ON GALOIS STRUCTURE INVARIANTS ASSOCIATED TO
TATE MOTIVES

D. BURNS AND M. FLACH

ABSTRACT. We establish the equivalence of two definitions of invariants mea-
suring the Galois module structure of K-groups of rings of integers in number
fields (due to Chinburg et al on the one hand and the authors on the other).
We also make some remarks concerning the possibility of yet another such
definition via Lichtenbaum complexes.

1. INTRODUCTION

Let L/K be a finite Galois extension of number fields of group G, and X a
smooth projective variety defined over K. If G is abelian then the present authors
have shown how the Galois cohomological methods introduced by Bloch, Kato,
Fontaine and Perrin-Riou (cf. [1], [15], [10]) allow one to attach to each motive
M = h™(X)(r) (which satisfies certain ‘standard’ conjectures) a canonical element
Q(L/K, M) of Pic(Z]G]) (cf. [5]). These elements combine, in a rather complicated
way in general, information about the G-structure of lattices in the de Rham,
Betti and motivic cohomology spaces attached to My := h"™(X xg L)(r). The
construction of Q(L/K, M) is unconditional in the case of Tate motives M = Q(r),
where r can be any integer, and motives M = h(X)(1) where X/K is an abelian
variety for which the Tate-Safarevic group of X X L is finite. Moreover, the
invariant Q(L/K, Q(0)) (respectively Q(L/K,Q(1))) was shown to be closely related
to an invariant Q(L/K, 3) (resp. Q(L/K,1)) defined by Chinburg in [6] (resp. [7]).

More recently Chinburg, Kolster, Pappas and Snaith have introduced, for arbi-
trary groups G and integers n > 0, an element €2,,(L/K) of the reduced Grothendieck
group CI(Z[G]) of the category of finitely generated projective Z[G]-modules, which
combines information about the Z[G]-module structures of Ks,,+1(0Oy) and K»,(O},)
(cf. [9]). This might be considered as a generalization of Chinburg’s work to
higher K-groups, since (L/K, 3) is related to the Z[G]-module structure of Of
and Pic(Op). To reflect this analogy one puts Qo(L/K) := Q(L/K, 3).

In this note we concentrate on the case that G is abelian so that there is an
identification of CI(Z[G]) with Pic(Z[G]) induced by detzjg). It therefore makes
sense to compare the classes defined in [9] to those which arise from Tate motives
via the approach of [5]. Let ‘#’ denote the involution on Pic(Z[G]) induced by
changing the G-action on a module by composing with the automorphism g + g1
of G. Our main result is the identity

(1) QL/K, Q(-—n))* = Qn(L/K)
for each integer n > 0. The comparison of the two sides in (1) is somewhat easier
for n > 0 since then the definitions of both ,,(L/K) and Q(L/K,Q(—n)) involve

The second author was partially supported by NSF-grant DMS-9506412 and a Sloan fellowship.
1



2 D. BURNS AND M. FLACH

perfect complexes naturally arising from étale cohomology. In the case n = 0 on
the other hand, the definition of Q(L/K,3) is based on complexes representing
specific extension classes of Z[G]-modules, and these can be recovered from étale
cohomology only after some effort.

After recalling the definition of our invariant Q(L/K,Q(—n)) in section 2, we
therefore treat the two cases n = 0 and n > 0 separately in section 3 and 4, respec-
tively. In the final section 5, we briefly indicate how the expected properties of Licht-
enbaum’s complexes T'(r) for 7 > 2 naturally give rise to invariants in CI(Z[3][G]).
and how these invariants relate to ,_1(L/K) (and hence to Q(L/K,Q(1 — r))).

Meanwhile, in [3], the construction of Q(L/K, M) has been generalized from
abelian to arbitrary Galois extensions L/K. The methods we develop in this paper
also give the identity (1) in the general case.

Acknowledgements: We are very grateful to G. Pappas, B.Kahn and V.Snaith for
useful discussions. The second author would also like to thank the TAS, Princeton
for its hospitality during the final preparation of this paper.

2. DEFINITION OF Q(L/K, Q(r))

We briefly recall from [5] the main steps in the definition of Q(L/K, M) in the
case M = Q(r), r <0, and set up some notation. Given a set S of places of K, the
letter S will also stand for the set of places of L lying above those in S. Confusion
is avoided because we denote places of K by v and places of L by w. We put
Sp = S U {v|p}, where p is any prime number, and Sy = S\ S, where S is the
set of archimedean places of K (so f will never denote a prime number). From now
on we fix a finite set S of places of K containing S., and all places which ramify
in L/K. We put £ =Q[G], E, = E® Q, = Qy[G] and &, = Z,[G].

Under the assumption that the motivic cohomology groups of Mj are finite
dimensional Q-spaces a certain invertible (i.e. free rank 1) E-module Z(M}) was
defined in [5, §1.4]. We recall its definition for M = Q(r) with r < 0 in which case
the necessary finite-dimensionality is known. If » =0

E(Q(0)2) = detp (OF ©2 Q)" ©p detz' Qo X) detpHO(K,, Q[G]),

V€S
and if r <0
2(Q(r)p) = detp (K1-2,(01) ©2 Q)" 05 X) detpH(K,, Q[G](r)).
V€S

Here the notation # indicates a change of G-action on the same underlying abelian
group: gz* := g~ 'x. The space Q[G] should be thought of as the Betti realisation
of h%(Spec L), viewed as an étale sheaf of Q-vector spaces on Spec K, for v € Seo.
Similarly, after a choice of embedding 0 : L — K, one can identify the p-adic
realisation of h°(Spec L) with Q,[G] as a (left) G-module. In this identification the

(left) action of v € Gal(K/K) is given by
(2) Yz) i=am(yh), oz € QlQ]

where 7 : Gal(K/K) — G is defined by vo()\) = on(7)()\) for all A € L.
We let Or, g denote the ring of S-integers in L. For a sheaf F on (Spec Or, g)et,
or more generally for a Z, or QQp-sheaf, we define the cohomology with compact
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support as

(3) RIo(OL,s, F) := Cone(RT(O,s. F) — € RT(Lu. F))[-1].
weS

Then there are isomorphisms for any prime number p [5, (1.17)]

(4) Ip 1 Z(Q(r)r) ®q Qp = detEpRFC(OLysp7 Qp(r))

which are constructed as follows. Put (—)" = Homg, (—, Q,) with contragredient
G-action so that one has an isomorphism

(5) detp, W/ = det ;' W#

for any Q,[G]-space W. The exact triangle [5][(1.11)]

(6) RUc(Or,s,, Qp(r)) — RT#(L, Qp(r)) —
P R(K..Q[G)(r) o P HO(K.. QyCl(r) —

’UGSp,f VESo

together with the isomorphism [5][p.73/74]

Qp i=r=20
HY(L,Qp(r)) = q (K1-2-(0O1) ®2Qp)" i=2
0 otherwise

and (5) gives an isomorphism

(

EN|
~

E(Q(?")L) X Qp = detEpRFc(OL,Spa@p(r)) ®Ep ® detEpRFf(Kv, @p[G](T‘))

vESy, f

Now there are several different ways to identify the determinant of RT (K, Q,[G](r))
with F), and since this is a possible source of confusion we explain the situation
here in some detail (see also the remark after [5][(1.16)] to that effect). Recall from
[5][(1.5),(1.7)] that the complex RI(K,,Q,[G](r)) is naturally quasi-isomorphic
to a complex V,, BN V,, where V,, is a projective Ej,-module, and ¢, € Endg, (V,)
is moreover ‘semisimple at 0’ in the following sense.

Let R be a semisimple commutative ring, V' a finitely generated R-module and
¢ € Endgr(V). One says that ¢ is semisimple at 0 if the map idy : ker(¢) CV —
coker(¢) is an isomorphism, or equivalently if V' 2 ker(¢) @ D as R[¢]-module. In
this situation one defines det’;(¢) := detr(¢|D) € R* which is independent of the
choice of D. Denote by C' the complex V/ 2, V. For any isomorphism of R-modules

V5 Wolet
wtriv : det;le Qg detgW =R

be the isomorphism obtained by composing det]}{1 (1)®1 with the evaluation pairing
detp,'W ®p detgW > R. Here det;' (V) = Homp(detg(V), R) and det ;' (v) =
Hompg(detg(v), R)il.
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Lemma 1. Assume ¢ is semisimple at 0. With the notation just introduced there
is a commutative diagram

detr(C) v, p
(8) | | et
detz HO(C) ® g detrHY(C) 27 R

where the left vertical map is induced by the exact sequence
O—>H0(C)—>Vi>V—>H1(C)—>O
(this is the canonical identification of [16] but with the sign convention of [5][0.2]).

Proof. Immediate from the definitions. O

Coming back to C, = RI'f(K,, Q,[G](r)) over R = E, the isomorphism 9, in
(4) arises from applying
® idVﬁ,triv

vESy, f

to the last term in (7). If r < 0 then RT'f(K,,Qp[G](r)) is acyclic, and the long
exact sequence induced by (6) gives isomorphisms

(9) D HO(K,. QG)(r) SH(OL,s,. Qp(r)
VES o
(10) H2(OL,s,, Qp(r) = (K1-2:(OL) ®z Q)"
If we denote by 9, : Z(Q(r)r) ®q Qp = detg, RT'.(OL,s,, Qp(r)) the isomorphism

induced by (9) and (10) then we have implicitly used the diagonal map in (8) and
Lemma 1 implies

(11) Up = €g, (1)0p

where (see [5][(1.7)] for the definition of C)

(12)

es,(r)= [ detp, (6) ' = [] detp,(60) ' = [ O =Nv"f) ' eE”

VESp, f VESp, f VESp, f
Here
(13) fo €QIG/1L,] = QG C E

is the Frobenius automorphism at v and I, C G, C G are the inertia and decompo-
sition group for a place w|v. For r = 0 the situation is slightly more complicated.
We have canonical isomorphisms

(14)  Hp(Ky, QplG)) = Hy(Lw, QplG/G.]) = HO(Ly, Qp[G/GL)) = QG /G
H}(Ky, Qp[G]) = Hj(Luw, Qp[G/GL]) = Hom(Gal(Ly /L), Qp[G/G))
= QG/G]
where the last map is evaluation at the Frobenius automorphism. Via these maps

we can identify ,cq , H}(Kv, Qp[G]) for both i = 0 and i = 1 with the free
Qp-space Ys, , ®z Q, on the set of places of L above those in S, r (consistently
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with later notation, Yg will denote the free abelian group on the places above 5).
So for r = 0 the long exact sequence induced by (6) reads

(15) 0— Qp — @ HO(Kanp[G]) S (Ysp,f Xz Qp) - Hcl(OL,Sp’Q;D) —0

V€S
=Yy , ®Q, — H2(OLs,,Qp) — (Of ®2 Q)" =0

and we denote by 9, : Z2(Q(0)1) ®g Q, = detg, RI'.(OL,s,,Qp) the isomorphism
induced by (15) together with the identity map on Ys, , ®7 Qp. From diagram (8)
we then deduce equation (11) with the factor €g,(0) = [, cs, ;€ (0) where

GU(O) = det*Ep ((bv)il ide[G/Gv],tMv © id;itmv € E; .

Lemma 2. Put G¥ = Hom(G,C*) and let v be a finite place of K. We introduce
the following notation depending on v. For x € Q*, resp. e € E, let *x € E*,
resp. ¢* € E, be the element such that x(*z) = z, resp. x(e*) =0, if x(Gy) =1
and x(*z) =1, resp. x(e*) = x(e) otherwise, for all characters x € GV. Then with
fv asin (13)

(16) eo(0) = |G/ L] - (1~ f3) " € EX.

In particular, €,(0) is independent of p.

Proof. For simplicity we suppose G = G, in this proof. The general case
easily follows by inducing from G, to G. We put V = Qp[G,] with its natural

G = Gyaction and with Gal(K,/K,)-action given by (2). If v { p we set T, :=
Gal(K*/K,) 2 'y, := Gal(K*"/L,, N K""). Using (2) one verifies that Vv =
Qp[Go] is isomorphic to Coindgfu Qp as a I',-module and that the natural map
70 Coindll::JQp — Q, is given by
71'0( Z )\ggZi) =\
9€G, /1, icl,
Consider the following commutative diagram of complexes with vertical differentials

VIU Pu V]U VIU L) Qp

(17) wvl %lill 5% Ol

18 :

™

VIU = Map(rva VIU) — Map(rw; Qp)

‘ ‘|

Here ¢, € T’y is the inverse Frobenius automorphism, the third (resp. fourth)
column is the standard continuous cochain complex for I, (resp. I'y,) with coeffi-
cients in VI (resp. Qp), one has §°(z) = v — (v — 1)(x), a(¢p) = (e, ) and =t
is given by restricting to I'y, and composing with 7°. By Shapiro’s Lemma 7° is
a quasi-isomorphism and so are the other horizontal maps in (17). By definition
[5][(1.7)] the first column in (17) is the complex C, = (V, RZR Vu). To compute
idg,, triv Oid;vl,mv we must identify H°(C,) and H'(C,) with Q, as indicated in
(14), express the map idg, on Qp, and take its determinant over E,. The ele-
ment e := >3 - g € HY(C,) satisfies 7°p,(e) = 7°(e) = 1 € Q). On the other
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hand, o~ !(e) is the cocycle v with 1(¢, t) = e. If we evaluate v at the Frobenius
automorphism of L,, as in (14) we find

Yipy ) = (Lot + 0,2+ o S (oY) =G/ 1L
and applying 7° gives |G,/I,| € Q,. Hence the map id,, on Q, is multiplication
with |G /I,| and idg, triv © id;vl,triv is*|Gy /1| € E. Furthermore, by (2), . acts
like f, € E* on Q,[G,]"™ so that det}, (¢,) = det}, (1— f,) = 1— f;. This finishes
the proof for v { p.

To discuss the case v | p we make a slight change of notation and put I', :=
Gal(Ky/K,), 'y == Gal(K,/Ly). Then V = Coind.’ Q, where the natural map
70V — Qpis 7% Agg) = Ai. Following [5][(1.3)] we denote by Bg(V) the
complex of continuous I';,-modules

e

1-P®1
Bcrys ® V — Bcrys ® V

which is in fact quasi-isomorphic to V' via the inclusion V' — B.pys ® V in degree
0. Denoting by V' — C*(T',, V') the standard resolution we find maps of complexes
of continuous I',-modules

Be(V) — Tot C*(I'y, Bo(V)) <& C*(I',, V)

with 8 a quasi-isomorphism. After taking I',-invariants § still induces a quasi-
isomorphism and we find the following diagram in degrees 0 and 1

(18)
Crys(V) — Berys @V — 1% T, Q,

-] > » |
1

Crys(V) - Map(Ty, Berys @ V) @ Borgs © V. &= Map(Ty, V) = Map(Tu, Q)
where Crys(V) = HO(Ly, Berys @ V), A%(z) = (8°(2), (1 — ® ® 1)), t(z) = (0,z),
SY(z) = (inclusion o z,0), and §° is as in (17). Again, according to [5][(1.5)], the
first column in (18) is the complex C, = RT'¢(K,, V). C, comes equipped with
its natural map into RT'(K,, V) (this the horizontal map into the third column in
(18)). Ife:= 3 cn 9 € V we have 7%(e) = 1 and the image of e in Crys(V) is
1 ®e. One can find an element A € W(F,) C Berys (W the ring of Witt vectors)
such that (1 — @)\ = 1. Then it is easy to see that the 1-cocycle 1) := §°(\ ® ¢)
takes values in Q,(1®e) C V. Indeed, any v € ', acts on W (FF,) like @7 for some
d € 7 and acts trivially on e, hence if d € N

(19) (v-1D)O®e)=(@ -1\ @e=14+®+0>+---+ 3T 1) (D -1\ ®e
=1+ +0 (- DRe=—dl®e)
and the general case follows by writing d as a limit of positive integers. The equality
A(A®e) =1(1®e)+ B (v)

shows that 1 ® e maps to the class of —¢ in H(I',, V). Evaluating the cocycle
7t (—1) at a lift v of the Frobenius of L,,, as required by (14), and using (19) we find
the value to be —7°(—d(1®e)) = d where d = [Ly,0 : Qp) with Ly, o = W (F,) N L.

id
The conclusion is that the map Q, = H(C,) —= H'(C,) = Q, is multiplication

with d = [Lu,o : @) and that idg, ¢ 0idy ', equals *d € E.

Go,tTriv
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To compute dety (¢») = det (1 — @), note that Crys(V) is isomorphic to Ly,
as a Gy-®-module via the map Ly, 3 A = > p p 1A ® m(y~1) where 7 is

as in (2). By the normal basis theorem L, is a free Q,[Gy/I,]-module of rank
§ = [Kuyo: Qpl, where K, o := K, N W(]Fp), ® is linear with matrix

0 ...... 0 £
10 oo, 0

1 0
1 0

and 1 — @ is semisimple at 0. Choosing a decomposition L., o = Q, ® D we find
1— f, X =detpg,(1— - X) =deth (1-&- X)(1—1"-X).
Evaluating at X =1 we get dety (¢y) = *6(1 — f) and so
eo(0) =" d("0) (1 — f) T =G /L1 = f)
O

For any p¥Zy(r) C Qp(r) it was shown in [5, Prop. 1.20] that RI'.(Or,s,, p"Zy(r))
is a perfect complex of £,-modules such that

Ip(r) :=detg, RI':(OL,s,,p"Zy(r)) C detg, RI'.(OL,s,, Qp(r))

is independent of v. Put

(1]

(20) (Q()2)z = E(Qr)L) N, Ty (r).

According to [5, Prop. 1.42] this is an invertible Z[G]-module and so it makes sense
to define

(21) QL/K, Q(r)) = (E(Q(r)r)z) € Pic(Z[G]).

3. THE CASEn =0

3.1. Definition of Q(L/K,3). Assume S is large enough so that Pic(Or,s) =0
and put

US’ = OZ,S’ JS = HL;, CS = JS/USa
weS

where Ug is diagonally embedded into Jg. Let Ys be the free abelian group on
the set S (of places of L) and Xg the kernel of the augmentation map Ys — Z.
All of these groups are naturally G-modules. In [7] it is shown that there exists a
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commutative diagram with exact row and columns

| | | |
| | | |
(22) 0 Js A B Ys 0
| Ll |
| | | |

where the terms A, A’; A”, B, B’, B” are cohomologically trivial Z[G]-modules and
A, B are finitely generated. Henceforth we shall for brevity write ‘c.t.” in place
of ‘cohomologically trivial’. The lower (resp. middle) row represents a (Yoneda)
extension class in

1

Ext%(Z, Cs) = H*(G, Cg) V5, @i

7)Z

(resp. Ext%(Ys,Js)). This class is specified to be the unique class cr, /K with
invg(cr/x) = ﬁ (called the global canonical class) for the lower row. As to the
middle row, one has decompositions of G-modules

(23) Ys = (Pndg, z, Js=PL ok K,)* =@ ndg, LY,
veES veS veS

where for each place v of K we have chosen a place w(v) of L above v and G,
denotes the decomposition group for w(v). Hence

Extg(Ys. Js) = P Extg(Indg, Z,Indg, L7,,)
(v,v")eSxS
G G
D @ EXté(Il’lde Z, Inde L;(v))
veS
> @t (4. L)
veE

Here this last inclusion can be described in two ways. On the one hand it is induced
by the natural map L @ Resgv Indgv Lx @) together with the isomorphism

G G ~ G G
Extg;(Indg, Z, Indg: L) = Extg, (Z,Resg Indg L )

coming from adjointness. From the point of view of Yoneda extensions this inclusion
is given by sending a collection (Cy)yes of Yoneda extensions over (Gy)yes to the
Yoneda extension €, g Indgv Cy over G (here each C, is supposed to denote the
exact sequence specifying a Yoneda extension). We call @, ¢ Ext2GU (z,L (v)) the

diagonal subgroup of Ext%(Ys, Js).
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The middle row in (22) is then chosen to represent the element clLofK of the

diagonal subgroup of Exté(Ys, Jg) given by the sum of the local canonical classes
CLy /K, € H Gy, L)) = Extg (Z,L),)-

Throughout, we shall identify Yoneda-Ext-groups with derived functor Ext-
groups by choosing an injective resolution of the second variable (see [11][Ch. V.9]).

One then has the following

Lemma 3. Suppose 0 — A, — A, — A7 — 0 are short exact sequences fori=1,2
and 0 — A - E, — -+ - E; — A}, — 0 a Yoneda extension with class
[E] € Ext" (A}, AY). Then

0—- Al - E,— - —E — Ay — A -0
represents 0| F] € Ext™ ™ (A4, AY) and

0—-Al—-A—-E,—---—FE —A,—0
represents (—1)"T16[E] € Ext" T (AL, A}).

Proof. See [11][Ch.V.9], in particular the comments after [loc.cit. (9.7)]. O

The uniqueness properties of (22) can be formulated as a statement in the derived
category © of Z[G]-modules as follows. Denote the complex A — B with A placed
in degree 0 by Kg and define K§, K¥ similarly. Then (22) represents an exact
triangle

(24) Ks — Kt L Kt —

in ®. Recall that, given any complex E with just two nonzero cohomology groups
HO(E) and H"(E), n > 1, the complex 7<"72°F represents a Yoneda extension
class

e(E) € Ext," (H™(E), H*(E)) = Homg (H"(E), H(E)[n + 1]).

Here 7 is the truncation of complexes preserving cohomology in the indicated de-
grees. 7 extends to a functor on the derived category, so in particular it pre-
serves quasi-isomorphisms. As usual, we view a Z[G]-module (for example H*(E))
as an object of © by placing it in degree 0. Given another complex E’ and
isomorphisms 6' : HY(E) = HY(E') for i € Z, we obtain an isomorphism © :
Ext;"™ (H™(E), HY(E)) = Ext;"' (H™(E'), H(E")). The maps ¢ are induced by
an isomorphism 0 : E — E’ in ® if and only if ©(e(E)) = e(E’). This follows from
the definition of equivalence of Yoneda extensions.

Lemma 4. Suppose given an exact triangle
(25) E—-E SE"—

in ® such that H(E) = HY(E") = H(E") = 0 for i # 0,1 and an isomorphism
of HY(E) — H°(E") — H°(E") with Us — Js — Cg and of H'(E) — H*(E') —
HY(E") with Xg — Ys — Z such that e(E') = clL"/cK and e(E") = cp/k. Then (25)
is isomorphic to (24) in D.
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Proof. The assumptions of the lemma, together with our discussion above, yield
a diagram

Ks Ky —— K
(26) ﬁ,l P
E E' @ E"
where 3 and (3" are isomorphisms in © and such that the two diagrams
0 1
Js H>(7) Cs Yo H (7) 7
H"(ﬁ/)l H"(ﬁ”)l Hl(ﬁ’)l Hl(ﬁ”)l
0 1
HO(E/) M) HO(E//) Hl(El) L(a)) Hl(E//)

commute. If we can show that there is a unique morphism v € Homg (K%, K¥%)
such that H°(y) and H(v) are the maps given in (22), then the diagram (26) must
commute and can therefore be completed to a morphism of triangles. This will be
an isomorphism, since 4’ and 3" are isomorphisms, hence the lemma.

From the two exact triangles in ®

JS — ng — YS[—H — Js[l]

Cs — K¢ — Z|-1] — Cs[1]
we obtain a commutative diagram of abelian groups with exact rows and columns,
which are in fact parts of long exact sequences
Homg (Ys[fl], Cs) I Homg (Ys[fl], Kg) — Homg (Ys[fl], Z[*l})

! ! |

Homgp (K4, Cs) —— Homgp(K%, K§) —— Homgp(K%,Z[-1])

! ! !

Homp(Js,Cs) —2— Homg(Js, KZ) —— Home(Js, Z[—1]).

Since Homgp (Js, Z[i]) = Ext& (Js, Z) = 0 for i < 0 the maps f; and f, are isomor-
phisms. Therefore we obtain an exact sequence

Homg (Ys[—l], Cs) — Homg (K{g Kg) — Homg (Js, Cs) D Homg (Ys[—l], Z[—l}).
Moreover
Homg (Ys[—1], Cs) = Extg(Ys, Cs) = @D H' (G4, Cs) = 0
vES

since Cg is the formation module of a class formation (see Proposition 3.5 below).
So this gives the desired uniqueness of v € Homg (K¢, K¥). O

Clearly Kg is a perfect complex of Z[G]-modules (since every c.t. Z[G]-module
has a two-step projective resolution), and hence so is any other complex F as in
Lemma 4. By definition then

(27) Q(L/K.3) = (Ks) = (4) — (B) € CAZ[G)).
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If G is abelian then with our parity convention for the determinant of a complex,
this is equal to

(28) Q(L/K,3) = (det g, Ks) € Pic(Z[G)) = CIZ[G]).

Remark: In [7], Chinburg works with Jg =[], cs Ly, X[ 1,5 Of, rather than Jg
(Us being diagonally embedded). However, since S contains all places which ramify
in L/ K the natural projection J§ — Jg (resp. J5/Us — Cs) induces isomorphisms
ExtZ(Ys, J5) — ExtZ(Ys, Js) (resp. Ext(Z,J5/Us) — Extg(Z,Cs) ), and so
working with either group will lead to quasi-isomorphic complexes Kg, hence to
the same Q(L/K, 3).

3.2. Another description of Q(L/K,Q(0)). In this section we shall realize the
class Q(L/K,Q(0))# as the class of a perfect complex Wg of Z[G]-modules, well de-
fined up to quasi-isomorphism. The construction of Wy is valid without the assump-
tion that G is abelian, and so in effect provides a generalization of Q(L/K, Q(0))#.
In the next section we apply Lemma 4 to show that g and Kg are in fact quasi-
isomorphic.

We denote by (—)¥ = RHomgz(—,Q/Z) = Homz(—, Q/Z) the Pontryagin dual
of any complex of abelian groups, and put X 1= X ®z Z for any finitely generated
abelian group X. Recall that S always contains the archimedean places and those
ramified in L/K.

Proposition 3.1. Assume S is large enough so that Pic(Or.s) = 0. Then there
exists an exact sequence of Z[G]-modules

(29) 0—Us— Ve — U - Xg—0
with the following properties:

o U0 WL are finitely generated, cohomologically trivial Z|G]-modules.
o Writing Vg for the complex

\P% — \Ilklg - Xs®Q
where the maps are as in (29), there is a map in D

(30) Us — RU(Op5,7)" ]3]

inducing an isomorphism on H' for i # 0 and the inclusion Ug — Us for
1=0.
We denote by Ws the complex ¥ — W (which is Z[G]-perfect).

Remark. The following two exact triangles in © summarize the relationship
between ¥g, Ug and RT.(Op s, Z)Y[-3]:

(31) Vs — RU(Or s, 7)"[-3] — Us/Us[0] —
(32) Xs®Q[-2] - ¥g — Uy —

Both X5 ®Q and Ug /Ug are uniquely divisible, hence Q[G]-modules. As such they
are injective, and because Z[G] — Q[G] is flat, they are also injective Z[G]-modules.
So for many purposes the differences between ¥g, ¥g and RIU'(Op s,Z)"[-3] are
inessential (see for example the proof of Proposition 3.2 below).
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Proof. There are natural isomorphisms

_ Us i=0
(33) H'(RTo(OL.5,Z)[-3]) 2! Xs®Q/Z i=2
0 i#0,2.

This follows from Artin-Verdier duality. More precisely, consider sheaves F, F’ on
(Spec Oy,.5)et whose restrictions to (Spec Ly, )er we denote by the same letter. The
Ext-pairings
RHomo, (F,F') x RHomo, ((Z,F) — RHomo,  (Z,F')
RHomyp, (F,F') x RHomyp,, (Z,F) — RHomy, (Z, F)
together with (3) define a bilinear pairing
(34) RHOHIOL’S(]:, .7'—/) X RFC(OLys, .7'—) — RFC(OLys, .7'—/)

which on cohomology induces the pairing from [22][Ch. II, Prop. 2.5.a]. For
F' = G,y there is a canonical trace map H2(Op s, G,,) — Q/Z which lifts to a
map RI.(Or,s,Gm) — Q/Z[—3] since Q/Z is injective. Hence we obtain a map

(35) RHomo, ,(F,Gm) % RT.(Ops, F)¥[-3].

Similar considerations apply to R~Fc((’)L75, F) which is defined as in (3) but with
Tate cohomology at each archimedean place w. Denoting by ¢ : RI'; — RI'. the
natural map and putting F = Z we find homomorphisms

(36)  RD(OLs,Gp) 5 R0W(OLs,2)"[-3] > RT(Op.5,2)"[-3].

By [22][Ch.IT, Th. 3.1] the map AV induces an isomorphism on H* for i # 0 and
the inclusion of Us = H*(Op, s, G,,) into its profinite completion Us for i = 0. The
map H'(1) : H: — H! is an isomorphism for i > 2 since Tate cohomology agrees
with ordinary cohomology in degrees > 1. So H*(:V) is an isomorphism for each
i < 1 and this implies (33) for each i < 1. On the other hand, by (3) we have
H! =0 for i <0 and an exact sequence

02— @z— H(OLs.2)—0
weS

where the first map is the diagonal embedding whose Pontryagin dual is the sum
map. This gives the description of (33) for each i > 2.
By our discussion before Lemma 4 the complex

7072 RI(OL,5, )" [-3]
represents an element
(37)  er/x € Extd(Xs ® Q/Z,Us) = Ext(Xs ® Q/Z, Us) = Extg(Xs, Us)

where the second (boundary) isomorphism is induced by the short exact sequence
obtained by tensoring Xg with

(38) 0-Z—-Q—Q/Z— 0,

and the first isomorphism holds because Ext%(—, Ug/Ug) = 0 for n > 0 (as Ug/Ug
is injective).
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The exact sequence in (29) is then chosen to be a representative of the image of
er/x in Extg(Xs, Us). The modules ¥4, U} can be chosen finitely generated, be-
cause Ug and X are finitely generated over Z[G]. They can be chosen c.t. because
cup product with ey /g induces a cohomology isomorphism (with a degree shift of
2). This is because 7217=3RI.(Of, s, 7Z) consists of c.t. G-modules by a standard
argument ([5, step 2 in Prop. 1.20] or [14, Prop. and Lemma 2.1], and Lemma
12 below) and the fact that Homy(—, Q/Z) preserves cohomological triviality. To
prove this last remark note that since Homz(—, Q/Z) is exact one can reduce to
projective modules by taking a (two-step) projective resolution of a given c.t. mod-
ule, and then to free modules. But Homyz (@ Z[G], Q/Z) = Homz(Z|G], [[Q/Z) is
coinduced, and hence certainly c.t..

By Lemma 3 the complex Wg represents the image of the Yoneda class of (29)
under the boundary map in (37). The existence of the map (30) follows from the
first isomorphism in (37). This finishes the proof of Proposition 3.1. O

Let S be as in Proposition 3.1 and T a finite set of places disjoint from S. For
each v € T let f, € G, C G be the Frobenius automorphism at v, Y, the free
abelian group on the places of L above v with its natural (left) G-action and ¥,
the complex

1—f7t
Em—

Z|G] Z|G]

with terms in degree 0 and 1. There are isomorphisms of G-modules
HY(¥,) =Y,

for i = 0,1 defined by ()(x) = |G| tazw(v) and l(z) = zw(v) for x € Z[G] (note
that if = is f,-invariant zw(v) is divisible by |G| in Y;). The discussion before
Lemma 1 applies to ¥, ®z Q. The map id, _ Fol when expressed on Y, after using

the identifications ¢!, is multiplication with |G|, hence

(39) idy, ¢riv 0id = *|G,| € E*

—1
17f171 Jtriv
with the notation introduced in Lemma 2.

Proposition 3.2. There is an exact triangle in O
(40) Vs — Vsur = P T, —.
veTl
whose long exact cohomology sequence splits into two short exact sequences
(41) 0— Us = Usur = Yr — 0
(42) 00— Xg— Xsur - Yr —0

in which all maps are the natural ones (v is given by taking valuations). Here we
have used the maps i} together with (29) to identify the cohomology of (40).

Proof. For v € T with residue field x(v) we pick w|v with residue field A(w) and
decomposition group G,. Let I, (resp. I'y,) be the absolute Galois group of x(v)
(resp. A(w)) and F, € I, the Frobenius automorphism. Then G, 2T, /T",,. There
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are canonical isomorphisms

A

Z i=0
(43) H'(RT(\w), 2)"[-2)) 2 { Q/z i=2
0 1#£0,2.
For i = 0 this is the Pontryagin-dual of the isomorphism
(44) H*(\(w), Z) = H'(A(w), Q/Z) = Hom(T'w, Q/Z) = Q/Z
where the last map is evaluation at the F, := L[G”‘ € Iy, and for ¢ = 2 it is the
dual of the isomorphism
(45) H°\(w),Z) = 7.

We shall apply the arguments in the proof of Prop. 3.1 to RI'(A(w),Z) instead of
RT.(Op,s,Z), except that we can now make this complex much more explicit.

For a profinite group I' and discrete (left) I'-module M, denote by C(T', M) the
group of locally constant maps with (left) T-action (vf)(z) = vf(y 'x). Suppose
I' = 7 with distinguished generator F'. Then for any open subgroup IV = nl' C T’
the exact sequence

(46) 0—Q/Z — C(T,Q/Z) =5 T, Q/zZ) — 0

is a resolution of the trivial module Q/Z by I'-acyclic modules. Put G,, = I'/T".
After taking I''-invariants we obtain an exact sequence of (left) Gp-modules

(47) 0 — Q/Z — C(Gn, Q/Z) = C(Gn, Q/Z) 5 Q/Z — 0
where €(f) =>_ gean f (9). The complex RT'(IV,Q/Z) identifies with

(G, Q/Z) 5 C(Gn, Q/2).
Lemma 5. The isomorphism H*(I",Q/Z) = Q/Z induced by (47) coincides with

the chain of isomorphisms
H'(I",Q/Z) = Homoni(I", Q/Z) = Q/Z
where the last map is evaluation at F™.
Proof. All rows in the following commutative diagram are resolutions of Q/Z by

[-acyclic modules
1-F

Qz —— Ccr,Qz) 5 corQm) —— 0
H lres lres o(14F4-+F™ 1)
48) @z —— o, Q/z) 25 o, Q/z) —— 0

u I o] [

QZ —— I, Q/z) —"— O\, Q/7) —— C*(I,Q/2) -
The third row is the standard resolution of Q/Z over 1”, i.e. C'(1",Q/Z) =
C((")*1,Q/%) and
(49) (3°f)(v0:m) = f(n) — F(0)
(50) (01 1) (v0s71:72) = f(r1,72) — F(0,72) + F (Y0 M)
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and the map « is given by (af)(y) = f(F~™v,7v). Upon taking I'-invariants we
find the commutative diagram of abelian groups

Q/Z —— C(Gn,Q/Z) C(Gn. Q/2)
I lres l o (L4 P F'~1)=c
¢Gl) Q)7 —— Q/z —1- Q/Z
| n o
0/Z =——  Q/Z  —"— Homeon:(I",Q/Z) = ker (§")"

where the map res simply becomes evaluation at 1 € G,. If x € Q/Z and
fo € Homepn:(I",Q/Z) is the unique homomorphism with f,(F™) = z, then f,
corresponds to the element ¢, € ker (67 with ¢, (70,71) = 70.fx (75 t71) by the
standard correspondence between homogenous and inhomogenous cochains. Hence
a(¢z)(y) = ¢x(F",7v) = fz(F™) = x for any v € IV which proves the Lemma. O

There is a resolution of the trivial I'y,-module Z by I'y-acyclic discrete T'y,-
modules

(52) 02— Q- Oy, Q/Z) =5 O(1,, Q/2) — 0
The complex RT'(A(w),Z) is obtained by taking I',-invariants of this resolution:

1— v
(53) Q — 0(G,, Q/2) - C(G., Q/2)
where f, is the image of F), in G, (this notation is consistent with (13)).
Lemma 6. The complex RU(A(w),Z)V[—2] is naturally quasi-isomorphic to

2[G] A=t

2G| S 7Z®Q
where € is as in (47), and the isomorphisms (43) are those induced by the short
exact sequence

1— —1

0— 222G, —— 2G| > 2Z8Q — Q/Z — 0
where A(n) =n3}: o 9.

Proof. The first assertion follows by taking the dual of (53). More precisely, we
have isomorphisms of (left) G,-modules

C(Gy, Q/Z) = Homyz(Homyz(Z[G,], Q/Z), Q/Z) = Z|G,]

where Z[G,] has its natural left action, and C(G,, Q/Z) = Homz(Z|G,], Q/Z) the
contragredient action (as opposed to the coinduced action). The Pontryagin-dual
of a diagonal map is the sum map. Note that if M is a (left) Z[G]-module, the
(left) action of G on MV is given by gz = (g¥) 'z, hence the occurrence of f, L.
The map Q/Z[—1] — Z (representing the extension (38)) in the derived category
of discrete I',-modules is isomorphic to the map from the first to the second row in
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the commutative diagram
Fy—1
cr,,Q/z) —— C(I',,Q/Z)

[ [
Q —— C(.,Q/z) =% o, Q/z)

n | |

Q —— C(.,Q/2) —— (., Q/2).

Here we use the acyclic resolutions (46) of Q/Z. Note the sign change in the
differential of (46) caused by the shift [-1]. The middle row is the mapping cone of
Q — Q/Z shifted by [-1] and is quasi-isomorphic to the lower row, which is (52).
By Lemma 5 the isomorphism (44) is given by € on C(G,, Q/Z) whose Pontryagin
dual is the map A. Similarly, the isomorphism (45) is given by the inclusion Z — Q
in (52) whose Pontryagin dual is the natural projection 7ZRQ —Q /7. |

Define W¥,, (resp. U,,) as the second (resp. third) row in the following commu-
tative diagram (with obvious vertical maps)

zG,) 2 76— 290

I I I

(54) zic.) 26 = Q

u n |

zicy s ziq) —— o

Then we can rewrite this diagram in the form of two exact triangles of G,-modules

(55) W, — RU(A\(w), Z)Y[~2] — Z/Z[0] —

(56) Q-2 = ¥y — ¥y, —

analogous to (31) and (32). Put ¥, = ¥,, ®z¢,] Z[G] and v, =V, ®zic,) L[G].
We claim that there is a commutative diagram in ® where all rows are exact

triangles, and where the left (resp. middle, resp. right) vertical maps are as in (31),
(32) (resp. (31), (32) with S replaced by S’ = SUT, resp. (55) and (56)).

RU(Op,s,Z)Y[-3] — RU:(Ops,Z)V[-3] — @ RT(\w),Z)"[-2] —

| | [

(57) Vg — U — L%BT v, —
| | |
g — Uy — & v, — .

veT
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The first row is the dual of the exact triangle [22, Ch. II, Prop 2.3d)]
(58) RFC(OLS’ ) — RF OL S, @ RF
weT

and to fill in the other maps we use the following

Lemma 7. Let I be an injective Z|G]-module, C a complex of Z|G]-modules and
n € 7.
a) The natural map Homg (C, I[—n]) — Homg(H™(C), I) is an isomorphism.
b) There is a short exact sequence

0 — Ext& (I, H*1(C)) — Homg (I[-n],C) — Homg(I, H"(C)) — 0.

Proof. Part a) follows very easily by computing the set of homotopy classes of
maps of complexes C' — I[—n]| which agrees with Homg (C, I[—n]) because I is
injective. Part b) follows from the spectral sequence

EB? = Ext? (I, HY(C)) = HP** R Hom(I, C)
together with the fact that Homg (I[-n|,C) = H" RHom(I,C') and Ext?,(I,—) =0

for p > 2 since I is c.t., and hence has a two-step projective resolution. O

The top left square in the diagram (with obvious maps)

I I I

Us /Us0] — Us /Us[0] — @T?U/YU[O] —
B AL (O1.6,2)" (8] — RU(On.57)Y[—3] — & RI(\w).2)"[-2] —
\ifs — \is/ — @ \iv —

veT

commutes after taking H°, hence commutes in ® by Lemma 7a). So we get a map
of triangles from the first column into the second. To argue similarly for the map
from the second to the third column we need:

Lemma 8. The map Ug: — Doer Y, induced by

RFC(OL“S' [* - @ RF [* ]

weT

together with (33) and (43) coincides with v® 7 (v given by taking valuations), in
particular maps Us: to @, Y.

Proof. Denote the open immersion Spec Or v — SpecOr s by j and let
i:Z — Spec O, g be the closed immersion of the complement. We have two short
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exact sequences of étale sheaves on Spec O g

0 N/ 7 s il — 0
@ 1o
0 G GG — M i 5 0

where val is given by taking valuations (we shall discuss below the possible maps
a, 3,7). The exact triangle (58) is obtained by applying RI'. to the top sequence
in (60) (see the proof of [22][Prop.2.3d] for this fact). The Artin-Verdier duality
map (35) is functorial in F. Hence the morphism i,i*Z - 5;5*Z[1] induced by the
top row in (60), gives a commutative diagram (note i*Z = 7Z)

RFC(OL,SUZ)V[*g] - @T RF()\(w)’Z)V[fQ]

o 1 1

RHomo, ,(j1*Z, Gpm) —— RHomo, (ixZ, Gp)[1],

where b = RHom(e, G,,)[1] and taking into account the isomorphism

(62) RT.(Oy,s,i.2) = RT(Oy,5,i.2) = € RT(A(w), Z).
weT

Consider the composite map

(63) Of o =

HO(b)

. , HO(b)
Homo, (115 L, Gy) —— Euto, [(ixZ,Gp)

Homo,, 4(i.2,i.2) = @) 7
weT

where ¥ = RHom(i.Z, €'), i.Z LR G [1] being given by the lower row in (60). If
(60) commutes we have € o a[1] = v o ¢ and hence H°(b)(a) = HO(V')(7). Now
by adjointness, for any « there is a unique 8 (and hence a unique ) making (60)
commute. Viewing « (equivalently () as an element of Ofy g, the commutativity
of (60) shows that ~ is given by multiplication with the valuations at w € T of
«. Putting this together with the fact that H°(b') is an isomorphism ([22][Ch. II,
Rem. 1.7.(b)]) we conclude that (63) is the valuation map.

It remains to be shown that the identification of the target space of (63) with
@D, cr Z, combined with (61) induces the identification (43) for i = 0. Inserting the
morphism €’ into the F’-variable and putting F = i,Z in (34) we get a commutative
diagram of pairings

RHomo, ¢ (ixZ,Gm[1]) X RT(Op,5,i.Z) —— RT(Of,s,Gn[1])

(64) | [s
RHomo, ;(i+Z,i.Z) x RU.(Or,s,ixZ) ——— RI.(OL,s,i.Z).
It suffices to show that § := RI'.(¢’) is compatible with the trace map which we

define for the bottom row by combining (62) with (44). Assume for simplicity
T = {w} and put U, = SpecOp, (the general case follows by summing over
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w € T). There is a commutative diagram of isomorphisms
(65)
3 - 3 H*(9) 2 . 2 .
f[C (OLys,j!Gm) nd HC (OL,& Gm) — HC (OLys,’L*Z) — H (OLys,Z*Z)

I I I I

H3(Uy,5iGm) — H3(Uw,Gpm) —  H2(Uy,isZ) — H2(Uy, i Z)

w
in which all maps are the natural ones. According to [22][p.186] the local trace map
can be defined either by the isomorphism

(66) H (U, j1Gom) = H(Lyy, Gn) % Q/Z
or by the isomorphism
H?(Uy,i.2) = H*(\w),Z) = Q/Z

which arises from (44). By [22][p.216]) the global trace map is defined by (65) and
(66). This gives the desired compatibility of § with the trace map and finishes the
proof of Lemma 8. O

Therefore, in (59), we have a nine term commutative diagram with exact columns
and two exact rows. So the octahedral axiom implies that the third row in (59),
i.e. the second row in (57), is also exact. The same argument gives the exactness
of the third row in (57) except that we now have to use Lemma 7b). For example,
consider the diagram

Xs ®Q[-2] —— Ty

(67) l l
XS/ ®Q[72} — (IJS’

where the left (resp. right) hand vertical map is the natural one (resp. the one we
have just constructed). Applying H? to (67)~gives a commutative diagram. Since
Hl(lI/S/) = 0 we have HOHI@(XS ® Q[—Q], \I/S/) = Homg(XS ® Q, H2(‘~I/5/)) by
Lemma 7b), so (67) commutes in ©. This extends to a map of the triangle (32) for
S into the triangle (32) for S’.

We have now established that the diagram (57) commutes and has exact rows

and this implies Proposition 3.2 (the assertion about v is immediate from Lemma
8 and (54)). O

For a perfect complex of Z[G]-modules P we define P* = RHomgz, (P, Z,) with
contragredient G-action. Then P* is again perfect over Z,[G] and P* ®z, Q,
naturally identifies with (P ®z, Q)" := Homg, (P ®z, Qp,Q,). Recall that S,
denotes the union of S with the set of places above p.

Proposition 3.3. Let S be as in Prop. 3.1. For any prime number p there exists
a quasi-isomorphism

(68) Hp : \Ifsp Rz, Zp = RFC((’)LysP,Zp)*[—ﬂ
such that the sequence (15) is Qp-dual to the natural long ezact sequence
(69) 0— Of ®2Q, = Us, ®2Q, —Ys,, ®2Qp, =0
— Xg, ®2Qp —Ys, ®2Qy = Q, — 0
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when we identify Xs, ©zQp, with H! (Or,s,, Q)" and Us, ®zQ,, with H? (Or,s,, Q)"
via 0, ® Qp. Here we have also identified Q, and Ys ® Q, with their respective con-
tragredients by mapping the natural basis to its dual basis.

Proof. Denote by C,, (resp. Cp), the mapping cone of multiplication by p™ on

Vg, (resp. \ilsp ), for each positive integer n. The mapping cone of multiplication by
p™ on RI'(OL,s,, Z)"[—3] naturally identifies with R['.(OL,s,, Z/p"Z)" [—2]. From
(31) and (32) we obtain two quasi-isomorphisms

(70) Cp 22 G 222 RE(O) s, 2/ )Y [~2),

compatible with the natural maps C,, 11 — C,, etc. This is because multiplication
by p" is an isomorphism on both Xg, ® Q and U, s,/Us,-

Recall that RI'.(Or,s,,Zy) is a perfect complex of Z,[G]-modules. Applying
(—)* = RHomg, (—,Z,) to the exact triangle

RU(Or.s,,Zy) Y= RU(Ors,,Zp) — RU.(Or s, Z/p" L) —

produces an exact triangle

RU.(Or,s,, Z/p"2)" — RU:(OL,s,,Zp)" R RU'(Or,s,, Zp)" — .

From the short exact sequence 0 — Z, — Q, — Qp/Z, — 0 one easily deduces
that

RFC(OL,Spa Z/an)* = RFC(OL,Spa Z/an)v[fl]a

and obtains therefore an exact triangle

RU(Ops,. Zp)* 25 RUW(OL s, Zp)* — RU(Op s, Z/p"Z)" — |

More concretely then, if we pick a bounded complex of finitely generated projective
Zp|G]-modules P* quasi-isomorphic to RI'.(Or,s,,Zp)*[—2], the inverse system
RU.(Op,s,,Z/p"Z)"[—2], n > 1, is isomorphic to P*/p™.

We can give a similar description for the system C,. Since Vg, is a perfect
complex of Z[G]-modules, we can choose a quasi-isomorphism ¥g, = Q® with Q* a
bounded complex of finitely generated projective Z[G]-modules. The inverse system
C', is then quasi-isomorphic to the system of complexes Q*/p™.

The morphisms ¢,, := ¢27”¢i711 : Q% /p™ — P*/p" from (70) are quasi-isomorphisms
such that the diagram

Q" . N Q°/p" "t —— -
(71) ml ¢>Hl

P
s popr T Pl

commutes in the derived category. Since however Q®/p™ consists of projective
Z/p"™Z|G]-modules and P*/p™ of Z/p™Z[G]-modules we can realize each ¢, as an
actual map of complexes. Moreover, ¢, 179 will be homotopic to 72 ¢, i.e.

n 179 — 7P p, = dh + hd
for some map h : Q°/p" — P*®/p" l[—1]. Since P'/p" — P!/p"~! is surjective

and Q'/p™ is a projective Z/p"Z[G]-module we can lift h to a map b’ : Q®/p" —
P /p"[—1]. If we then replace ¢, by ¢, +dh’ + h'd, the diagram (71) will actually
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be a commutative diagram of maps of complexes. So by induction we may assume
that the ¢, are a map of inverse systems of complexes.

Lemma 9. Let
'*Kﬁt—“Kﬁfl—““

be an inverse system of complexes such that each transition map t¢, : K& — K _; is
surjective, and each cohomology group H'(K?) is finite. Then there is a canonical
isomorphism

for each i € Z.

Proof. This follows easily by using the argument of [26, (2.2)] or [12, 1.4-6] and
the fact that any inverse system of finite abelian groups (F},), satisfies the Mittag-
Leffler condition so that lim | F;, = 0. O

This Lemma implies that
lim , ¢
Q° ®z Zp =lim,, (Q*/p") —— lim, (P*/p") = P*
is a quasi-isomorphism. But Q® ®z Z, is of course quasi-isomorphic to Ws, Qz Z,
and P* is quasi-isomorphic to RI'.(Ors,,Z,)*[—2]. So we have constructed the
quasi-isomorphism 6, in Proposition 3.3. The fact that 6, identifies the dual of
(15) with the natural sequence (69) is a lengthy but straightforward verification
(somewhat similar to the proof of Lemma 8) which we leave out for reasons of
space. O

The operation P — P# defined in the paragraph before equation (2) induces an
involution on Pic(Z[G]) which we denote by the same symbol. For e = >~ A\gg €
A[G] we put e = > A\,97! where A is any commutative coefficient ring. Note
that # is a functor from G-modules to G-modules and we have ¢# = ¢ for any G-
homon#lﬁorphism ¢. However, if ¢ is multiplication with e then ¢# is multiplication
with e”.

Theorem 3.1. If G is abelian, then Q(L/K,Q(0))# = (Vg) € CI(Z[G)).

Proof. Let S be a finite set of places containing the archimedean places and those
ramified in L/K and such that Pic(Or, g) = 0. There is a long exact sequence of
E-modules

(72) 050 ®2Q—-Us®zQ—Ys, ®2Q—0
- X5®zQ—=Ys®zQ—-Q—0

where the maps are the natural ones as in (69). If S = S}, the sequence (72)®Q,, is
identical to (69). The Q-dual of (72) induces an isomorphism

(73) k() : Z(Q(0))* = detg(Us ® Q) ®g det 5 (Xs ® Q)
= det;' (Vs ®z Q)

such that for any prime number p one has an identity of maps

(74) Jp = (det 51 (0, © Qp)) o (5(Sp) © Q)
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from Z(Q(0))# ®g Qp to detg, RUc(OL s, Qp)* = dety RU(Ors,, Qp)*[2].
This is because 9, was induced by (15) which agrees with the dual of (72) ® Q, for
Sp by Proposition 3.3. Put
(75) A= k(S) 0 K(S,) 7t : det (Ts, ® Q) = detz' (Vs ®Q),
and let Az be the isomorphism
(76)
— ~ — — 17fU71 ~ —
det6 Vs, = dety g Vs @y16) (X) dety g (Z[G] —— Z[G]) = dety g Vs
veT

where the first map is induced by the triangle (40) with 7' = S, \ S and the second
is 1 ® Homgz61 (@, cr idz(c1 trivs Z]G])"! in the notation introduced before Lemma
1 with R =Z[G]. Put A = \z @ Q.

Lemma 10. We have A = [] €,(0)% '\ with €,(0) € EX as in (16).
veT

Proof. X is induced by the natural map from the sequence (72) for S to the
sequence (72) for Sy, i.e. by the short exact sequences

(77) 0-Us®2Q—Us, 2Q— Yr®2Q — 0,

(78) 0> Xs®z2Q— X5, 202Q->Yr®zQ—0

and the identity map on Yr ®z Q = @, Y,. By Proposition 3.2 these se-
quences also arise as the long exact cohomology sequence induced by (40) ® Q.
This means that X is likewise a composite as in (76) ® Q but with the second map
1 ® Homg(Q,cr idE,triv, E) ' replaced by 1 ® Homg(Q), o7 idy, triv, E) . To
compare the two maps, note that Lemma 1 gives a commutative diagram

1-f-t U§TidE,triv
R detg(F —"— FE) N
veT
l I
veT
(79) 1 U§Tid17f;1,triv
det ;' (Yr® Q) ®p detp(Yr®Q) ———— E
I -~ II B
veT
®T idy,  triv
detz' (Yr ® Q) @p detp(Yr ® Q) ~—
where 3, = idy, triv oid:f_1 erin € E*. Applying Homg(—, E)~! to (79) yields
(80) A=TJa—= 18"\
veT

Since 3, = *|Gy| by (39), (*2)# = *x and (¢#)* = (¢#)* in the notation of Lemma
2, Lemma 10 follows. U
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For any prime number p, denote the scalar extensions of £(S), X and X to E, by
the same letter. Now we can compute, using €g,(0) = €5(0) [ [, 7 €(0)

0, (Zp(0)%) = €5, (0)#0, 1 (Z,(0)%) by (11)
= €5, (0)*K(Sp) o detg, (6, © Qp)H(Z,(0)%) by (74)
= e5,(0)7k(Sp) ™" (dety (Vs ®zZp)) by (68)
= €5, (0)%5(S) " A(detg ! (Us, ®7 Zp)) by (75)
es(0)7k(S) " A(detg ! (Us, ®z Zp)) by Lemma 10
= es(0)7r(S) " (dety | (Vs 0z Zp)) by (76)
and we obtain
(81) 2(Q0)2)] = es(0)#k(S) " (dety g (¥s))-

Since €5(0)# € E*, taking classes in Pic(Z[G]) and recalling our sign convention
for the determinant of a complex, this equality implies that

QL/K., QO))* = (det;, ¥s) = (Ws) € CUZIG)).

O

3.3. Comparison of Q(L/K,3) and Q(L/K,Q(0))#. The idea is to construct an
exact triangle

Vg — Uy — VY —

satisfying the assumptions of Lemma 4. Recall that RNFC((’)Lys, F) is defined as in
(3) but with Tate-cohomology at each archimedean place. If we define

(82) RUA(Ly, F) := Cone(RI(Ly, F) — Rl tate(Lu, F))[—1]

for each archimedean place w, the octahedral axiom gives an exact triangle

(83) RUo(Op,5, F) = RUo(Op,5. F) = € RUA(Luw, F) —
WE S

Next consider the diagram with exact rows

AV

RT(OLs,Gp) ——— RT.(0Or.s,Z)"]-3] —— Us/Us[0]
(84) l I
g ——— RU(Ops,Z)V[-3] —— Us/Us|0]

where the lower row is (31). By Lemma 7a), the square commutes, so that (84)
can be completed to a map of triangles. We now claim that all rows and columns
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in the following diagram are exact triangles.

(85)
EE RUA(Ly, 7)Y ]3] E]? RUA(Ly,, Z)V 3]

! J-

RT(Or,3,Gm) — @D RI(Ly, Gp) —— RI.(Or,3,Gn)[1]
weS

| | ||

This is obvious for the middle row and follows for the first column by combining
(83) with (84) and using the octahedral axiom. ¥ is defined to make the last row

(or alternatively the middle column) exact and the exactness of the middle column
(or last row) then again follows from the octahedral axiom.

Proposition 3.4. \if’s has a G-equivariant direct sum decomposition

Vs> P RN(Luw,Gn) & @ Cu

wGSf WES~o

Proof. An equivalent way of stating the proposition is that the map « in (85)
lies in what we have been calling the diagonal subgroup of

Homy ( @ Ind& RUA(Luw(v), Z)¥[-3], @Indgv RT(Luy(v) Gi)).
VES vES

Fix an infinite place wg of L with decomposition group Gy and let K’ be the fixed
field of Gy. Denote by vg, resp. v}, the place of K, resp. K’, induced by wq and by
D(T) the derived category of Z[I']-modules for any group I'. What we must show
then is that the map which « induces in

Homg () (Indg, RUA (L, Z)Y[-3], D Indg, R (Luyw), Gm))

vES
=Homg o) (RT A (Luy, Z)" [-3], @) Resg, ndg, RT(Lu(v), Gim))
veES
= Homp (g,) (RTa (Luy, Z)¥[-3], @D ndg?, RT(Luur); Gim))
v’'es

factors through the summand corresponding to v(, i.e. RT'(Ly,,G,,). Here the last
sum is over all places v/ of K’ lying above a place in S and G- is the decomposition
group inside G. So we need to show that for each place v # v} of K’ the map

Y = RUA(Luy. 2)"[~3] 25 nd%° RT(Ly, Gyy) = Z

induced by « vanishes in Homg g, (Y, Z). Fixing such a choice of v we split the
discussion into two cases.

Assume first that Go = 1 so that D(Gg) = D is the derived category of abelian
groups. Morphisms in this category can be profitably studied via the exact sequence

0 — J[Ext'(H'(Y), H' (%)) — Homs,, (Y, Z) — | [ Hom(H'(Y), H'(Z)) — 0
1EL 1€Z
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which is a consequence of the spectral sequence in [27][II1.4.6.10]. It is easy to check
that Y has cohomology concentrated in degrees > 3, in fact that

- Q/z[-3] wg complex
B Q/Z BN Q/Z 2 Q/Z SN -+ [=3]  wq real.

If w’ is not real one finds that Homg_, (Y, Z) = 0 using that RI'(L,-,Gy,) has
cohomology concentrated in degrees < 2 and that Ext'(Q/Z, Br(L,)) = 0 since
Br(L,-) is an injective abelian group. If w’ is real on the other hand, we pick a
A € L = K’ which is negative at w’ = v’ and positive at wy = v{,, in case wy is real.
Such a X exists because of the independence of the valuations v and vj. In the
quadratic extension N = L(v/A)/K’ the place v/ ramifies whereas v}, splits. From
Lemma 11 below, with L/K replaced by N/L, G by I" := Gal(N/L) = Z/27Z and
H = G, we find that 8 = RHomgr|(Z, ") where

B € Homgp(ry(Ind] Y, RT'(Nyyr, Gpn)) = Homgp,, (Y, C*[0]) = 0.

Hence 5 = 0.
If now Go = Z/2Z, wyg is complex and Y = Q/Z[—3]. We first dispose of the
case where v’ is complex. Then

Homg (g (Y, Z)
= Homyp (G,)(Q/Z[—3], Ind{"® C*[0]) = Homsy,, (Q/Z[-3], C*[0]) = 0.

If v/ is not complex we can choose a quadratic extension K’(v/A)/K’ in which
v’ ramifies or stays inert whereas v splits. If L, # K., we also require that
the quadratic extension K’,(v/A)/K!, is isomorphic to L, /K/,. The existence
of A again follows from the independence of the valuations v and v{. Since v}
ramifies in L/ K’ we have L # K’(v/\) and the field N := L(v/)\) has Galois group
[ := Gy x Gy = (Z/2Z)? over K’ where G} := Gal(K'(v\)/K'). Again, from
Lemma 11 below, applied to the extension N/K’ and the subgroup 1 x Gy of T', we
have = RHomyi ¢, (%, ) where

A € Homg r) (Indg, . Q/Z[~3], Indj RT(Nu. Gn))-

Note here that G x 1 is the decomposition group of vj in N/K’ and A is by
definition the decomposition group of v'. Our assumptions imply that ANGgx 1 =
{1}. Indeed, if v" splits in L we have A = 1 x G1; otherwise A is the diagonal
subgroup in Gy x G since then v" does not split in either L or K’(v/A) and N, =
K'’,(v/)). By standard formulas for induction and restriction [2][II1.5.6] we get

Homg (ry (Indg, .y Q/Z[~3], Indx RT(Ny, Gp,))
= Homp (g, x1)(Q/Z[—3], Resgy, w1 Indx RU(Noyr, Gyr))
= Homep (6o 1) (Q/Z[—3], Ind{® " Rest* RT(Nu, Gyn))
=Homgp,, (Q/Z[-3], RL'(Nw, Gm)).

The latter group has been shown to be zero in the discussion of the case Gy = 1,
w’ not real, above. But by our construction of N we have N,/ /K], = C/R if w’
is archimedean. We deduce that # = 0 and therefore 8 = 0 and this finishes the
proof of Proposition 3.4. U



26 D. BURNS AND M. FLACH

Remark. Proposition 3.4 can partly be proven using the compatibility of local
and global Artin-Verdier duality. However, this method seems to be incapable of
identifying the map g if Gy = Z/2Z and v’ is a ramified infinite place.

Lemma 11. Let H < G be a normal subgroup and consider the diagram (85) in
D =D(G). Then the diagram obtained by applying R Homgy g (Z, —) to (85) is nat-
urally isomorphic, in the derived category of Z|G/H]-modules, to the corresponding
diagram formed with respect to the extension L7 /K.

Proof. Since Spec Or, s — Spec Ok,s is a Galois cover, the identities
RHomgp)(Z, RI'(OL,s5,F)) = RU'(Opu g, F)
RHomgy)(Z, RU(L © K,,F)) = RU(LY @k K,,, F)
and hence
RHomg g (Z,RT'(OL,s,F)) = RU(Opn g, F)

are certainly well known for any étale sheaf F on Ok g [21][II1.2.20]. More con-
cretely, each of the complexes in the middle row of (85) can be represented by a
bounded below complex C' of cohomologically trivial G-modules and

(86) RHomy g (Z,C) = CH

gives the corresponding complex over L7 . If now v is an archimedean place of K
it is still true that C' := RT'Tate(L ®x Ky, F) can be represented by a complex of
c.t. G-modules such that C¥ = RU7a.(L? ®K K,, F) but (86) no longer holds
since C' may be unbounded in both directions. In any case, in both triangles (82)
and (83) each complex is represented by c.t. G-modules and taking H-invariants
gives the corresponding complex over L. Moreover, both X = RI'aA(L ®x K, F)
and X = RFC((’)LS,]-') are bounded above complexes of c.t. G-modules. Since
for any c.t. G-module M the natural map My — M¥ is an isomorphism, taking
H-invariants actually computes the homology of X, i.e. X¥ = Xy =7 ®£[H] X.
Utilizing the natural isomorphisms

R Homg ) (Z, Hom(X, Q/2Z)) = Hom(Z & X, Q/2Z)
and
RHOmz[H](Z, Us/Us) = (Us/Us)H = ULHyS/ULHyS

we find that for all terms in the diagrams (84) and (85) the following is true:
Application of RHomy | (Z, —) gives the corresponding term over L7. As to the
maps between them these are either obvious or constructed from the duality map AV
in (84). The latter is in turn induced by the G-equivariant pairing of complexes (34)
(for RT..), and the corresponding pairing over L¥ just arises by taking H invariants,
once the complexes are represented by c.t. G-modules. Hence R Homy, g (%, AV)
is the duality map over L. O

The exact triangle Us — W — W — in (85) is essentially our candidate for
Lemma 4. Computation of the cohomology of (85) (see Proposition 3.5 below)
shows that W/ represents a class in Ext{,(Q/Z, Cs) in a canonical way, and that
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W’ represents a class in Exty,(Ys ® Q/Z, Js). For example, H? of the diagram (85)
gives a commutative diagram

0 —— Br(Ops) —— @ Br(Ly) —— Q/Z —— 0
weS

(87) | | H

0 — Xs®Q/Z —— H2(‘~i//5) —— Q/Z —— 0

which implies that H2(V%) 2 Ys®Q/Z, and in fact that the lower row is isomorphic
to the right hand column of (22) tensored with Q/Z.

We can then construct a commutative diagram where all rows and columns are
exact triangles, and the right hand column is a candidate for Lemma 4:

Xs ®Q[-2] Vg U
Vs ® Q2] 178 v

(88) l

Q2] v v

!

Here the top row is (32) and the middle and bottom row are analogous, that is
W' (vesp. W7) represents the image of (W) (resp. e(W%)) in ExtZ (Ys, Js) (resp.
Ext%(Z,Cs)) under the boundary map induced by (38) tensored with Ys (resp.
(38)). The existence of (88) follows from the commutativity of the left hand squares
in (88) which in turn is a consequence of Lemma 7b).

It remains to compute the precise extension classes represented by ¥ and U%

or, equivalently, \i/fg and \il’bi

Proposition 3.5. a) Let K be a local field and L/ K a finite Galois extension with
group G. Consider the complex of G-modules RU(L, Gy,). One has H{(L,G,,) =0
fori #0,2 and canonical isomorphisms

HO(L,Gp) < L*,  HX(L.Gp) ™% /2,
so that TS2RI(L, G,y,) represents a class rpjx € Ext2,(Q/Z,L*) ~ H*(G,L*).
Claim: invg(rp/x) = ﬁ?‘
b) Let K be a global field and L/ K a finite Galois extension with group G, unram-
ified outside a finite set S of places of K containing So.. Consider the complex of
G-modules RU:(Or,s,Gy,). One has HX(Op s,Gy,) =0 fori # 1,3 and canonical

isomorphisms

HY(Op5,Gp) <~ Cs(L), H3(Ops,Gm) 2% Q/Z,

so that 72 7<3RT.(Op,s,Gpm) represents a class v x € Exty(Q/Z,Cs(L)) ~
H*(G,Cg(L)). Claim: invg(rp ) = %

Here Cs(L) is the group belonging to the S-class formation introduced in [22,
Ch.L§4] and agrees with the group Cg = Jg/Ug used above if Pic(Or, g) = 0.
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Proof. The computation of the cohomology of G,, and the construction of the
invariant and trace map is standard (see [25, Ch. XIII, Prop. 6], [22, Ch.II,Prop.
2.6]). In the local case the claim essentially follows from [25, Ch. XIII, exercise 2]
and the global case follows from the local case. However, we wish to explain this
in more detail. In both cases one first shows

Lemma 12. 7y i is the fundamental class of a class formation, i.e. vy g gener-
ates H*(G, L*) (resp. H?(G,Cs(L))) and for a tower of extensions L 2 L' O K
(unramified outside S in the global case) one has

(89) resg(rL/K) =rL/L
(90) infg/H(rL//K) =[L:L)ryx
where H = G(L/L").
Proof. Assume K local. Let
(91) Gy — I°

be an injective resolution over (Spec K).;. Then for any finite extension L/K,
RI(L,G,,) can be identified with H°(L, I*®) and therefore consists of cohomolog-
ically trivial G-modules. It is acyclic in degrees > 3 for any such L/K, hence a
standard argument (cf. [5, step 2 in Prop. 1.20] or [14, Prop. and Lemma 2.1])
shows that 7<2RI'(L, G,,) still consists of c.t. G-modules. So in the exact sequence
representing rp/x

(92) 0—-L*—>A—-B—->C—-Q/Z—0

A, B,C are c.t. G-modules, which means that cup product with 7,k induces an
isomorphism
H'(G,Q/Z) = H™*(G, L)

for all ¢+ € Z. The case ¢ = —1 of this isomorphism implies that rr/x is a gen-
erator of H?(G,L*). The same argument applies to the global case. Indeed,
the complex M*® := TS?’RFC(OLS,Gm) comnsists of c.t. G-modules and so does
7213 RT(OL,s, Gy) because 721 only involves replacing My by M; /Mg and My
by 0 (M; =0 for i <0).

Formula (89) follows because (92) can be regarded over the subgroup G(L/L')
of G(L/K) and represents 7, since (91) also gives a resolution of G, over
(Spec L' )et. As to (90) the natural map

RT(L',Gp) — RT(L, Gyn)

induced by Spec L — Spec I gives a commutative diagram

0 L A B c’ Q/Z —— 0
(93) l l l l l[L’:L]
0 L* A B C Q/Z —— 0

The top row represents 71/, and we get infg / #(ro/x) by regarding the top row
as a sequence of G-modules and taking the pushout under the inclusion L' < L*,
which yields a class in Ext}(Q/Z,L*) = H?(G,L*). This pushout agrees with
the pullback of the bottom row under multiplication by [L : L'] on Q/Z because
(93) is commutative. But the bottom row represents r,/x, hence the formula (90).
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The proof in the global case is entirely similar (see [22, Ch.II §3] for the relevant
properties of the trace map). |

Lemma 13. If L/K is an unramified extension of local fields then invy (rp k) =
1

1G]

Proof. We construct a particular acyclic resolution of G,, on (Spec K)¢; using
[25, XIII, ex. 2]. Let K,/ K be the completion of the maximal unramified extension
of K, N/K any finite Galois extension and N,, = NK,., Ny = N N K,, where
we consider all fields inside a fixed complete algebraically closed extension of K.
Let F € G(Nyr/K) be any choice of a Frobenius automorphism and ¢ (resp. f)
its image in G(N/K) (resp. G(No/K)). Counsider the commutative diagram of
G(N/K)-modules with exact rows

1 —» N — (N®g Ko)* 25 (Nog Kuw)® — Z — 0

(94) ol o 5| [
0= Z — C(G(No/K),Z) =L CG(NoJK),Z) = 7 — 0.

Here C(—, Z) is the module of Z-valued functions with G(Ny/K)-action explained
before Lemma 5. Setting m = [Ny : K] one has a ring isomorphism

m—1
N ®r Ky, = H NUT’ TRY = (¢Z(I)y)la
1=0

and in this description

Yoy s Ym—1) (f") = v(y—s)

where v : NYX. — Z is the valuation normalized by v(7) = 1 for a uniformizer .
The action of 1 ® F' translates into

(1 X F)(yo, ""ymfl) = (F¢7m(ymfl)’ F(y0)7 F(yl)a ) F(ym72))'

Here ¢~ ™ lies in the inertia subgroup of G(N/K), so it can be canonically viewed
inside G(Ny,/K). The commutativity of (94) and the G(N/K)-equivariance of ¥
follow easily from these descriptions. The bottom row is a standard exact sequence,
the exactness of the top row follows from the commutativity and the surjectivity
of 1 — F on ker(?) ([25, XIII, Prop. 15]). One has

~ 1. 1G(N/K)
(N @k Kur)™ = Indg v ne) N

so by [25, X, Prop. 11] this is a c.t. G(N/K)-module.

If N’/N is a finite extension such that N’/K is Galois the diagram (94) naturally
maps into the corresponding diagram for N’ where the map on the right hand Z
is multiplication by [N’ : N]. The map on C(G(Ny/K), Z) is multiplication by the
ramification degree e(N’/N) followed by the natural inclusion C(G(No/K),Z) —
C(G(N§/K),Z). So after taking the direct limit over all N the top row gives a
resolution

(95) Gpn—=A—-B—-Q—0—---

by acyclic, discrete G(K /K )-modules, at least if we also fix an isomorphism of Q
with the direct limit of the right hand Z’s. We do this by prescribing it to be the
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inclusion Z C Q for N = K. In this way we obtain an identification of R['(N, G,,)
with

(N QK Kur)x ﬂ) (N QK Kur)x ﬂ) Q

where wy = [ N}K] € v. However, we must still identify the map invy.

Lemma 14. The map

invy : Q/im(wy) = Q/ﬁZ — Q/Z

is induced by multiplication with —[N : K] on Q.

Proof. It suffices to prove this for N = K because of the commutative diagram

(N QK Kur)X ﬂ) (N e Kur)X wN @ invy Q/Z
T T I T[N:K]
qur 1-1QF qur WK @ inv g Q/Z

Passing to the limit over all unramified N/K in (94) we get the first two rows of
the following commutative diagram of discrete I' := G(K,,/ K)-modules

KZ — (Kur Ok Kup)* 25 (Kyp 9k Kup)* — Q — 0

‘| ﬂ ||
z — omz 5L omz) - Q-0

(96) l ”
0 - cro 5L ocrQ  SQ -0

l -F |

oz - orez 5 crz) -0

where e(f) =n~1 30 a0 f(7) if f factors through I'/nT'. All the rows in this
diagram are I'-acyclic resolutions of their left hand terms. The top row has a
natural map into (95) inducing the inflation map H*(T, K.) — H*(K, G,,). This
is an isomorphism for ¢ = 2 which is the first step in the construction of invg. One
then uses the chain of isomorphisms

97)  HAT,KJ) s HA(T,7) <& HY(T,Q/Z) % Hom(TI',Q/Z) <> Q/Z

where the last map is evaluation at F'. All of these steps can be made explicit
using (96). Upon taking I'-invariants in (96) we obtain the following commutative
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diagram of complexes.

RF(F’ Kir): Kﬂfr - Kir - Q

v | ||

0 C

(98) | ||
RIT,Q): Q@ —%5» Q ——0Q

=

RO(1,Q/Z): Q/Z —— Q/Z —— 0
By Lemma 5 applied to I = I' we have that :~! o ev!(z) is indeed the constant
function with value z € Q/Z (the bottom right group in (98)). The remaining

isomorphisms in (97) can then be easily identified in (98), and one obtains the
desired description of invg. O

To finish the proof of Lemma 13 we look again at (94) for L = N = Np an
unramified extension of K, so that m = [L : K|. By our computation of invy, the
class 77,/ x equals the Yoneda class of the 3-extension of G-modules

(L ®x Kur)* 22 Q 25, @iz — 0
1

where wy = TR €. So it is easily seen that —rp g is the image of the element

Tk € ExtZ (Z, LX) = H*(G, L*) represented by the top row of (94), under the

boundary map induced by the short exact sequence (38). Here we use again Lemma

3. The pushout r7 . € Ext%(Z,7) = H*(G,7) of 7y i under the map v is

represented by the second row in (94) and we shall show that inv (ry ) = -1
Consider the commutative diagram of G-modules

0— L* — (Log Ku)* 225

0 Z oG,z = oGy —— 1z 0
(99) H x| 5 ||
0 Z Q@ ", gzez Z 0
where
m—1 . m—1

B) = (3 (= > w(r")
1=0

i =

and the group Q/Z @ Z becomes a G-module by
(100) 9(a,b) = (a— ¢(g)b, b)

where ¢ : G — Q/Z is the homomorphism such that ¢(f) = f%. In view of Lemma
3 diagram (99) shows that 77 /x Maps to ¢ under the chain of isomorphisms

Ext(Z,7) = Ext}(Z,Q/7) = HY(G,Q/Z) = Hom(G, Q/Z).
Note that
0-Q/2—-Q/ZZ —7Z—0
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with G-action on the middle term given by (100) represents the 1-extension corre-
sponding to ¢ because (100) is the pushout of the universal 1-extension

0—I[G] - ZIG1—Z—0

under the G-homomorphism ® : I[G] — Q/Z given by ®(g — 1) = ¢(g). Following
through the definition of invx we conclude that inv g (17 JK) = L and this finishes
the proof of Lemma 13. O

If now L/K is an arbitrary Galois extension of local fields, there is a (unique)
unramified extension N/K with [N : K] = [L : K]. Setting M = N L, we have

. (G(M/K . (G(M/K
(101)  infG G (reyae) = M2 Llragyie = [M < Nragyxe = infgn ) (ryx)
by Lemma 12. Since invariants are unchanged under inflation we obtain
. . 1
invg(rp/x) = inve (ry/ ) = @
by Lemma 13. This gives part a) of Proposition 3.5.
Given an extension L/K of global fields we can find an extension N/K with
[L: K] =[N : K] =[Ny, : Ky,] for some (non-archimedean) place wg of N, for
example a suitable cyclotomic extension. Here vy is the place of K induced by

wg. After enlarging S we can assume that N/K is unramified outside S and that
vp € S. Enlarging S to S’, say, is unproblematic because the natural map

RFC(OL,S’a Gm) - RFC(OL,S’ Gm)

induces an isomorphism on H? [22, Ch.I1,§3] and the natural map p : Cs/ (L) —
Cs(L) on H'. This means that the pushout under p of rp/k, defined with 5, is
rr/k defined with S. Moreover p induces an isomorphism

H*(G,Cs(L)) = H?*(G,Cs(L))

which commutes with invg (the invariant map for the respective S or S’ class
formation), and so we can compute invg (7 x) using either S or S’

Taking such a field N and applying (101) we are reduced to the case that G
coincides with the decomposition group G,,, for some place wglvgy € S. So it
remains to find a connection between the local and global 7/ in this case. The
natural map

RT(Luw,, Gim) — RT(OL,s, Gim)[1]
gives a commutative diagram

0— L, — A =B —C" —-Q/Z —0

(102 Lo

0 —-Cs(L) = A —-B —C —-Q/Z —0
which induces for each integer ¢ a commutative diagram

UrL /Koy “H(Gug, Q/Z) —— H™*3(Guy, L)

! !

Urpx s HY(G,Q/2) —"— H™3(G,Cs(L)).
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Now take i = —1, so that H 1(Gy,, Q/Z) = H (G, Q/Z) = ﬁZ/Z. Con-

sider the element —1— = L.
[Gwgl |G

in the top right group, and to rp,x in the bottom right group. Since the right

hand map for i = —1 commutes with taking invariants we conclude invg (rp k) =

inve, (rr,,/K.,) = ﬁ by part a) of Proposition 3.5. O

in the top left group. It is mapped to rr, /K,

Theorem 3.2. We have Q(L/K,3) = Q(L/K,Q(0))#.

Proof. Proposition 3.5b) implies that (V') = cp/x. As to e(VY), we know from
Proposition 3.4 that e(‘if’s) lies in the diagonal subgroup

PExte, (Q/2, L) € Extg(Ys © Q/Z, Js)
ves

and Proposition 3.5a) and Proposition 3.4 imply that the components of clL°7  and
e(¥%) agree for non-archimedean places v. For archimedean places v on the other
hand, the group Ext?év (Q/z, L;;(ﬂ)) is either trivial or of order 2, the local canonical
class c, (/Ko being the only non-zero element in the latter case. To show that the
class r, € Extg, (Q/Z, Lz(v)) represented by €, , Cuw is nontrivial for |G| = 2 we
can argue as follows. As in the proof of Proposition 3.5 the map

@ Cw — ch(OL,Sa Gm)[”

wlv
gives a commutative diagram

0—-6pL, - A —-B —-C" —-—PQ7Z — 0

wlv wlv

b bbb

0 -Cs(L) = A —-B —-C — Q/Z —0
which induces for each integer i a commutative diagram in G-cohomology

Ury : I—Aﬂ(Gv,Q/Z) - ﬁp+3(Gv,L;(v))

(103) lz* l

Urpx : HY(G,Q/Z) —~— H™3(G,Cs(L)).

The fact that X is the sum map is a consequence of (87). We do not know a priori
that the top arrow in (103) is an isomorphism but it is easy to check that X, is
injective for i = —1. So r, =1/2Ur, € H*(G,, L:(ﬂ)) cannot be zero.

We conclude that the right hand column in (88) satisfies the assumptions of
Lemma 4 and that Kg and ¥g are quasi-isomophic. By Theorem 3.1 and (28) we

get Q(L/K,3) = Q(L/K, Q(0))#. O

Remark. Theorem 3.2 gives a positive answer to the first half of Question 1.54
in [5] which asks whether the identity Q(L/K,3) = Q(L/K,Q(0))# holds. The
second half of Question 1.54 (ibid), asking whether Chinburg’s invariant Q(L/K, 1)
equals —Q(L/K,Q(1)), will follow from forthcoming work of the first author [4] in
conjunction with Theorem 3.2.
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Theorem 3.2 is also consistent with, on the one hand, Chinburg’s conjecture
that Q(L/K,3) =0 for abelian G and on the other hand, Conjecture 4 of [5] which
predicts the vanishing of Q(L/K, M) for any motive M.

4. THE CASE n >0

4.1. Definition of 2,(L/K). In this subsection we recall the definition of the
class Q,(L/K) from [9]. We fix a finite set S of places as in section 2 and define
for any integer r = n+ 1 > 1 and any prime number p

(104) Ky (r) := Cone(RI(OL,s,, Zy(r)) — @ RT(Ly, Zp(r)))

w|oo

Lemma 15. The complex Ky(r) is quasi-isomorphic to RI'(Or,s,,Cy(r)) where
Cp(r) is the cokernel of the natural injection Zp(r) — .| tw,«is, Zp(r) of sheaves
on (Spec Or.s, )et. Here iy, : Spec Ly, — Spec Op g, is the natural map.

Proof. This follows easily from R%%,, .Zy(r) = 0 for ¢ > 0 (see [21, III 1.13])
which implies that RT(Oy s, , w«i%Zp(r)) = RT(Luy, Zy(r)). O

Remark. We have inserted this lemma for the convenience of the reader because
the authors of [9] do not directly refer to the complex K, (r) but rather work with
the cohomology groups of Cp(r).

One shows that K,(r) = RI'(Or,s,,Cp(r)) is Z,|G]-perfect (as in [5, Prop.
1.20]), has cohomology concentrated in degrees 0,1 (using Artin-Verdier duality)

and that there are finitely generated Z[G]-modules K, ,; with isomorphisms

T Ky ®2 Ly = HY(K(r))

for i = 0,1 and each prime p ([9]). The group K}, _, is finite and there is a
commutative diagram of short exact sequences

0 — @ H(Lw,Qr)) — K3 1®Q — Kya(0L)®Q —0

w|oo
(105) J{ TS@QJ{ ChernJ{
0 — @ H(Lu, Qp(r)) — H(Kp(r)®Qp) — H'(OL,s,,Qp(r)) — 0

w|oo

The top row here is equation (5) in [9], and the bottom row is induced from (104).
From these facts one shows that there is a perfect complex K (r) of Z[G]-modules
and quasi-isomorphisms

(106) Ty K(r) @z Zp = Kp(T)

for each prime number p such that H*(r,) = 7.. The argument here is similar to
the proof of Lemma 17 below. Moreover, the complex K(r) is specified uniquely
up to quasi-isomorphism. By definition then

(107) Q1 (L/K) := (K(r)) — (ZXo) € CUZ[G))



ON GALOIS STRUCTURE INVARIANTS ASSOCIATED TO TATE MOTIVES 35

where X, is the G-set Hom(L, C). If G is abelian, then with our parity convention
for the determinant, this is equal to

Q1 (L/K) = (detyey K (r) — (det gy Z¥00)
(108) = (dety K () € Pic(Z[G]) = CI(Z[G))

because ZY.« is a free Z|G]-module.

Remark. The complex K(r) plays a role similar to that of the complex Kg in
section 3. Both Kg and K(r) depend on S but their classes in Cl(Z[G]) do not.
But K(r) ®z Q is also independent of S which reflects the fact that the rank of
Ks—1(Or,s) does not vary with S for r > 1, as it does for r = 1.

Another difference is that the class of Kg, taken in Ko(Z[G]), already lies in
the direct summand Cl(Z[G]) of Ko(Z[G]). This is not true for K (r) which is the
reason for the term ZX in (107).

4.2. Comparison with Q(L/K,Q(1—r))#. We first prove a lemma which is also
very useful in other contexts. Define three exact functors from the derived category
D, of Z,[G]-modules to itself

() = RHomg, (—, Qy/Zy) = Homg, (—, Qp/Zy)
(7)/\ = RHomZp (75 Qp) = HOIan (75 Qp)
(=)" = RHomg, (—, Zy),

all with the contragredient G-action.

Lemma 16. a) On the full subcategory of ®, consisting of objects X such that
H(X) is finitely generated for each i, we have natural isomorphisms

(109) X 5 XYY S X1 e X
and
(110) XA 50, XM S0,

b) Consider an ezact triangle in D,
(111) X—>X®z,Q—Y —
where X has finitely generated cohomology. Then there is a natural isomorphism

YV~ X*.

Proof. From the short exact sequence (38), tensored with Z,, we obtain an exact
triangle

(112) X*— X" - XY —
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for each object X in ®,. Consider then the 9-term diagram with exact rows and

columns

XV* X/\* X**

(113) l

Since both Q, and Q,/Z, are injective Zy,-modules there is an isomorphism
HY(XY") = Homg, (H'(X)", Qp).

This group is zero because H'(X)Y is a torsion group, hence XV" = 0. Similarly,
the map H'(3) identifies with the natural map

Homgz, (W, Qp) — Homgz, (W, Q,/Zy)

for W = H*(X)”. But this map is an isomorphism for any finite dimensional Q-
space W. Therefore 3 is a quasi-isomorphism and X** = 0. The natural map
X — XYV is a quasi-isomorphism because M — MYV is an isomorphism for any
finitely generated Z,-module M. Together with (113) this gives a).

Applying the functor (—)* to (111) we obtain an exact triangle

V"> (X®Qy) — X" —

where the middle term is acyclic, for example because it can be rewritten as X/ \*
which is zero by a). Hence we deduce an isomorphism X* = Y*[1]. Using finite
generation of H*(X) and the long exact cohomology sequence induced by (111) we
find that H*(Y) is a torsion group and therefore that Y is acyclic. From (112) for
Y we then obtain an isomorphism YV = Y*[1] = X* i.e. part b). O

The diagram in the following proposition is the key to the comparison of Q,_1(L/K)
and Q(L/K,Q(1 — r)). Recall the definitions of RT'a and RT'. from (82).
Proposition 4.1. There exists a commutative diagram in ©, as follows:

(114)

Ay(r) = @ RTa(lu Zy(1=) [ 2o, ® AV(L (1))
| | [
Ky(r)[~1] —  RI(Op.s,,Zp(r)) @ RI(LuZy(0)
RU(Oys, Zp(1—7))*[-3] = RU(Os,, Zp(1—1))*[-3]

Moreover, all rows and columns in this diagram are exact triangles and all terms
in the left hand column are Z,|G]-perfect .
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Proof. If we choose X = RFC((’)LSP, Zp(1—r)) in Lemma 16b) the triangle (111)
naturally identifies with the triangle

RT(OL,s,. Zy(1—7)) — RL(OL,s,, Qp(1—r)) — RLe(OLs,, Qp/Zy(1—1)) — .
From Artin-Verdier duality and Lemma 16b) we obtain a quasi-isomorphism
RF(OLSp’ Zy(r)) = RTC(OL,Sp’ Qp/Zp(1 — T))V[_?’]
= RUe(OL,s,, Ly(1 —1))*[-3]

which together with (104) and (83) yields the diagram (114). Since both K, (r) and
RI'(Or,s,, Zp(1 — 1)) are Z,|G]-perfect (see [5, Prop. 1.20]) the same is true for
Ap(r). O

Proposition 4.2. There exists a perfect complex A(r) of Z[G]-modules and quasi-
isomorphisms

op i A(r) ®z Zp = Ap(r)
for each prime p, such that there is a commutative diagram of long exact sequences
0 — HY{A(r)®Q) — HYYK(r)®Q) — Koy 1(0)2Q — 0 — .-

0,59, | (5,00, | 10" |
0 — HY(Ap(r)®Qp) — HKy(r)®Qp) — HE(OL,Span(l =)t =0 = -
+ =0 = Dyes. H(Lw,Qr)) — H*(AMM)®Q) — 0
(115) (9)% H%%@@yl
- = 0 = H(OLs,, Qp(1 —7))" — H(Ap(r) @ Q) — 0
where the lower row is induced by the left vertical triangle in (114), tensored with
Qp.

Proof. Since Ap(r) has cohomology concentrated in degrees 1,2, 3, the map «,
in (114) induces a cohomology isomorphism in degrees > 4 so that there is an exact
triangle

Ap(r) = 74 @D R A (L, Zp(1 — 7))*[=3] T, P RU(Lu, Zy(r)) — -
w|oo w]oo

Moreover, if we denote by Z(r) the étale sheaf on Spec L,, given by the abelian
group Z on which complex conjugation acts via (—1)” we have natural isomorphisms

(116) RE(Lup, Zp(r)) = RE (L, Z(r)) © Zp
and
RTA (L, Zp(1 = 1))* = RTA (L, Z(1 — 7)) ® Z,
where this last (—)* means Homg(—, Z). We set
A =7 D RUA (L, Z(1 — 1))* 3]
wloo

B =7 P RI (L, Z(r)),

w|oo

(117)
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so that both A and B are bounded complexes of Z[G]-modules with finitely gener-
ated cohomology and for each i either H*(A) or H*(B) is torsion.

Lemma 17. Suppose A and B are bounded complexes of_Z[G]-modules with finitely
generated cohomology such that for each i € Z either H'(A) or H*(B) is torsion.
Then the natural map

Homg (A, B) — @) Homo, (A ® Z,, BR Z))
P
is an isomorphism.

Proof. We first show that for each prime p
(118) Homg (A, B) ® Zp = Homyp (A ® Zy, B ® Zyp).

We can pick a quasi-isomorphism P 2 A where P is a complex consisting of finitely
generated projective Z[G]-modules so that

(119) Homg (A, B) = H°(RHom(A, B)) = H°(Hom*® (P, B)).
Since B is bounded we have
Hom*(P, B) = [ [ Hom(P’, B**") = @5 Hom(P", B**")
i€L i€
and therefore
(120) Hom® (P, B) ® Z, = Homy, (P ® Zp, B ® Zy)
since Z — Zj is flat so that (118) holds for modules, provided A is finitely generated.
Again because of flatness we get
H°(Hom* (P, B)) ® Z, = H°(Hom®*(P, B) ® Z,)
which together with (119) and (120) gives (118).
The lemma will follow if we show in addition that

Homg (A, B) = €P Homg (A, B) ® Z,
p

i.e. that Homg (A, B) is a torsion group. But this follows easily from the spectral
sequence [27][I111.4.6.10]

EPY = [[ Bxtl,(H'(A), H*(B)) = HP*(RHom(A, B))
i€Z,
together with (119) and the fact that Ext?,(M, —) (resp. Homg(H'(A), H'(B))) is
torsion for finitely generated M and p > 0 (resp. i € Z). O

Lemma 17 shows that there is a unique morphism « € Homg (A, B) mapping to
@p7=%a,. We define A(r) to be the third term in any exact triangle
A(r) = A5 B —.
The diagram (115) then follows easily from (105) and (114). O

Theorem 4.1. If G is abelian and r > 1 we have
QL/K,Q(1 —r))* = Q,_1(L/K) € CI(Z[G]).
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Proof. The left vertical exact triangle in (114) induces an isomorphism
Ap  detg Ky (r) @, detg " Ay(r) = detg | Re(OL,s, . Zy(1 —1))*
(121) = dete, RUe(O,s,, Zp(1 — 1))
The top row in (115) gives an isomorphism
k(r) : E(Q —r)p)* = detgl (K(r)®eQ)® detgl(A(T) ®Q)
such that
{gp = (Ap ® Qp) 0 (det™ (7, ® Qp) ® det™ (0, © Qp)) o (K(r) © Qp)
as maps from Z(Q(1—r))#®Q, to det g, RUc(OL,s,, Qp(1—r))#. This also follows

from (115) because ¥, was constructed in section 2 using the maps (9) and (10).
By (11) one has

0, (Zp(1 = r)#) = es,(1 = r)#0, (T, (1 — r)#)
=eg(l — 7')#1951(Ip(1 —r)#)
where the latter equality holds because for v|p (= p|Nv" 1) the factor (1—Nv" "1 f,)
occurring in (12) is a unit in &, = Zp[G]. Hence
ﬁ;l(lp(l — 1)) =es(1 —r)#(r(r) @ Q)" (detglep('r) ®Re, detgplAp('r))
and

E(Q(L—r)p)f = (EQU —r))* N, (T(1 - r)¥)
P
=eg(1— r)#n(r)*l(deti[g][((r) ®z(a] deti[lc]A(r)).
Since eg(1 —r) € E* one deduces
QL/K, Q1 —1)* = Q. 1(L/K) + (A(r)) € CUZ[G)).
Theorem 4.1 then follows from

Lemma 18. A(r) is quasi-isomorphic to a complex of free Z|G]-modules, more
precisely to

LY — DXy — LV
where the first term is in degree 1.
Proof. One first shows that the map cy, in (114) respects the direct sum decom-
position of its source and target, following the proof of Proposition 3.4. Using the

same notation as in that proof, one needs to ascertain the vanishing of the map
induced by a, in Homg ,(g,) (Y, Z) where
Zp(r —1)[—3] wq complex
Y = RUA(Lug s Zop(1 — 1)) [-3] = ¢ P
(o, B (1 =) {ZP‘LZPLOZP‘L---[:%] wo real

and Z = Indgo, Z" with

7 (r) w’ complex
7' := RU(Lyy, Zp(r)) = 7
(Lt Zp (7)) {Zpgzpingngzpi”' w’ real.

Here §; is multiplication with 1 — (—1)"™ for ¢ = 0,1 and ©,(I") is the derived
category of Zy[I']-modules. Again, one has Homg (gy) (Y, Z2) =0 if Go = 1 and v’
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is complex and one reduces to this case by introducing an appropriate extension
N/K' as in the proof of Proposition 3.4. The analogue of Lemma 11 to be used
here is that RHomgz, r)(Zp, —) applied to diagram (114) gives the corresponding
diagram formed with respect to the extension L¥ /K. This is proved along the
same lines as Lemma 11. It follows that

Ar)= €D ndg, A(r)uw)
VES~
where A(7)y () sits in a triangle in D(G,)
(122) RFA(Lw(v), Z(1—r))"[-3] — RF(LU,(U),Z(T)) — A(T)w(v)[l] — .

If w(v) is real, hence G, = 1, the triangle (122) is simply isomorphic to the short
exact sequence of complexes of abelian groups

0 0 0 7z 2.7 ", 7
| | | | | |
7z > g g g g N,y
| L | |
7z > .7 2.7 0 0

If w(v) is complex and G, = 1 we have A(r),()[1] = Z[0] © Z[—2] which can be
represented by a complex of abelian groups

7L —17DL — 7 D7L.

Finally, if w(v) is complex and G, = Z/27Z the complex A(r)y,)[1] represents an
extension class in Exty(Z(r — 1), Z(r)) = Exty(Z, Z(1)) = 7Z/27Z. Since we already
know that A(7) ) is Z[G]-perfect this must be the non-trivial class in this group
which is represented by a complex

Z|Gy] = Z[Gy] — Z[Gy).
This gives the desired description of A(r). O

Remark. The occurrence of the complex A(r) corresponds to that of ZX . in
formula (107). Indeed, one has (K (7)) + (A(r)) = Q—1(L/K) in Ky(Z[G]) not
merely after projection into Cl(Z[G]).

5. LICHTENBAUM COMPLEXES

In [17] Lichtenbaum has proposed the existence of complexes of étale sheaves
I'(r) for r > 0 and any scheme X which, if X is of finite type over Z, should play
an important role in the description of arithmetic properties of X. The model case
to think of is the sheaf I'(1) := G,,,[—1] and its appearance in the Artin-Verdier
duality theorem for regular one-dimensional X and in the formula for the residue
of the Zeta-function of such X.

We have seen how both G,, and T'(0) := Z have played a crucial part in our
discussion of Q(L/K,Q(0)) and Q(L/K, 3). In this section we shall indicate briefly
how the expected properties of I'(r) for » > 2 naturally give rise to perfect com-
plexes and therefore to classes related to Q(L/K,Q(1 —r)). The possibility of such
constructions was also noted independently, and in fact a little earlier, by Chinburg,
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Kolster, Pappas and Snaith (cf. remarks to that effect in [9]). In order to simplify
our discussion we shall tensor all occurring complexes with A := Z[3] and there-
fore only obtain classes in Cl1(A[G]). In this section we need not assume that G is
abelian. If A[G] = Ry X - - - X Ry, where each ring R; has no non-trivial idempotents
we define the class groups CI(A[G]) to be the kernel of the rank map
Ko(A|G)) = Z™.

Then Cl(A[G]) is a direct summand of Ko (A[G]) and is isomorphic to Pic(A[G]) for
abelian G.

In the following we shall assume the existence of I'(r) in the derived category of
complexes of sheaves of abelian groups on the small étale site of schemes of the type

Spec Op, s considered before. In fact, we assume that I'(r) on Spec Oy, g is the pull
back of I'(r) on Spec Z and moreover that the following properties are satisfied.

1. For any integer N which is invertible in Op, g, there is an exact triangle
(123) r(r) 5 T(r) - Z/NZ(r) —

2. The Chern class maps Ka,;i(Ops) — H'(Or s, Z/NZ(r)) factor through
H*(Op,s,I'(r)) where N is any integer as in 1.

3. The hypercohomology groups H'(Op g,I'(r)) are finitely generated abelian
groups for r > 2 and i € Z.

4. Let T be a finite set of places disjoint from S. Then there is an exact triangle
in® forr>2

(124) RI(OL 5, T(r)) — RO(OL sur, T(r)) — @ Kor_3(ANw))[-2] —

where A\(w) is the residue field.

Remarks. This is only a subset of the axioms for I'(r), adapted to our needs
(see for example [22] for a full list). The term Ka,_3(A(w))[—2] should be written
RT'(A(w),T'(r — 1))[—1] and (124) then represents a purity axiom which also holds
for r = 1. The finite generation of H*(X,I'(r)) is not true in general (as the case
X = Op,s, r =1, i=3shows) but one might expect that H'(X,['(r)) is finitely
generated for all ¢ € Z if X is regular of finite type over Z and if r is large enough
with respect to the dimension of X.

The complex I'(2) constructed by Lichtenbaum in [18] satisfies the above list
of properties (see [14], [19]), so in the case 7 = 2 our results described below are
unconditional.

Proposition 5.1. a) The complez RT'(Or, g,T(r)) ®z A is A[G]- perfect for r > 2.
b) For each prime p # 2 there is a quasi-isomorphism

RF(OLSP,F(T)) Rz Zp = RF(OLysp, Zp(T))

which is compatible with the Chern class maps in 2).

Proof. Part a) can be shown along the lines of the proof of Prop. 1.20 in
[5]. The complex M := RI'(Or s,I(r)) consists of c.t. G-modules, hence the
same is true for M ®z A. Moreover M ®z A is acyclic outside degrees 1,2 as
follows easily by combining properties 1) and 3) above (and this is also true if L is
replaced by a field between L and K). Therefore M ®y A is quasi-isomorphic to a
bounded complex of c.t. A[G]-modules. Perfectness follows because the cohomology
of R['(Oy, 5, T'(r)) ®z A is finitely generated over A by property 3).
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To demonstrate b) one can copy the proof of Proposition 3.3. For the complex
Q* (resp. P*®) one takes a bounded complex of finitely generated projective A[G]-
modules (resp. Z,[G]-modules) quasi-isomorphic to RI'(Or,s,,T'(r)) ®z A (resp.
RI'(Or.s,,Zy(r))). The perfectness of RI'(OL,s,, Zy(r)) over Zy[G] for odd primes
p follows again as in [5, Prop. 1.20]. Property 1) implies that Q*/p™ and P®/p™ are
quasi-isomorphic, compatibly with Chern class maps by property 2). One shows
that these quasi-isomorphisms can be realized as maps of inverse systems of com-
plexes and concludes with Lemma 9. U

Theorem 5.1. The image of Qy_1(L/K) in Cl(A[G]) agrees with the class of
RI(Op s, T(r))®zA. This class also coincides with the image of Q(L/ K, Q(1—r))#
in CI(A[G]) if G is abelian.

Remark. We understand that Victor Snaith has obtained results along similar
lines in the case r = 2. He is able to avoid inverting 2 and shows that Q;(L/K)
coincides in Ko(Z[G]) with a class defined from the cohomology of I'(2).

Proof. By Theorem 4.1 it suffices to prove the assertion concerning Q,_1(L/K).
The triangle (124) and Proposition 5.1b) give a quasi-isomorphism

(125) RI'(Op,s,1'(r) ®z Zp = RU(OL,s,, Zp(r))

since for any place w|p, the group Ks,_3(A(w)) is finite of order prime to p [23,
§12]. Arguing as in the proof of Lemma 17 one finds a unique map in the derived
category of A[G]-modules

(126) B:RE(OLs,1(r) @z A — @D HO (L, A(r))
w|oo
inducing the natural map
RT(OLs,, Zy(r)) — @D HO (L, Zy(r))
w|oo

after tensorisation with 7Z, for each odd prime p. Note here that for any odd prime
p, and any archimedean place w, the complex RI'(L,,,Z(r)) is quasi-isomorphic to
H(Ly, Zy(r)) concentrated in degree 0. One then checks that the mapping cone of
(3 satisfies the defining properties of the complex K (r)®z A (The isomorphisms 7, in
(106) are obvious and compatibility with Chern class maps follows from Proposition
5.1b)). The complex K (r) ®z A is thus quasi-isomorphic to this mapping cone and
so its class in ClI(A[G]) agrees with

(RL(Op,5,L(r) @z A) — (D H® (L. A(r))).
w]|oo

But each module
P HO (Luw, A(r)) = H(K,, A[G](r))
wlv

has trivial class in Cl(A[G]) because it is a direct factor of A[G]. Hence the theorem.
t
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Remark. Tt seems reasonable to speculate that the map (3 in (126) exists without
inverting 2 and indeed has a more natural interpretation as a composite map

(127) RE(Op,s.T(r)) — @ RI(Lw, () — @D RT(Lu, Z(r))

w|oo w]|oo

where the first map is the natural restriction and the last map arises as follows.
Recall that Deligne cohomology RI'p(C, Z(r)) of a point (i.e. Spec C) is concen-
trated in degree 1 and identifies with C/Z(r)[—1] (see [24] for more about Deligne
cohomology and the Beilinson regulator map). Moreover, on Spec C the object
['(r) identifies with a complex of abelian groups. One might conjecture that there
is a map in the derived category of abelian groups

p:L(r) — C/Z(r)[-1],
factoring the Beilinson regulator map after taking H':

Kap_1(C) — HT(r)) 22, c/zr).

The map p should also respect the action of complex conjugation, i.e. be a map
in the derived category of étale sheaves on Spec R. Composing p in the derived
category with the obvious map C/Z(r)[—1] — Z(r) would induce the second map
in (127). Finally, one would be led to conjecture that the mapping cone of (127) is
cohomologically bounded, hence perfect over Z[G| by our standard arguments. So
one could take the class of this mapping cone in CI(Z[G]) to define an invariant.
However, by adapting the proof of Theorem 5.1 it would then follow that this class
coincides with Q,_1(L/K).
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