(2\pi \frac{m_0/g}{n_0/g}x) \le |A| + (d - |A|)(-\frac{1}{2}),$$

which implies

$$\frac{|A|}{d} \ge \frac{2\mu + 1}{3}.4$$

For $z \in B$,

$$\#\{(x,y) \in S^2 : x+y = z\} \le d$$

and for $z \in A$,

$$#\{(x,y) \in B \times A : x + y = z\} \le |B| #\{(x,y) \in S \times B : x + y = z\} \le |B| #\{(x,y) \in A \times A : x + y = z\} =: C_z.^5$$

Therefore,,

$$d^{2} \operatorname{Prob}[S] \leq d|B| + 2|A| |B| + \sum_{z \in A} C_{z}$$
$$= d(d - |A|) + 2|A|(d - |A|) + |A|^{2} \operatorname{Prob}[A].$$

So, we must have

$$\operatorname{Prob}[A] \ge \frac{\gamma + 2\frac{|A|^2}{d^2} - \frac{|A|}{d} - 1}{\frac{|A|^2}{d^2}}$$

If we let $f(x) = \frac{\gamma + 2x^2 - x - 1}{x^2}$, then $f'(x) = -2\gamma x^{-3} + x^{-2} + 2x^{-3}$ is positive for x > 0. We've shown $\frac{|A|}{d} \ge \frac{2\mu + 1}{3} =: v^6$, so we get that

$$\operatorname{Prob}[A] \ge \frac{\gamma + 2v^2 - v - 1}{v^2} =: \beta.$$

We now argue that the weight at 0 must be large. For each $i \in \left[-\frac{1}{3}\frac{n}{g}, \frac{1}{3}\frac{n}{g}\right]$, let $S_i = \{x \in S : x \equiv i \pmod{n/g}\}$. Let $a_i = |S_i|$. Note that for each $i, j \in \left[-\frac{1}{3}\frac{n}{g}, \frac{1}{3}\frac{n}{g}\right]$ such that $i + j \in \left[-\frac{1}{3}\frac{n}{q}, \frac{1}{3}\frac{n}{q}\right]$,

 $\#\{(x_i, y_j, z_{i+j}) \in S_i \times S_j \times S_{i+j} : x_i + y_j = z_{i+j}\} \le \min(|S_i| |S_j|, |S_i| |S_{i+j}|, |S_j| |S_{i+j}|).^7$ The uniqueness of 0 is that 0 + 0 = 0, so that $\#\{(x_0, y_0, z_0) \in S_0^3 : x_0 + y_0 = z_0\}$ cannot be upper bounded by potentially smaller terms $|S_i|, i \neq 0$. Note that the

³In the 3AP setting, we let $A = \{x \in \mathbb{Z}_n : 2\pi \frac{m_0/g}{n/g} x \in [-\frac{\pi}{2}, \frac{\pi}{2}]\}$ and $B = \mathbb{Z}_{n/g} \setminus A$. ⁴In the 3AP setting, we get $d\mu \leq |A| + (d - |A|)0$ and thus $\frac{|A|}{d} \geq \mu$.

⁵In the 3AP setting, the sets will merely have 2z instead of z - the same estimates thus hold. ⁶In the 3AP setting, we have $\nu := \mu$.

⁷In the 3AP setting, we'll be looking at $\left[-\frac{1}{4}\frac{n}{g}, \frac{1}{4}\frac{n}{g}\right]$ instead. Also, we'll have $2z_{\frac{i+j}{2}} \in S_{\frac{i+j}{2}}$ instead of $z_{i+j} \in S_{i+j}$, and $|S_{i+j}|$ instead of $|S_{i+j}|$. This alters Lemma 1 not too significantly.

sets whose size we just bounded account for all the terms in the computation of $\operatorname{Prob}[A]$, since, by our choice of A, there is no "wraparound".⁸

Take γ_0 so that $\beta > \frac{9}{10}$ (for any q, α). $\gamma_0 = .949$ works⁹. Then Lemma 1 applies and we obtain,

$$\frac{|S_0|}{|A|} \ge \operatorname{Prob}[A] \ge \beta.$$

It should be noted that we already get a contradiction if $q \leq \beta \nu d$ since we clearly must have $|S_0| \leq g$. In any event, we argue that this large a weight at 0 forces S to be close enough to the subgroup $\{0, \frac{n}{g}, \frac{2n}{g}, \dots, \frac{(g-1)n}{g}\}$ for us to get a direct upper bound on $\operatorname{Prob}[S]$. For ease, let

$$D = \{x \in S : x \equiv 0 \pmod{n/g}\}$$
$$E = S \setminus D.$$

Then,

$$\operatorname{Prob}[S] = \frac{1}{d^2} \sum_{x,y \in S} \mathbb{1}_S(x+y)$$

$$= \frac{|D|^2}{d^2} \frac{1}{|D|^2} \sum_{x,y \in D} \mathbf{1}_S(x+y) + \frac{2}{d^2} \sum_{x \in D, y \in E} \mathbf{1}_S(x+y) + \frac{1}{d^2} \sum_{x,y \in E} \mathbf{1}_S(x+y).$$

Using that D is contained in a subgroup disjoint from E, we have the following (in)equalities

$$\sum_{x,y\in D} 1_S(x+y) = \sum_{x,y\in D} 1_D(x+y)$$
$$\sum_{x\in D,y\in E} 1_S(x+y) = \sum_{x\in D,y\in E} 1_E(x+y) = \sum_{y\in E} \sum_{x\in D} 1_{-y+E}(x) \le \sum_{y\in E} |E|$$
$$\sum_{x,y\in E} 1_S(x+y) \le |E|^2.$$
¹⁰

Hence,

$$\operatorname{Prob}[S] \le \frac{|D|^2}{d^2} \operatorname{Prob}[D] + \frac{3}{d^2} |E|^2.$$

Using a cheaper "approximation" argument, similar to the one used previously, that doesn't capitalize on the fact that D is contained in a subgroup disjoint from E will yield an upper bound for $\operatorname{Prob}[S]$ larger than 1.

⁸In the 3AP setting, the lack of wraparound for $x, y \in \left[-\frac{1}{4}\frac{n}{g}, \frac{1}{4}\frac{n}{g}\right] \pmod{n/g}$ follows from the fact that either x + y is even and then of course $\frac{x+y}{2} \in \left[-\frac{1}{4}\frac{n}{g}, \frac{1}{4}\frac{n}{g}\right]$, or it's odd and then $\frac{x+y}{2} = (x+y)\frac{n+1}{2} = \frac{x+y-1}{2} + \frac{g-1}{2}\frac{n}{g} + \frac{\frac{n}{g}+1}{2} = \frac{x+y-1}{2} + \frac{g-1}{2} \pmod{n/g}$; since $\frac{x+y-1}{2} \in \left[-\frac{1}{4}\frac{n}{g}, \frac{1}{4}\frac{n}{g}\right]$ we therefore see that $\frac{x+y}{2} \notin \left[-\frac{1}{4}\frac{n}{g}, \frac{1}{4}\frac{n}{g}\right] \pmod{n/g}$.

⁹In the 3AP setting, we get a larger value for γ_1 , but of course, a value less than 1. ¹⁰In the 3AP setting, we replace x+y with $\frac{x+y}{2}$. If $x, y \in D$, then $\frac{x+y}{2} \in D$. And if $x \in D, y \in E$, then x + y can't be in $2^{-1}D = D$. The three analogous (in)equalities thus hold.

Note $\frac{|D|}{d} = \frac{|D|}{|A|} \frac{|A|}{d} \ge \beta \nu$. Let $\eta = \frac{|D|}{d}$, $k = \frac{n}{g} \in \mathbb{N}$, $q' = \lfloor \frac{g}{|D|} \rfloor$, and $\alpha' = \frac{g}{|D|} - q'$. Then by induction and the obvious observation that $\operatorname{Prob}[D]$ is independent of whether the ambient group is \mathbb{Z}_n or $\{0, \frac{n}{q}, \ldots, (g-1)\frac{n}{q}\}$,

$$\operatorname{Prob}[D] \le \max\left(\frac{(q')^2 - \alpha'q' + (\alpha')^2}{(q')^2}, \frac{(q')^2 + 2\alpha'q' + 4(\alpha')^2 - 6\alpha' + 3}{(q'+1)^2}, \gamma_0\right);$$

hence,

$$\operatorname{Prob}[S] \le \eta^2 \max\left(\frac{(q')^2 - \alpha'q' + (\alpha')^2}{(q')^2}, \frac{(q')^2 + 2\alpha'q' + 4(\alpha')^2 - 6\alpha' + 3}{(q'+1)^2}, \gamma_0\right) + 3(1-\eta)^2.$$

Note that the induction is justified, as $q' = \lfloor \frac{g}{|D|} \rfloor \leq \frac{g}{|D|} < q$, since $\frac{g}{|D|} \leq \frac{n/2}{\beta v d} \leq \frac{n/2}{\frac{3}{4}d} = \frac{2}{3}(q+\alpha)$, where we used that $\beta v \geq \frac{3}{4}$, which holds for $q \geq 2$. We finish by appealing to Lemma 2, which indeed applies when $\beta \nu \geq \frac{3}{4}$.

The above proof readily extends to an arbitrary finite Abelian group. Fix $r \ge 1$ and positive integers n_1, \ldots, n_r . Let $n = n_1 \ldots n_r$ and S be a subset of $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_r}$ of size $|S| = \frac{n}{q+\alpha}$. Since $\widehat{1}_S(0, \ldots, 0) = \frac{|S|}{n}$ and Plancherel holds, there is some $(m_1, \ldots, m_r) \neq (0, \ldots, 0)$ with

$$\frac{d}{n}\mu := \frac{d}{n}\frac{\gamma - \frac{d}{n}}{1 - \frac{d}{n}} \le \widehat{1}_S(m_1, \dots, m_r) = \frac{1}{n}\sum_{(x_1, \dots, x_r) \in S} e^{2\pi i(\frac{m_1x_1}{n_1} + \dots + \frac{m_rx_r}{n_r})}.$$

Analogous to before, letting $A = \{(x_1, \ldots, x_r) \in S : 2\pi(\frac{m_1x_1}{n_1} + \cdots + \frac{m_rx_r}{n_r}) \in [\frac{-2\pi}{3}, \frac{2\pi}{3}] \pmod{2\pi}\}$, we must have $\frac{|A|}{d} \geq \frac{2\mu+1}{3}$. Let $S_j = \{(x_1, \ldots, x_r) \in S : e^{2\pi i(\frac{m_1x_1}{n_1} + \cdots + \frac{m_rx_r}{n_r})} = e^{2\pi i \frac{j}{n}}\}$. Then, as before, we must have $\frac{|S_0|}{|A|} \geq \beta$. But S_0 is a subgroup of $\mathbb{Z}_{n_1} \times \cdots \times \mathbb{Z}_{n_r}$, so the same inductive argument finishes the job. \Box

4. Proof of Lemmas

Lemma 1. Fix $d \ge 1$ and $\epsilon \in [0, \frac{1}{10})$. Let $\{a_j\}_{j \in \mathbb{Z}}$ be a collection of non-negative integers such that $\sum_{i \in \mathbb{Z}} a_i = d$ and $a_j = a_{-j}$ for each $j \in \mathbb{Z}$. Then if

$$\sum_{i,j} \min(a_i a_j, a_i a_{i+j}, a_j a_{i+j}) \ge (1-\epsilon)d^2,$$

we must have that

 $a_0 \ge (1 - \epsilon)d.$

Proof. Define $\operatorname{supp}(a_j) := \operatorname{supp}((a_j)_{j \in \mathbb{Z}}) := \#\{n \ge 1 : a_n \ne 0\}$. We induct on $\operatorname{supp}(a_j)$, with base case $\operatorname{supp}(a_j) = 0$ obvious. Let $(a_j)_{j \in \mathbb{Z}}$ have $\operatorname{supp}(a_j) =: N+1$. Let n+1 be the largest index j for which $a_j \ne 0$. First assume that $a_{n+1} \le \frac{1}{10}d$.

Define $(b_j)_{j\in\mathbb{Z}}$ via $b_j = a_j$ if $|j| \leq n$ and $b_j = 0$ if $|j| \geq n + 1$. Then $b_j = b_{-j}$ for $j \in \mathbb{Z}$, $\operatorname{supp}(b_j) \leq N$, and $\sum_{j\in\mathbb{Z}} b_j = d - 2a_{n+1}$. Note that

$$A_{n+1} := \sum_{i,j} \min(a_i a_j, a_i a_{i+j}, a_j a_{i+j})$$

$$\leq \sum_{i,j} \min(b_i b_j, b_i b_{i+j}, b_j b_{i+j}) + 2 \sum_{k=1}^n a_k a_{n+1} + 4 \sum_{-n \le k \le -1} a_{n+1} a_k + 2a_{n+1}^2 + 4a_{n+1}^2$$

$$=: A_n + 6a_{n+1}(\frac{d-a_0 - 2a_{n+1}}{2}) + 6a_{n+1}^2.$$

Here we counted the number of ways n+1 or -(n+1) can occur as i+j for $i, j \neq 0$, then the number of ways n+1 or -(n+1) can occur as i or j with no 0 as the other coordinate, and then accounted for the terms (i, j) = (n+1, -(n+1)), (-(n+1), n+1), (n+1, 0), (-(n+1), 0), (0, n+1), and <math>(0, -(n+1)). If $A_{n+1} \geq (1-\epsilon)d^2$, then

)
$$A_n \ge (1-\epsilon)d^2 - 3a_{n+1}(d-a_0).$$

We first show $3a_0 \ge (1+2\epsilon)d$. Bounding $a_0 \ge 0$ in (*) gives

(*

$$A_n \ge \frac{(1-\epsilon)d^2 - 3a_{n+1}d}{(d-2a_{n+1})^2}(d-2a_{n+1})^2.$$

To use the claim applied to $(b_j)_{j\in\mathbb{Z}}$ and total weight $d-2a_{n+1}$, we must check that

$$1 - \frac{(1-\epsilon)d^2 - 3a_{n+1}d}{(d-2a_{n+1})^2} < \frac{1}{10}.$$

It suffices to show

$$1 - \frac{(1-\epsilon)d^2 - 3a_{n+1}d}{(d-2a_{n+1})^2} < \epsilon.$$

Rearranging gives

$$a_{n+1} < \frac{1-4\epsilon}{4(1-\epsilon)}d,$$

which is true for $\epsilon < 1/10$ and $a_{n+1} < \frac{d}{10}$. Hence, by induction,

$$3a_0 \ge 3\left[\frac{(1-\epsilon)d^2 - 3a_{n+1}d}{(d-2a_{n+1})^2}\right](d-2a_{n+1}) = 3\frac{(1-\epsilon)d^2 - 3a_{n+1}d}{(d-2a_{n+1})}.$$

This is larger than $(1+2\epsilon)d$ iff

$$a_{n+1} < \frac{2-5\epsilon}{7-4\epsilon}d$$

This is true for $\epsilon < 1/10$ and $a_{n+1} < d/10$.

Now, let α be such that

$$(1-\epsilon)d^2 - 3a_{n+1}(d - 2a_{n+1} - a_0) - 6a_{n+1}^2 = (1-\alpha)(d - 2a_{n+1})^2.$$

Then, assuming $\alpha < \frac{1}{10}$, we can use induction to get that

$$a_0 \ge (1-\alpha)(d-2a_{n+1}).$$

So to finish the induction, it suffices to show that

$$(1-\alpha)(d-2a_{n+1}) \ge (1-\epsilon)d$$

which is equivalent to

$$\frac{(1-\epsilon)d^2 - 3a_{n+1}(d-a_0)}{d - 2a_{n+1}} \ge (1-\epsilon)d,$$

which, after simplifying, is equivalent to

 $3a_0 > (1+2\epsilon)d,$

which we have proven. Therefore, all we need to do is prove $\alpha < \frac{1}{10}$. It suffices to show $\alpha < \epsilon$. But, as we've just noted, $(1 - \alpha)(d - 2a_{n+1}) \ge (1 - \epsilon)d$, so $\alpha \le 1 - \frac{(1-\epsilon)d}{d-2a_{n+1}} \le 1 - \frac{(1-\epsilon)d}{d} = \epsilon$, as desired.

We finish by arguing that we in fact must have $a_{n+1} < \frac{d}{10}$ for $\epsilon < \frac{1}{10}$. First note

$$\sum_{i,j} a_i a_j - \sum_{i,j} \min(a_i a_j, a_i a_{i+j}, a_j a_{i+j}) \ge 4 \sum_{1 \le k \le n} a_k a_{n+1} + 2a_{n+1}^2.$$

Therefore, we have that

$$d^{2} \ge (1-\epsilon)d^{2} + 4a_{n+1}(\frac{d-a_{0}-2a_{n+1}}{2}) + 2a_{n+1}^{2}$$

and hence,

$$2a_{n+1}^2 - 2a_{n+1}(d - a_0) + \epsilon d^2 \ge 0.$$

As one can verify, the proof given above (for $a_{n+1} < \frac{d}{10}$) works regardless of what a_{n+1} is, if $a_0 > (\frac{1+2\epsilon}{3})d$. Therefore, we may assume $a_0 \leq (\frac{1+2\epsilon}{3})d$ and get that we must have

$$2a_{n+1}^2 - 2a_{n+1}(\frac{2-2\epsilon}{3})d + \epsilon d^2 \ge 0.$$

So, $\frac{a_{n+1}}{d} < \frac{\frac{2-2\epsilon}{3} - \sqrt{(\frac{2-2\epsilon}{3})^2 - 2\epsilon}}{2}$ or $\frac{a_{n+1}}{d} > \frac{\frac{2-2\epsilon}{3} + \sqrt{(\frac{2-2\epsilon}{3})^2 - 2\epsilon}}{2}$. However, the first expression in ϵ is less than $\frac{1}{10}$ for $\epsilon < \frac{1}{10}$, and the second expression is greater than $\frac{1}{2}$ for $\epsilon < \frac{1}{10}$. Since we clearly can't have $a_{n+1} > \frac{d}{2}$, we're done.

Remark. It should be noted that the largest we can possibly take ϵ in the statement of Lemma 1 is $\epsilon = \frac{2}{9}$. Consider, for example, $a_0, a_{-1}, a_1 = \frac{d}{3}$. Extending Lemma 1 from $\epsilon < \frac{1}{10}$ to $\epsilon < \frac{2}{9}$ will just slightly lower the value of γ_0 , and will not allow one to get all the way down to $q \leq 3$.

Remark. In the 3AP setting we may not necessarily have that $a_j = a_{-j}$ for each $j \in \mathbb{Z}$. However, a suitable adjustment of the given proof shows that, for ϵ small enough, $\sum_{i,j} \min(a_i a_j, a_i a_{\frac{i+j}{2}}, a_j a_{\frac{i+j}{2}}) \ge (1-\epsilon)d^2$ implies $a_j \ge (1-\epsilon)d$ for some j. We can then just translate S to assume j = 0.

Lemma 2. For $q \in \mathbb{N}, \alpha \in [0, 1]$, define

$$F(q,\alpha) = \max\left(\frac{q^2 - \alpha q + \alpha^2}{q^2}, \frac{q^2 + 2\alpha q + 4\alpha^2 - 6\alpha + 3}{(q+1)^2}, \gamma_0\right)$$

For any $q \geq 2, \alpha \in [0,1], 1 \leq k \leq q, \eta \in (\frac{3}{4},1]$, if we let $q' = \lfloor \frac{q+\alpha}{k\eta} \rfloor$ and $\alpha' = \frac{q+\alpha}{k\eta} - q'$, then

$$\eta^2 F(q', \alpha') + 3(1 - \eta)^2 < F(q, \alpha).$$

Proof. Fix any $q, k, q' \ge 1$ and $\alpha \in [0, 1]$. Substitute $\eta = \frac{q+\alpha}{(q'+\alpha')k}$ and let

$$f(\alpha') := \frac{(q+\alpha)^2}{k^2} \frac{1}{(q'+\alpha')^2} F(q',\alpha') + 3(1 - \frac{q+\alpha}{(q'+\alpha')k})^2.$$

We show that $f(\alpha')$ attains its maximum at (one of) the extreme values of α' . Define

$$f_1(\alpha') := \frac{(q+\alpha)^2}{k^2} \frac{1}{(q'+\alpha')^2} \frac{(q')^2 - \alpha'q' + (\alpha')^2}{(q')^2} + 3\left(1 - \frac{q+\alpha}{(q'+\alpha')k}\right)^2$$
$$f_2(\alpha') := \frac{(q+\alpha)^2}{k^2} \frac{1}{(q'+\alpha')^2} \frac{(q')^2 + 2\alpha'q' + 4(\alpha')^2 - 6\alpha' + 3}{(q+1)^2} + 3\left(1 - \frac{q+\alpha}{(q'+\alpha')k}\right)^2.$$

A straightforward computation shows

$$f_{1}'(\alpha') = \frac{q+\alpha}{k^{2}} \frac{1}{(q'+\alpha')^{3}} \cdot \left[(2\alpha'-q')(\alpha'+q')(q+\alpha) - 2((\alpha')^{2} - 2q'\alpha' + (q')^{2})(q+\alpha) + 6(k(\alpha'+q') - (q+\alpha)) \right]$$

$$f_{2}'(\alpha') = \frac{q+\alpha}{k^{2}} \frac{1}{(q'+\alpha')^{3}} \cdot \left[(\alpha'+q')(8\alpha'+2(q'-3))(q+\alpha) - 2(4(\alpha')^{2} + 2(q'-3)\alpha' + (q')^{2} + 3)(q+\alpha) + 6(k(\alpha'+q') - (q+\alpha)) \right]$$

In each $f'_i(\alpha')$, in the brackets, the quadratic term in α' vanishes. Therefore, in the brackers is a term linear in α' . In $f'_1(\alpha')$ the coefficient of α' is $q'(q+\alpha)+4q'(q+\alpha)+6k$, which is positive. Similarly, the coefficient of α' in $f'_2(\alpha')$ is $8q'(q+\alpha) + 2(q'-3)(q+\alpha)$ $(\alpha) - 4(q' - 3)(q + \alpha) + 6k = (6q' + 6)(q + \alpha) + 6k$, which is positive. Hence, $f_1(\alpha'), f_2(\alpha')$ attain their maximum values only at the extreme values of α' . Since $f(\alpha') = \max(f_1'(\alpha'), f_2'(\alpha'))^{11}$, we see that $f(\alpha')$ attains its maximum at (one of) the extreme values of α' .

Suppose $\frac{q+\alpha}{(q'+\alpha')k} < 1$ for some $\alpha' \in (0,1)$. Then $\frac{q+\alpha}{(q'+1)k} < 1$. Note $\alpha' = 1 \implies F(q', \alpha') = 1$, and $\eta^2 + 3(1-\eta)^2$ is increasing for $\eta > \frac{3}{4}$. Since $\eta > \frac{3}{4}$ and since $\eta < 1$, we take $\eta = \frac{q+\alpha}{q+1}$ (since $q'k \in \mathbb{N}$). We obtain $\frac{q^2+2\alpha q+4\alpha^2-6\alpha+3}{(q+1)^2}$, which, of course, is at most $F(q, \alpha)$.

¹¹Clearly $\eta^2 \gamma_0 + 3(1-\eta)^2 \leq \gamma_0$ for $\eta \in (\frac{3}{4}, 1)$, since $\gamma_0 > \frac{3}{7}$. So, we assume $F(q', \alpha') \neq \gamma_0$.

If $\frac{q+\alpha}{a'k} < 1$, then we take $\alpha' = 0$ and argue as above. Otherwise, the extreme value of α' is the one making $\eta = 1$, namely $\alpha'_{crit} = \frac{q+\alpha}{k} - q'$. At $\eta = 1$, our desired inequality becomes $F(q', \alpha'_{crit}) \leq F(q, \alpha)$. Since $\alpha'_{crit} \in [0, 1]$ and $q' \in \mathbb{N}$, we have $q' = \lfloor \frac{q+\alpha}{k} \rfloor, \alpha'_{crit} = \{\frac{q+\alpha}{k}\}$, the fractional part. Therefore, it just suffices to show, generally, that

$$q, k \ge 1, \alpha \in [0, 1] \implies F(\lfloor \frac{q+\alpha}{k} \rfloor, \{\frac{q+\alpha}{k}\}) \le F(q, \alpha).$$

Clearly, the inequality holds if $F(\lfloor \frac{q+\alpha}{k} \rfloor, \{\frac{q+\alpha}{k}\}) = \gamma_0$. If q = 2, then either k = 1 and the inequality is an equality, or k = 2 and $F(\lfloor \frac{q+\alpha}{k} \rfloor, \{\frac{q+\alpha}{k}\}) = F(1, \frac{\alpha}{2}) = 1 - \frac{\alpha}{2} + \frac{\alpha^2}{4}$, while $F(q, \alpha) \ge \frac{4-2\alpha+\alpha^2}{4} = 1 - \frac{\alpha}{2} + \frac{\alpha^2}{4}$. So, assume $q \ge 3$.

Note that $\frac{q^2 - \alpha q + \alpha^2}{q^2} = 1 - \frac{\alpha}{q} + (\frac{\alpha}{q})^2$ is decreasing in $\frac{\alpha}{q}$ if $\frac{\alpha}{q} < \frac{1}{2}$. And for $q \ge 3$, $\frac{\alpha}{q}, \frac{\{\frac{q+\alpha}{k}\}}{|\frac{q+\alpha}{k}|} < \frac{1}{2}$. Therefore, to show that

$$\frac{\lfloor \frac{q+\alpha}{k} \rfloor^2 - \{\frac{q+\alpha}{k}\} \lfloor \frac{q+\alpha}{k} \rfloor + \{\frac{q+\alpha}{k}\}^2}{\lfloor \frac{q+\alpha}{k} \rfloor^2} \leq \frac{q^2 - \alpha q + \alpha^2}{q^2}$$

it suffices to show

$$\frac{\left\{\frac{q+\alpha}{k}\right\}}{\left\lfloor\frac{q+\alpha}{k}\right\rfloor} \ge \frac{\alpha}{q}$$

But $q\{\frac{q+\alpha}{k}\} = q(\frac{q+\alpha}{k} - \lfloor \frac{q+\alpha}{k} \rfloor)$, so the inequality reduces to $\frac{q}{k} \ge \lfloor \frac{q+\alpha}{k} \rfloor$, which is true since $\lfloor \frac{q+\alpha}{k} \rfloor = \lfloor \frac{q}{k} \rfloor$, since if $\frac{q}{k} < m \in \mathbb{N}$, then $\frac{q}{k} \le m - \frac{1}{k}$.

Next, observe that

$$\frac{q^2 + 2\alpha q + 4\alpha^2 - 6\alpha + 3}{(q+1)^2} = \frac{(q+1)^2 - (2-2\alpha)(q+1) + (2-2\alpha)^2}{(q+1)^2},$$

so since $\frac{2-2\alpha}{q+1} \leq \frac{1}{2}$ for $q \geq 3$, as before it suffices to show that

$$\frac{2-2\{\frac{q+\alpha}{k}\}}{\lfloor\frac{q+\alpha}{k}\rfloor+1} \ge \frac{2-2\alpha}{q+1}.$$

However, substituting $\left\{\frac{q+\alpha}{k}\right\} = \frac{q+\alpha}{k} - \lfloor \frac{q+\alpha}{k} \rfloor$, collecting terms with $q + \alpha$, and simplifying yields the equivalent

$$\lfloor \frac{q+\alpha}{k} \rfloor + 1 \ge \frac{q+1}{k}.$$

And this is clearly true.

5. VERIFYING THE GAN-LOH-SUDAKOV CONJECTURE FOR CAYLEY GRAPHS

We verify that our bound implies the bound in the Gan-Loh-Sudakov conjecture when $q \ge 7$. Take a finite Abelian group G and a symmetric subset $S \subseteq G$ not containing 0. Let n = |G|, $S_0 = S \cup \{0\}$, d = |S|, $q = \lfloor \frac{n}{|S_0|} \rfloor$, and $\alpha = \frac{n}{|S_0|} - q$. The benefit of working with S_0 is that the graph-theoretic bound takes the simpler form

$$|T_{conj}| \le q \binom{d+1}{3} + \binom{r}{3} = q \binom{|S_0|}{3} + \binom{\alpha|S_0|}{3}.$$

Note

$$\operatorname{Prob}[S_0] = \frac{1}{|S_0|^2} \sum_{x,y \in S_0} \mathbf{1}_{S_0}(x+y) = \frac{1}{|S_0|^2} \left[\sum_{x,y \in S} \mathbf{1}_{S_0}(x+y) + 2\sum_{y \in S} \mathbf{1}_{S_0}(y) + \mathbf{1}_{S_0}(0+0) \right].$$

Taking into account that for each $x \in S$ there is exactly one $y \in S$ for which x + y = 0, we see

$$\operatorname{Prob}[S] = \frac{|S_0|^2}{|S|^2} \left[\operatorname{Prob}[S_0] - \frac{3|S|+1}{|S_0|^2} \right].$$

The number of triangles in our Cayley graph is thus

$$\frac{1}{6}n|S|^2\operatorname{Prob}[S] = \frac{1}{6}(q+\alpha)|S_0|^3\left[\operatorname{Prob}[S_0] - \frac{3|S|+1}{|S_0|^2}\right].$$

For ease, let $M = \max\left(\frac{q^2 - \alpha q + \alpha^2}{q^2}, \frac{q^2 + 2\alpha q + 4\alpha^2 - 6\alpha + 3}{(q+1)^2}, \gamma_0\right)$ so that, by Theorem 2 applied to S_0 (which is symmetric), we may bound the number of triangles by

$$\frac{1}{6}(q+\alpha)M|S_0|^3 - \frac{1}{6}(q+\alpha)|S_0|(3|S_0|-2).$$

As one may check, this is less than $q\binom{|S_0|}{3} + \binom{\alpha|S_0|}{3}$ iff

$$[(q + \alpha^3) - (q + \alpha)M]|S_0|^3 + [3\alpha - 3\alpha^2]|S_0|^2 \ge 0.$$

Therefore, it suffices to have $M \leq \frac{q+\alpha^3}{q+\alpha}$. We have $\gamma_0 \leq \frac{q+\alpha^3}{q+\alpha}$ for all $q \geq 7$ and any $\alpha \in [0, 1]$. And, for any $q \geq 1, \alpha \in [0, 1]$,

$$\frac{q+\alpha^3}{q+\alpha} - \frac{q^2 - \alpha q + \alpha^2}{q^2} = \frac{\alpha^3(q^2 - 1)}{q^2(q+\alpha)},$$
$$\frac{q+\alpha^3}{q+\alpha} - \frac{q^2 + 2\alpha q + 4\alpha^2 - 6\alpha + 3}{(q+1)^2} = \frac{(1-\alpha)^2(q-1)((2+\alpha)q + 3\alpha)}{(q+1)^2(q+\alpha)}$$

are non-negative.

6. BASE CASE q = 1

We finish by proving Theorems 1 and 2 when $|S| = \frac{n}{1+\alpha}$ for some $\alpha \in [0, 1]$. Note

$$\sum_{y \in S} \sum_{x \in G} \mathbb{1}_S(x+y) = \sum_{y \in S} |S| = |S|^2$$

So,

$$\sum_{x,y\in S} 1_S(x+y) = |S|^2 - \sum_{x\notin S} \sum_{y\in S} 1_S(x+y) = |S|^2 - \sum_{x\notin S} |(-x+S)\cap S|.$$

By pigeonhole, $|(-x+S) \cap S| \ge 2|S| - n$, and thus,

$$|S|^2 \operatorname{Prob}[S] \le |S|^2 - \sum_{x \notin S} (2|S| - n) = |S|^2 (1 - \alpha + \alpha^2).$$

As $1 - \alpha + \alpha^2 = \frac{q^2 - \alpha q + \alpha^2}{q^2}$ for q = 1, Theorem 2 is established. Replacing S with 2S in the appropriate places establishes Theorem 1 as well.

7. Acknowledgments

I would like to thank Po-Shen Loh for telling me the graph theoretic conjecture. I would also like to thank Adam Sheffer and Cosmin Pohoata for helpful comments.

References

- E. Croot, The minimal number of three-term arithmetic progressions modulo a prime converges to a limit, Canad. Math. Bull., 51 (2008), 47–56.
- [2] B. Green and O. Sisask. On the maximal number of 3-term arithmetic progressions in subsets of Z/pZ. Bull. Lond. Math. Soc., 40(6):945–955, 2008.
- [3] W. Gan, P. Loh, and B. Sudakov, Maximizing the number of independent sets of a fixed size, Combinatorics, Probability and Computing, 24 (2015), 521-527
- [4] P. Varnavides On Certain Sets of Positive Density Journal London Math. Soc. 34 (1959), 358-360.
- [5] J. Cutler and A. J. Radcliffe, The Maximum Number of Complete Subgraphs of Fixed Size in a Graph with Given Maximum Degree. J. Graph Theory, 84 (2017), 134-145

DEPARTMENT OF MATHEMATICS, CALIFORNIA INSTITUTE OF TECHNOLOGY, PASADENA, CA, 91125

E-mail address: zchase@caltech.edu