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The Equivariant Tamagawa Number Conjecture:
A survey

Matthias Flach
(with an appendix by C. Greither)

Abstract. We give a survey of the equivariant Tamagawa number (a.k.a.
Bloch-Kato) conjecture with particular emphasis on proven cases. The only
new result is a proof of the 2-primary part of this conjecture for Tate-motives
over abelian fields.

This article is an expanded version of a survey talk given at the conference
on Stark’s conjecture, Johns Hopkins University, Baltimore, August 5-9, 2002. We
have tried to retain the succinctness of the talk when covering generalities but have
considerably expanded the section on examples.

Most of the following recapitulates well known material due to many people.
Section 3 is joint work with D. Burns (for which [14], [15], [16], [17] are the main
references). In section 5.1 we have given a detailed proof of the main result which
also covers the prime l = 2 (unavailable in the literature so far).
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Part 1. The Tamagawa Number Conjecture in the formulation of
Fontaine and Perrin-Riou

The Tamagawa number conjecture of Bloch and Kato [10] is a beautiful gener-
alization of the analytic class number formula (this is a theorem!) on the one hand,
and the conjecture of Birch and Swinnerton- Dyer on the other. It was inspired by
the computation of Tamagawa numbers of algebraic groups with, roughly speak-
ing, motivic cohomology groups playing the role of commutative algebraic groups.
In [35] and [34] Fontaine and Perrin-Riou found an equivalent formulation of the
conjecture which has two advantages over the original one: It applies to any inte-
ger argument of the L-function (rather than just those corresponding to motives
of negative weight), and it generalizes to motives with coefficients in an algebra
other than Q. Independently, Kato developed similar ideas in [48] and [49]. In this
section we sketch this formulation.

1. The setup

Suppose given a smooth projective variety

X → Spec(Q)

and integers i, j ∈ Z. The ”motive” M = hi(X)(j) is the key object to which both
an L-function and all the data conjecturally describing the leading coefficient of
this function are attached. For the purpose of discussing L-functions, one need not
appeal to any more elaborate notion of motive than that which identifies M with
this collection of data (the ”realisations” and the ”motivic cohomology” of M).
One has

• Ml = Hi
et(XQ̄,Ql)(j) a continuous representation of the Galois group GQ.

• The characteristic polynomial Pp(T ) = det(1 − Fr−1
p · T |M

Ip

l ) ∈ Ql[T ]
where Frp ∈ GQ is a Frobenius element. It is conjectured, and known if
X has good reduction at p, that Pp(T ) lies in Q[T ] and is independent of
l.
• The L-function L(M, s) =

∏
p Pp(p

−s)−1, defined and analytic for �(s)
large enough.
• The Taylor expansion

L(M, s) = L∗(M)sr(M) + · · ·
at s = 0. That L(M, s) can be meromorphically continued to s = 0 is part
of the conjectural framework. This continuation is known, for example,
if X is of dimension 0, or X is an elliptic curve [13] or a Fermat curve
xN + yN = zN [76] and i and j are arbitrary.

Aim: Describe L∗(M) ∈ R× and r(M) ∈ Z.

Examples. a) If M = h0(SpecL)(0) for a number field L then L(M, s) coincides
with the Dedekind Zeta function ζL(s). If we write L ⊗Q R ∼= Rr1 × Cr2 then
r(M) = r1 +r2−1 and L∗(M) = −hR/w (R the unit regulator of L, w the number
of roots of unity in L and h the class number of OL). This is the analytic class
number formula.

b) If M = h1(A)(1) for an abelian variety A over a number field (or in fact
for any X as above), then L(M, s− 1) is the classical Hasse-Weil L-function of the
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dual abelian variety Ǎ (or the Picard variety Pic0(X) of X). Since A and Ǎ are
isogenous, L(M, s− 1) also coincides with the Hasse-Weil L-function of A.

The weight of M is the integer i− 2j.

2. Periods and Regulators

We have four Q-vector spaces attached to M .
• A finite dimensional space MB = Hi(X(C),Q)(j) which carries an action

of complex conjugation and a Hodge structure (see [27] for more details).
• A finite dimensional filtered space MdR = Hi

dR(X/Q)(j).
• Motivic cohomology spaces H0

f (M) and H1
f (M) which may be defined in

terms of algebraic K-theory. For example, if X has a regular, proper flat
model X over Spec(Z) and i− 2j �= −1 then

H0
f (M) = CHj(X)⊗Q/hom. equiv. if M = h2j(X)(j)

H1
f (M) = im

(
(K2j−i−1(X)⊗Q)(j) → (K2j−i−1(X)⊗Q)(j)

)
.

Using alterations this image space can also be defined without assuming
the existence of a regular model X [69].

The spaces H0
f (M) and H1

f (M) are conjectured to be finite dimensional but
essentially the only examples where this is known are those mentioned above:

Examples continued. a) For M = h0(Spec(L)) we have H0
f (M) = Q and

H1
f (M) = 0 whereas for M = h0(Spec(L))(1) we have H0

f (M) = 0 and H1
f (M) =

O×
L ⊗Z Q. For M = h0(Spec(L))(j) it is also known that H1

f (M) = K2j−1(L)⊗Q

is finite dimensional [12].

b) For M = h1(X)(1) we have H0
f (M) = 0 and H1

f (M) = Pic0(X)⊗Z Q. This
last space is finite dimensional by the Mordell-Weil theorem.

For a Q-vector space W and a Q-algebra R we put WR = W ⊗QR. The period
isomorphism MB,C

∼= MdR,C induces a map

αM : M+
B,R → (MdR/Fil0MdR)R.

For any motive M one has a dual motive M∗ with dual realizations. For example,
if M = hi(X)(j) where X is of dimension d then Poincare duality gives a perfect
pairing

Hi(X)(j)×H2d−i(X)(d− j)→ H2d(X)(d) tr−→ Q

which identifies M∗ with h2d−i(X)(d− j).

Conjecture Mot∞: There exists an exact sequence

0→ H0
f (M)R

c−→ ker(αM )→ H1
f (M

∗(1))∗R
h−→

H1
f (M)R

r−→ coker(αM )→ H0
f (M

∗(1))∗R → 0

Here c is a cycle class map, h a height pairing, and r the Beilinson regulator.
Again, the exactness of this sequence is only known in a few cases, essentially those
given by our standard examples a) and b).
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Conjecture 1 (Vanishing Order):

r(M) = dimQ H
1
f (M

∗(1))− dimQ H
0
f (M

∗(1))

Remark. The appearance of the dual motive M∗(1) in the last two conjectures
can be understood in two steps. First, one may conjecture that there are groups
Hi
c(M) (”motivic cohomology with compact support and R-coefficients”) which fit

into a long exact sequence

· · · → Hi
c(M)→ Hi

f (M)→ Hi
D(R,M)→ · · ·

and where H0
D(R,M) ∼= ker(αM ), H1

D(R,M) ∼= coker(αM ) (a definition of such
groups, Arakelov Chow groups in his terminology, has been given by Goncharov in
[40]). Secondly, one may conjecture a perfect duality of finite dimensional R-vector
spaces

Hi
c(M)×H2−i

f (M∗(1))→ H2
c (Q(1)) ∼= R,

an archimedean analogue of Poitou-Tate duality. Then Conjecture 1 says that r(M)
is the Euler characteristic of motivic cohomology with compact support.

Define a Q-vector space of dimension 1

Ξ(M) := DetQ(H0
f (M))⊗Det−1

Q (H1
f (M))

⊗DetQ(H1
f (M

∗(1))∗)⊗Det−1
Q (H0

f (M
∗(1))∗)

⊗Det−1
Q (M+

B )⊗DetQ(Mdr/Fil0)

The exact sequence in Conjecture Mot∞ induces an isomorphism

ϑ∞ : R ∼= Ξ(M)⊗Q R

Conjecture 2 (Rationality):

ϑ∞(L∗(M)−1) ∈ Ξ(M)⊗ 1

This conjecture goes back to Deligne [27][Conj. 1.8] in the critical case (i.e.
where αM is an isomorphism) and Beilinson [5] in the general case.

3. Galois cohomology

Throughout this section we refer to [16] for unexplained notation and further
details. Define for each prime p a complex RΓf (Qp,Ml)

=


M

Ip

l

1−Frp−−−−→M
Ip

l l �= p

Dcris(Ml)
(1−Frp,π)−−−−−−→ Dcris(Ml)⊕DdR(Ml)/Fil0 l = p

One can construct a map of complexes RΓf (Qp,Ml)→ RΓ(Qp,Ml) and one defines
RΓ/f (Qp,Ml) as the mapping cone so that there is a distinguished triangle

RΓf (Qp,Ml)→ RΓ(Qp,Ml)→ RΓ/f (Qp,Ml)

in the derived category of Ql -vector spaces.
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Let S be a finite set of primes containing l, ∞ and primes of bad reduction.
There are distinguished triangles

RΓc(Z[
1
S

],Ml)→ RΓ(Z[
1
S

],Ml)→
⊕
p∈S

RΓ(Qp,Ml)

RΓf (Q,Ml)→ RΓ(Z[
1
S

],Ml)→
⊕
p∈S

RΓ/f (Qp,Ml)

RΓc(Z[
1
S

],Ml)→ RΓf (Q,Ml)→
⊕
p∈S

RΓf (Qp,Ml)(3.1)

Conjecture Motl: There are natural isomorphisms H0
f (M)Ql

∼= H0
f (Q,Ml)

(cycle class map) and H1
f (M)Ql

∼= H1
f (Q,Ml) (Chern class map).

One can construct an isomorphism Hi
f (Q,Ml) ∼= H3−i

f (Q,M∗
l (1))∗ for all i.

Hence Conjecture Motl computes the cohomology of RΓf (Q,Ml) in all degrees.

The exact triangle (3.1) induces an isomorphism

ϑl : Ξ(M)⊗Q Ql
∼= DetQl

RΓc(Z[
1
S

],Ml)

Let Tl ⊂Ml be any GQ-stable Zl-lattice.

Conjecture 3 (Integrality):

Zl · ϑlϑ∞(L∗(M)−1) = DetZl
RΓc(Z[

1
S

], Tl)

This conjecture (for all l) determines L∗(M) ∈ R× up to sign. It assumes
Conjecture 2 and is independent of the choice of S and Tl [16][Lemma 5]. For
M = h0(Spec(L)) (resp. M = h1(X)(1)) it is equivalent to the l-primary part of
the analytic class number formula (resp. Birch and Swinnerton-Dyer conjecture).
For a sketch of the argument giving this equivalence we refer to section 5.4 below.

Part 2. The Equivariant Refinement

In many situations one has ’extra symmetries’, more precisely there is a semisim-
ple, finite dimensional Q-algebra A acting on M .

Examples:

• X an abelian variety, A = End(X)⊗Q
• X = X ′ ×Spec(Q) Spec(K), K/Q Galois with group G, A = Q[G]
• X a modular curve, A the Hecke algebra
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4. Commutative Coefficients

If A is commutative (i.e. a product of number fields) one can construct
L(AM, s), Ξ(AM), Aϑ∞, Aϑl as before using determinants over A, A⊗R, A⊗Ql.
L(AM, s) is a meromorphic function with values in A⊗ C and

r(AM) ∈H0(Spec(A⊗ R),Z)

L∗(AM) ∈(A⊗ R)×.

For a finitely generated A-module P we denote by dimA P the function p 
→
rankAp(Pp) on Spec(A).

One gets refinements of Conjectures 1 and 2 in a straightforward way.

Conjecture 1 (Equivariant Version):

r(AM) = dimAH
1
f (M

∗(1))− dimAH
0
f (M

∗(1))

Conjecture 2 (Equivariant Version):

Aϑ∞(L∗(AM)−1) ∈ Ξ(AM)⊗ 1

Somewhat more interesting is the generalization of Conjecture 3. There are
many Z-orders A ⊆ A unlike in the case A = Q. It turns out that in order to
formulate a conjecture over A one additional assumption is necessary.

Assume that there is a projective GQ-stable Al := A⊗ Zl lattice Tl ⊂Ml.

Then RΓc(Z[ 1
S ], Tl) is a perfect complex of Al-modules and DetAl

RΓc(Z[ 1
S ], Tl)

is an invertible Al-module. Since Al is a product of local rings this means that
DetAl

RΓc(Z[ 1
S ], Tl) is in fact free of rank 1 over Al. The existence of a projective

lattice is guaranteed if A is a maximal Z-order in A. If M = M0 ⊗ h0(Spec(L))
arises by base change of a motive M0 to a finite Galois extension L/Q with group
G then there is a projective lattice over the order A = Z[G] in A = Q[G].

Conjecture 3 (Equivariant Version):

Al · Aϑl
(
Aϑ∞(L∗(AM)−1)

)
= DetAl

RΓc(Z[
1
S

], Tl)

This conjecture (for all l) determines L∗(AM) ∈ (A ⊗ R)× up to A×. Taking
”Norms form A to Q” one deduces the original Conjectures 1-3 from their equivari-
ant refinements [16][Remark 11].

5. Proven cases

If A is a maximal order in A, in particular if A = Z, then Conjecture 3 has
been considered traditionally in various cases, most notably in our Examples a) and
b) above. In this section we review proven cases of Conjecture 3 with particular
emphasis on non-maximal orders A. One should note here that Conjecture 3 over
an order A implies Conjecture 3 over any larger order A′ ⊇ A but not vice versa.
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5.1. Abelian extensions of Q and the main conjecture of Iwasawa
Theory. The following theorem summarizes what is known about our Example a)
when L/Q is abelian.

Theorem 5.1. (Burns-Greither) Let L/Q be a Galois extension with abelian
group G, M = h0(Spec(L))(j) with j ∈ Z, A = Z[G] and l any prime number.
Then Conjecture 3 holds.

Corollary 5.1. For any abelian field L and prime number l the cohomological
Lichtenbaum conjecture (see [45][Thm. 1.4.1]) holds for the Dedekind Zeta-function
at any j ∈ Z.

Proof. The cohomological Lichtenbaum conjecture is a rather immediate re-
formulation of Conjecture 3 for M = h0(Spec(L))(j) and A = Z (see the proof of
[45][Thm. 1.4.1]). Hence it follows by general functoriality [16][Remark 11] from
Theorem 5.1. �

We shall give the proof of Theorem 5.1 for j ≤ 0 in some detail in order to
demonstrate how the formalism above unfolds in a concrete situation. One may
also expect that the way in which we use the Iwasawa main conjecture and results
on l-adic L-functions will be fairly typical for proofs of Conjecture 3 in a number
of other situations. In essence we follow the proof [18] by Burns and Greither
but our arguments cover the case l = 2 whereas those of [18] do not. We shall
deduce Conjecture 3 for j ≤ 0 from an Iwasawa theoretic statement (Theorem 5.2
below). This descent argument is fairly direct except for difficulties arising from
trivial zeros of the l-adic L-function for j = 0. These can be overcome by using
the Theorem of Ferrero-Greenberg [33] for odd χ and results of Solomon [71] for
even χ. The main difficulty for j < 0 (identification of the image of Beilinson’s
elements in K1−2j(L) under the étale Chern class map) has already been dealt
with by Huber and Wildeshaus in [46]. Such a proof of Conjecture 3 by descent
from Theorem 5.2 is also possible for j ≥ 1 provided one knows the non-vanishing
of the l-adic L-function at j. Since this is currently the case only for j = 1 (as a
consequence of Leopoldts conjecture for abelian fields [75][Cor. 5.30]) we do not
give the details of this line of argument. Suffice it to say that Theorem 5.1 for j ≥ 1
is then proven somewhat indirectly by appealing to compatibility of Conjecture 3
with the functional equation of the L-function (see the recent preprint [6]). We do
not address the issue of compatibility with the functional equation in this survey.
We also do not go into the proof of the Iwasawa main conjecture because it is by
now fairly well documented in the literature, even for l = 2 (see [41] for a proof via
Euler systems).

Finally we remark that another proof of Theorem 5.1 (but only for A a maximal
order and l �= 2) has been given by Huber and Kings in [45]. This proof also appeals
to compatibility with the functional equation. Theorem 5.1 for j < 0 and A = Z
was proven before by Kolster, Nguyen Quang-Do and Fleckinger [54] (with final
corrections in [7]).

We need some notation. For an integer m ≥ 1 let ζm = e2πi/m, Lm = Q(ζm),
σm : Lm → C the inclusion (which we also view as an archimedean place of Lm)
andGm = Gal(Lm/Q). By the Kronecker-Weber Theorem and general functoriality
[16][Prop. 4.1b)] it suffices to prove Conjecture 3 for Lm in order to deduce it for
all abelian L/Q. By the same argument we may, and occasionally will assume that
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m has at least two distinct prime factors. Let Ĝm be the set of complex characters
of Gm, for η ∈ Ĝm let eη ∈ C[Gm] be the idempotent |Gm|−1

∑
g∈Gm

η(g)g−1 and
denote by L(η, s) the Dirichlet L-function of η.

Explicit formulas for Dirichlet L-functions. In this section we fix 1 < m �≡ 2
mod 4 and write M = h0(Spec(Lm)), A = Q[Gm] and A = Z[Gm]. One has

L(AM, s) = (L(η, s))η∈Ĝm
∈
∏
η∈Ĝm

C = A⊗ C

and for M = h0(Spec(Lm)) the sequence in Conjecture Mot∞ is the R-dual (with
contragredient Gm-action) of the unit regulator sequence

0→ O×
Lm
⊗Z R

− log | |v−−−−−−−→
⊕
v|∞

R
∑
−→ R→ 0.

So one has

Ξ(AM)# = Det−1
A (O×

Lm
⊗Z Q)⊗DetA(X{v|∞} ⊗Z Q)

where for any set S of places of Lm we define YS = YS(Lm) :=
⊕

v∈S Z and
XS = XS(Lm) to be the kernel of the sum map YS → Z. Moreover, the superscript
# indicates that the Gm-action has been twisted by the automorphism g 
→ g−1 of
Gm.

It is well known that

L(η, 0) =−
fη∑
a=1

(
a

fη
− 1

2

)
η(a)

d

ds
L(η, s)|s=0 =− 1

2

fη∑
a=1

log |1− e2πia/fη |η(a) η �= 1 even

where fη|m is the conductor of η and η(a) = 0 for (a, fη) > 1, and that L(η, 0) �= 0
if and only if η = 1 or η is odd [75][Ch. 4]. One deduces Conjecture 1 for M =
h0(Spec(Lm)) since

dimC eη(O×
Lm
⊗Z C) =

{
1 η �= 1 even
0 otherwise.

Before dealing with Conjecture 2 we introduce some further notation. We denote by
ĜQ
m the set of Q-rational characters , i.e. Aut(C)-orbits on Ĝm. For each χ ∈ ĜQ

m

we put eχ =
∑
η∈χ eη ∈ A and we denote by Q(χ) the field generated by the values

of η for any η ∈ χ. Then there is a ring isomorphism

A =
∏
χ∈ĜQ

m

Q(χ).

We put
L(χ, 0) :=

∑
η∈χ

L(η, 0)eη ∈ Aeχ ∼= Q(χ)

and note that L(χ, 0)# :=
∑
η∈χ L(η−1, 0)eη.

For fη �= 1 the image of (1− ζfη
) ∈ Lm under the regulator map is

(1− ζfη
) 
→ −

∑
a∈(Z/mZ)×/±1

log |1− e2πia/fη |2τ−1
a (σm)
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where τa is the automorphism ζm 
→ ζam of Lm, and hence for any even character
η �= 1 the image of eη(1− ζfη

) is L′(η−1, 0) · 2 · [Lm : Lfη
] · eη(σm). Note here that

eητa = η(a)eη, and that σm (resp. 1− ζfη
if fη is a prime power) lies in the larger

A-module Y{v|∞} ⊃ X{v|∞} (resp. OLfη
[ 1
fη

]× ⊃ O×
Lfη

) but application of eη (or
equivalently −⊗A Q(η)) turns this inclusion into an equality for η �= 1.

There is a canonical isomorphism

Ξ(AM)# ∼−→ Det−1
A (O×

Lm
⊗
Z

Q)⊗DetA(X{v|∞} ⊗
Z

Q)

∼−→
∏
χ�=1
even

Det−1
Q(χ)(O

×
Lm
⊗
A

Q(χ))⊗DetQ(χ)(X{v|∞} ⊗
A

Q(χ))×
∏

other χ

Q(χ)

∼−→
∏
χ�=1
even

(O×
Lm
⊗
A

Q(χ))−1 ⊗Q(χ) (X{v|∞} ⊗
A

Q(χ))×
∏

other χ

Q(χ)

and in this description Aϑ∞(L∗(AM, 0)−1) = (L∗(AM, 0)−1)#Aϑ∞(1) has compo-
nents

(5.1) Aϑ∞(L∗(AM, 0)−1)χ =

{
2 · [Lm : Lfχ

][1− ζfχ
]−1 ⊗ σm χ �= 1 even(

L(χ, 0)#
)−1 otherwise.

We now fix a prime number l and put Al := A⊗Ql. The isomorphism

Ξ(AM)# ⊗Ql
Aϑl−−→ DetAl

RΓc(Z[
1
ml

],Ml)#

is given by the composite

Det−1
Al

(O×
Lm
⊗Z Ql)⊗DetAl

(X{v|∞} ⊗Z Ql)

∼−→Det−1
Al

(OLm
[

1
ml

]× ⊗Z Ql)⊗DetAl
(X{v|ml∞} ⊗Z Ql)(5.2)

∼−→Det−1
Al

(OLm
[

1
ml

]× ⊗Z Ql)⊗DetAl
(X{v|ml∞} ⊗Z Ql)(5.3)

∼−→DetAl
RΓc(Z[

1
ml

],Ml)#.(5.4)

Here (5.2) is induced by the short exact sequences

0→ O×
Lm
⊗Z Q→ OLm

[
1
ml

]× ⊗Z Q
val−−→ Y{v|ml} ⊗Z Q→ 0

0→ Y{v|ml} ⊗Z Q→ X{v|ml∞} ⊗Z Q→ X{v|∞} ⊗Z Q→ 0

and the identity map on Y{v|ml}⊗Z Q. The isomorphism (5.3) is multiplication with
the (Euler-) factor (see [15][Lemma 2])

∏
p|ml E#

p ∈ A× where Ep ∈ A× is defined
by

(5.5) Ep =
∑

η(Dp)=1

|Dp/Ip|eη +
∑

η(Dp) �=1

(1− η(p))−1eη

with Dp (resp. Ip) denoting the decomposition subgroup (resp. inertia subgroup)
of Gm at p.

Finally (5.4) arises as follows. Put

∆(Lm) := RHomZl
(RΓc(Z[

1
ml

], Tl),Zl)[−3].
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Then ∆(Lm) is a perfect complex of Al-modules and there is a natural isomorphism

DetAl
∆(Lm) ∼= DetAl

RΓc(Z[
1
ml

], Tl)#.

On the other hand, the cohomology of ∆(Lm) can be computed by Tate-Poitou
duality, the Kummer sequence and some additional arguments [15][Prop. 3.3]. One
finds Hi(∆(Lm)) = 0 for i �= 1, 2, a canonical isomorphism

H1(∆(Lm)) ∼= H1(OLm
[

1
ml

],Zl(1)) ∼= OLm
[

1
ml

]× ⊗Z Zl

and a short exact sequence

0→ Pic(OLm
[

1
ml

])⊗Z Zl → H2(∆(Lm))→ X{v|ml∞} ⊗Z Zl → 0.

After tensoring with Ql this computation gives the isomorphism (5.4). Conjecture
3 then becomes the statement that the element

∏
p|ml E#

p · Aϑ∞(L∗(AM, 0)−1) de-
scribed in (5.1) and (5.5) is not only a basis of DetAl

∆(Lm) ⊗ Ql but in fact an
Al-basis of DetAl

∆(Lm).

Iwasawa Theory. We fix l and m as in the last section and retain the notation
introduced there. Put

Λ = lim←−
n

Zl[Gmln ] ∼= Zl[G�m0 ][[T ]]

where

m = m0l
ordl(m); � =

{
l l �= 2
4 l = 2.

The Iwasawa algebra Λ is a finite product of complete local 2-dimensional Cohen-
Macaulay (even complete intersection) rings. However, Λ is regular if and only
if l � #G�m0 . As usual, the element T = γ − 1 ∈ Λ depends on the choice of a
topological generator γ of Gal(Lml∞/L�m0) ∼= Zl.

Defining a perfect complex of Λ-modules

∆∞ = lim←−
n

∆(Lm0ln)

we have Hi(∆∞) = 0 for i �= 1, 2, a canonical isomorphism

H1(∆∞) ∼= U∞
{v|ml} := lim←−

n

OLm0ln
[

1
ml

]× ⊗Z Zl

and a short exact sequence

0→ P∞
{v|ml} → H2(∆∞)→ X∞

{v|ml∞} → 0

where

P∞
{v|ml} := lim←−

n

Pic(OLm0ln
[

1
ml

])⊗Z Zl, X∞
{v|ml∞} := lim←−

n

X{v|m0l∞}(Lm0ln)⊗Z Zl.

All limits are taken with respect to Norm maps (on YS this is the map sending a
place to its restriction). For d | m0 put

ηd :=(1− ζ�dln)n≥0 ∈ U∞
{v|ml}

σ :=(σ�m0ln)n≥0 ∈ Y∞
{v|ml∞}

θd :=(g�dln)n≥0 ∈
1

[Lm0 : Ld]
· (γ − χcyclo(γ))−1Λ
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where

(5.6) gk = −
∑

0<a<k,(a,k)=1

(
a

k
− 1

2

)
τ−1
a,k ∈ Q[Gk]

with τa,k ∈ Gk defined by τa,k(ζk) = ζak . Here we also view τa,k as an element of
Q[Gk′ ] for k | k′ (which allows us to view θd as an element of the fraction field of
Λ for d | m0) by τa,k 
→ [Gk′ : Gk]−1

∑
a′≡a mod k τa′,k′ . The relationship between

θd and l-adic L-functions in the usual normalization is given by the interpolation
formula

(5.7) χχjcyclo(θd) = (1− χ−1(l)l−j)L(χ−1, j) =: Ll(χ−1ω1−j , j)

for all characters χ of conductor dln and j ≤ 0 (here ω denotes the Teichmueller
character).

We fix an embedding Q̄l → C and identify Ĝk with the set of Q̄l-valued char-
acters. The total ring of fractions

(5.8) Q(Λ) ∼=
∏

ψ∈ĜQl
�m0

Q(ψ)

of Λ is a product of fields indexed by the Ql-rational characters of G�m0 . Since for
any place w of Q the Z[Gm0ln ]-module Y{v|w}(Lm0ln) is induced from the trivial
module Z on the decomposition group Dw ⊆ Gm0ln , and for w =∞ (resp. nonar-
chimedean w) we have [Gm0ln : Dw] = [Lm0ln : Q]/2 (resp. the index [Gm0ln : Dw]
is bounded as n→∞) one computes easily

(5.9) dimQ(ψ)(U∞
{v|ml} ⊗Λ Q(ψ)) = dimQ(ψ)(Y∞

{v|ml∞} ⊗Λ Q(ψ)) =

{
1 ψ even
0 ψ odd.

Note that the inclusion X∞
{v|ml∞} ⊆ Y∞

{v|ml∞} becomes an isomorphism after ten-
soring with Q(ψ) and that eψ(η−1

m0
⊗ σ) is a Q(ψ)-basis of

Det−1
Q(ψ)(U

∞
{v|ml} ⊗Λ Q(ψ))⊗DetQ(ψ)(X∞

{v|ml∞} ⊗Λ Q(ψ)
∼=DetQ(ψ) (∆∞ ⊗Λ Q(ψ))

for even ψ. For odd ψ the complex ∆∞ ⊗Λ Q(ψ) is acyclic and we can view
eψθm0 ∈ Q(ψ) as an element of

DetQ(ψ) (∆∞ ⊗Λ Q(ψ)) ∼= Q(ψ).

Note also that eψθm0 = 0 (resp. eψ(η−1
m0
⊗ σ) = 0) if ψ is even (resp. odd). Hence

we obtain an element

L := θ−1
m0

+ 2 · η−1
m0
⊗ σ ∈ DetQ(Λ) (∆∞ ⊗Λ Q(Λ)) .

Theorem 5.2. There is an equality of invertible Λ-submodules

Λ · L = DetΛ ∆∞

of DetQ(Λ) (∆∞ ⊗Λ Q(Λ)).
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This statement is an Iwasawa theoretic analogue of Conjecture 3 and, as we
shall see below, it implies Conjecture 3 for M = h0(SpecLd)(j), A = Z[Gd] and
any d | m0l

∞ and j ≤ 0. Our proof will also show that Theorem 5.2 is essentially
equivalent to the main conjecture of Iwasawa theory, combined with the vanishing
of µ-invariants of various Iwasawa modules. The idea to seek a conjecture that
unifies the Tamagawa number conjecture on the one hand and the Iwasawa main
conjecture on the other goes back to Kato [48], [49][3.3.8].

Proof of Theorem 5.2. The following Lemma allows a prime-by-prime anal-
ysis of the identity in Theorem 5.2.

Lemma 5.3. Let R be a Noetherian Cohen-Macaulay ring with total ring of
fractions Q(R). Suppose R is a finite product of local rings. If I and J are invertible
R-submodules of some invertible Q(R)-module M then I = J if and only if Iq = Jq

(inside Mq) for all height 1 prime ideals q of R.

Proof. Since R is a product of local rings both I and J are free of rank 1 with
bases bI , bJ ∈M , say. Since Q(R) is Artinian, hence a product of local rings, M is
free with basis bM , say. Writing bI = x

y bM we find that x cannot be a zero-divisor
in R since I is R-free. Hence x

y is a unit in Q(R) and we may write

bJ =
x′

y′
bM =

x′y

y′x
bI =:

a

b
bI .

Since R is Cohen-Macaulay and b is not a zero-divisor all prime divisors p1, ..., pn of
the principal ideal bR have height 1 [59][Thm. 17.6]. By assumption bRpi

= aRpi

for i = 1, .., n. Hence a ∈ φ−1
i (bRpi

) where φi : R → Rpi
is the natural map, and

the primary decomposition of the ideal bR [59][Th.6.8] gives

a ∈ φ−1
1 (bRp1) ∩ · · · ∩ φ−1

n (bRpn
) = bR.

So a
b ∈ R and I = RbI ⊇ RbJ = J . By symmetry I = J . �

At this stage a fundamental distinction presents itself. We call a height 1 prime
q of Λ regular (resp. singular) if l /∈ q (resp. l ∈ q). For a regular prime q the ring
Λq is a discrete valuation ring with fraction field Q(ψ) for some ψ = ψq ∈ ĜQl

�m0
.

The residue field Ql(q) of Λq is a finite extension of the field of values Ql(ψ) of ψ.
For singular primes, on the other hand, the ring Λq is regular if and only if Λ is.

Analysis of regular primes. The computation of the cohomology of ∆∞ given
above shows that the identity

Λq · L = DetΛq (∆∞ ⊗Λ Λq)

is equivalent to

(5.10) FitΛq(U∞
{v|ml},q/Λq · ηm0) = FitΛq(P∞

{v|ml},q) · FitΛq(X∞
{v|ml∞},q/Λq · σ)

if ψq is even and to

(5.11) θm0 · FitΛq(U∞
{v|ml},q) = FitΛq(P∞

{v|ml},q) · FitΛq(X∞
{v|ml∞},q)

if ψq is odd. Here FitΛq(M) denotes the first Fitting (or order) ideal of any finitely
generated torsion Λq-module M . Put

U∞ := lim←−
n

O×
Lm0ln

⊗Z Zl, P∞ := lim←−
n

Pic(OLm0ln
)⊗Z Zl.
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The exact sequences of Λ-modules

(5.12) 0→ U∞ → U∞
{v|ml} → Y∞

{v|l} → P∞ → P∞
{v|ml} → 0

and
0→ X∞

{v|m0} → X∞
{v|lm∞} → Y∞

{v|l} ⊕ Y∞
{v|∞} → 0

together with the fact that σ is a basis of Y∞
{v|∞},q for ψq even (resp. U∞

q =
Zl(1)q and Y∞

{v|∞},q = 0 for ψq odd), imply that the identities (5.10) and (5.11) are
equivalent, respectively, to

(5.13) FitΛq(U∞
q /Λq · ηm0) = FitΛq(P∞

q ) · FitΛq(X∞
{v|m0},q)

and

(5.14) θm0 · FitΛq
(Zl(1)q) = FitΛq(P∞

q ) · FitΛq(X∞
{v|m0},q).

The following two Lemmas then finish the verification of these identities.

Lemma 5.4. (Main conjecture) For any regular height 1 prime q of Λ let d | m0

be such that ψq has conductor d or d�. Put ε = 0 or 1 according to whether ψq �= 1
or ψq = 1. Then

FitΛq(U∞
q /Λq · T ε · ηd) = FitΛq(P∞

q )

if ψq is even, and
θd · FitΛq

(Zl(1)q) = FitΛq(P∞
q )

if ψq is odd.

Lemma 5.5. For d and ε as in Lemma 5.4 we have

FitΛq(Λq · T ε · ηd/Λq · ηm0) = T−ε
∏

p|m0, p�d

(1− Fr−1
p ) = FitΛq(X∞

{v|m0},q)

if ψq is even and

Λq · θm0/θd =
∏

p|m0, p�d

(1− Fr−1
p ) = FitΛq(X∞

{v|m0},q)

if ψq is odd. Here we view the Frobenius automorphism Frp ∈ Gm0l∞/Ip as an
element of Gm0l∞ ⊂ Λ using the fact that Ip ∼= Gpordp(m) is canonically a direct
factor of Gm0l∞ .

Proof of Lemma 5.4. Denote by Ccyclo the Λ-submodule of U∞ generated
by Tη1 and ηn for 1 �= n | m0. Let ψ be an even character of G�m0 . The main
conjecture [41][Th. 3.1+ Rem. b) and c)] says that the characteristic ideal of the
Zl[ψ][[T ]]-module (P∞)ψ equals that of (U∞/Ccyclo)ψ where for any Λ-module M
we put Mψ = M ⊗Zl[G�m0 ] Zl[ψ] = M ⊗Λ Zl[ψ][[T ]]. For any height 1 prime ideal
q with ψq = ψ the map Λ → Λq factors through Λ → Zl[ψ][[T ]] and we deduce
FitΛq(U∞

q /Ccyclo
q ) = FitΛq(P∞

q ). It remains to show that Ccyclo
q is generated by ηd

over Λq (or Tη1 if ψq = 1). This follows from the distribution (or Euler system)
relations satisfied by the ηn. For d | m0 put

Nd =


 ∑
τ∈Gal(Lm0/Ld)

τ


 ∈ Λ.
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Then for d | n | m0

(5.15) Nd · ηn = [Lm0 : Ln]NormLn/Ld
ηn = [Lm0 : Ln]


 ∏
p|n, p�d

(1− Fr−1
p )


 ηd.

Since ψ(Nd) = [Lm0 : Ld] �= 0 the element Nd is a unit in Λq and we have therefore
expressed ηn as a Λq-multiple of ηd. For d � n on the other hand, ψ is a nontrivial
character of Gal(Lm0/Ln) and we have

(ηn)q = [Lm0 : Ln]−1(Nnηn)q = [Lm0 : Ln]−1ψ(Nn)ηn,q = 0.

Let now ψ be an odd character of G�m0 and ω the Teichmueller character.
The main conjecture [41][Th. 3.2] then asserts that the characteristic ideal of the
Zl[ψ][[T ]]-module (P∞)ψ equals eψ 1

2θd if ψ �= ω. For ψ = ω the statement of
[41][Th. 3.2] is that both

1
2
θ1 · FitZl[[T ]](Zl(1)) =

1
2
θ1 · (γ − χcyclo(γ)) · Zl[[T ]]

and the characteristic ideal of (P∞)ω are equal to Zl[[T ]].
We note that the main conjecture for an even character ψ is equivalent to the

main conjecture for the odd character ωψ−1 by an argument involving duality and
Kummer theory (see the proof of Th. 3.2 in [41]). �

Proof of Lemma 5.5. For any prime p | m0 the decomposition group Dp ⊆
Gm0l∞ has finite index and the inertia subgroup Ip ⊆ Dp is finite. Moreover one
has a direct product decomposition Dp = Ip × < Frp >. We have an isomorphism
of Λ-modules

Y∞
{v|p}

∼= Ind
Gm0l∞
Dp

Zl

and an isomorphism of Zl[[Dp]]-modules

Zl ∼= Zl[[Dp]]/ < g − 1|g ∈ Ip; 1− Fr−1
p > .

So if ψq|Ip
�= 1, i.e. p | d, then Y∞

{v|p},q = 0 and if ψq|Ip
= 1 the characteristic ideal

of Y∞
{v|p},q is generated by 1− Fr−1

p . The exact sequence of Λ-modules

0→ X∞
{v|m0} → Y∞

{v|m0} → Zl → 0

accounts for the term T ε. This verifies the second equalities in the two displayed
equations of Lemma 5.5.

The respective first equalities follow for even ψq from the Euler system relations
(5.15) with n = m0 together with the fact that Nd is a unit in Λq. For odd ψq we
also have an Euler system relation

(5.16) Nd · θm0 = [Lm0 : Ld] ·


 ∏
p|m0, p�d

(1− Fr−1
p )


 θd

which expresses θm0 as a Λq-multiple of θd since Nd is a unit in Λq (note here
our convention that we view the element θd ∈ Zl[[Gdl∞ ]] as the element [Lm0 :
Ld]−1Nd · θ̃d ∈ Λ where˜denotes any lift). �

Analysis of singular primes. The singular primes of Λ are in bijection with the
Ql-rational characters of G�m0 of order prime to l. For a singular height 1 prime q
we denote by ψq the corresponding character with Ql-rational idempotent eψq ∈ Λ.

The following Lemma relates µ-invariants to localization at singular primes.
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Lemma 5.6. Let M be a finitely generated torsion Λ-module, q a singular prime
with character ψ = ψq and χ a Q̄l-valued character of G�m0 with prime to l-part
ψ. The following are equivalent

(i) The µ-invariant of the Zl[[T ]]-module eψM vanishes.
(ii) The µ-invariant of the Zl[χ][[T ]]-module

Mχ := M ⊗Z[Gm0�] Zl[χ] ∼= eψM ⊗Z[Gm0�] Zl[χ]

vanishes.
(iii) Mq = 0.

Proof. It is well known that the µ-invariant in (i) (resp.(ii)) vanishes if and
only if (eψM)(l) = 0 (resp. Mχ,(π) = 0) where π is a uniformizer of Zl[χ]. Since q
is the radical of (l) in Λq the map (eψM)(l) → (eψM)q = Mq is an isomorphism
which gives the equivalence of (i) and (iii). The map M/qM → Mχ/πMχ is an
isomorphism which gives the equivalence of (ii) and (iii) by Nakayama’s Lemma.

�

Unlike the case of regular primes, we not only need the equality of the µ-
invariant of an Iwasawa module and a p-adic L-function but the vanishing of both.

We now analyze the localization of ∆∞ at a singular prime q. By the theorem
of Ferrero and Washington [75][Thm. 7.15] the µ-invariant of P∞ vanishes. The
module X∞

{v|ml} is finite free over Zl and hence has vanishing µ-invariant. The
surjection P∞ → P∞

{v|ml} and the exact sequence

0→ X∞
{v|ml} → X∞

{v|ml∞} → Y∞
{v|∞} → 0

then show that
H2(∆∞)q = Y∞

{v|∞},q
∼= (Λq/(c− 1)) · σ

where c ∈ G�m0 is the complex conjugation. Concerning H1(∆∞)q one shows that
ηm0 is a generator using the fact that all graded pieces of the filtration

Λ · ηm0 ⊆ Ccyclo ⊆ U∞ ⊆ U∞
{v|ml}

have vanishing µ-invariant. The quotient U∞
{v|ml}/U

∞ injects into the finite free
Zl-module Y∞

{v|l} and hence has vanishing µ-invariant. The quotient U∞/Ccyclo

has vanishing µ-invariant by the main result of C. Greither’s appendix to this
article. Finally, the quotient Ccyclo

q /Λq · ηm0 is zero by (5.15) and the fact that
1−Fr−1

p ∈ Λ×
q for p | m0. This follows because Frp has infinite order in Gm0l∞ : We

have Fr−Np = (1+T )ν for some integer N and 0 �= ν ∈ Zl. So the image 1−(1+T )ν

of 1−Fr−Np in Λ/q ∼= Fl(ψq)[[T ]] is nonzero, and hence so is the image of 1−Fr−1
p .

Having established that ηm0 is a generator of H1(∆∞)q one notes that

H1(∆∞)q
∼= (Λq/(c− 1)) · ηm0

since the image of ηm0 in the scalar extension to Q(ψ) vanishes precisely for odd
ψ. So for l �= 2 we conclude that H1(∆∞)q (resp. H2(∆∞)q) is free with basis ηm0

(resp. σ) if ψq is even, whereas Hi(∆∞)q = 0 for i = 1, 2 if ψq is odd. This proves
the q-part of Theorem 5.2 for ψq even, and for ψq odd it remains to remark that
θm0 is a unit in Λq (otherwise there would be a Q̄l-character χ of Gm0� so that all
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coefficients of χ(θm0) ∈ Zl[χ][[T ]] have positive l-adic valuation which contradicts
[75][p.131]) .

For l = 2 we conclude that the cohomology modules Hi(∆∞)q are not of finite
projective dimension over Λq and hence that we cannot pass to cohomology when
computing DetΛq(∆∞

q ). However, the complex ∆∞
q represents a class in

Ext2Λq
(H2(∆∞)q,H

1(∆∞)q) ∼= Ext2Λq
(Λq/(c− 1),Λq/(c− 1))

and we have ExtiΛq
(Λq/(c− 1),Λq/(c− 1)) ∼= Λq/(2, c− 1) for even i ≥ 2 as can be

seen from the projective resolution

· · · → Λq
1−c−−→ Λq

1+c−−→ Λq
1−c−−→ Λq −→ Λq/(c− 1)→ 0.

The complex ∆∞
q can be constructed as the pushout

(5.17)

0 −→ (1 + c) · Λq −→ Λq
1−c−−→ Λq −→ Λq/(c− 1) −→ 0

µ

� � ‖ ‖

0 −→ Λq/(c− 1) −→ ∆∞,1
q −→ ∆∞,2

q −→ Λq/(c− 1) −→ 0

via some homomorphism µ, determined by µ(1 + c). This diagram induces a com-
mutative diagram

ExtiΛq
((c+ 1) · Λq,Λq/(c− 1)) −−−−→ Exti+2

Λq
(Λq/(c− 1),Λq/(c− 1))

µ∗
� ‖

ExtiΛq
(Λq/(c− 1),Λq/(c− 1)) −−−−→ Exti+2

Λq
(Λq/(c− 1),Λq/(c− 1))

where the horizontal maps are isomorphisms for large i since ∆∞,1
q and ∆∞,2

q have
finite projective dimension (as ∆∞

q is perfect). It follows that µ∗ is an isomorphism.
Since both the source and target of µ∗ are isomorphic to Λq/(2, c − 1) for i even,
µ∗ is given by multiplication with a unit in Λq (this ring being local) and hence
µ(1+ c) ∈ Λq/(c− 1)×. This means µ is an isomorphism and we conclude that ∆∞

q

is quasi-isomorphic to the top row in (5.17). We may pick bases γi of ∆∞,i
q so that

γ2 
→ σ and (c + 1)γ1 = ηm0 . It remains to verify that γ−1
1 ⊗ γ2 = u · L for some

u ∈ Λ×
q , and this we may check in Q(ψ) for all ψ ∈ ĜQl

�m0
which induce ψq. For ψ

even we have in Q(ψ)

γ−1
1 ⊗ γ2 = (

1
2
· ηm0)

−1 ⊗ σ = L

and for ψ odd we note that γ−1
1 ⊗ 2 · γ2 is the canonical basis of ∆∞ ⊗Λ Q(ψ)

arising from the fact that this complex is acyclic. We then have

γ−1
1 ⊗ γ2 =

1
2
· γ−1

1 ⊗ 2 · γ2 = u · θ−1
m0

= u · L

where u := θm0
2 is a unit in Λq by the remark in [75][p.131] already used in the case

l �= 2. �

The descent argument for j = 0. We now indicate how Theorem 5.2 implies
the l-part of Conjecture 3 for M = h0(Spec(Lm)) and A = Z[Gm]. We have a ring
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homomorphism

(5.18) Λ→ Zl[Gm] = Al ⊆ Al =
∏

χ∈ĜQl
m

Ql(χ),

a canonical isomorphism of perfect complexes

∆∞ ⊗L
Λ Al ∼= ∆(Lm)

and a canonical isomorphism of determinants

(DetΛ ∆∞)⊗Λ Al ∼= DetAl
∆(Lm).

Given Theorem 5.2, the element L ⊗ 1 is an Al-basis of DetAl
∆(Lm) under this

isomorphism. It remains then to verify that the image of L⊗1 in DetAl
(∆(Lm)⊗Zl

Ql) agrees with that of Aϑ∞(L∗(AM, 0)−1). Luckily, this is again a computation
taking place over the algebra Al which avoids any delicate analysis over the possibly
non-regular ring Al, and which can be performed character by character. Denote
by

(5.19) φ : DetQl(χ)(∆(Lm)⊗Al
Ql(χ))

∼=
{

Det−1
Ql(χ)(O

×
Lm
⊗A Ql(χ))⊗DetQl(χ)(X{v|∞} ⊗A Ql(χ)) χ �= 1 even

Ql(χ) otherwise

the isomorphism induced by (5.2). Then in view of (5.1) and (5.3), for each χ ∈ ĜQl
m

we must show

(5.20)
∏
p|ml

(E#
p )−1φ(L ⊗ 1) =

{
2[Lm : Lfχ

][1− ζfχ
]−1 ⊗ σm χ �= 1 even(

L(χ, 0)#
)−1 otherwise.

In the remainder of this section we verify the identity (5.20). We also denote
by χ the composite ring homomorphism Λ→ Ql(χ) in (5.18), and by qχ its kernel.
Then qχ is a regular prime of Λ and Λqχ

is a discrete valuation ring with residue
field Ql(χ) and fraction field some direct factor of Q(Λ) (indexed in (5.8) by the
character ψ of G�m0 obtained by the unique decomposition χ = ψ × η where η is
a character of Gal(Lml∞/L�m0)). We may view L as a Λqχ

-basis of (DetΛ ∆∞)qχ
.

The following Lemma is the key ingredient in the descent computation.

Lemma 5.7. Let R be a discrete valuation ring with fraction field F , residue
field k and uniformiser �. Suppose ∆ is a perfect complex of R-modules so that
the R-torsion subgroup of each Hi(∆) is annihilated by �. Define free R-modules
M i by the short exact sequence

(5.21) 0→ Hi(∆)� → Hi(∆)→M i → 0.

Together with the exact sequences of k-vector spaces

(5.22) 0→ Hi(∆)/� → Hi(∆⊗L
R k)→ Hi+1(∆)� → 0

induced by the exact triangle in the derived category of R-modules

∆ �−→ ∆→ ∆⊗L
R k → ∆[1]
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we find an isomorphism

DetkHi(∆⊗L
R k) ∼=Detk(Hi(∆)/�)⊗k Detk(Hi+1(∆)�)

∼=Detk(Hi(∆)�)⊗k Detk(M i/�)⊗k Detk(Hi+1(∆)�)

and hence an isomorphism

φ� : Detk
(
∆⊗L

R k
) ∼= ⊗

i∈Z

Detk(M i/�)(−1)i

.

For each i fix an R-basis βi of DetR(M i). Let e ∈ Z be such that b� = �e
⊗

i∈Z(βi)(−1)i

is an R-basis of

DetR ∆ ⊆ DetF (∆⊗R F ) ∼=
⊗
i∈Z

(
DetF (M i ⊗R F )

)(−1)i

.

Then the image of b� ⊗ 1 under the isomorphism

(DetR ∆)⊗R k ∼= Detk(∆⊗L
R k)

φ�−−→
⊗
i∈Z

Detk(M i/�)(−1)i

is given by
⊗

i∈Z(β̄i)(−1)i

.

Remark. A change of uniformizer � will change b� as well as the isomorphism
φ� (unless e = 0 , e.g. if each Hi(∆) is R-free). If M i = 0 for all i then detR(M i) ∼=
R canonically and we may take βi = 1. In this case the Lemma recovers the
statement of [18] [Lemma 8.1] where the condition that Hi(∆) is annihilated by �
is called ”semisimplicity at zero” (the motivating example being a Zl[[T ]]-module
whose localisation at the prime (T ) is semisimple).

Proof. Suppose ∆• is a bounded complex of finitely generated free R-modules
quasi-isomorphic to ∆. Let λ(k)

i , µ
(l)
i ∈ ∆i (where k and l run through two index

sets depending on i) be elements whose images under δi form an R-basis of im(δi)
and so that δi(µ(l)

i ) is an R-basis of im(δi) ∩ �ker(δi+1) = im(δi) ∩ �∆i+1. Let
β

(n)
i ∈ ∆i map to an R-basis of M i. Then

δi−1(λ(k)
i−1),

δi−1(µ(l)
i−1)

�
,β

(n)
i

is an R-basis of ker(δi) (the cardinality of the set {µ(l)
i−1} is just dimkH

i(∆)�) and

(5.23) δi−1(λ(k)
i−1),

δi−1(µ(l)
i−1)

�
,β

(n)
i , µ

(l)
i , λ

(k)
i

is an R-basis of ∆i. Set µi =
∧
l µ

(l)
i , λi =

∧
k λ

(k)
i , βi =

∧
n β

(n)
i and define

γi ∈ DetF (∆i ⊗R F )(−1)i

by

γi = �(−1)i+1 dimk(Hi(∆)�)δ(λi−1)(−1)i ∧ δ(µi−1)(−1)i ∧ β(−1)i

i ∧ µ(−1)i

i ∧ λ(−1)i

i .

Then γi is an R-basis of (DetR ∆i)(−1)i

and

b =
⊗
i∈Z

γi 
→ �e
⊗
i∈Z

β
(−1)i

i ; e =
∑
i∈Z

(−1)i+1 dimk(Hi(∆)�)
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under the isomorphism DetF (∆• ⊗R F ) ∼=
⊗

i∈Z DetF Hi(∆• ⊗R F )(−1)i

. Now

δ(λ(k)
i−1),

δ(µ
(l)
i−1)

� , b
(n)
i , µ

(l)
i , λ

(k)
i is a k-basis of ∆

i
:= ∆i ⊗R k = ∆i/�,

δ(λ(k)
i−1),

δ(µ(l)
i−1)
�

,β
(n)
i , µ

(l)
i

is a k-basis of ker(δ
i
) and the images of

δ(µ
(l)
i−1)

� , β
(n)
i , µ

(l)
i are a k-basis of Hi(∆•/�).

The isomorphism

(DetR ∆•)⊗R k = Detk(∆• ⊗R k) ∼=
⊗
i∈Z

DetkHi(∆• ⊗R k)(−1)i

sends b⊗ 1 = b̄ =
⊗

i∈Z γ̄i to

⊗
i∈Z


∧

l

δ(µ(l)
i−1)
�




(−1)i

∧ β(−1)i

i ∧ µ(−1)i

i .

The third map in (5.22) arises as the connecting homomorphism in the short exact
sequence of complexes

0 −−−−→ ∆i �−−−−→ ∆i −−−−→ ∆i/� −−−−→ 0

δi

� δi

� δ
i

�
0 −−−−→ ∆i+1 �−−−−→ ∆i+1 −−−−→ ∆i+1/� −−−−→ 0

and therefore sends µ(l)
i to δi(µ

(l)
i )

� ∈ Hi+1(∆)� and to δi(µ
(l)
i )

� in Hi+1(∆)/�. The
construction of φ� via the sequences (5.22) and (5.21) then shows that φ�(b) =⊗

i∈Z β
(−1)i

i . We remark that the ordering of the terms in γi is adapted to the
particular short exact sequences inducing the isomorphism between the determinant
of a complex and that of its cohomology, as well as to the sequences (5.22) and (5.21)
involved in φ�. A different ordering would induce signs in various steps of the above
computation which of course would cancel out eventually. �

For any Ql-rational character χ of Gm we apply this Lemma to

R = Λqχ
, ∆ = ∆∞

qχ
, � = 1− γln

where γl
n

is a topological generator of Gal(Lml∞/Lm1) with m1 = m if l | m
and m1 = �m if l � m. Then the cohomology of ∆ ⊗L

R k = ∆(Lm) ⊗Al
Ql(χ)

is concentrated in degrees 1 and 2 and φ� is induced by the exact sequence of
k = Ql(χ)-vector spaces

(5.24) 0→M1/� → H1(∆⊗L
R k)

β�−−→ H2(∆⊗L
R k)→M2/� → 0

where β� (a so called Bockstein map) is the composite

H1(∆⊗L
R k)→ H2(∆)� → H2(∆)/� → H2(∆⊗L

R k).

Note that� depends only on Lm and not on χ; indeed one can construct a Bockstein
map before localizing at qχ, described in the following Lemma.
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Lemma 5.8. Define for p | m0 the element cp ∈ Zl by γcpl
n

= Fr−fp
p where fp ∈

Z is the inertial degree at p of Lm/Q (this is an identity in Λ modulo multiplication
with Gal(Lm1/Lm)). Put cl = logl(χcyclo(γl

n

))−1 ∈ Ql. Then β� is induced by the
map

H1(∆(Lm))⊗Ql = OLm
[

1
ml

]× ⊗Ql → X{v|ml∞} ⊗Ql = H2(∆(Lm))⊗Ql

given by

u 
→
∑
p|m0

cp
∑
v|p

ordv(u) · v + cl
∑
v|l

TrLm,v/Ql
(logl(uv)) · v.

Remark. One can verify directly that this last map has image in X{v|ml∞}⊗Ql

and not only in Y{v|ml∞} ⊗ Ql (although this is of course also a consequence of
Lemma 5.8). Denoting by Nu ∈ Z[ 1

ml ]
× the norm of u we have

∑
v|p ordv(u) =

f−1
p ordp(Nu) and

∑
v|l TrLm,v/Ql

(logl(uv)) = logl(Nu). The required identity∑
p|m0

cpf
−1
p ordp(x) + cl logl(x) = 0 holds for x = −1, for x = l (since logl(l) = 0)

and for x = p (applying logl χcyclo to the defining identity of cp we find cpc
−1
l =

cp logl χcyclo(γl
n

) = −fp logl(p)), hence for all x ∈ Z[ 1
ml ]

×.

Proof. The computation of the cohomology of ∆(Lm) given above arises from
an exact triangle

τ≤2RΓ(Z[
1
ml

], T ∗
l (1))→ ∆(Lm)→ Y{v|∞} ⊗Z Zl[−2]

(where the truncation τ≤2 is only necessary for l = 2). Passing to the inverse limit
we find that there is an exact triangle of Λ-modules

τ≤2RΓ(Z[
1
ml

], T ∗
l (1)∞)→ ∆∞ → Y∞

{v|∞}[−2]

which induces, after localisation at qχ, a commutative diagram of Bockstein maps

H1(OLm
[ 1
ml ],Zl(1))⊗Ql(χ) −→ H1(∆(Lm))⊗Ql(χ) −→ 0

β′
� β�

� �
H2(OLm

[ 1
ml ],Zl(1))⊗Ql(χ) −→ H2(∆(Lm))⊗Ql(χ) −→ Y{v|∞} ⊗Ql(χ).

This shows that the image of β�, has no components at the infinite places. In
order to compute β′ we apply the following Lemma to G = πet1 (Spec(OLm1

[ 1
ml ])),

Γ = Gal(Lml∞/Lm1), γ0 = γl
n

and M = Zl(1).

Lemma 5.9. Let Γ be a free Zl-module of rank 1 with generator γ0 and G→ Γ
a surjection of profinite groups. Denote by θ ∈ H1(G,Zl) = Hom(G,Zl) the unique
homomorphism factoring through Γ with θ(γ0) = 1 and put Λ = Zl[[Γ]]. For any
continuous Zl[[G]]-module M we have an exact triangle in the derived category of
Λ-modules

RΓ(G,M ⊗ Λ)
1−γ0−−−→ RΓ(G,M ⊗ Λ)→ RΓ(G,M ⊗ Λ)⊗L

Λ Zl ∼= RΓ(G,M).

Then the Bockstein map

βi : Hi(G,M)→ Hi+1(G,M)

arising from this triangle coincides with the cup product θ ∪ −.
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Proof. See [63][Lemma 1.2] . �

This Lemma describes β� as being induced by cup product with θ over the
field Lm1 . Now in case that m1 �= m, i.e. l � m, θ ∈ Hom(Gal(Lml∞/Lm1),Zl)
is the restriction of a (unique) θ ∈ Hom(Gal(Lml∞/Lm),Zl), and the projection
formula for the cup product shows that β� is induced by cup product

H1(OLm
[

1
ml

],Ql(1)) = OLm
[

1
ml

]× ⊗Ql
θ∪−−→ X{v|ml} ⊗Ql = H2(OLm

[
1
ml

],Ql(1))

over Lm. For any place v of Lm we have a commutative diagram

H1(OLm
[ 1
ml ],Ql(1)) θ∪−−−−→ H2(OLm

[ 1
ml ],Ql(1))� �

H1(Lm,v,Ql(1))
resv(θ)∪−−−−−→ H2(Lm,v,Ql(1)) ∼= Ql

and for u ∈ OLm
[ 1
ml ]

×⊗Ql the element resv(θ)∪ resv(u) can be computed by local
class field theory. For v � l one finds (see [49][Ch.II, 1.4.2]) that

resv(θ) ∪ resv(u) = −θ(Frv) ordv(u) = θ(Fr−fp
p ) ordv(u) = cp ordv(u)

and for v | l one has by [49][Ch. II, 1.4.5]

resv(θ) ∪ resv(u) = cl logl(χcyclo) ∪ uv = clTrLm,v/Ql
(logl(uv)).

�

We verify the assumptions of Lemma 5.7 and describe the bases β1 and β2.
The torsion submodule of U∞

{v|ml} is Zl(1) and hence H1(∆) = U∞
{v|ml},qχ

= M1 is
free of rank one over Λqχ

if χ is even, and H1(∆) = M1 = 0 for χ odd. It remains
to find a basis if χ is even. The vanishing of P∞

qχ
combined with Lemma 5.4 gives

that U∞
qχ

= Λqχ
· (1 − γ)ε · ηfχ,0 where fχ,0 | m0 is the prime-to-l-part of fχ and

ε = 1 or 0 according to whether χ factors through the cyclotomic Zl-extension of
Q or not. In this latter case, we either have χ = 1 or the element 1 − χ(γ) is a
unit in Λqχ

and η1 = ηfχ,0 will in fact be a basis. Combined with (5.12) we find a
(nonsplit) exact sequence

0→ U∞
qχ
→ U∞

{v|ml},qχ
→ Y∞

{v|l},qχ
→ 0

where the last term is nonzero (and then isomorphic to the residue field Ql(χ)) only
for χ(l) = 1.

The exact sequence (5.12) together with Lemma 5.4 and Lemma 5.11 below
for χ odd (resp. the vanishing of P∞

qχ
for χ even) show that P∞

{v|ml},qχ
= 0 for any

χ. Hence the Λqχ
-torsion submodule of H2(∆) is X∞

{v|ml},qχ
and M2 is canonically

isomorphic to Y∞
{v|∞},qχ

if m0 �= 1 and to X∞
{v|l∞},qχ

if m0 = 1. However, if χ �= 1
we have an isomorphism X∞

{v|l∞},qχ
= Y∞

{v|l∞},qχ
= Y∞

{v|∞},qχ
. Summarizing we

have

(5.25)

M1 M2

χ even, χ(l) �= 1 Λqχ
· ηfχ,0 Λqχ

· σ
χ �= 1 even, χ(l) = 1 Λqχ

· ηfχ,0
� Λqχ

· σ
χ = 1, m0 �= 1 Λqχ

· η1 Λqχ
· σ

χ = 1, m0 = 1 Λqχ
· η1 Λqχ

· (σ − λ)
χ odd 0 0
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where λ is the unique place of Ll∞ above l.

We now break down the discussion into the various cases listed in this table.
In each case we use a basis of the Ql(χ)-space OLm

[ 1
ml ]

× ⊗A Ql(χ), the source of
the maps β� and val, in order to understand the trivializations φ and φ�. Then
we write down L in terms of β1 and β2 and apply Lemma 5.7.

The Ql(χ)-spaces Y{v|p}⊗A Ql(χ) are nonzero if and only if χ(p) = 1, in which
case they are of dimension 1 with basis any fixed place vp | p. For each such p
let xp ∈ Lm be an element with nontrivial divisor concentrated at vp. The Ql(χ)-
space spanned by xp is then mapped isomorphically to Y{v|p} ⊗A Ql(χ) under the
valuation map val. Put J = {p | m0, χ(p) = 1}, xJ =

∧
p∈J xp, vJ =

∧
p∈J vp and

cχ =
∏
p∈J cp.

The case of even χ with χ(l) �= 1. The element β̄1 is the image of the norm
compatible system

ηfχ,0 = (1− ζfχ,0lν ) ∈ lim←−
ν

OLm0lν
[

1
ml

]× ⊗Z Zl

in M1/� ⊆ OL[ 1
ml ]

× ⊗Z[G] Ql(χ) where L ⊂ Lml∞ is any field so that χ factors
through G = Gal(L/Q). We insist on taking L = Lm so that we have

β̄1 =

{
(1− χ−1(l))(1− ζfχ,0) = (1− χ−1(l))(1− ζfχ

) µ = 0
(1− ζfχ,0lµ) = [Lm : Lm0lµ

′ ]−1(1− χ−1(l))(1− ζfχ
) µ > 0.

where µ = ordl(m), µ′ = ordl(fχ) and we recall the convention that χ−1(l) =
0 if µ′ > 0. The element β̄1 generates the one-dimensional subspace M1/� ⊆
OLm

[ 1
ml ]

× ⊗A Ql(χ) of universal norms which coincides with O×
Lm
⊗A Ql(χ). The

set {β̄1} ∪ {xp| p ∈ J} is a basis of OLm
[ 1
ml ]

× ⊗A Ql(χ) and we also have

β̄2 = σ̄ = σm ∈ Y{v|∞} ⊗A Ql(χ) = X{v|∞} ⊗A Ql(χ).

Hence by Lemma 5.8

φ ◦ φ−1
� (β̄−1

1 ⊗ β̄2)

= φ(β̄−1
1 ∧ x−1

J ⊗ β�(xJ ) ∧ β̄2)

= cχφ(β̄−1
1 ∧ x−1

J ⊗ val(xJ ) ∧ β̄2)

= cχ[Lm : Lm0lµ
′ ](1− χ−1(l))−1 φ

(
[1− ζfχ

]−1 ∧ x−1
J ⊗ val(xJ ) ∧ σm

)
= cχ[Lm : Lm0lµ

′ ](1− χ−1(l))−1 [1− ζfχ
]−1 ⊗ σm.(5.26)

As elements of (DetΛ ∆∞)qχ
we have using (5.15)

L = 2 · η−1
m0
⊗ σ = 2 · [Lm0 : Lfχ,0 ]

∏
p|m0, p�fχ,0

1
1− Fr−1

p

· η−1
fχ,0
⊗ σ

= 2 · [Lm0 : Lfχ,0 ]
∏

p|m0, p�fχ,0
χ(p) �=1

1
1− Fr−1

p

·
∏
p∈J

�

1− Fr−1
p

·�eβ−1
1 ⊗ β2.(5.27)

For p ∈ J we have Fr−fp
p = γcpl

n

and

(5.28) χ(
�

1− Fr−1
p

) = χ

(
(1 + Fr−1

p + · · ·Fr−fp−1
p )(1− γln)

1− γcpln

)
=
fp
cp
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since χ(p) = χ(γl
n

) = 1. Hence we conclude from Lemma 5.7, (5.26) and the
identity [Lm : Lfχ

] = [Lm0 : Lfχ,0 ] · [Lm : Lm0lµ
′ ] that

φ(L ⊗ 1) =2 · [Lm0 : Lfχ,0 ]
∏
p|m0
χ(p) �=1

1
1− χ−1(p)

·
∏
p∈J

fp
cp
· φ ◦ φ−1

� (β̄−1
1 ⊗ β̄2)

=2 · [Lm : Lfχ
]
∏
p|ml
χ(p) �=1

1
1− χ−1(p)

·
∏
p∈J

fp · [1− ζfχ
]−1 ⊗ σm

=2 · [Lm : Lfχ
]
∏
p|ml

(E#
p ) · [1− ζfχ

]−1 ⊗ σm

which is the identity (5.20) to be shown.

The case of even χ �= 1 with χ(l) = 1. In this case the subspace M1/� of
universal norms in OLm

[ 1
ml ]

× ⊗A Ql(χ) does not coincide with O×
Lm
⊗A Ql(χ). A

basis of this latter space is given by (1 − ζfχ
) and a basis of OLm

[ 1
ml ]

× ⊗A Ql(χ)
is {β̄1, (1 − ζfχ

)} ∪ {xp| p ∈ J}. The next Lemma gives the necessary information
about β̄1.

Lemma 5.10. (Solomon) Let L/Q be an abelian extension of conductor d > 1
in which l splits completely, and denote by L(∞)/L the cyclotomic Zl-extension
and by L(i)/L the subfield of degree li. Then there is an element κ(L(∞), γl

n

) =
(κ(L(i), γl

n

))i ∈ lim←−iOL(i) [1l ] ⊗Z Zl so that (1 − γln) · κ(L(∞), γl
n

) = N · ηd where
N ∈ Λ is the norm from Ld�ln to L, and

ordw(κ(L, γl
n

)) = −cl logl(σw(NLd/L(1− ζd))
for any place w of L dividing l.

Proof. See [71]. �

We apply this Lemma to the splitting field Lχ of l in Lfχ
/Q in which case

d = fχ = fχ,0. We then have β1 = �−1ηfχ,0 = N−1κ(L(∞)
χ , γl

n

) and

[Lln�fχ
: Lχ]β̄1 = κ(L(∞)

χ , γln) = κ(Lχ, γl
n

)

as elements of OLm1
[ 1
ml ]

× ⊗A Ql(χ). Taking norms from Lm1 to Lm we have

[Llµfχ
: Lχ]β̄1 = κ(L(∞)

χ , γln) = κ(Lχ, γl
n

)

in OLm
[ 1
ml ]

× ⊗A Ql(χ) where µ = ordl(m). For each place v | l of Lm denote by w
the place of Lχ induced by v. By Lemma 5.10 we have

ordv(κ(Lχ, γl
n

)) = |Il| ordw(κ(Lχ, γl
n

)) = −|Il|cl logl(NLfχ/Lχ
(1− ζfχ

)v)

and hence

TrLm,v/Ql
(logl(1− ζfχ

)v) =[Lm,v : Lfχ,v] logl(NLfχ/Lχ
(1− ζfχ

)v)

=
|Dl|

[Lfχ
: Lχ]

logl(NLfχ/Lχ
(1− ζfχ

)v)

= − fl
cl · [Lfχ

: Lχ]
ordv(κ(Lχ, γl

n

))
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and therefore

β�(1− ζfχ
) = cl

∑
v|l

TrLm,v/Ql
(logl(1− ζfχ

)v) · v

= − fl
[Lfχ

: Lχ]

∑
v|l

ordv(κ(Lχ, γl
n

)) · v.

Since [Llµfχ
: Lχ]β̄1 = κ(L(∞)

χ , γln) = κ(Lχ, γl
n

) we conclude

β�(1− ζfχ
) = −

fl · [Llµfχ
: Lχ]

[Lfχ
: Lχ]

val(β̄1) = −fl[Llµfχ
: Lfχ

] val(β̄1).

We are now in a position to compute φ ◦ φ−1
� .

φ ◦ φ−1
� (β̄−1

1 ⊗ β̄2)

=φ(β̄−1
1 ∧ [1− ζfχ

]−1 ∧ x−1
J ⊗ β�(xJ) ∧ β�(1− ζfχ

) ∧ β̄2)

= − cχfl[Llµfχ
: Lfχ

] φ(β̄−1
1 ∧ [1− ζfχ

]−1 ∧ x−1
J ⊗ val(xJ ) ∧ val(β̄1) ∧ β̄2)

= cχfl[Llµfχ
: Lfχ

] φ([1− ζfχ
]−1 ∧ β̄−1

1 ∧ x−1
J ⊗ val(xJ ) ∧ val(β̄1) ∧ β̄2)

= cχfl[Llµfχ
: Lfχ

] [1− ζfχ
]−1 ⊗ σm.(5.29)

The element L can be described as in (5.27) with only the power of � changing.
Combining this description with (5.28), (5.29), the identity [Lm : Lfχ

] = [Lm0 :
Lfχ,0 ][Llµfχ

: Lfχ
] and Lemma 5.7 we obtain as before

φ(L ⊗ 1) =2 · [Lm : Lfχ
]
∏
p|m0
χ(p) �=1

1
1− χ−1(p)

·
∏

p∈J∪{l}
fp · [1− ζfχ

]−1 ⊗ σm

=2 · [Lm : Lfχ
]
∏
p|ml

(E#
p ) · [1− ζfχ

]−1 ⊗ σm

which is the identity (5.20) to be shown.

The case of the trivial character. As in the discussion of the case of even χ
with χ(l) �= 1 we first compute the element β̄1 ∈ OLm

[ 1
ml ]

× ⊗A Ql (recall β1 = η1)
using the fact that NL�/Q(1− ζ�) = l. We have

β̄1 =

{
l µ = 0
(1− ζlµ) = [Lm : Lm0 ]

−1l µ > 0.

A basis of OLm
[ 1
ml ]

× ⊗A Ql is given by {β̄1} ∪ {xp| p ∈ J} = {β̄1} ∪ {xp| p | m0}.
The map val is an isomorphism but β� is not. If m0 > 1 a lift of β̄2 = σm to
X{v|ml∞} is given by σm − vl where vl is some place of Lm dividing l, and this
remains true in the case m0 = 1 where β2 = σ − λ. Moreover,

val(l) =
∑
v|l
|Il|v =

[Lm : Q]
fl

vl 
→ −
[Lm : Q]

fl
(σm − vl) = − [Lm : Q]

fl
β̄2
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and hence val(β̄1) = −[Lm0 : Q]f−1
l β̄2. Therefore

φ ◦ φ−1
� (β̄−1

1 ⊗ β̄2) =φ(β̄−1
1 ∧ x−1

J ⊗ β�(xJ ) ∧ β̄2)

=− cχ
fl

[Lm0 : Q]
φ(β̄−1

1 ∧ x−1
J ⊗ val(xJ ) ∧ val(β̄1))

=− cχ
fl

[Lm0 : Q]
.

Again we have

L = 2 · [Lm0 : Q]
∏
p|m0

�

1− Fr−1
p

·�eβ−1
1 ⊗ β2

and

φ(L ⊗ 1) =− 2 · [Lm0 : Q]
∏
p|m0

fp
cp
· cχ ·

fl
[Lm0 : Q]

=− 2 ·
∏
p|ml

(E#
p ) = ζ(0)−1 ·

∏
p|ml

(E#
p )

which is the identity (5.20).

The case of odd χ. In this case the maps β� and val are isomorphisms. The
valuation map u 
→ val(u) =

∑
v|ml ordv(u) · v has a diagonal matrix in the bases

{xp} and {vp}. The matrix of the map β� on the other hand is upper triangular
with diagonal terms

β�(xp) = cp val(xp); β�(xl) = cl
∑
v|l

TrLm,v/Ql
(logl(xl,v)) · v

where the term corresponding to p only occurs for χ(p) = 1. If χ(l) = 1 then we
may pick xl to lie in the splitting field of l in Lm/Q and we obtain∑

v|l
TrLm,v/Ql

(logl(xl,v)) · v = |Dl|
∑

g∈Gm/Dl

logl(σvl
(gxl)) · g−1vl

where σvl
is the embedding corresponding to vl (so that we have σvl

(xl) ∈ Ql).
The image of this element in Y{v|l} ⊗A Ql(χ) is

|Dl|
∑

g∈Gm/Dl

logl(σvl
(gxl)) · χ(g)−1vl = |Dl|

∑
g∈Gχ

logl(σvl
(gx̃l)) · χ(g)−1vl

where Gχ = Gal(Lχ/Q) with Lχ the fixed field of χ and x̃l is the Norm of xl into
Lχ. We have val(xl) = ordvl

(xl) · vl = |Il| ordwl
(x̃l) · vl where wl is the place of Lχ

induced by vl and |Il| is the ramification degree of l in Lm/Q. Hence

β�(xl) = cl
|Dl|

∑
g∈Gχ

logl(σvl
(gx̃l)) · χ(g)−1

|Il| ordwl
(x̃l)

val(xl)

and the map φ ◦ φ−1
� is just multiplication with

(5.30) φ ◦ φ−1
� = cχclfl

∑
g∈Gχ

logl(σvl
(gx̃l)) · χ(g)−1

ordwl
(x̃l)
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where the last three factors only occur if χ(l) = 1. We have β1 = β2 = 1 and in
(DetΛ ∆∞)qχ

using (5.16)

L =θ−1
m0

=
�δ

θfχ,0

∏
p|m0, p�fχ,0
χ(p) �=1

1
1− Fr−1

p

·
∏
p∈J

�

1− Fr−1
p

·�e.(5.31)

where δ = 1, 0 according to whether χ(l) = 1 or not. If χ(l) �= 1 we have

(5.32) χ(θfχ,0) = L(χ−1, 0)(1− χ−1(l))

using (5.6) and the fact that the gk satisfy Euler-system relations.

Lemma 5.11. (Ferrero-Greenberg) If χ(l) = 1 then

(5.33) χ

(
θfχ,0

�

)
= L(χ−1, 0)cl

∑
g∈Gχ

logl(σvl
(gx̃l)) · χ(g)−1

ordwl
(x̃l)

Proof. Consider the l-adic L-function

Ll(χ−1ω, s) = (χχ̂scyclo)(θfχ,0)

where ω is the Teichmueller character, s is a variable in Zl, χ̂cyclo = χcycloω
−1 :

Gml∞ → Z×
l , and we extend continuous characters of Gml∞ to algebra homomor-

phisms Λ → Ql in the usual way. In [33] a formula is given for the derivative
L′
l(χ

−1ω, 0). For a certain l-unit (Gaussian sum) γ1 ∈ L�fχ
one has

L′
l(χ

−1ω, 0) =
d

ds
Ll(χ−1ω, s)

∣∣∣∣
s=0

=
∑

g∈Gfχ/<l>

χ−1(g) logl(σvl
(gγ1)).

On the other hand, Stickelberger’s theorem says that

val(γ1) =
∑

g∈Gfχ/<l>

ordgvl
(γ1) · gvl =

fχ∑
c=1

(c,fχ)=1

c

fχ
· τ−1
c vl

where val is the valuation map normalized for the field Lfχ
. After applying χ we

find

val(γ1) =
fχ∑
c=1

c

fχ
χ−1(c) · vl = −L(χ−1, 0) · vl.

On the one-dimensional Ql(χ)-space OL�fχ
[1l ]

× ⊗Z[G�fχ ] Ql(χ) ∼= OLm
[1l ]⊗A Ql(χ)

we have the two Ql(χ) · vl-valued linear forms β� and val whose ratio can be
computed by evaluating on either the element xl of γ1∑

g∈Gχ
logl(σvl

(gx̃l)) · χ(g)−1

ordwl
(x̃l)

=

∑
g∈Gfχ/<l>

χ−1(g) logl(σvl
(gγ1))

−L(χ−1, 0)
.

Now the function h(s) := (χχ̂scyclo)(�) = (χχ̂scyclo)(1 − γl
n

) also has a first order
zero at s = 0 with derivative h′(0) = − logl(χcyclo(γl

n

)) = −c−1
l and

χ

(
θfχ,0

�

)
=

(χχ̂scyclo)(gfχ,0)
(χχ̂scyclo)(�)

∣∣∣∣∣
s=0

=
L′
l(0, χ

−1ω)
h′(0)

=L(χ−1, 0)cl

∑
g∈Gχ

logl(σvl
(gx̃l)) · χ(g)−1

ordwl
(x̃l)

.
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�

By Lemma 5.7 (�e is mapped to 1) together with (5.30)-(5.33) and (5.28) we
find

φ(L ⊗ 1) =
1

L(χ−1, 0)

∏
p|ml
χ(p) �=1

1
1− χ−1(p)

·
∏
p|ml
χ(p)=1

fp = (L(χ, 0)#)−1
∏
p|ml
E#
p

which is (5.20).

The descent argument for j < 0. In this section we again fix 1 < m �≡ 2 mod 4
and M = h0(Spec(Lm))(j) with j < 0, and we shall prove Conjecture 3 for M and
A = Q[Gm] in a way which is completely parallel to the case j = 0. Theorem 5.2
is the key ingredient and the remaining arguments are computational.

The sequence Mot∞ is the R-dual (with contragredient Gm-action) of the
isomorphism

K1−2j(OLm
)⊗Z R

−ρ∞−−−→
(⊕
τ∈T

C/R · (2πi)1−j
)+

where ρ∞ is the Beilinson regulator map, T = Hom(Lm,C) and the R-dual of this
last space is identified with ker(αM ) = M+

B,R by taking invariants in the Gal(C/R)-
equivariant perfect pairing⊕

τ∈T
R · (2πi)j ×

⊕
τ∈T

C/R · (2πi)1−j →
⊕
τ∈T

C/2πi · R Σ−→ R

induced by multiplication. Note that this pairing identifies the Q-dual of MB =⊕
τ∈T Q · (2πi)j with

⊕
τ∈T Q · (2πi)−j ⊆

⊕
τ∈T C/R · (2πi)1−j . Defining

Y (j) :=

(⊕
τ∈T

Q · (2πi)j
)+

we obtain an identification as in the case j = 0

Ξ(AM)# = Det−1
A (K1−2j(OLm

)⊗Z Q)⊗A DetA Y (−j)

=
∏
χ(−1)

=(−1)j

(K1−2j(OLm
)⊗A Q(χ))−1 ⊗Q(χ) (Y (−j)⊗A Q(χ))×

∏
χ(−1)

=(−1)j+1

Q(χ).

The formulas for L∗(η, 0) in section 5.1 generalize to j ≤ 0 (see [75][Ch.5]).

L(η, j) =− B1−j,η
1− j := −

f−jη
1− j

fη∑
a=1

B1−j(
a

fη
)η(a) ∈ Q(η)

d

ds
L(η, s)|s=j =(−j)!

(
2πi
fη

)j 1
2

fη∑
a=1

Li1−j(e2πia/fη )η(a) if η(−1) = (−1)j

Here Bk is the k-th Bernoulli polynomial and Lik(x) =
∑∞
n=1

xn

nk .
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Theorem 5.12. (Beilinson/Huber-Wildeshaus) For integers f | m, j ≤ 0 there
is an element ξf (j) ∈ K1−2j(OLf

) ⊗Z Q whose image under the regulator map is
given by

−ρ∞(ξf (j)) = (−j)!f−j
∑

a∈(Z/mZ)×
Li1−j(e2πia/f )τ−1

a (σm)

and whose image in H1(Lm,Ql(1−j)) under the étale Chern class map ρetl is given
by

ρetl (ξf (j)) =


 ∑
αlr =ζf

(1− α)⊗ (αf )⊗(−j)



r

Proof. See [46][Cor. 9.6, 9.7]. In the notation of [46] we have

ξf (j) = (−j)!f−jε1−j(ζf ).
In particular ξf (0) = 1− ζf . �

We find that the image of eηξfη
(j) under ρ∞ is [Lm : Lfη

] ·2 ·L′(η−1, j)(2πi)−j ·
σm and hence that Aϑ∞(L∗(AM, 0)−1) = (L∗(AM, 0)−1)#Aϑ∞(1) has components

Aϑ∞(L∗(AM, 0)−1)χ =

{
2 · [Lm : Lfχ

][ξfχ
(j)]−1 ⊗ (2πi)−j · σm χ(−1) = (−1)j(

L(χ, j)#
)−1

χ(−1) = (−1)j+1.

Defining ∆(Lm)(j) = RΓc(Z[ 1
ml ], Tl)

∗[−3] we have isomorphisms

H1(∆(Lm)(j))Ql
∼= H1(OLm

[
1
ml

],Ql(1− j))
ρet

l←−− K1−2j(OLm
)⊗Z Ql

H2(∆(Lm)(j))Ql
∼=
(⊕
τ∈T

Ql(−j)
)+

∼= Y (−j)⊗Q Ql

The isomorphism Aϑl : Ξ(AM)#Ql

∼= DetAl
∆(Lm)(j)Ql

sends Aϑ∞(L∗(AM, 0)−1) to

∏
p|ml

1
1− χ(p)−1p−j

· 2 · [Lm : Lfχ
][ξfχ

(j)]−1 ⊗ ζ⊗−j
l∞ · σm if χ(−1) = (−1)j

(5.34)

∏
p|ml

1
1− χ(p)−1p−j

·
(
L(χ, j)#

)−1
if χ(−1) = (−1)j+1

(5.35)

where ζl∞ is the generator of Ql(1) given by the inverse system (ζln+1)n≥0.

For j ∈ Z we denote by κj : Gml∞ → Λ× the character g 
→ χcyclo(g)jg as well
as the induced ring automorphism κj : Λ → Λ. If there is no risk of confusion we
also denote by κj : Λ→ Al ⊆ Al the composite of κj and the natural projection to
Al or Al.

Lemma 5.13. a) For j ∈ Z there is a natural isomorphism

∆∞ ⊗L
Λ,κj Al ∼= ∆(Lm)(j).
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b) For j ∈ Z the image of an element

u = (un)n≥0 ∈ lim←−
n

H1(OLm0ln
[

1
ml

],Z/lnZ(1)) ∼= U∞
{v|ml} = H1(∆∞)

under the isomorphism H1(∆∞)⊗Λ,κj Al ∼= H1(OLm
[ 1
ml ],Ql(1− j)) is given by

(5.36) TrLm0ln/Lm
(un ∪ ζ⊗−j

ln )n>>0

c) For j ∈ Z the image of an element

s = (sn)n≥0 ∈ lim←−
n

Z/lnZ[Gm0ln ] · σ = Y∞
{v|∞}

under the isomorphism Y∞
{v|∞} ⊗Λ,κj Al ∼= H0(Spec(Lm ⊗ R),Ql(−j)) is given by

(sn ∪ ζ⊗−j
ln )n≥0

Proof. The automorphism κj is the inverse limit of similarly defined auto-
morphisms κj of the rings Λn := Z/lnZ[Gm0ln ]. The sheaf Fn := fn,∗f

∗
nZ/lnZ

(where fn : Spec(OLm0ln
[ 1
ml ]) → Spec(Z[ 1

ml ]) is the natural map) is free of rank
one over Λn with π1(Spec(Z[ 1

ml ]))-action given by the inverse of the natural projec-
tion GQ → Gm0ln . There is a Λn-κ−j-semilinear isomorphism twj : Fn → Fn(j).
Shapiro’s lemma gives a commutative diagram of isomorphisms

(5.37)

RΓc(Z[ 1
ml ],Fn)

twj

−−−−→ RΓc(Z[ 1
ml ],Fn(j))� �

RΓc(OLm0ln
[ 1
ml ],Z/l

nZ)
∪ζ⊗j

ln−−−−→ RΓc(OLm0ln
[ 1
ml ],Z/l

nZ(j))

where the horizontal arrows are Λn-κ−j-semilinear. Taking the Z/lnZ-dual of the
lower row (with contragredient Gm0ln-action) we obtain a # ◦ κ−j ◦ # = κj-
semilinear isomorphism

RΓc(OLm0ln
[

1
ml

],Z/lnZ(j))∗[−3]→ RΓc(OLm0ln
[

1
ml

],Z/lnZ)∗[−3].

After passage to the limit this gives a κj-semilinear isomorphism ∆∞ ∼= ∆∞(j), i.e.
a Λ-linear isomorphism ∆∞ ⊗Λ,κj Λ ∼= ∆∞(j). Part a) follows by tensoring over Λ
with Al. The Z/lnZ-dual of the H2 of the inverse map in the lower row in (5.37)
coincides with

H1(OLm0ln
[

1
ml

],Z/lnZ(1− j))
∪ζ⊗−j

ln←−−−− H1(OLm0ln
[

1
ml

],Z/lnZ(1))

by Poitou-Tate duality. This gives b). Similarly to the lower row in (5.37) we have
a κ−j-semilinear map

Fc=1
n = H0(Lm0ln ⊗ R,Z/lnZ)

∪ζ⊗j
ln−−−→ H0(Lm0ln ⊗ R,Z/lnZ(j)) = Fn(j)c=1,

the Z/lnZ-dual of which is the κj-semilinear isomorphism Λn · σ ← Λn · σ ∪ ζ⊗−j
ln

given by cup product with ζ⊗−j
ln . Passing to the limit and tensoring over Λ with

Al we deduce c). �
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By Lemma 5.13 a) we have an isomorphism of perfect complexes of Al-modules

(DetΛ ∆∞)⊗Λ,κj Al ∼= DetAl
∆(Lm)(j)

under which L ⊗ 1 is an Al-basis of the right hand side by Theorem 5.2. For any
χ ∈ ĜQl

m we have the corresponding ring homomorphism

χκj : Λ→ Ql(χ)

whose kernel we denote by qχ,j . This is a regular prime of Λ and we again apply
Lemma 5.7 with R = Λqχ,j

.
If χ(−1) = (−1)j+1 then ψqχ,j

(−1) = χ(−1)ω(−1)j = −1 i.e. ψqχ,j
is odd.

In this case ∆∞
qχ,j

is acyclic (there are no trivial zeros at the character χκj) and
Lemma 5.7 applies with βi = b = 1. The image of L in (DetΛ ∆∞)qχ,j

is

L = θ−1
m0

= θ−1
fχ,0

∏
p|m0,p�fχ,0

1
1− Fr−1

p

and the image of L ⊗ 1 is

χκj(L) =
∏
p|m0

1
1− χ(p)−1p−j

Ll(χ−1ω1−j , j)−1(5.38)

=
∏
p|ml

1
1− χ(p)−1p−j

L(χ−1, j)−1

where the last equality follows from (5.7). This value agrees with (5.35) which
finishes the proof of Conjecture 3 in the case χ(−1) = (−1)j+1.

If χ(−1) = (−1)j then the character ψqχ,j
is even and in order to apply Lemma

5.7 with R = Λqχ,j
we must describe the bases β1 and β2 in this case. By Lemma

5.13 b) the image of ηfχ,0 ∈ H1(∆∞)qχ,j
in M1/� ∼= H1(OLm

[ 1
ml ],Ql(1 − j)) is

given by the element described in Theorem 5.12, in particular it is nonzero. Hence
β1 := ηfχ,0 is a Λqχ,j

-basis of M1, and by Lemma 5.4 the image of σ is then a basis
of M2 = H2(∆∞)qχ,j

. By Lemma 5.13 c) the image of σ in M2/� is ζ⊗−j
l∞ · σm.

The computation showing that L ⊗ 1 equals the element in (5.34) is now exactly
the same as in the case j = 0, χ even, χ(l) �= 1, J = ∅.

5.2. CM elliptic curves and the main conjecture for imaginary qua-
dratic fields. Let K be an imaginary quadratic field, and ψ a Hecke character of
K of infinity type (1, 0) (such a ψ always exists; see [77] for a nice discussion of
such characters with minimal conductor and field of values). The field of values of
ψ is a CM-field and we denote by ψ̄ the conjugate character. Any algebraic Hecke
character of K is of the form Ψ = ψkψ̄jχ where j, k ∈ Z and χ is a finite order
(Dirichlet) character of K.

The computations of the previous section should have analogues for motives
M(Ψ) associated to any algebraic Hecke character Ψ of K, and all primes l but this
has not been worked out in all cases. The analogue of the Iwasawa main conjecture
(Theorem 5.2 above) is actually simpler since there is no distinction between even
and odd characters: The l-adic L-function L is just given by an appropriate norm
compatible system ηm0 of elliptic units. The method of Euler systems allows to
prove this main conjecture (for l not dividing the number of roots so unity in the
Hilbert class field of K a proof is given in [66]), and the analogue of the theorem
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of Ferrero and Washington on the vanishing of the µ-invariant is also known if l is
split in K/Q [38].

The critical case. Recall that a motive M is called critical if ker(αM ) =
coker(αM ) = 0. If the weight of M is different from −1 Conjecture Mot∞ then
implies that Hi

f (M) = Hi
f (M

∗(1)) = 0 for all i. If M(Ψ) is critical and of negative
weight (modulo replacing Ψ by Ψ̄ this is the range k < 0 and 0 ≤ j < −k) the
relation of ηm0 to the leading coefficient L∗(M(Ψ)) is given by an explicit reci-
procity law due to Wiles (for k = −1, j = 0 [78]), Kato (for j = 0 [49][Thm.
2.1.7]) and Tsuji (in general [74]). Proofs of Conjecture 3 (for certain critical Ψ
and certain l and A) can be found in [66][Thm. 11.1], [43], [42], [26], [24]. We quote
here one result from [24] dealing with the classical Birch and Swinnerton-Dyer case
k = −1, j = 0 but with emphasis on non-maximal orders.

Theorem 5.14. (Colwell) Let F/K be an abelian extension and E/F an elliptic
curve with CM by K and so that the Weil-Restriction B = ResFK(E) is of CM-
type. Assume rankZ E(F ) = 0. Then Conjecture 3 holds for M = h1(B)(1),
A = EndK(B) and l > 3 any prime number not dividing the class number of K.

Note here that EndF (E) may be any order in K and that A is usually a non-
maximal order in A = EndK(B)⊗Q.

The non-critical case. Here our knowledge is incomplete in one basic aspect:
The Q-space H1

f (M(Ψ)) is not known to be finite dimensional unless M(Ψ) is a
direct summand of a motive discussed in our Example a) (i.e. k = j and we are
dealing with M = h0(Spec(L))(−j) where L/K is an abelian extension). One
actually works with an explicit subspace of H1

f (M(Ψ)) of the expected dimension
(i.e. such that Conjecture Mot∞ holds). The construction of this space is due to
Deninger [29] and the computation (in certain cases) of the étale regulator of its
elements due to Kings. Conjecture Motl is not known for this space in all cases
(this is equivalent to the vanishing of H2(Z[ 1

ml ],Ml) discussed in [53]). To illustrate
we quote the main result from [53] corresponding to k < −1, j = k + 1.

Theorem 5.15. (Kings) Let E/K be an elliptic curve with CM by OK . Then
Conjecture 3 holds for M = h1(E)(j) where j ≥ 2, A = OK and l > 3 is prime to
the conductor of E and such that H2(Z[ 1

ml ],Ml) = 0.

It is quite likely that the arguments of Kings can be used to prove Conjecture
3 for M = h1(E)(j) with j ≤ 0 without any assumption on a vanishing of H2. For
a generalisation of Kings’ method to some other Hecke characters of K see [3].

5.3. Adjoint motives of modular forms. Let f be a holomorphic newform
on the upper half plane (of weight k ≥ 2, level N and some character), denote
by Ef the number field generated by the Fourier-coefficients of f and by M(f) the
motive associated to f (of rank 2 over Ef ). Let Sf be the finite set of places λ of Ef
which either divide Nk! or such that the GF -representation on Tλ/λ is absolutely
reducible, where F is the quadratic subfield of Q(ζl), l is the rational prime below
λ, and Tλ ⊂M(f)λ is a GQ-stable lattice.

Theorem 5.16. (Diamond, Flach, Guo [31]) Let M = Ad0M(f) be the adjoint
motive of M(f) consisting of all endomorphisms of trace 0 in Hom(M(f),M(f)).
Then conjecture 3 holds for M or M(1), A = OEf

and any prime λ /∈ Sf .
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The proof is rather different from the previous examples as it is not based on
either Euler systems or an Iwasawa Main Conjecture. The key ingredient is the
Taylor-Wiles method developed to show modularity of elliptic curves over Q.

For an integer N let ΣN be the set of newforms of weight 2, level N and trivial
character. For the adjoint of the motiveM := h1(X0(N)) ∼=

∏
f∈ΣN

M(f) Theorem
5.16 implies Conjecture 3 with respect to the maximal order A =

∏
f∈ΣN

OEf
in

the algebra A =
∏
f∈ΣN

Ef ∼= End(J0(N))⊗Q. This can be refined as follows.

Theorem 5.17. (Qiang Lin [58]) Let N be a prime number, M = Ad0h1(X0(N))
and TN the integral Hecke algebra of weight 2 and level N (which is known to co-
incide with End(Jac(X0(N)))). Then Conjecture 3 holds for M or M(1), A = TN
and primes l so that λ /∈ Sf for all λ | l and all f ∈ ΣN .

This is proven by an explicit algebraic computation using Theorem 5.16 and
the fact that A[12 ] is a local complete intersection ring (which follows from the
Taylor-Wiles method).

5.4. Motives of modular forms. The results for motives M(f) associated
to newforms are less complete than those discussed in the previous sections. For
example, Conjecture 3 includes the conjecture of Birch and Swinnerton-Dyer (BSD)
for (modular) elliptic curves E over Q. In the last two decades there has been quite
some progress regarding this conjecture in the case ords=1 L(E, s) ≤ 1 (but none
for higher vanishing order). Both the Euler system of Heegner points, discovered by
Kolyvagin [55], and the Euler system of K2-elements, discovered by Kato [50], allow
to prove upper bounds for the Tate-Shafarevich group which are related to L∗(E, 1).
Sometimes this suffices to prove equality, either because the upper bound is 1, as
it is for all but finitely many l, or because it can be achieved by the construction
of elements in the Tate-Shafarevich group (for example using the idea of visibility
due to Mazur and Cremona [25]). This allows to verify the l-primary part of the
BSD-conjecture for many curves E and primes l (but eventually only for E in a
finite list of examples). The paper [2] contains an extension of visibility arguments
to modular abelian varieties of dimension > 1, corresponding to weight 2 forms f
with Ef �= Q.

We remark at this point that a strategy for proving Kato’s Iwasawa main con-
jecture [50][Conj. 17.6] for the cyclotomic deformation of motives M(f) at ordinary
primes l has been outlined recently by Skinner and Urban. This main conjecture
is an analogue of Theorem 5.2, and descent computations along the lines of those
given after Lemma 5.7 allow to deduce the l-part of the conjecture of Birch and
Swinnerton-Dyer if ords=1 L(E, s) ≤ 1. These computations are straightforward if
ords=1 L(E, s) = 0 but require an l-adic analogue of the Gross-Zagier formula due
to Perrin-Riou [61] if ords=1 L(E, s) = 1.

In a similar vein, Bertolini and Darmon [8] study the main conjecture for the
anticyclotomic deformation of motives M(f) (at least if f is attached to an el-
liptic curve E) with respect to an auxiliary imaginary quadratic field K and an
ordinary prime l. This line of research might eventually lead to cases of the
Birch and Swinnerton-Dyer conjecture for E over ring class fields H of K (and
A = Z[Gal(H/K)]).
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The motive M = h1(X0(N))(1). A reader familiar with the usual formulation
of the BSD-conjecture might not recognize it in Conjecture 3. In this section we
illustrate how to go back and forth between the two formulations in the example
M = h1(X0(N))(1), N prime, A = TN := End(J0(N)) (the adjoint of which was
considered in Theorem 5.17). We hope that such a reformulation can serve as a
basis for numerical checks of the equivariant conjecture over TN , in the spirit of
the paper [2] by Stein and Agashe.

In any case the link between Conjecture 3 and its classical counterpart (i.e.
the formulation originally used by Bloch and Kato in [10]) is given by an integral
version

(5.39) RΓc(Z[
1
S

], Tl)→ RΓf (Q, Tl)→
⊕
p∈S

RΓf (Qp, Tl)

of the exact triangle (3.1). One has to ensure that all terms are perfect complexes
of Al-modules and there may not be a natural (or any) way to do so. If A = Z
however, or more generally if A is maximal and hence a product of Dedekind rings,
one can simply define RΓf (Qp, Tl) by prescribing its cohomology to be the group
H1
f (Qp, Tl) ⊆ H1

f (Qp,Ml) defined by Bloch and Kato in [10] (see the end of section
1.5 in [14]).

Coming back to our example where A = TN we first recall Mazur’s fundamental
result [60] that for l �= 2 the module Tl := H1(X0(N)Q̄,Zl(1)) is free of rank 2 over
TN,l. In particular the projectivity condition before Conjecture 3 is satisfied. Mazur
also shows that Dl := H1

dR(X0(N)/Zl)(1) and Fil0Dl = H0(X0(N)/Zl
,Ω1

X0(N)/Zl
)

are free of rank 2, resp. 1 over TN,l. We shall only be able to exploit this in the
”good reduction case” where l �= N although the following arguments might be
pushed to l = N . We have Dl := Dcris(Ml) = Ddr(Ml) and by [10][Lemma 4.5]
there is a quasi-isomorphism (given by the vertical map)

Fil0Dl
1−Frp−−−−→ Dl� �

Dl
(1−Frp,π)−−−−−−→ Dl ⊕Dl/Fil0Dl.

The top row contains an obvious integral complex, and we may define a perfect
TN,l-complex RΓf (Qp, Tl) as

RΓf (Qp, Tl) =


T

Ip

l

1−Frp−−−−→ T
Ip

l l �= p

Fil0Dl
1−Frp−−−−→ Dl l = p.

If we then define the complex RΓf (Q, Tl) by the exact triangle before (3.1) its
cohomology is given as follows.

Lemma 5.18. If X(J0(N)) is finite then

H0
f (Q, Tl) = 0, H3

f (Q, Tl) ∼= HomZ(J0(N)(Q)l∞ ,Ql/Zl)

and there are exact sequences of TN,l-modules

0→ H1
f (Q, Tl)→ J0(N)(Q)⊗Z Zl → ΦN,l∞ → H2

f (Q, Tl)→ H2
f (Q, Tl)

BK → 0

0→X(J0(N))l∞ → H2
f (F, T )BK → HomZ(J0(N)(Q),Zl)→ 0
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where ΦN is the group of components of the reduction of the Neron model of J0(N)
in characteristic N .

Proof. See the computations in [14][(1.35)-(1.37)] �

For simplicity we now put ourselves in a rank zero situation. The winding
quotient π : J0(N)→ J is an abelian variety over Q, maximal (up to isogeny) with
respect to the property that L(h1(J), 1) �= 0. More precisely, if e ∈ H1(X0(N),Q)+

is the image of the path from i∞ to 0 in the upper half plane, Ie ⊆ TN is the
annihilator of e and

I = AnnTN
(AnnTN

(Ie)) ⊇ Ie

is the saturation of Ie then J = J0(N)/IeJ0(N) = J0(N)/IJ0(N) and

H1(J(C),Z) ∼= H1(J0(N)(C),Z)/I ·H1(J0(N)(C),Z)

(after inverting 2). In particular, the homology of J is locally free (away from 2)
over T := TN/I and the conditions before Conjecture 3 are satisfied for J and
A = T and l �= 2. The usual BSD-conjecture for J is studied for example in [1] and
we shall make precise the conjecture over A = T.

Mazur [60] shows that TN [12 ] is Gorenstein, and we shall henceforth assume the
same for T[12 ] (for many N it will simply be the case that I[12 ] = (1+w

2 ) where w
is the Atkin Lehner involution, and T[12 ] will be a direct factor of TN [12 ] and hence
Gorenstein). Then the homology of the dual abelian variety Ĵ is also locally free
over T. Denoting Neron models by /Z, it is known that the map

π∗ : H0(J/Z,Ω1
J/Z)→ H0(J0(N)/Z,Ω1

J0(N)/Z)[Ie]

is injective and has 2-torsion cokernel (the cokernel may be regarded as a generalized
Manin constant attach to J). Dualizing, we find that H1(Ĵ/Zl

,O) is free of rank 1
over Tl for l �= 2 and so this also holds for H0(J/Zl

,Ω1
J/Zl

) and H1
dR(J/Zl) by our

Gorenstein assumption. In summary, all of the above considerations apply to J or
Ĵ in place of J0(N).

For M = h1(Ĵ)(1) we have A := TQ-isomorphisms

MB = H1(Ĵ(C), 2πi ·Q) ∼= H1(J(C),Q)∗ ∼= H1(J(C),Q)

MdR/Fil0MdR
∼= H1(Ĵ ,OĴ ) ∼= H0(J,Ω1

J/Q)∗

Ξ(AM) = (H1(J(C),Q)+)−1 ⊗A H0(J,Ω1
J/Q)∗

where ∗ denotes the Q-dual. The period isomorphism sends a path γ to the linear
form ω 
→

∫
γ
ω on differentials, and αM : H1(J(C),R)+ ∼= H0(J,Ω1

J/Q)∗R is an
isomorphism. By a well known fact in the theory of modular forms the Z-linear
form a1 ∈ H0(J0(N)/Z,Ω1

J0(N)/Z)∗ given by

H0(J0(N)/Z,Ω1
J0(N)/Z) ∼= S2(Γ0(N),Z) � g 
→ a1(g)

is in fact a TN -basis of H0(J0(N)/Z,Ω1
J0(N)/Z)∗ and hence its image is a T-basis of

H0(J0(N)/Z,Ω1
J0(N)/Z)∗/I ∼= H0(J/Z,Ω1

J/Z)∗

away from 2.

Lemma 5.19. With the notation introduced above we have

Aϑ
−1
∞ (L∗(AM, 0)−1) = e−1 ⊗ a1 ∈ Ξ(AM)



THE EQUIVARIANT TAMAGAWA NUMBER CONJECTURE: A SURVEY 35

Proof. By definition of Aϑ∞ we have Aϑ∞(e−1 ⊗ αM (e)) = 1. We can write
αM (e) = t · a1 with t = (tf ) ∈ TR

∼=
∏
f∈Σ′

N
R where Σ′

N is the subset of forms in
ΣN corresponding to J . Applying this identity to a newform f ∈ Σ′

N we find

L(f, 1) =
∫ 0

i∞
f(q)

dq

q
=
∫
e

ωf = αM (e)(ωf ) = ta1(ωf ) = tfa1(f) = tf .

Hence t = L(AM, 0) = L∗(AM, 0) and Aϑ∞(e−1 ⊗ a1) = L∗(AM, 0)−1. �

One verifies easily that a1 is in fact a Tl-basis of detTl
RΓf (Qp, Tl) as defined

above. However, e need not be a Tl-basis ofH1(J(C),Zl)+. So let b be the invertible
fractional T-ideal so that

(5.40) b · e = H1(J(C),Z)+

away from l = 2. The triangle (5.39) induces an isomorphism

DetTl
RΓc(Z[

1
S

], Tl)

∼=DetTl
RΓf (Q, Tl)⊗Det−1

Tl
RΓf (Ql, Tl)⊗Det−1

Tl
H1(J(C),Z)+

∼=DetTl
RΓf (Q, Tl)⊗ b−1a1 ⊗ e−1.

Now recall that since the rank of J(Q) is zero RΓf (Q, Tl) is a (perfect) Tl-complex
with torsion cohomology and hence

DetTl
RΓf (Q, Tl) ⊆ DetTQl

RΓf (Q,Ml) ∼= TQl

identfies with a fractional ideal. The statement that e−1 ⊗ a1 is a basis of the
invertible Tl-module DetTl

RΓc(Z[ 1
S ], Tl) is equivalent to

(5.41) DetTl
RΓf (Q, Tl) = bl.

Summarizing we have

Proposition 5.1. Let N be a prime number and J the winding quotient for
J0(N). For any prime l �= 2, N there exists a perfect complex RΓf (Q, Tl) of Tl-
modules with cohomology in degrees 1, 2, 3 given by the exact sequence

0 → H1
f (Q, Tl) → J(Q)l∞ → Φl∞ → H2

f (Q, Tl) → X(J/Q)l∞ → 0

and H3
f (Q, Tl) ∼= Ĵ(Q)l∞ . Moreover, the l-primary part of Conjecture 3 for M =

h1(Ĵ)(1) and A = T is equivalent to (5.41) where b is defined in (5.40).

Taking norms from T to Z we find that the usual BSD-conjecture for J is
equivalent to the statement

|X(J/Q)||Φ|
|J(Q)||Ĵ(Q)|

= NT/Z(b)−1

up to powers of 2 and N . The right hand side is the index of the Z-lattice T · e in
the lattice H1(J(C),Z)+ (in the generalized sense since the two are not contained
in each other). We therefore (almost) recover Agashe’s formula [1][Eq. (1)]. The
difference is that we work with the quotient H1(J(C),Z) of H1(J0(N)(C),Z) rather
than the submodule He used in [1]. So there is no analog of the term H+/(IeH)+ +
H+
e in our formula. Moreover, the factor cM (resp. n) in the left hand side of [1][Eq.

(1)] does not occur in our formula because we disregard l = 2 (resp. we do not
introduce the Eisenstein ideal into our computation).
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It is expected that the only primes l dividing |J(Q)|, |Ĵ(Q)| and |Φ| are those
dividing the numerator n of (N − 1)/12. Assuming this and l � n we find that
X(J/Q)l∞ is of finite projective dimension over Tl (and its fitting ideal should
be b−1

l ). It would be interesting to look for examples of pairs (N, l) where bl is
nontrivial, Tl is nonmaximal and l � n. In such a case ”being of finite projective
dimension” would ascertain a nontrivial module theoretic property of X(J/Q).

Motives M(f)(n) for f of weight k. In the critical range 1 ≤ n ≤ k − 1
Conjecture 2 (apart from the vanishing of H1

f (M)) is known and the results of Kato
[50] yield upper bounds for the Selmer group similar to the Birch and Swinnerton-
Dyer case discussed above. If k is even and the sign of the functional equation
of L(f, s) is −1 a limit formula for L′(f, k2 ) has been proven by Zhang in [81],
generalizing the Gross-Zagier formula in the case k = 2.

In the noncritical range n ≥ k one has results towards Conjecture 2 (the Beilin-
son conjecture), involving the construction of a subspace of H1

f (M) whose image
under the regulator is related to L(f, n) (see [68] for k = 2 and n ≥ 2. The case
n ≥ k > 2 has been announced in [30] but has not yet appeared in print). For
progress towards computation of the étale regulator of the elements constructed in
[30] see [37].

5.5. Totally real fields and assorted results. The results of sections 5.1,
5.4 and 5.3 all have partial analogues for a totally real base field F in place of Q.
In this section we fix such a field F .

Abelian extensions of F . The main conjecture of Iwasawa theory, proved by
Wiles [79], together with the vanishing of the µ-invariant for totally real fields, very
recently shown by Barsky [4], yields the following result. For a CM field L we
denote by c the unique complex conjugation of L.

Theorem 5.20. (Wiles/Barsky) Let L/F be an abelian extension with group
G and so that L is a CM-field. For j < 0 let M− be the direct summand of
h0(Spec(L))(j) cut out by the rational idempotent associated to (1 + (−1)jc)/2 of
Q[G]. Then conjecture 3 holds for M−, l �= 2, and A = Z[G]/(1 − (−1)jc) (one
also needs to assume that the ray class field of F of conductor � is a CM field to
satisfy hypothesis H-0 of [4]).

Proof. (Sketch) The l-adic L-function interpolating the (critical) values of
L-functions of finite order Hecke characters of F is given by an inverse limit of
Stickelberger elements (as in [80][Eq. (1)]), similar to the elements θm0 discussed
in section 5.1. However, there is no analogue of cyclotomic units (unless F/Q
is abelian), and the generalization of Theorem 5.2 can only can be proven for
∆∞ ⊗L

Λ Λ/(c + 1). The analogue of the odd part of Lemma 5.4 is [79][Thm. 1.2,
Thm. 1.4], and the vanishing of the µ-invariant of θm0 and hence of P∞ is proven
recently in [4]. The descent arguments are then identical to those given in section
5.1. �

Remark. For j = 0 and (odd) characters χ such that χ(l) = 1 there is no
analogue of Lemma 5.11 and therefore a descent along the lines indicated above is
not possible. With the results of [80][Thm. 1.3] one might be able to deduce some
cases of Conjecture 3 for motives h0(SpecL)(χ) cut out by rational characters χ of
G and A a maximal order in Q(χ).
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Note that the conditions j < 0 and χ(c) = (−1)j+1 ensure that M(χ) is not
only critical but that in fact all the six Q-spaces involved in the definition of Ξ(M)
vanish. This is the simplest possible situation of the Tamagawa number conjecture:
the L-value is an algebraic number (in the coefficient field A).

Hilbert modular forms. Shouwu Zhang has recently generalized the formula
of Gross-Zagier from X0(N) to arbitrary Shimura curves over totally real fields
F [82]. One therefore has a generalization of the Euler system of Heegner points
from motives M(f) discussed in section 5.4 to motives attached to Hilbert modular
forms f of parallel weight 2 with all the ensuing consequences. The work of Zhang
probably represents the most significant advance concerning Conjectures 1-2 in
recent years. For illustration we quote one result from [82].

Theorem 5.21. (Zhang) Let f be a Hilbert modular newform over F , of parallel
weight 2 and level N . Assume that either [F : Q] is odd or that ordv(N) = 1 for
one place of F , and let A(f) be the abelian variety associated to f . Finally assume
that ords=1 L(f, s) ≤ 1. Then Conjectures 1 and 2 hold for M = h1(A(f))(1) and
A = Ef , the field generated by the Hecke eigenvalues of f . Moreover, X(A(f)) is
finite or, equivalently, Conjecture Motl holds for all l.

For more details we refer to the papers by Zhang [82], [83] and Tian [73]. We
remark that an analogue for Kato’s Euler system is still missing over totally real
fields (and may be not expected).

Adjoint motives of Hilbert modular forms. The Taylor-Wiles method has been
partially generalized to totally real fields [36] and may be expected to give instances
of Conjecture 3, analogous to those in section 5.3. To a certain extent this has been
worked out in the recent thesis of Dimitrov [32] (without the precise relation to a
motivic period, however). In a slightly different direction, using Fujiwara’s work
for Hilbert modular forms of CM-type, Hida [44] has recently shown many cases of
the anticyclotomic main conjecture for CM-fields.

Hecke Characters. Conjectures 1 and 2 are known for critical motives M(Ψ)
where Ψ is any Hecke character of any number field [9]. Using the work of Hida
[44] mentioned in the previous paragraph it is quite likely that one can also obtain
many instances of Conjecture 3 for such motives (if Ψ is a Hecke character of a
CM-field). In the noncritical range Conjectures 1 and 2 are known for Tate motives
h0(Spec(L))(j) over any number field L and A = Q [12].

We refer to Ramakrishnan’s comprehensive survey article [64] for the state of
affairs with regard to Conjectures 1 and 2 circa 1989, before Conjecture 3 was
formulated.

Part 3. Determinant Functors: Some Algebra

In order to formulate an equivariant Tamagawa Number Conjecture over a not
necessarily commutative semisimple algebra A we need to discuss some algebraic
preliminairies. Recall that for a commutative ring R and finitely generated pro-
jective R-module P , the rank of P is a locally constant integer valued function
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rankR(P ) ∈ H0(Spec(R),Z). The determinant of P is the invertible R-module

det
R

(P ) :=
rankR(P )∧

P.

A short exact sequence
0→ P1 → P2 → P3 → 0

induces a (functorial) isomorphism

(5.42) det
R

(P2) ∼= det
R

(P1)⊗ det
R

(P3).

If P2 = P1 ⊕ P3, and one does not specify which of P1 and P3 one views as the
submodule and which as the quotient, there is a sign ambiguity in the isomorphism
(5.42) (if the tensor product of invertible modules is endowed with its usual com-
mutativity isomorphism x⊗ y 
→ y ⊗ x). In order to avoid such ambiguity one has
to retain the rank information and view the determinant as a functor

DetR : (PrMod(R), is)→ Inv(R), P 
→ DetR(P ) := (det
R

(P ), rankR(P ))

from the category of finitely generated projective R-modules PrMod(R), and iso-
morphism of such, to the category Inv(R) of graded invertible R-modules, and
isomorphisms of such. The monoidal category Inv(R) has a modified commuta-
tivity constraint involving a sign depending on the grading (see [16][2.5] for more
details). The functor DetR can be extended to perfect complexes and isomorphisms
of such, and there is an isomorphism (5.42) for short exact sequences of complexes.
All computations in the last section are understood to be performed with Det rather
than det. For example, the source of the map ϑ∞ is really the graded module (R, 0).

We now indicate how a slightly more abstract point of view on the determinant
functor leads to its generalization to non-commutative rings.

The category Inv(R) is an example of a so called Picard category:

• All morphisms are isomorphism.
• There is a bifunctor (L,M) 
→ L �M with unit object 1, inverses, asso-

ciativity and commutativity constraint.

Definition. Let R be any ring. A determinant functor is a Picard
category P, a functor D : (PrMod(R), is) → P, and functorial isomorphisms
D(P2) ∼= D(P1) � D(P3) for short exact sequences, satisfying conditions as in-
dicated in [16][2.3].

Theorem 5.22. (Deligne, [28]) For any ring R there is a universal determinant
functor

DR : (PrMod(R), is)→ V (R).

V (R) is called the category of virtual objects of R.

This is a categorical version of the Grothendieck group K0(R). Indeed, any
Picard category P gives rise to two abelian groups π0(P) and π1(P), the group of



THE EQUIVARIANT TAMAGAWA NUMBER CONJECTURE: A SURVEY 39

isomorphism classes of objects of P with product induced by �, and the automor-
phism group of the unit object 1 (or any other object). Deligne also shows that
DR induces isomorphisms

K0(R) ∼−→ π0(V (R)) :=
{ Isomorphism classes of objects

with product induced by �
K1(R) ∼−→ π1(V (R)) := AutV (R)(1)

If R is commutative we have a (monoidal) functor V (R) → Inv(R) by univer-
sality. This functor induces (split) surjections

K0(R) � Pic(R)⊕H0(Spec(R),Z) = π0(Inv(R))

K1(R) � R× = π1(Inv(R))

and V (R) → Inv(R) is an equivalence of categories if and only if both maps are
isomorphisms. For a general commutative ring R this is rarely the case but it is true
if R is a product of local rings. Examples are the rings R = A,Al := AQl

,Al, AR

considered in the previous section.

6. Noncommutative Coefficients

In order to formulate Conjectures 1-3 in the commutative case it was neces-
sary to take determinants over R = A,Al,Al, AR, and for these rings we have an
equivalence of categories V (R) ∼= Inv(R). This suggests that the categories V (R)
can be used to generalize Conjectures 1-3 to motives M with an action of an arbi-
trary (semisimple) algebra A, and Z-orders A ⊆ A so that there exists a projective,
GQ-stable Al-lattice Tl ⊆Ml. This is indeed the case. More specifically:

• Ξ(AM) is an object of V (A).
• Aϑ∞ : 1V (AR)

∼= Ξ(AM) ⊗A AR is an isomorphism in V (AR). Here the
tensor product V ⊗R R′ for V an object of V (R) and R → R′ any ring
extension has to be understood as the monoidal functor

−⊗R R′ : V (R)→ V (R′)

induced by the exact functor

−⊗R R′ : PrMod(R)→ PrMod(R′)

and the universal property of V (R).
• DAl

(RΓc(Z[ 1
S ], Tl)) is an object of V (Al).

• Aϑl : Ξ(M) ⊗A Al ∼= DAl
(RΓc(Z[ 1

S ], Tl)) ⊗Al
Al is an isomorphism in

V (Al).
An A-equivariant L-function L(AM, s) can be defined as a meromorphic func-

tion with values in the center ζ(AC) of AC [16][Sec. 4]. Its vanishing order can be
viewed as a locally constant function

r(AM) ∈ H0(Spec(ζ(AR),Z)

and for any finitely generated A-module P we define dimA P ∈ H0(Spec(ζ(A),Z)
as its reduced rank ([16][2.6]).

Conjecture 1 (Final Version):

r(AM) = dimAH
1
f (M

∗(1))− dimAH
0
f (M

∗(1))
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The leading coefficient L∗(AM) of L(AM, s) is a unit in ζ(AR). There is a
reduced norm map

AutV (AR)(1) = K1(AR) nr−→ ζ(AR)×

which is injective but not necessarily surjective (in the case where AR has quater-
nionic Wedderburn components the cokernel of nr is a group of exponent 2). One
may pick µ ∈ ζ(A)× so that

µL∗(AM) = nr(Lµ,R)

for a (unique) Lµ,R ∈ K1(AR). Then the following conjecture is independent of the
choice of µ.

Conjecture 2 (Final Version): The composite morphism

1V (AR)

L−1
µ,R−−−→ 1V (AR)

Aϑ∞−−−→ Ξ(AM)⊗A AR

in V (AR) is the image of a morphism 1V (A)

L−1
µ−−−→ Ξ(AM) in V (A) under the scalar

extension functor −⊗A AR.

Now recall that for any prime number l the reduced norm map nrl : K1(Al)→
ζ(Al)× is an isomorphism so that there is a unique element µl ∈ K1(Al) with
nrl(µl) = µ. Assuming Conjecture 2, the morphism

L−1
l : 1V (Al)

µl−→ 1V (Al)

L−1
µ ⊗AAl−−−−−−→ Ξ(AM)⊗A Al

is independent of the choice of µ.

Conjecture 3 (Final Version): The composite morphism

1V (Al)

L−1
l−−−→ Ξ(AM)⊗A Al Aϑl−−→ DAl

(RΓc(Z[
1
S

], Tl))⊗Al
Al

in V (Al) is the image of a morphism 1V (Al) → DAl
(RΓc(Z[ 1

S ], Tl)) in V (Al) under
the scalar extension functor −⊗Al

Al.

This conjecture is only of interest for non-maximal orders A, in the sense that it
is implied by Conjecture 3 for commutative coefficients (for certain motives related
to M) if A is maximal [16][Prop. 4.2].

A Reformulation. Let V (Al,Ql) denote the Picard category whose objects
are pairs (V, τ) where V is an object of V (Al) and τ : V ⊗Al

Al ∼= 1V (Al) is an
isomorphism. Then π0(V (Al,Ql)) is the usual relative K0(Al,Ql) [16][Prop. 2.5]
and the object DAl

(RΓc(Z[ 1
S ], Tl)), together with the map in Conjecture 3 defines

a class TΩ(M,A)l ∈ K0(Al,Ql). Conjecture 3 is equivalent to the vanishing

TΩ(M,A)l = 0

inK0(Al,Ql). Moreover, as shown in [16][Sec. 3], one can define a class TΩ(M,A) ∈
K0(A,R) so that Conjecture 2 holds if and only if

TΩ(M,A) ∈ K0(A,Q) ⊆ K0(A,R).

If this is the case then TΩ(M,A)l coincides with the l-component of TΩ(M,A)
under the decomposition K0(A,Q) ∼=

⊕
lK0(Al,Ql).
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7. The Stark Conjectures

There is only one class of examples where Conjecture 3 with noncommutative
coefficients has been considered so far, essentially those of our Example a) with
j ≤ 0. Traditionally the motivation in this work is to investigate the Z[G]-structure
of the unit group O×

L (or of K1−2j(OL) for j < 0 [14], [23]).
The following theorem indicates how previous work is implied by Conjecture 3.

Theorem 7.1. Let L/K be a Galois extension of number fields with group
G and put M = h0(Spec(L)), A = Q[G]. Denote by M a maximal order of A
containing Z[G].

a) Conjecture 1 is true.
b) Conjecture 2 is equivalent to Stark’s Conjecture as given in [72][Ch. I,

Conj. 5.1].
c) Conjecture 3 for A = M (and all l) is equivalent to the strong Stark

Conjecture as formulated by Chinburg [20][Conj. 2.2].
d) Conjecture 3 for A = Z[G] (and all l) implies Chinburg’s conjecture [21]

ω(L/K) + Ω(L/K, 3) = 0.

Proof. We refer to [17] for details of this theorem. The key fact is the existence
of a perfect complex of Z[G]-modules Ψ which underlies both RΓc(Z[ 1

S ], Tl) and
Ξ(AM), and which is quasi-isomorphic to a complex used in Chinburg’s work (a so
called Tate-sequence). The proof of this quasi-isomorphism is rather involved and
given in [15]. The implication in d) follows because the image of TΩ(M,A) under
the natural map K0(Z[G],R)→ K0(Z[G]) is ω(L/K) + Ω(L/K, 3). �

The supply of known cases of Conjecture 3 for M = h0(Spec(L)) and noncom-
mutative A = Z[G] is rather scarce.

Theorem 7.2. (Burns-Flach/Chinburg) Let l be any rational prime such that
l ≡ 1 mod 12 and also

(
l
7

)
= −

(
l
5

)
= 1. There is a unique extension L/Q with

Galois group the quaternion group Q8 of order 8, ramified precisely at {3, 5, 7, l,∞}
and containing Q(

√
21,
√

5) [22][Prop. 4.1.3]. Then Conjecture 3 holds for M =
h0(Spec(L)) and A = Z[Q8].

Proof. Put V = Gal(Q(
√

21,
√

5)/Q). One verifies that the kernel of the
homomorphism

K0(Z[Q8],R)→ K0(M,R)×K0(Z[Q8])×K0(Z[V ],R)

given by the natural maps to each factor, is trivial (although the kernel of each map
to a pair of factors is not) [17][Lemma 4]. The image of TΩ(M,Z[Q8]) in K0(M,R)
is trivial because of Theorem 7.1 c) and the fact that the Strong Stark Conjecture
is known for groups all of whose characters are rational (such as Q8) [72][Ch.II, Th.
6.8]. The image of TΩ(M,Z[Q8]) in K0(Z[Q8]) is trivial because of Theorem 7.1 d)
and computations of Chinburg showing the vanishing of ω(L/Q) + Ω(L/Q, 3) [22].
Finally the image in K0(Z[V ],R) is trivial by functoriality [16][Prop. 4.1b)] and
Theorem 5.1. For a nice concrete interpretation of this last vanishing see [52]. �

One may ask whether there is hope of verifying Conjecture 3, or even just
Conjecture 2, in genuine non-abelian cases, for example where G = Gal(L/Q) is
isomorphic to the alternating group A5. This group has five irreducible charac-
ters χ1, χ3, χ̄3, χ4, χ5 where χ3 takes values in Q(

√
5) and the other characters
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are rational. For rational characters χ the strong Stark conjecture for L∗(χ, 0)
is known by [72][Ch.II, Th. 6.8]. For χ3 one is in the favorable situation where
ords=0 L(χ3, s) = 1 (if L is imaginary) and one might be able to verify the Stark
conjecture numerically (see [67] for an example of such verifications).

Conjecture 3 for A = Z[G], on the other hand cannot be checked character by
character (but rather entails some relationship among all L∗(χi, 0)). A numerical
verification would possibly involve a computation of the full group of units of L
with its Z[G]-structure, and seems currently out of reach. We remark that Bley
[11] has verified Conjecture 3 numerically for certain cyclic extensions L/Q(

√
5) of

order 3 and 5.
Beyond numerical verifications, one has to prove limit formulas such as the one

in section 5.1 relating Dirichlet L-series and cyclotomic units. There is now a large
supply of extensions L/Q with group A5 where it is known that L(χi, s) coincides
with the L-function attached to an automorphic form on GLi(Q) for all i (combine
[19] with arguments as in [65] and the recent preprint [51]). This does not seem to
help in proving any relationship between the leading coefficient L∗(χi, 0) and units
in L, however.

For more information on the Stark conjectures we refer to the article of David
Burns in this volume.

APPENDIX: On the vanishing of µ-invariants
by C. Greither

The purpose of this appendix is to give a proof that the µ-invariant of an
often-used Iwasawa module (the one referred to as “limit of units modulo limit of
cyclotomic units”) is zero for the cyclotomic p-tower over every absolutely abelian
field K and for every prime p. The stress lies on the two occurrences of “every”:
for odd p this seems to be well-known, and for p = 2 and K a full cyclotomic
field, the result may be extracted from work of Kuz’min, see below. So if there is
anything really new here, it is the case p = 2 and K not a full cyclotomic field.
But for the reader’s convenience, and since it does not cost anything extra, we
shall give a unified argument for all p and K, with the only restriction that K is
assumed imaginary; we will provide a few comments on the real case at the end.
The author would like to use the opportunity to point out the following: In the
author’s paper [41], Theorem 3.1 and the subsequent remark c) claim an equality
of characteristic ideals, which would imply the desired vanishing of the µ-invariant.
But this implication does not stand since the argument in loc. cit. only yields that
the characteristic ideals are equal up to a power of p. Thanks to Annette Huber
and Matthias Flach, who (independently) noticed this.

Let us define our objects precisely before we state the result. Let p be a prime
number (we repeat that p = 2 is permitted), fixed in the sequel. Let us also fix an
absolutely abelian field K with Galois group G over the rationals. Let K∞ be the
cyclotomic Zp-extension of K; write Γ for Gal(K∞/K) and Γn for Gal(K∞/Kn)
where Kn is the n-th layer of K∞. We subsume p-adification in our notation by
writing En for Zp ⊗O∗

Kn
and Cn for Zp ⊗ SinnKn

where SinnL denotes the group
of circular units in Sinnott’s sense, for any abelian field L. Let E (respectively C)
denote the limit of the projective system (En)n resp. (Cn)n via the norm maps.
(These are often written E∞ and C∞.) Finally we put Λ = Zp[[Γ]] as customary.
The result reads:
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Theorem. Under the above assumption that K is absolutely abelian and imag-
inary, and with the notation just introduced, the Λ-module E/C has µ-invariant
zero.

Apart from a few short remarks at the end, the rest of this appendix is occupied
by the proof of this result. The essential input comes from Sinnott’s work: from
his main theorem [70][p.182] we immediately deduce the existence of a constant cK
depending only on K (not on n) such that

[En : Cn] = cK · h(K+
n )

for all sufficiently large n ∈ N. This together with the Ferrero-Washington theorem
implies that there exists another constant λ = λK such that the index [En : Cn] is
O(pλn) as a function of n. This does not directly imply the nullity of µ(E/C), since
there certainly exists a projective system (Xn)n of Zp[Γ/Γn]-modules with quite
slow growth and such that the limit is Λ/pΛ: take Xn = Λ/(p, Tn). The point
is that the “natural” system (En/Cn)n cannot misbehave in that way, as we will
show.

We will use an ad hoc notion. A family (not necessarily a projective system)
(An)n of finite Zp-modules is called tame if the following holds: There exist positive
integers c1 and c2 and submodules A′

n ⊂ An requiring at most c2 Zp-generators
each, such that the indices [An : A′

n] are O(pc1n) as a function of n. We observe:
Bounded families are tame; and if Un ⊂ An for all n, then the family (An)n is tame
iff both families (Un)n and (An/Un)n are tame.

These observations easily lead to the following consequence: If the Λ-module
X has µ(X) > 0, then the family of Γn-coinvariants (XΓn

)n will not be tame. We
therefore just need to show that the family

(
(E/C)Γn

)
n

is tame.
Let in be the canonical map EΓn

→ En and let Bn stand for its kernel. Write
B′
n for the image of Bn in (E/C)Γn

. Then the induced map jn :
(
(E/C)Γn

)/
B′
n →

En/C
′
n is injective, where C ′

n is the image of the n-th projection C → Cn. Al-
ternatively, C ′

n can be described as the subgroup of stable norms inside Cn, more
explicitly: C ′

n is the set of all x ∈ Cn, which are in the image of Cm → Cn for all
m ≥ n.

Assume we can establish the following two facts:
(1) (En/C ′

n)n is tame; and
(2) (B′

n)n is tame.
Then from the injectivity of jn and the abovementioned simple properties of

tame families we get tameness of (E/C)Γn
, and we will be done. Fact (1) is,

obviously, a consequence of the tameness of (En/Cn)n (which we know to hold)
and another fact:

(3) (Cn/C ′
n)n is tame.

It thus remains to establish (2) and (3); in fact we will show tameness with the
parameter c1 set to zero, that is, the number of required Zp-generators is bounded
in both families.

Proof of Fact (3): One has to recall the construction of Sinnott units. Consider
the following group Dn of p-adified Sinnott circular numbers: Dn is generated over
Zp[G] by all elements zd = NQ(d)/Q(d)∩Kn

(1 − ζd), where Q(d) is short for Q(ζd)
and d �= 1 divides the conductor fn of Kn and (d, fn/d) = 1. Then Cn = Dn ∩En,
by [57][Prop. 1] and an easy extra argument to eliminate those d which are not
coprime to fn/d. (For p = 2, one also has to put −1 into Dn.) Since a Sinnott
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circular number as above can only be a non-unit at places dividing the conductor
of Kn, and the valuations at all places above the same rational place are the same,
the intersection of the stable norms D′

n with Cn gives the stable norms C ′
n. It

therefore suffices to show tameness of (Dn/D
′
n)n.

There is some n0 such the conductor of Kn is exactly divisible by pn+n0+1

for all large n. Look at divisors d of fn which are divisible by p, and note that
this forces d to be exactly divisible by pn+n0+1 since we only consider d which are
coprime to fn/d. Using Galois theory one can check that for n large enough, the
degree of the field Q(pd)∩Kn+1 over Q is exactly p times the degree of Q(d)∩Kn.
If n is large enough to make this happen, then the obvious fact that 1 − ζd is the
norm of 1−ζpd in the degree p extension Q(pd)/Q(d), implies by chasing a diagram
of fields that zd is the norm of zpd in Kn+1/Kn.

Therefore for any large n, all zd with d divisible by p are stable norms. There
remain only those zd with d prime to p, so d must divide cond(K), so zd is actually
in K, and a unit outside cond(K). This gives an a priori bound of the number of
Zp-generators required for the quotient Dn/D

′
n, and Fact (3) is proved.

Proof of Fact (2): We will find a bound c2 so that all Bn are c2-generated
over Zp. One easily sees that Bn = proj limm≥n H1(Γm,n, Em), with Γm,n =
Gal(Km/Kn). If E′

m denotes Zp ⊗ OKm
[1/p]∗ (the p-adified p-units in Km), then

we have short exact sequences

1→ Em → E′
m → Vm → 0,

where Vm is defined by the sequence. Then the Zp-rank of the free Zp-module Vm
equals the number of p-adic places of Km and is therefore bounded as m→∞, by
c′ say. Moreover the induced maps Vm+1 → Vm are all monic, so V = proj limVm
is a free Zp-module of rank at most c′ as well.

By an old result of Iwasawa [47], the orders of H1(Γm,n, E′
m) are bounded

independently of m and n, and in particular all these groups are c′′-generated for
some c′′. Looking at the cohomology sequence coming from the short exact sequence
above we therefore see that we will be done, with c2 = c′ + c′′, as soon as we can
show that the modules proj limm≥n H0(Γm,n, Vm) are d′-generated over Zp for all
large n. But this is clear since proj limm≥n H0(Γm,n, Vm) ∼= H0(Γn, V ), and V is
c′-generated.

This finishes the proof of Fact (2), and the proof of the theorem.

Remarks: (a) The case p = 2 and K a full cyclotomic field can be deduced from a
result of Kuz’min [56, Thm. 3.1]; a little argument is necessary for which we refer
to [62, p.77].

(b) One can show the following (we do not give the proofs, which use the same
methods). If one takes K a real abelian field, and retains the definition of Cn and C
as above, the result is no longer true for p = 2: instead one gets µ(E/C) = [K : Q].
If one replaces Sinnott units by modified Sinnott units, i.e. by the groups denoted
C1,n by Sinnott [70, p.182], and defines C̃ = proj lim(Z2 ⊗ C1,n), then µ(E/C̃)
turns out to be zero. One can even show that C̃/C is isomorphic to Λ/(2)[K:Q]. By
definition, C1,n is the group of all units of Kn whose squares are Sinnott units, and
the main point is that in a precise sense, almost all Sinnott units are squares for
real fields K.

(c) If K is of odd degree over Q, then µ(E/C̃) = 0 already essentially follows
from work of Gillard [39] and, again, the theorem of Ferrero-Washington.
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[11] W. Bley, Computation of Stark-Tamagawa Units (preprint 2001).
[12] A. Borel, Stable real cohomology of Arithmetic Groups, Ann. Sci ENS 7 (1974), 235–272.
[13] C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic curves over

Q: Wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), 843–939.
[14] D. Burns and M. Flach, Motivic L-functions and Galois module structures, Math. Ann. 305

(1996), 65–102.
[15] , On Galois structure invariants associated to Tate motives, Amer. J. Math. 120

(1998), 1343–1397.
[16] , Tamagawa numbers for motives with (non-commutative) coefficients, Documenta

Mathematica 6 (2001), 501–569.
[17] , Tamagawa numbers for motives with (non-commutative) coefficients II , Amer. J.

Math. 125 (2003), 475–512.
[18] D. Burns and C. Greither, On the equivariant Tamagawa Number Conjecture for Tate Mo-

tives, Invent. Math. 153 (2003), 303–359.
[19] K. Buzzard and R. Taylor, Companion forms and weight 1 forms, Annals of Math. 149

(1999), 905-919.
[20] T. Chinburg, On the Galois structure of algebraic integers and S-units, Invent. math. 74

(1983), 321–349.
[21] , Exact sequences and Galois module structure, Annals of Math. 121 (1985), 351–376.
[22] T. Chinburg, The analytic theory of multiplicative Galois structure, Memoirs of the Amer.

Math. Soc., vol. 77, 1989.
[23] T. Chinburg, M. Kolster, G. Pappas, and V. Snaith, Galois structure of K-groups of rings of

integers, K-theory 14 (1998), 319–369.
[24] J. Colwell, The Birch and Swinnerton-Dyer conjecture for CM elliptic curves with nonmax-

imal endomorphism ring, Caltech, 2003, Ph.D. thesis.
[25] J. Cremona and B. Mazur, Visualizing elements in the Shafarevich-Tate group, Experiment.

Math. 9 (2000), 13–28.
[26] J. Dee, Selmer groups of Hecke characters and Chow groups of self products of CM elliptic

curves (preprint 1999).
[27] P. Deligne, Valeurs de fonctions L et périods d’intégrales, In: Automorphic Forms, Repre-
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