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THE MAXIMUM NUMBER OF THREE TERM ARITHMETIC

PROGRESSIONS, AND TRIANGLES IN CAYLEY GRAPHS

ZACHARY CHASE

Abstract. Let G be a finite Abelian group. For a subset S ⊆ G, let T3(S)
denote the number of length three arithemtic progressions in S and Prob[S] =
1

|S|2

∑
x,y∈S 1S(x+y). For any q ≥ 1 and α ∈ [0, 1], and any S ⊆ G with |S| = |G|

q+α ,

we show T3(S)
|S|2 and Prob[S] are bounded above by max

(
q2−αq+α2

q2 , q2+2αq+4α2−6α+3
(q+1)2 , γ0

)
,

where γ0 < 1 is an absolute constant. As a consequence, we verify a graph theo-
retic conjecture of Gan, Loh, and Sudakov for Cayley graphs.

1. Introduction

The study of arithmetic progressions in subsets of integers and general Abelian
groups is a central topic in additive combinatorics and has led to the development of
many fascinating areas of mathematics. A famous result on three term arithmetic
progressions (3APs) is Roth’s theorem, which, in its finitary form, says that for each
λ > 0, for N large, any subset S ⊆ {1, . . . , N} of size |S| ≥ λN contains a 3AP.

Once Roth’s theorem ensures that all subsets of a given size have a 3AP, one can
generate many 3APs. For example, Varnavides [4] proved that for each λ > 0, there
is some c > 0 so that for all large N , every subset S ⊆ {1, . . . , N} with |S| ≥ λN
contains at least cN2 3APs. A natural question is then how many 3APs a subset
of {1, . . . , N} of a prescribed size can have. We look at this question in the group
theoretic setting.

Fix λ ∈ (0, 1). Let p be a large prime and consider subsets S ⊆ Zp of size
|S| = ⌊λp⌋. If T3(S) denotes the number of 3APs in S, namely, the number of
x, d ∈ Zp with x, x+ d, x+ 2d ∈ S, then Croot [1] showed that

lim
p→∞

max
S⊆Zp

|S|=⌊λp⌋

T3(S)

|S|2

exists, and then Green and Sisask [2] proved that the limit is in fact 1
2
, for all λ

less than some absolute constant. In Zn, for n not prime, the situation is quite
different, since subgroups have many 3APs relative to their size. In this paper, we
nevertheless get an upper bound, useful when the size of S is “far” from dividing n.
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Theorem 1. There is an absolute constant γ1 < 1 so that for any finite Abelian

group G of odd order, and for any q ∈ N, α ∈ [0, 1],

max
S⊆G

|S|=
|G|
q+α

T3(S)

|S|2 ≤ max

(
q2 − αq + α2

q2
,
q2 + 2αq + 4α2 − 6α + 3

(q + 1)2
, γ1

)
.

Related to T3(S)
|S|2

= 1
|S|2

∑
x,y∈S 1S(

x+y
2
) is the quantity 1

|S|2

∑
x,y∈S 1S(x+ y). This

quantity, which we denote Prob[S], arises in the expression for the number of tri-
angles in a Cayley graph with generating set S. Precisely, let G be an additive
group of size n and S ⊆ G a symmetric set not containing 0. Connect x, y ∈ G iff
x− y ∈ S. We obtain an undirected graph on G with no self loops. The number of
triangles in our graph is

1

6

∑

a,b,c∈G

1S(a− b)1S(b− c)1S(a− c).

Let x = a− b and y = b− c. Then ranging over c, b, a is equivalent to ranging over
c, y, x and thus

|T | = 1

6

∑

x,y,c

1S(x)1S(y)1S(x+ y) =
1

6
n
∑

x,y∈S

1S(x+ y) =
1

6
n|S|2Prob[S].

Quite recently, Gan, Loh, and Sudakov [3] resolved a conjecture of Engbers and
Galvin regarding the maximum number of independent sets of size 3 that a graph
with a given minimum degree and fixed size can have. Phrased in complementary
graphs, they showed that given a maximum degree d and a positive integer n ≤
2d+2, the maximum number of triangles that a graph on n vertices with maximum
degree d can have is

(
d+1
3

)
+
(
n−(d+1)

3

)
. This immediately raised the question of what

the maximum is for n > 2d+ 2. They conjectured the following.

Conjecture (Gan-Loh-Sudakov). Fix d ≥ 2. For any positive integer n, if we write

n = q(d+ 1)+ r for 0 ≤ r ≤ d, then the maximum number of triangles that a graph

on n vertices with maximum degree d can have is q
(
d+1
3

)
+
(
r
3

)
.

For each d, n, an example of a graph achieving q
(
d+1
3

)
+

(
r
3

)
is simply a disjoint

union of Kd+1’s and a Kr. The conjecture for a Cayley graph on an additive group

G with generating set S, |S| = |G|
q+α

, takes the form Prob[S] ≤ q+α3

q+α
, up to smaller

order terms. We verify the conjecture for Cayley graphs when q ≥ 7.

Theorem 2. There is an absolute constant γ0 < 1 so that the following holds. Let

G be a finite Abelian group and take q ∈ N, α ∈ [0, 1]. Then for any symmetric

subset S ⊆ G with |S| = |G|
q+α

,

1

|S|2
∑

x,y∈S

1S(x+ y) ≤ max

(
q2 − αq + α2

q2
,
q2 + 2αq + 4α2 − 6α + 3

(q + 1)2
, γ0

)
.
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Consequently, the Gan-Loh-Sudakov conjecture holds for Cayley graphs with gener-

ating set |S| ≤ n
7
.

We give a fourier analytic proof of Theorems 1 and 2. Here is a quick high-
level overview of the argument. We express the relevant “probability” (either
1

|S|2

∑
x,y∈S 1S(

x+y
2
) or 1

|S|2

∑
x,y∈S 1S(x + y)) in terms of the fourier coefficients of

1S. If the probability is large, then some nonzero fourier coefficient must be large.
We deduce that (a dilate of) the residues of S of a certain modulus concentrate near
0. Since there won’t be “wraparound” near 0, this allows us to transfer the problem
to Z, which is a setting where it’s easier to bound the relevant probabilities. We
can show from the result in Z that we in fact must have many residues be 0. This
allows us to conclude that S is very close to a subgroup. Induction and a purely
combinatorial argument finish the job from there.

Here is an outline of the paper. We first set our notation for Fourier analysis on
Zn. Then we give the proof of Theorems 1 and 2, modulo two Lemmas, which we
prove afterwards. After, we show the calculations deducing the Gan-Loh-Sudakov
conjecture from our main theorem. Finally, we prove Theorems 1 and 2 when q = 1.

2. Fourier Analysis on Zn

In this section, we briefly fix our notation for fourier analysis on Zn and obtain
the fourier representation of the relevant quantities in the proofs to be given below.

For a function f : Zn → C, define its (finite) fourier transform f̂ : Zn → C by

f̂(m) :=
1

n

∑

x∈Zn

f(x)e−2πixm
n .

The following well-known equalities are straightforward.
∑

m∈Zn

|f̂(m)|2 = 1

n

∑

x∈Zn

|f(x)|2

f(x) =
∑

m∈Zn

f̂(m)e2πi
xm
n .

Let S be a symmetric subset of Zn. Then,
1

|S|2

∑
x,y∈S 1S(x+ y) =

1

|S|2
∑

x,y∈Zn

[ ∑

m1∈Zn

1̂S(m1)e
2πi

xm1
n

][ ∑

m2∈Zn

1̂S(m2)e
2πi

ym2
n

][ ∑

m3∈Zn

1̂S(m3)e
2πi

(x+y)m3
n

]

=
1

|S|2
∑

m1,m2,m3∈Zn

1̂S(m1)1̂S(m2)1̂S(m3)

[∑

x∈Zn

e2πi
x(m1+m3)

n

][∑

y∈Zn

e2πi
y(m2+m3)

n

]
,

and using
∑

x∈Zn

e2πi
xk
n =

{
n k ≡ 0 (mod n)

0 k 6≡ 0 (mod n)
,
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we obtain
1

|S|2
∑

x,y∈S

1S(x+ y) =
n2

|S|2
∑

m∈Zn

1̂S(−m)1̂S(−m)1̂S(m).

However, the symmetry of S implies that 1̂S(m) = 1̂S(−m) for each m ∈ Zn.
Therefore,

Prob[S] =
1

|S|2
∑

x,y∈S

1S(x+ y) =
n2

|S|2
∑

m∈Zn

1̂S(m)3.

Similarly, for any subset S ⊆ Zn,

1

|S|2
∑

x,y∈S

1S(
x+ y

2
) =

n2

|S|2
∑

m∈Zn

1̂S(m)21̂S(−2m).

3. Proof of Theorems 1 and 2

We induct on q. We discuss the base case q = 1 in section 6. Take some q ≥ 2
and α ∈ [0, 1]. Let S ⊆ Zn be a symmetric1 subset with |S| = n

q+α
.

Let γ = max( q
2−αq+α2

q2
, q

2+2αq+4α2−6α+3
(q+1)2

, γ0). Assume, for the sake of contradiction,

that Prob[S] ≥ γ. Then, as explained in section 2,

∑

m

1̂S(m)3 ≥ d2

n2
γ.

Note 1̂S(0)
3 = d3

n3 , so, since 1̂S(m) is real for each m2,

γ
d2

n2
− d3

n3
≤

∑

m6=0

1̂S(m)3 ≤
(
sup
m6=0

1̂S(m)

)
·
∑

m6=0

1̂S(m)2 =

(
sup
m6=0

1̂S(m)

)
· [d
n
− d2

n2
],

where we used Plancherel in the last step. Take m0 6= 0 with

1̂S(m0) ≥
d

n

γ − d
n

1− d
n

=:
d

n
µ.

Then,

µ ≤ 1

d

∑

x∈S

e2πi
m0
n

x =
1

d

∑

x∈S

e2πi
m0/g
n/g

x,

where g := gcd(m0, n). Let

A = {x ∈ Zn : 2π
m0/g

n/g
x ∈ [−2π/3, 2π/3] (mod 2π)}

1In the 3AP setting, we do not assume S is symmetric.
2In the 3AP setting, we instead do γ d2

n2 − d3

n3 ≤ supm 6=0 |1̂S(−2m)| · [ dn − d2

n2 ]. Then we take m0

with |1̂S(m0)| ≥ d
nµ. Finally, we can translate S so that 1̂S(m0) is real and positive.

4



B = Zn/g \ A.3

Then, since 1̂S(m0) is real,

dµ ≤
∑

x∈S

cos(2π
m0/g

n0/g
x) ≤ |A|+ (d− |A|)(−1

2
),

which implies
|A|
d

≥ 2µ+ 1

3
.4

For z ∈ B,
#{(x, y) ∈ S2 : x+ y = z} ≤ d

and for z ∈ A,
#{(x, y) ∈ B × A : x+ y = z} ≤ |B|
#{(x, y) ∈ S × B : x+ y = z} ≤ |B|
#{(x, y) ∈ A×A : x+ y = z} =: Cz.

5

Therefore,,

d2 Prob[S] ≤ d|B|+ 2|A| |B|+
∑

z∈A

Cz

= d(d− |A|) + 2|A|(d− |A|) + |A|2Prob[A].
So, we must have

Prob[A] ≥ γ + 2 |A|2

d2
− |A|

d
− 1

|A|2

d2

.

If we let f(x) = γ+2x2−x−1
x2 , then f ′(x) = −2γx−3 + x−2 + 2x−3 is positive for x > 0.

We’ve shown |A|
d

≥ 2µ+1
3

=: v6, so we get that

Prob[A] ≥ γ + 2v2 − v − 1

v2
=: β.

We now argue that the weight at 0 must be large. For each i ∈ [−1
3
n
g
, 1
3
n
g
], let

Si = {x ∈ S : x ≡ i (mod n/g)}. Let ai = |Si|. Note that for each i, j ∈ [−1
3
n
g
, 1
3
n
g
]

such that i+ j ∈ [−1
3
n
g
, 1
3
n
g
],

#{(xi, yj, zi+j) ∈ Si×Sj×Si+j : xi+yj = zi+j} ≤ min(|Si| |Sj|, |Si| |Si+j|, |Sj| |Si+j|).7

The uniqueness of 0 is that 0 + 0 = 0, so that #{(x0, y0, z0) ∈ S3
0 : x0 + y0 = z0}

cannot be upper bounded by potentially smaller terms |Si|, i 6= 0. Note that the

3In the 3AP setting, we let A = {x ∈ Zn : 2πm0/g
n/g x ∈ [−π

2 ,
π
2 ]} and B = Zn/g \A.

4In the 3AP setting, we get dµ ≤ |A|+ (d− |A|)0 and thus |A|
d ≥ µ.

5In the 3AP setting, the sets will merely have 2z instead of z - the same estimates thus hold.
6In the 3AP setting, we have ν := µ.
7In the 3AP setting, we’ll be looking at [− 1

4
n
g ,

1
4
n
g ] instead. Also, we’ll have 2z i+j

2

∈ S i+j

2

instead

of zi+j ∈ Si+j , and |S i+j

2

| instead of |Si+j |. This alters Lemma 1 not too significantly.
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sets whose size we just bounded account for all the terms in the computation of
Prob[A], since, by our choice of A, there is no “wraparound”.8

Take γ0 so that β > 9
10

(for any q, α). γ0 = .949 works9. Then Lemma 1 applies
and we obtain,

|S0|
|A| ≥ Prob[A] ≥ β.

It should be noted that we already get a contradiction if g ≤ βνd since we clearly
must have |S0| ≤ g. In any event, we argue that this large a weight at 0 forces S

to be close enough to the subgroup {0, n
g
, 2n

g
, . . . , (g−1)n

g
} for us to get a direct upper

bound on Prob[S]. For ease, let

D = {x ∈ S : x ≡ 0 (mod n/g)}
E = S \D.

Then,

Prob[S] =
1

d2

∑

x,y∈S

1S(x+ y)

=
|D|2
d2

1

|D|2
∑

x,y∈D

1S(x+ y) +
2

d2

∑

x∈D,y∈E

1S(x+ y) +
1

d2

∑

x,y∈E

1S(x+ y).

Using that D is contained in a subgroup disjoint from E, we have the following
(in)equalities ∑

x,y∈D

1S(x+ y) =
∑

x,y∈D

1D(x+ y)

∑

x∈D,y∈E

1S(x+ y) =
∑

x∈D,y∈E

1E(x+ y) =
∑

y∈E

∑

x∈D

1−y+E(x) ≤
∑

y∈E

|E|

∑

x,y∈E

1S(x+ y) ≤ |E|2.10

Hence,

Prob[S] ≤ |D|2
d2

Prob[D] +
3

d2
|E|2.

Using a cheaper “approximation” argument, similar to the one used previously,
that doesn’t capitalize on the fact that D is contained in a subgroup disjoint from
E will yield an upper bound for Prob[S] larger than 1.

8In the 3AP setting, the lack of wraparound for x, y ∈ [− 1
4
n
g ,

1
4
n
g ] (mod n/g) follows from

the fact that either x + y is even and then of course x+y
2 ∈ [− 1

4
n
g ,

1
4
n
g ], or it’s odd and then

x+y
2 = (x+ y)n+1

2 = x+y−1
2 + g−1

2
n
g +

n
g
+1

2 = x+y−1
2 +

n
g
+1

2 (mod n/g); since x+y−1
2 ∈ [− 1

4
n
g ,

1
4
n
g ]

we therefore see that x+y
2 6∈ [− 1

4
n
g ,

1
4
n
g ] (mod n/g).

9In the 3AP setting, we get a larger value for γ1, but of course, a value less than 1.
10In the 3AP setting, we replace x+y with x+y

2 . If x, y ∈ D, then x+y
2 ∈ D. And if x ∈ D, y ∈ E,

then x+ y can’t be in 2−1D = D. The three analogous (in)equalities thus hold.
6



Note |D|
d

= |D|
|A|

|A|
d

≥ βν. Let η = |D|
d
, k = n

g
∈ N, q′ = ⌊ g

|D|
⌋, and α′ = g

|D|
−q′. Then

by induction and the obvious observation that Prob[D] is independent of whether
the ambient group is Zn or {0, n

g
, . . . , (g − 1)n

g
},

Prob[D] ≤ max

(
(q′)2 − α′q′ + (α′)2

(q′)2
,
(q′)2 + 2α′q′ + 4(α′)2 − 6α′ + 3

(q′ + 1)2
, γ0

)
;

hence,

Prob[S] ≤ η2max

(
(q′)2 − α′q′ + (α′)2

(q′)2
,
(q′)2 + 2α′q′ + 4(α′)2 − 6α′ + 3

(q′ + 1)2
, γ0

)
+3(1−η)2.

Note that the induction is justified, as q′ = ⌊ g
|D|

⌋ ≤ g
|D|

< q, since g
|D|

≤ n/2
βvd

≤ n/2
3
4
d
=

2
3
(q+α), where we used that βv ≥ 3

4
, which holds for q ≥ 2. We finish by appealing

to Lemma 2, which indeed applies when βν ≥ 3
4
.

The above proof readily extends to an arbitrary finite Abelian group. Fix r ≥ 1
and positive integers n1, . . . , nr. Let n = n1 . . . nr and S be a subset of Zn1×· · ·×Znr

of size |S| = n
q+α

. Since 1̂S(0, . . . , 0) = |S|
n

and Plancherel holds, there is some

(m1, . . . , mr) 6= (0, . . . , 0) with

d

n
µ :=

d

n

γ − d
n

1− d
n

≤ 1̂S(m1, . . . , mr) =
1

n

∑

(x1,...,xr)∈S

e
2πi(

m1x1
n1

+···+mrxr
nr

)
.

Analogous to before, letting A = {(x1, . . . , xr) ∈ S : 2π(m1x1

n1
+ · · · + mrxr

nr
) ∈

[−2π
3
, 2π

3
] (mod 2π)}, we must have |A|

d
≥ 2µ+1

3
. Let Sj = {(x1, . . . , xr) ∈ S :

e
2πi(

m1x1
n1

+···+mrxr
nr

)
= e2πi

j
n}. Then, as before, we must have |S0|

|A|
≥ β. But S0 is

a subgroup of Zn1 × · · · ×Znr , so the same inductive argument finishes the job. �

4. Proof of Lemmas

Lemma 1. Fix d ≥ 1 and ǫ ∈ [0, 1
10
). Let {aj}j∈Z be a collection of non-negative

integers such that
∑

i∈Z ai = d and aj = a−j for each j ∈ Z. Then if

∑

i,j

min(aiaj, aiai+j , ajai+j) ≥ (1− ǫ)d2,

we must have that

a0 ≥ (1− ǫ)d.

Proof. Define supp(aj) := supp((aj)j∈Z) := #{n ≥ 1 : an 6= 0}. We induct on
supp(aj), with base case supp(aj) = 0 obvious. Let (aj)j∈Z have supp(aj) =: N +1.
Let n + 1 be the largest index j for which aj 6= 0. First assume that an+1 ≤ 1

10
d.

7



Define (bj)j∈Z via bj = aj if |j| ≤ n and bj = 0 if |j| ≥ n + 1. Then bj = b−j for
j ∈ Z, supp(bj) ≤ N , and

∑
j∈Z bj = d− 2an+1. Note that

An+1 :=
∑

i,j

min(aiaj, aiai+j, ajai+j)

≤
∑

i,j

min(bibj , bibi+j , bjbi+j) + 2
n∑

k=1

akan+1 + 4
∑

−n≤k≤−1

an+1ak + 2a2n+1 + 4a2n+1

=: An + 6an+1(
d− a0 − 2an+1

2
) + 6a2n+1.

Here we counted the number of ways n+1 or −(n+1) can occur as i+ j for i, j 6= 0,
then the number of ways n + 1 or −(n + 1) can occur as i or j with no 0 as the
other coordinate, and then accounted for the terms (i, j) = (n+1,−(n+1)), (−(n+
1), n+1), (n+1, 0), (−(n+1), 0), (0, n+ 1), and (0,−(n+ 1)). If An+1 ≥ (1− ǫ)d2,
then

(∗) An ≥ (1− ǫ)d2 − 3an+1(d− a0).

We first show 3a0 ≥ (1 + 2ǫ)d. Bounding a0 ≥ 0 in (*) gives

An ≥ (1− ǫ)d2 − 3an+1d

(d− 2an+1)2
(d− 2an+1)

2.

To use the claim applied to (bj)j∈Z and total weight d− 2an+1, we must check that

1− (1− ǫ)d2 − 3an+1d

(d− 2an+1)2
<

1

10
.

It suffices to show

1− (1− ǫ)d2 − 3an+1d

(d− 2an+1)2
< ǫ.

Rearranging gives

an+1 <
1− 4ǫ

4(1− ǫ)
d,

which is true for ǫ < 1/10 and an+1 <
d
10
. Hence, by induction,

3a0 ≥ 3

[
(1− ǫ)d2 − 3an+1d

(d− 2an+1)2

]
(d− 2an+1) = 3

(1− ǫ)d2 − 3an+1d

(d− 2an+1)
.

This is larger than (1 + 2ǫ)d iff

an+1 <
2− 5ǫ

7− 4ǫ
d.

This is true for ǫ < 1/10 and an+1 < d/10.
Now, let α be such that

(1− ǫ)d2 − 3an+1(d− 2an+1 − a0)− 6a2n+1 = (1− α)(d− 2an+1)
2.

Then, assuming α < 1
10
, we can use induction to get that

a0 ≥ (1− α)(d− 2an+1).
8



So to finish the induction, it suffices to show that

(1− α)(d− 2an+1) ≥ (1− ǫ)d,

which is equivalent to

(1− ǫ)d2 − 3an+1(d− a0)

d− 2an+1

≥ (1− ǫ)d,

which, after simplifying, is equivalent to

3a0 > (1 + 2ǫ)d,

which we have proven. Therefore, all we need to do is prove α < 1
10
. It suffices

to show α < ǫ. But, as we’ve just noted, (1 − α)(d − 2an+1) ≥ (1 − ǫ)d, so α ≤
1− (1−ǫ)d

d−2an+1
≤ 1− (1−ǫ)d

d
= ǫ, as desired.

We finish by arguing that we in fact must have an+1 <
d
10

for ǫ < 1
10
. First note

∑

i,j

aiaj −
∑

i,j

min(aiaj , aiai+j , ajai+j) ≥ 4
∑

1≤k≤n

akan+1 + 2a2n+1.

Therefore, we have that

d2 ≥ (1− ǫ)d2 + 4an+1(
d− a0 − 2an+1

2
) + 2a2n+1

and hence,
2a2n+1 − 2an+1(d− a0) + ǫd2 ≥ 0.

As one can verify, the proof given above (for an+1 < d
10
) works regardless of what

an+1 is, if a0 > (1+2ǫ
3

)d. Therefore, we may assume a0 ≤ (1+2ǫ
3

)d and get that we
must have

2a2n+1 − 2an+1(
2− 2ǫ

3
)d+ ǫd2 ≥ 0.

So, an+1

d
<

2−2ǫ
3

−
√

( 2−2ǫ
3

)2−2ǫ

2
or an+1

d
>

2−2ǫ
3

+
√

( 2−2ǫ
3

)2−2ǫ

2
. However, the first expression

in ǫ is less than 1
10

for ǫ < 1
10
, and the second expression is greater than 1

2
for ǫ < 1

10
.

Since we clearly can’t have an+1 >
d
2
, we’re done. �

Remark. It should be noted that the largest we can possibly take ǫ in the statement
of Lemma 1 is ǫ = 2

9
. Consider, for example, a0, a−1, a1 = d

3
. Extending Lemma 1

from ǫ < 1
10

to ǫ < 2
9
will just slightly lower the value of γ0, and will not allow one

to get all the way down to q ≤ 3.

Remark. In the 3AP setting we may not necessarily have that aj = a−j for each
j ∈ Z. However, a suitable adjustment of the given proof shows that, for ǫ small
enough,

∑
i,j min(aiaj , aia i+j

2
, aja i+j

2
) ≥ (1 − ǫ)d2 implies aj ≥ (1 − ǫ)d for some j.

We can then just translate S to assume j = 0.

9



Lemma 2. For q ∈ N, α ∈ [0, 1], define

F (q, α) = max

(
q2 − αq + α2

q2
,
q2 + 2αq + 4α2 − 6α + 3

(q + 1)2
, γ0

)
.

For any q ≥ 2, α ∈ [0, 1], 1 ≤ k ≤ q, η ∈ (3
4
, 1], if we let q′ = ⌊ q+α

kη
⌋ and α′ = q+α

kη
−q′,

then

η2F (q′, α′) + 3(1− η)2 < F (q, α).

Proof. Fix any q, k, q′ ≥ 1 and α ∈ [0, 1]. Substitute η = q+α
(q′+α′)k

and let

f(α′) :=
(q + α)2

k2

1

(q′ + α′)2
F (q′, α′) + 3(1− q + α

(q′ + α′)k
)2.

We show that f(α′) attains its maximum at (one of) the extreme values of α′. Define

f1(α
′) :=

(q + α)2

k2

1

(q′ + α′)2
(q′)2 − α′q′ + (α′)2

(q′)2
+ 3(1− q + α

(q′ + α′)k
)2

f2(α
′) :=

(q + α)2

k2

1

(q′ + α′)2
(q′)2 + 2α′q′ + 4(α′)2 − 6α′ + 3

(q + 1)2
+ 3(1− q + α

(q′ + α′)k
)2.

A straightforward computation shows

f ′
1(α

′) =
q + α

k2

1

(q′ + α′)3
·

[
(2α′ − q′)(α′ + q′)(q+α)− 2((α′)2 − 2q′α′ + (q′)2)(q+α) + 6(k(α′ + q′)− (q+α))

]

f ′
2(α

′) =
q + α

k2

1

(q′ + α′)3
·

[
(α′+q′)(8α′+2(q′−3))(q+α)−2(4(α′)2+2(q′−3)α′+(q′)2+3)(q+α)+6(k(α′+q′)−(q+α))

]

In each f ′
j(α

′), in the brackets, the quadratic term in α′ vanishes. Therefore, in the
brackers is a term linear in α′. In f ′

1(α
′) the coefficient of α′ is q′(q+α)+4q′(q+α)+6k,

which is positive. Similarly, the coefficient of α′ in f ′
2(α

′) is 8q′(q+α)+2(q′−3)(q+
α) − 4(q′ − 3)(q + α) + 6k = (6q′ + 6)(q + α) + 6k, which is positive. Hence,
f1(α

′), f2(α
′) attain their maximum values only at the extreme values of α′. Since

f(α′) = max(f ′
1(α

′), f ′
2(α

′))11, we see that f(α′) attains its maximum at (one of) the
extreme values of α′.

Suppose q+α
(q′+α′)k

< 1 for some α′ ∈ (0, 1). Then q+α
(q′+1)k

< 1. Note α′ = 1 =⇒
F (q′, α′) = 1, and η2+3(1−η)2 is increasing for η > 3

4
. Since η > 3

4
and since η < 1,

we take η = q+α
q+1

(since q′k ∈ N). We obtain q2+2αq+4α2−6α+3
(q+1)2

, which, of course, is at

most F (q, α).

11Clearly η2γ0 + 3(1− η)2 ≤ γ0 for η ∈ (34 , 1), since γ0 > 3
7 . So, we assume F (q′, α′) 6= γ0.
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If q+α
q′k

< 1, then we take α′ = 0 and argue as above. Otherwise, the extreme

value of α′ is the one making η = 1, namely α′
crit =

q+α
k

− q′. At η = 1, our desired
inequality becomes F (q′, α′

crit) ≤ F (q, α). Since α′
crit ∈ [0, 1] and q′ ∈ N, we have

q′ = ⌊ q+α
k
⌋, α′

crit = { q+α
k
}, the fractional part. Therefore, it just suffices to show,

generally, that

q, k ≥ 1, α ∈ [0, 1] =⇒ F (⌊q + α

k
⌋, {q + α

k
}) ≤ F (q, α).

Clearly, the inequality holds if F (⌊ q+α
k
⌋, { q+α

k
}) = γ0. If q = 2, then either

k = 1 and the inequality is an equality, or k = 2 and F (⌊ q+α
k
⌋, { q+α

k
}) = F (1, α

2
) =

1− α
2
+ α2

4
, while F (q, α) ≥ 4−2α+α2

4
= 1− α

2
+ α2

4
. So, assume q ≥ 3.

Note that q2−αq+α2

q2
= 1 − α

q
+ (α

q
)2 is decreasing in α

q
if α

q
< 1

2
. And for q ≥ 3,

α
q
,
{ q+α

k
}

⌊ q+α
k

⌋
< 1

2
. Therefore, to show that

⌊ q+α
k
⌋2 − { q+α

k
}⌊ q+α

k
⌋ + { q+α

k
}2

⌊ q+α
k
⌋2 ≤ q2 − αq + α2

q2
,

it suffices to show

{ q+α
k
}

⌊ q+α
k
⌋ ≥ α

q
.

But q{ q+α
k
} = q( q+α

k
−⌊ q+α

k
⌋), so the inequality reduces to q

k
≥ ⌊ q+α

k
⌋, which is true

since ⌊ q+α
k
⌋ = ⌊ q

k
⌋, since if q

k
< m ∈ N, then q

k
≤ m− 1

k
.

Next, observe that

q2 + 2αq + 4α2 − 6α+ 3

(q + 1)2
=

(q + 1)2 − (2− 2α)(q + 1) + (2− 2α)2

(q + 1)2
,

so since 2−2α
q+1

≤ 1
2
for q ≥ 3, as before it suffices to show that

2− 2{ q+α
k
}

⌊ q+α
k
⌋+ 1

≥ 2− 2α

q + 1
.

However, substituting { q+α
k
} = q+α

k
− ⌊ q+α

k
⌋, collecting terms with q + α, and sim-

plifying yields the equivalent

⌊q + α

k
⌋+ 1 ≥ q + 1

k
.

And this is clearly true. �
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5. Verifying the Gan-Loh-Sudakov Conjecture for Cayley Graphs

We verify that our bound implies the bound in the Gan-Loh-Sudakov conjecture
when q ≥ 7. Take a finite Abelian group G and a symmetric subset S ⊆ G not
containing 0. Let n = |G|, S0 = S ∪ {0}, d = |S|, q = ⌊ n

|S0|
⌋, and α = n

|S0|
− q. The

benefit of working with S0 is that the graph-theoretic bound takes the simpler form

|Tconj| ≤ q

(
d+ 1

3

)
+

(
r

3

)
= q

(|S0|
3

)
+

(
α|S0|
3

)
.

Note

Prob[S0] =
1

|S0|2
∑

x,y∈S0

1S0(x+y) =
1

|S0|2

[∑

x,y∈S

1S0(x+ y) + 2
∑

y∈S

1S0(y) + 1S0(0 + 0)

]
.

Taking into account that for each x ∈ S there is exactly one y ∈ S for which
x+ y = 0, we see

Prob[S] =
|S0|2
|S|2

[
Prob[S0]−

3|S|+ 1

|S0|2
]
.

The number of triangles in our Cayley graph is thus

1

6
n|S|2Prob[S] = 1

6
(q + α)|S0|3

[
Prob[S0]−

3|S|+ 1

|S0|2
]
.

For ease, letM = max
(

q2−αq+α2

q2
, q2+2αq+4α2−6α+3

(q+1)2
, γ0

)
so that, by Theorem 2 applied

to S0 (which is symmetric), we may bound the number of triangles by

1

6
(q + α)M |S0|3 −

1

6
(q + α)|S0|(3|S0| − 2).

As one may check, this is less than q
(
|S0|
3

)
+
(
α|S0|
3

)
iff

[(q + α3)− (q + α)M ]|S0|3 + [3α− 3α2]|S0|2 ≥ 0.

Therefore, it suffices to have M ≤ q+α3

q+α
. We have γ0 ≤ q+α3

q+α
for all q ≥ 7 and any

α ∈ [0, 1]. And, for any q ≥ 1, α ∈ [0, 1],

q + α3

q + α
− q2 − αq + α2

q2
=

α3(q2 − 1)

q2(q + α)
,

q + α3

q + α
− q2 + 2αq + 4α2 − 6α+ 3

(q + 1)2
=

(1− α)2(q − 1)((2 + α)q + 3α)

(q + 1)2(q + α)

are non-negative.
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6. Base Case q = 1

We finish by proving Theorems 1 and 2 when |S| = n
1+α

for some α ∈ [0, 1]. Note
∑

y∈S

∑

x∈G

1S(x+ y) =
∑

y∈S

|S| = |S|2.

So,
∑

x,y∈S

1S(x+ y) = |S|2 −
∑

x 6∈S

∑

y∈S

1S(x+ y) = |S|2 −
∑

x 6∈S

|(−x+ S) ∩ S|.

By pigeonhole, |(−x+ S) ∩ S| ≥ 2|S| − n, and thus,

|S|2Prob[S] ≤ |S|2 −
∑

x 6∈S

(2|S| − n) = |S|2(1− α + α2).

As 1−α+ α2 = q2−αq+α2

q2
for q = 1, Theorem 2 is established. Replacing S with 2S

in the appropriate places establishes Theorem 1 as well.
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