EULER CHARACTERISTICS IN RELATIVE K-GROUPS

M. FLACH

1. INTRODUCTION

Suppose M is a finite module under the Galois group of a local or global field.
Ever since Tate’s papers [17], [18] one has a simple and explicit formula for the
Euler-Poincaré characteristic of the cohomology of M. In this note we are interested
in a refinement of this formula when M also carries an action of some algebra
A, commuting with the Galois action (Prop. 5.2 and Theorem 5.1 below). This
refinement naturally takes the shape of an identity in a relative K-group attached
to A (see section 2 below). We shall deduce such an identity whenever one has
a formula for the ordinary Fuler characteristic, the key step in the proof being
the representability of certain functors by perfect complexes (see section 3). This
representability may be of independent interest in other contexts.

Our formula for the equivariant Euler characteristic over A implies the ”isogeny
invariance” of the equivariant conjectures on special values of L-function put for-
ward in [3], and this was our motivation to write this note. Incidentally, isogeny
invariance (of the conjectures of Birch and Swinnerton-Dyer) was also a motiva-
tion for Tate’s original paper [18]. I am very grateful to J.P. Serre for illuminating
discussions on the subject of this note, in particular for suggesting that I consider
representability. I'd also like to thank D. Burns for insisting on a most general

version of the results in this paper.

2. THE RELATIVE K

We fix a prime number p and a Z,-algebra A (associative with unit) which
is either finite or finitely generated and free as a Zp-module. Let Ko(A) (resp.
Ko(A, Qp)) be the Grothendieck group of the exact category H(A) (resp. HF (A))
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of finitely generated (resp. finite) A-modules of finite projective dimension. For an
object M of HF (A) we denote by [M]4 € Ko(A, Qp) its class and for a bounded
complex M" of objects of HF(A) we put [M]4 = >.(=1)![M?% 4. One has a long

exact localization sequence
(1) K1(A) = K1(Ag) — Ko(A Qp) — Ko(A) — Ko(Ag)

where Ag := A ®z, Q,. This is [1][Th. IX.6.3] if A is a free Z,-module whilst, if A
is Artinian then obviously Ky(A, Q,) = Ko(A) and K;(Ag) = 0.

2.1. Examples.

21.1. If A = Z, then HF(A) consists of of all finite Z,-modules. We write
[M] for [M]z,. There is an isomorphism Ko(A, Qp) = Z which can be chosen so
that #M = plM] for any finite Zy-module M. More generally, if A is Dedekind,
Ky (A, Qp) is the group of divisors on Spec(A) or, equivalently, of fractional .A-ideals
and [M] 4 is the Fitting ideal of (any finite A-module) M.

2.1.2. If Ag is a semisimple Q,-algebra it is shown in [3]{§2.2] how to construct
elements in Ko(A, Qp) from a perfect complex P of A-modules together with a
trivialization, i.e. an isomorphism @, . ., H'(Py) — @, ,aq H'(Py) where Py =
P ®z, Qp. This construction is crucial in formulating conjectures on special values
of equivariant L-functions of motives whose p-adic realisation carries an action of

Ag- The isogeny invariance of these conjectures will follow from Theorem 5.1 below.

2.1.3. Let N be a finite abelian p-group, say of order p, and A = Z, ® N where
nm = 0 for all n,m € N. This algebra does not satisfy our running assumptions,
and it is indeed not hard to verify that Ky(A, Qp) = 0 (with our above definition)
whereas any group Ko(A,Q,) fitting into a long exact sequence (1) has to be

nonzero.

Remark 1. Consider triples (X, g,Y) where X and Y are finitely generated projec-
tive A-modules and g : X ®z, Q) — Y ®z, Q) is an Ag-isomorphism. There is
a rather different description of Ky(.A, Q,) as the group generated by such triples
together with certain relations [1]. If one defines K(.A, Q) this way the sequence

(1) holds true in example 2.1.3, and in fact for an arbitrary ring homomorphism in
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place of A — Ag. This description of K¢ (A, Qp) is also crucial for the constructions
of example 2.1.2 but it is of little use for the purposes of this paper.

Remark 2. Let DP¢"f (A) (resp. DfP"f(A)) be the full triangulated subcategory of
the derived category of (left) A-modules consisting of complexes quasi-isomorphic
to a bounded complex of finitely generated projective A-modules (and with fi-
nite cohomology). Any bounded complex of objects of H(A) (resp. HF(A)) is
an object of DP"f(A) (resp. DfPrf(A)). There is a notion of Ky of a triangu-
lated category [10][Exposé VIII] and one can show that Ko(A) = Ko(DPe"f (A))
(loc.cit, section 7). Using for example the results of [19] one can also show that
Ko(A, Qp) = Ko(D/Prf(A)). In some sense this is the most natural point of view
on Ko(A, Qp) for the purposes of this paper because we shall be interested in the
classes of cohomology complexes which happen to be quasi-isomorphic to bounded
complexes of objects of HF(A) but which are naturally only determined up to

quasi-isomorphism in the derived category of all A-modules.

3. REPRESENTABILITY

Let B be a profinite Zy,-algebra and C = C(B) (resp. D = D(B)) the category of
profinite (resp. discrete) continuous B-modules with continuous homomorphisms.
For M, N objects of either C or D we denote by Hompz (M, N) C Homg(M, N) the
set of continuous homomorphisms. C is an abelian category with enough projectives
[2][Lemma 1.6] and contains all finitely generated continuous B-modules. C ND is
the category of finite continuous B-modules. There might exist finite, hence also
finitely generated B-modules on which the action of B is not continuous but we shall
never consider these. From now on we assume all B-modules continuous without
further mention.

A well known representability theorem of Grothendieck asserts that any left
exact functor F': C N'D — Ab is isomorphic to the functor X — Homy(M, X) for
some object M of C [7][CH. V,§2 Th. 3.1], [9]. M is projective in C (resp. finitely
generated) if and only if F' is exact [2][Prop. 3.1] (resp. satisfies a certain growth
condition, see Lemma 3 below). Our aim in this section is to establish the following

representability theorem for complexes.
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Proposition 3.1. Assume M +— C'(M) is a functor from C ND to (cochain)
complezes of Z,-modules such that
i) In,meZ VM e Ob(CND) HY(C(M))=0 forig [n,m)]
ii) 3a; >0 VM € Ob(CND) H#H(C(M)) < (#M)%.
iii) Each C' is an exact functor in M.
Then there exists a bounded (chain) complex P. of finitely generated, projective

B-modules and a natural isomorphism in the derived category of Z,-modules
Homp(P.,M) = C"(M).

Note that Homgz(P;, M) = Hompg(P;, M) since P; is finitely generated. Conversely,

if P. is such a complex then the functor Homp(P., —) satisfies i), ii) and iii).

Remark 3. If there are only finitely many simple B-modules up to isomorphism
then by an easy dévissage argument conditions i) and ii) can be relaxed to

i) VM € Ob(CND) In,meZ H(C(M))=0forig [n,m]

ii) #H'(C"(M)) is finite for all M € Ob(C N D).
We shall be mostly interested in the case where B = Z,[[G]] is the profinite group
algebra of a profinite group G. In this case B will have only finitely many simple

modules if G contains a pro-p group of finite index.

Proof of Proposition. Let n,m be as in i). Then the truncated complex

0 = ker(6" 1) — ¢ Y(m) 2L o) — -

is quasi-isomorphic to C"(M) and still satisfies iii) since ker(6§" 1) = coker(6"~3) is
both a left and a right exact functor in M. So from now on we assume that C"(M)
is bounded below.

Let Q; be the (projective) object of C which represents the functor C* and
which exists by Grothendieck’s theorem. Using a Yoneda-Lemma type argument
we obtain a bounded below (chain) complex - -+ — Q; — @Q;—1 — -+ — 0 in C and

an isomorphism of complexes

(2) Homp(Q., M) = C" (M)
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for all finite M. We shall now successively replace the terms in . by finitely

generated projective B-modules.

Lemma 1. Suppose Q.(n) = Q. is a quasi-isomorphism (qis), all an) are projec-
tive, and Q(n) is finitely generated for i < n. Then there is a qis Q("'H) = Q(”)
with Q) = QW™ fori < n, QY finitely generated fori < n+1 and all Q"

projective.

Proof. We first remark that since any quasi-isomorphism between bounded
below complexes of projective objects is a homotopy equivalence, all complexes
Homg (Q.(k), M) are quasi-isomorphic to C"(M). Denoting differentials in Q.(n) by

d we find an isomorphism
ker (Homf(QU", M) — Homf(Q\”,, M) ) = Homz(QY" / im(dy 1), M)
and an exact sequence

(3) Hom§(Q\", M) 5 Hom§(Q\"/ im(dp 1), M) — H" (Hom§(Q™, M)) — 0.

n—1

Since Q 1 is finitely generated Lemma 3 below implies that there is a constant g

such that #HomB(Q M) < (#M)” and by assumption ii) in the proposition

n—1:

we have

#H" (Hom(Q™, M)) = #H™(C"(M)) < (#M)™"

From (3) we deduce # Hom$G(QS"/im(dyy1), M) < (#M)% % and hence by
Lemma 3 that Q(") /im(d,4+1) is finitely generated over B. We pick a surjection
Qgﬁ_l) Q(n /im(d,+1) where Q("+ is finitely generated and projective. This
surjection can be lifted to a map Q" — Q™ and we arrive at a commutative
diagram

s ...

(n)
n—2

| || |

(n+1) (n+1) Q(nzl)
n —

n1 [N

N Q
such that (I) QE"H) is projective for ¢ < n (II) the vertical map induces an iso-
morphism in homology for ¢ < n and (III) the vertical map induces a surjection

ker(d],) — Hn(Q.(n)). The conditions (I)-(III) are the inductive assumptions in
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the proof of [8][Prop. 11.9.1] with K" (resp. K') the class of projective (resp.
all) objects in C. Applying this proof we can inductively complete (4) to a gis
Q("H) Q( as in the Lemma (where however QEHH) need not be finitely gen-

erated for i > n). O

Lemma 2. If H"(C"(M)) = 0 for all finite B-modules M then H,(Q.) = 0.

Proof. The exact sequence

ker d,, _ Qn Qn

0 0
- imdy,41 imdy41 - kerd,,
induces an exact sequence
n L n k d
0 — Hom&(~2" M) - Hom(—% ,M)HHomB(L M)
ker d,, imdy 41 n+1

and the map & in (3) factors through «. So if H"(C"(M)) = H"(Hom%(Q™, M)) =

0 we must have im(x) = im(1) = HomCB(img—"H, M) or, in other words, that any

o€ HOInCB(im?Jl:+1 , M) restricts to zero in Homcg(irl;egdﬂ, M). Taking ¢ to be the

natural projection onto M := — d s /U where U runs through a fundamental
Qn

system of neighborhoods of 0 in we deduce

imd

ker d,,
Hn(Q) = —— » c(U=o.

Remark. Unless B is Noetherian, H,(Q.) need not be finitely generated over B.

We continue with the proof of Prop. 3.1. Since @. is bounded below we may
put Q.(n) = @. for some n << 0 and apply Lemma 1 inductively to arrive at
a complex Q) 5 Q. consisting of finitely generated projective B-modules and

(m+2) Where m is as in

quasi-isomorphic to .. In fact it suffices to stop at Q.
assumption i) in Prop. 3.1. By Lemma 2 the complex @. (and hence the complex
Q.(k) for any k) is then acyclic in degrees greater than m. Define P. to be the

truncated complex

(5) 0 — im(dyy1) — Q(OO Q(OO) e 0.
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We have a projective resolution

= QY = Q%) = im(dpy1) — 0

of im(dym+1). Since
Bt (im(dm 1), M) = H (Hom§(Q5), 1, M)) & H™*"+1(C* (M) = 0

for i > 0 and all finite M we find that im(d,,+1) is projective in C, again using
[2][Prop. 3.1]. Since Qfﬁi)l is finitely generated over B, so is im(dy,+1). The natural
quasi-isomorphism Q.(oo) = P. is a homotopy equivalence so that we have natural

quasi-isomorphisms
(6) Homg(P., M) — Hom$(Q'°, M) — Hom%(Q., M) — C"(M).

The complex P. therefore satisfies all requirements. The converse statement in
Prop. 3.1 follows easily from the fact that P. is bounded together with Lemma 3
below. O

In the remainder of this section we briefly discuss the extent to which the repre-

sentability result of Proposition 3.1 is valid on larger categories.

Proposition 3.2. Suppose C" in Prop. 3.1 is the restriction of a functor on C
(resp. D) with values in the category of complezes of Z,-modules. Assume also
that C" commutes with filtered inverse (resp. direct) limits. Then there is an iso-

morphism of functors from C (resp. D) into the derived category of Z,-modules
Homp(P.,—) = C(—)
where P. is as in Prop. 3.1.

Proof. The first two maps in (6) are quasi-isomorphisms for any object M of
either C or D because they are induced by homotopy-equivalences of complexes. To
show that the third map is a quasi-isomorphism represent M as a filtered inverse

(resp. direct) limit

(7) M =lim M, (resp. M =lim M,)

m
of objects M, of CN'D and use the fact that both Hom%(Q;, —) and C*(—) commute
with these limits. In the case of Homz(Q;, —) this is by definition of an inverse

limit, resp. by [2][Lemma A.3] for the direct limit. O



8 M. FLACH

In the situation of Prop. 3.2 the functor Homp(P.,—) on C (resp. D) actually
takes values in the bounded derived category of the abelian category C(Z,) (resp.
D(Zp)) as is easily seen by representing M as in (7). Let D be the derived category
of C (resp. D) and D(Z,) the derived category of C(Z,) (resp. D(Zy)). A functor
C" as in Prop. 3.2 naturally extends to a functor F': D — D(Z,) by sending M-
to the total complex of C"(M") or, equivalently, of Homgp(P., M"). F will satisty
properties i), ii) in Proposition 3.1 when considered on C N'D via the natural full
embedding CND — D. F will also be exact in the sense of being a triangulated
functor.

Question. Conversely, is every triangulated functor F' : D — D(Z,) which
satisfies i) and ii) of Proposition 3.1 of the form M +— Hom (P., M) for some
bounded complex P. of finitely generated projective B-modules? A positive answer
to this question would be important in situations where one doesn’t have ”standard

resolutions”.

Lemma 3. The following are equivalent for an object M of C.

a) M is finitely generated over B.

b) There is a constant a > 0 such that # Homp (M, X) < (#X)* for all finite
B-modules X.

¢) There is a > 0 such that dimp Homg(M, X) < a-dimp X for all simple
B-modules X. Here D is the finite field EndgX.

Proof. a) = b). If M is finitely generated by my,...,m, as a B-module, any
¢ € Homgx(M, X) is uniquely determined by (¢(my),...,¢(m,)) € X". Hence
# Hom§y(M, X) < #X7 = (#X)".

b) = ¢). Choosing X to be simple and taking logarithms to the base #D on
both sides of b) gives dimp Homp (M, X) < a - dimp X.

¢) = a). First we make use of the fact that any object M of C has a projective
hull that is a homomorphism ¢ : P — M with P projective, ¢(P) = M, and
¢(N) # M for all proper closed submodules N of P. For Artinian B this is proved in
[16][Prop.41] and the general case follows by noting that for any surjection B —» B’
of Artinian rings and projective hull P — M, P ®p B’ — M ®p B’ is a projective

hull. Using then the fact that projective hulls are unique up to isomorphism we get,
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for general profinite B, an inverse system of projective hulls over the finite quotients
of B whose inverse limit is projective in C [2][Cor. 3.3]. If X is simple, it follows

easily from the definition that a projective hull ¢ induces a bijection
(8) Hom§ (M, X) = Homj(P, X).

Now we make use of the structure theorem for projective objects in C as given in
[7][Ch V, §2, Th. 4.5 & Example 4.6 b)] which also follows from the corresponding
theorem over Artinian rings [16][Cor. to Prop. 41]. Let X be a set, of representatives
for the isomorphism classes of simple B-modules and for each S € 3 choose a
projective hull P¢ — S. For any projective object P of C there exist index sets
Is(P), of cardinality uniquely determined by P, and an isomorphism of objects in
C

P H H Pg

Sex Is(P)
where the right hand side carries the product topology. In particular if X € 3,
D := EndgX, we find using (8) with M =S € X
(9) Homg(P,X) =P €P Hom§(Ps. X) = P ) Homi(S. X) = P .
SET I5(P) SET I5(P) Ix(P)
This formula applied to P = B gives
(10) X =Homg(B.X)= P D
Ix(B)

and we find that the set Ix(B) is finite (for any X € ¥) because X is finite. Using
(8), (9), (10) and the assumption in c¢) we obtain

#Ix(P) = dimp Homg(P, X) = dimp Homz(M, X) < a-dimp X = a- #Ix(B).

Hence we can choose an injection of sets Ix (P) < [, copies 1x (B) and obtain a

surjection in C

H Px —» H Px.
Ix(B) Ix(P)

After taking the product over all X € ¥ we find a surjection

a

B =] Il Ps| - II HPS_P—>M

SEE[s(B SEE[S(P

which shows that M is finitely generated. O
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Remark 4. As in Remark 3 above, if ¥ is finite, conditions b) and ¢) in Lemma 3

can be relaxed to

b’) Homp(M, X) is finite for all finite B-modules X.
¢’) dimp Homp (M, X) is finite for all simple B-modules X where D = EndpX.

See also [13] for a proof of Lemma 3 in this case.

4. COMPUTING THE EQUIVARIANT EULER CHARACTERISTIC

Let A be as in section 2 and B as in section 3. In this section we shall consider
objects M of C which also carry an A-action commuting with the B-action, in other
words A ®z, B-modules. We shall assume throughout that A is finitely generated

over A (hence over Zp).

Proposition 4.1. Assume M +— C"(M) is a functor as in Prop. 3.1, induced from
a functor on C as in Prop. 3.2.
a) C" maps A®z, B-modules of finite projective A-dimension to perfect complexes
of A-modules, i.e. objects of DP"f(A).
b) C" maps finite A®z, B-modules of finite projective A-dimension to objects of
DIrerf(A).
¢) Suppose in addition that [C"(M)] = d[M] in Ko(Zp, Qp) for some integer
d and all finite M. Then [C"(M)]4 = d[M]a in Ko(A,Qp) for all finite
A &z, B-modules M of finite projective A-dimension.

Proof. We use the notation of the proof of Lemma 3 and the structure theorem
for projective objects of C mentioned there. If M is a (left) A ®z, B-module and P
an object of C then Home (P, M) = Homg(P, M) retains a (left) A-action. For any
simple module S € ¥ put Mg = Homg(Ps, M).

Lemma 4. We have Mg = 0 for all but finitely many S € X.

Proof. The action of B on M factors through the algebra B’ = im (B — End 4 M)
which is finitely generated as a Z,-module and hence has only finitely many simple
modules up to isomorphism. If S € ¥ is not one of those simple B’-modules we

have

Mg = Homp(Ps, M) = lim Homg (Ps, M ®p B”)
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where B’ runs through the finite quotients of B’. Choosing a composition series of
the finite B’-module M ®pg B’ none of its simple subquotients will be isomorphic

to S, hence Hom§(Ps, M ®g B"") = 0 by an easy inductive argument using (8). O

Similarly to (10) there is a direct sum decomposition of .4-modules
(11) M = Homg(B,M) = P 5 Ms
Sex I5(B)
where the right hand direct sum is in fact finite by Lemma 4. If M has finite
projective dimension over A, the direct summand Mg of M will also have finite
projective dimension. Now consider the complex P. of Proposition 3.1. Since
(12) Homg (P, M) = P 5 Ms
SES Is(Py)
the complex Homp(P., M) = C"(M) is a bounded complex of finitely generated
A-modules of finite projective A-dimension, hence perfect. This gives a). If M is

finite, so are the Mg which gives b). To prove c¢) note that

(13) [C"(M)]a=>_(-1)" > #Is(P)[Msla =) <Z(1)i#IS<Pi>> [Ms] 4

i€l sex Sex \iez
If M € ¥ we have Mg = 0 for S # M by (8). Taking A=7Z, and M € X in (13)
the assumption in part c¢) gives
(14) diM] =D (1)1 (Fr)[ M)
i€z
and equation (11) yields [M] = (#1ym(B))[Mys] for M € ¥. We conclude that
(15) D (DI (P) = d - #1u(B)
i€Z
for all M € X since [Mys] # 0 in Ko(Zp, Qp) = Z. Together with (11) and (13) this
yields part c). |
Remark. It is clear from the proof of Proposition 4.1 that any other ”ex-
plicit” formula for the Euler characteristic of C"(M) would determine the integers

> ien(—1)'#1Is(P;) and hence the equivariant Euler characteristic [C"(M)] .

We conclude this section with another typical application of Proposition 3.1.
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Proposition 4.2. Assume M — C' (M) is a functor as in Prop. 3.1, induced
from a functor on C as in Prop. 3.2. Let A — A’ be a homomorphism of algebras
satisfying the assumptions of section 2 and M a A®gz, B-module, finitely generated

and projective over A. Then the natural map
C'(M)@h A — O (MaaA)
is a quasi-isomorphism.

Proof. By (11) and (12) the complex Homp(P., M) is a bounded complex of

finitely generated projective A-modules. Hence the quasi-isomorphism

Homp(P., M) = C" (M)

12

of Prop. 3.1 is a flat resolution of C"(M) and by definition C*(M) ®4 A’
Hompg(P., M) ®4 A’. But the natural map

Homg(P., M) ®4 A" — Homg(P, M @4 A) = C' (M x4 A)

is clearly a quasi-isomorphism: One reduces to P a free B-module and then to
P = B in which case the map Homp (P, M) ®4 A" — Homp(P, M ® 4 A’) is simply
the identity of M ® 4 A’. |

5. EXAMPLES

5.1. Profinite groups. Suppose I is a profinite group such that
a) cdp(l') < oo
b) HYT, M) is finite for all finite Z,-modules M with continuous I'-action.
Assumption b) is too weak to apply Prop. 3.1 directly to the standard contin-
uous cochain complex C"(I', M) with B = Z,[[T']] the profinite group algebra of T'.

However, one has

Proposition 5.1. (c¢f.[15][Remark after Prop 3.5.2]) Assume T satisfies a) and b)
and G is a quotient of I' which contains a pro-p subgroup of finite index. Then
there exists a bounded complex P. of finitely generated projective Z,[[G]]-modules
such that RU(I', M) = Homg, jc)(P., M) for all continuous, profinite or discrete,
Zy[[G]]-modules M.



EULER CHARACTERISTICS IN RELATIVE K-GROUPS 13

Proof. For finite M this follows from Prop. 3.1 and Remark 3 applied to B =
Zp[|G]]. If one defines the group cohomology RI'(I", M) for all profinite or discrete
B-modules via the standard continuous cochain complex C"(I', M) the assumptions

of Prop.3.2 are satisfied which gives the proposition. O

Remark 5. If C denotes the abelian category of profinite B = Z,[[I']]-modules con-
sidered in section 3 then C"(I', M) is quasi-isomorphic to R Home(Zy,, M) for any
object M of C. Indeed, giving a continuous I'-equivariant map I' X --- x ' — M
is equivalent to giving a continuous Z,[[I']]-homomorphism F,, — M where F,, :=
lim ¢y Zp[I'/U x --- x I'/U] (the limit taken over all open subgroups U of I'). By
[2][Cor. 3.3] F,, is projective in C because Z,[I'/U x --- x T'/U] is a projective
(indeed free) Z,[I'/U]-module. Moreover, the standard boundary maps give a pro-
jective resolution F. — Zj, in C so that Hom¢(F., M) = C* (T, M).

Proposition 5.2. Assume I' satisfies a) and b) and M is a continuous A[[L]-
module, finitely generated over A. If M has finite projective dimension over A (and
is finite) then RU(L, M) is an object of DP"f(A) (DIPerf(A)). If [RT(T, M)] =
d[M] for all finite M then [RU(L, M) 4 = d[M] .4 for all finite M of finite projective

A-dimension.

Proof. This follows by applying Prop. 4.1to B := Z,[[G]] and C"(—) := C"(T, —),
where G = im(I" — Aut4(M)). Since M is finitely generated over Z,, G contains
a pro-p subgroup of finite index and Remark 3 applies. O

5.2. Local fields. Let I'" be the absolute Galois group of a finite extension K of
Q;. Then a) and b) hold for I' and one also knows that

(16) [RT(I', M)} = —[K : Qi]61,p[M]

for finite continuous Zy[[I']]-modules M, where §; , is the Kronecker delta [14][Th.

I1.5]. Hence Prop. 5.1 and Prop. 5.2 apply. In fact one can show slightly more.

Proposition 5.3. Let I' be the absolute Galois group of a finite extension K of
Q. Then there exists a bounded complex P. of finitely generated, projective B :=
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Zyp|[L]]-modules such that RU'(I', M) = Homg(P., M) for all continuous, profinite

or discrete, B-modules M.

Proof. One has the estimates #H°(I', M) < #M,
HH*(D,M) = #HT, M*(1)) < #M*(1) = #M
by local duality [14][Th. I1.2], and
#H' (D, M) = #HO (U, M)#H (U, M) M F00r < gy G0 +2

by (16). Hence Prop. 3.1 applies directly to B = Z,[[I']] and C" (M) = C*(T, M).
O

For more examples see [14],[15].

5.3. Etale Cohomology. Let X be a scheme such that

a) cdp(Xer) < 00

b) H'(Xet, F) is finite for all constructible sheaves of Z,-modules F on X.

If R is a separably closed or local field of characteristic different from p, or
R =Z[p~ '] and p # 2 then any scheme X —= Spec(R) of finite type over Spec(R)
satisfies a) and b). This is an immediate consequence of the Leray spectral sequence

for 7 together with the following facts

e A constructible sheaf of Z,-modules F on Spec(R) has finite cohomology and
cdp(Spec(R)) < oo [12](IT, Th. 3.1].

e If F is constructible on X then the sheaves Rim.(F) are constructible on
Spec(R) [6][Finitude, Th.1.1]

e Rim.(F) =0 for constructible F and i > N (an integer depending on X but
not F)[6][Finitude, Rem. before 1.4].

Let Y — X be a (profinite) Galois cover of schemes with group G and put
B = Zp[|G]]. Any profinite continuous B-module M, finitely generated over Zp,
gives rise to a locally constant Zp-adic sheaf on X which we denote by the same

letter M (this functor from modules to sheaves is exact).

Proposition 5.4. Suppose X is a scheme satisfying a) and b) and Y — X is a

Galois cover with group G such that G contains a pro-p subgroup of finite indexz.
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Then there exists a bounded complex of finitely generated B = Z,[[G]]-modules P.

and a natural quasi-isomorphism
RI(Xey, M) = Hompg(P., M)
for all continuous B-modules M, finitely generated over Z,.

Proof. Let M — G (M) be the Godement resolution of M [11][Remark II1.1.20
(¢)]. Then the complex C"(M) = H°(X, G (M)) is functorial and exact in M and
computes RI'(X¢:, M). The proposition then follows from Prop. 3.1 and Remark
3 applied to B and C"(M). O

Proposition 5.5. Assume X satisfies a) and b) and M is a locally constant sheaf
of A-modules on X, finitely generated over A. If M has finite projective dimension
over A (and is finite) then RU (X, M) is an object of DP"T(A) (DIPerf(A)). If
[RT (X4, M)] = d[M] for all finite M then [RT(Xer, M)| a4 = d[M]4 for all finite
M of finite projective A-dimension.

Proof. Results of this type are more or less well known, at least when A is
Artinian [6][Finitude, Rem. 1.7 and Rapport, Lemme 4.5.1]. The proof of this
proposition is the same as that of Prop. 5.2, using the Godement resolution as in

Prop. 5.4. O

There are variants of these statements for the cohomology with compact support

RT(Xet, F).

5.4. Global fields. This is the case which gave rise to this note. Suppose K is
a global field of characteristic different from p and S a finite set of places of K
including the archimedean ones and those dividing p. Denote by Gg the Galois
group of the maximal algebraic extension of K unramified at places not in S and
by G, the absolute Galois group of the complete local field K, for v € S. If M is

a continuous (profinite or discrete) Gg-module put

(17) C"(M) = Cone(C" (G, M) — [] C(Go. M))[-1]
vES
where C"(—, —) is the standard continuous cochain complex as in example 5.1. Then

C"(M) is in fact quasi-isomorphic to the étale cohomology with compact support
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RYT'.(U, M) considered in [4][1.9] where U is the spectrum of the ring of S-integers
in K.

Theorem 5.1. Suppose A is as in section 2, U as above and M is a continuous
A[[Gs]]-module, finitely generated over A (resp. finite) and of finite projective
dimension over A. Then RT.(U, M) is a perfect complex of A-modules (resp. an
object of DIPerI(A) and

[RU (U, M)]4 =0
m Ko (.A, Qp))

Proof. If we put B = Zp[[G]] where G = im(Gg — Aut4(M)), the complex
C"(—) defined in (17) satisfies all assumptions of Prop. 4.1. One also knows that
[C"(M)] = 0 in K¢(Zp,Qp) (this is an immediate reformulation of Tate’s formula
for the global Euler characteristic [12][I, Th.5.1]). O

Remark 6. If A is commutative, using Remark 1 and the determinant functor as
in [5], one can show that Ko(A, Q) is generated by all triples (X, g, A) where X
is an invertible A-module and g : X ®z, Q, = Ag an isomorphism, i.e. Ko(A, Q)
appears as the group of line bundles on Spec(.A) together with a trivialization on
Spec(Ag). From this point of view the statement of [4][Prop. 1.20b)] amounts to
an identity in Ko(Z,[G], Qp) and Theorem 5.1 is a direct generalization of [4][Prop.
1.20b)] to any algebra A as in section 2.

If A is Artinian and the Cartan map Ko (A[G]) — Go(A[G]) is injective for finite
groups GG, Theorem 5.1 can be proved along the lines of the proof of [4][Prop. 1.20].
However, in [3] one needs the case where A is an order in a finite dimensional semi-
simple Qp-algebra. There does not seem to be a straightforward way to deduce the
general case from the Artinian case. Also, there are Artinian rings for which the

Cartan map is not injective.

Question. Do the hypotheses of Prop. 3.1 hold for B = Z,[[Gs]] and C" (M) as
n (17) (or C"(M) = C"(Gs, M) if p # 2)? This question was raised by J.P. Serre
in discussions with the author. He also expressed his belief that the answer to the

question is in fact negative.
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