Quasi-invariant measures for continuous group actions

Alexander S. Kechris
Dedicated to Simon Thomas on his 60th birthday

Abstract

The class of ergodic, invariant probability Borel measure for the shift action of a countable group is a G_{δ} set in the compact, metrizable space of probability Borel measures. We study in this paper the descriptive complexity of the class of ergodic, quasiinvariant probability Borel measures and show that for any infinite countable group Γ it is $\boldsymbol{\Pi}_{3}^{\mathbf{0}}$-hard, for the group \mathbb{Z} it is $\boldsymbol{\Pi}_{3}^{0}$-complete, while for the free group \mathbb{F}_{∞} with infinite, countably many generators it is $\boldsymbol{\Pi}_{\boldsymbol{\alpha}}^{\mathbf{0}}$-complete, for some ordinal α with $3 \leq \alpha \leq \omega+2$. The exact value of this ordinal is unknown.

1. Introduction

For any Polish space X, let $P(X)$ be the Polish space of probability Borel measures on X with the usual topology (see, e.g., $[\mathbf{K}, 17 . \mathrm{E}]$). It is compact, metrizable, if X is compact, metrizable. Any $f: X \rightarrow Y$ induces the map $f_{*}: P(X) \rightarrow P(Y)$, defined by $f_{*}(\mu)(B)=\mu\left(f^{-1}(B)\right)$.

If E is an equivalence relation on X, a measure $\mu \in P(X)$ is ergodic for E if for any Borel E-invariant set $A \subseteq X, \mu(A) \in\{0,1\}$. We denote by ERG_{E} the set of such measures. Similarly if $a: \Gamma \times X \rightarrow X$ is an action of a group Γ on X, a measure μ is ergodic for a if for any invariant under a Borel set A, we have $\mu(A) \in\{0,1\}$. We denote again

[^0]Partially supported by NSF grant DMS-1464475.
by ERG_{a} the set of such measures. Clearly $\mathrm{ERG}_{a}=\mathrm{ERG}_{E_{a}}$, where E_{a} is the equivalence relation induced by (the orbits of) the action a.

Consider now a continuous action a of a countable (discrete) group Γ on a compact, metrizable space K. If a is understood from the context, we write $\gamma \cdot x$ instead of $a(\gamma, x)$. We also let $\gamma^{a}(x)=a(\gamma, x)$. It is a standard fact that the set INV_{a} of invariant measures for a is closed in $P(K)$ and the set EINV ${ }_{a}$ of invariant, ergodic measures for a is G_{δ} in $P(K)$ (see, e.g., [G, Theorem 4.2]).

Recall that $\mu \in P(K)$ is called quasi-invariant for the action a if for any $\gamma \in \Gamma, \gamma \cdot \mu \sim \mu$, where \sim denotes measure equivalence and $\gamma \cdot \mu=\left(\gamma^{a}\right)_{*}(\mu)$. Denote by QINV $_{a}$ the set of quasi-invariant measures for a and by EQINV ${ }_{a}$ the subset of ergodic, quasi-invariant measures for a. Since the relation \sim of measure equivalence is Π_{3}^{0} in $P(K)^{2}$, it follows that QINV $_{a}$ is $\boldsymbol{\Pi}_{3}^{0}$ in $P(K)$. From a (more general) result of Ditzen in $[\mathbf{D}]$, it follows that ERG_{a} is Borel and, again from a (more general) result in Louveau-Mokobodzki [LM, page 4823], this can be improved to $\mathrm{ERG}_{a} \in \Pi_{\omega+2}^{0}$. Thus $\mathrm{EQINV}_{a}=\mathrm{ERG}_{a} \cap \mathrm{QINV}_{a}$ is also $\Pi_{\omega+2}^{0}$ in $P(K)$.

In this paper we are interested in the Borel complexity of the sets QINV $_{a}$ and EQINV ${ }_{a}$. To avoid technical complications involving the topology of K, we will consider here the case where K is 0 -dimensional and thus can be viewed as a closed subspace of the Cantor space $\mathcal{C}=2^{\mathbb{N}}$. Under these circumstances, the action a of Γ on K can be topologically embedded, via the map $f(x)=\left(\gamma^{-1} \cdot x\right)_{\gamma}$, into the shift action s_{Γ} of Γ on \mathcal{C}^{Γ}. Therefore QINV $_{a}$ and EQINV $_{a}$ are Wadge reducible, via the continuous map $\mu \mapsto f_{*}(\mu)$, to QINV $_{s_{\Gamma}}$ and EQINV $_{s_{\Gamma}}$, resp. Recall that if $A \subseteq X, B \subseteq Y$, then A is Wadge reducible to B if there is a continuous function $f: X \rightarrow Y$ such that $A=f^{-1}(B)$. In this case we put $A \leq_{W} B$. We will thus focus our attention on the study of the Borel complexity of the quasi-invariant and ergodic, quasi-invariant measures for the shift action. For convenience we write

$$
\operatorname{QINV}_{\Gamma}=\operatorname{QINV}_{s_{\Gamma}}, \mathrm{ERG}_{\Gamma}=\mathrm{ERG}_{s_{\Gamma}}, \mathrm{EQINV}_{\Gamma}=\mathrm{EQINV}_{s_{\Gamma}}
$$

We prove below the following results, where for a class Φ of sets in Polish spaces, a set $A \subseteq X, X$ a Polish space, is called Φ-hard if for any $B \subseteq Y, Y$ a 0 -dimensional Polish space, with $B \in \Phi$, we have $B \leq_{W} A$. If in addition $A \in \Phi$, then A is called Φ-complete.

Theorem 1. For any infinite, countable group $\Gamma, \operatorname{QINV}_{\Gamma}$ is $\boldsymbol{\Pi}_{3}^{0}$ complete and $\mathrm{ERG}_{\Gamma}, \mathrm{EQINV}_{\Gamma}$ are $\boldsymbol{\Pi}_{3}^{0}$-hard.

Theorem 2. The set $\mathrm{EQINV}_{\mathbb{Z}}$ is $\boldsymbol{\Pi}_{3}^{0}$-complete.

Theorem 3. Let \mathbb{F}_{∞} be the group with infinite, countably many generators. Then there is a countable ordinal $\alpha_{\infty} \geq 3$ such that the set EQINV $_{\mathbb{F}_{\infty}}$ is $\boldsymbol{\Pi}_{\alpha_{\infty}}^{0}$-complete.

Thus $3 \leq \alpha_{\infty} \leq \omega+2$.
Problem 4. Calculate α_{∞}.
We note that from Theorem 3 it follows that $\mathrm{EQINV}_{\Gamma} \in \boldsymbol{\Pi}_{\alpha_{\infty}}^{0}$, for any countable group Γ.

Remark 5. The proof of Theorem 3 in Section 4 below also shows that for any countable group Γ that can be mapped onto the direct sum of infinite, countably many copies of itself, there is a countable ordinal α_{Γ} (thus $3 \leq \alpha_{\Gamma} \leq \omega+2$) such that EQINV ${ }_{\Gamma}$ is $\boldsymbol{\Pi}_{\alpha_{\Gamma}}^{0}$-complete.

Acknowledgment. Research partially supported by NSF Grant DMS1464475.

2. Proof of Theorem 1

We first note the following standard fact.
Lemma 2.1. For any continuous action a of a countable group Γ on a compact, metrizable space $K, \mathrm{ERG}_{a} \leq_{W} \mathrm{EQINV}_{a}$.

Proof. Let $\Gamma=\left\{\gamma_{n}: n \in \mathbb{N}\right\}$. The map $\mu \in P(K) \mapsto \sum_{n} 2^{-(n+1)} \gamma_{n}$. $\mu \in P(K)$ is a continuous reduction of ERG_{a} to EQINV_{a}.

Thus to complete the proof of Theorem 1, it is enough to show that QINV $_{\Gamma}$ is Π_{3}^{0}-complete and that ERG_{Γ} is $\boldsymbol{\Pi}_{3}^{0}$-hard.
(A) QINV_{Γ} is Π_{3}^{0}-complete.

Let X be a perfect Polish space and Γ an infinite, countable group, which acts freely and continuously on X. Put

$$
\begin{aligned}
S & =\left\{\left(x_{n}\right) \in X^{\mathbb{N}}:\left\{x_{n}: n \in \mathbb{N}\right\} \text { is } \Gamma \text {-invariant }\right) \\
& =\left\{\left(x_{n}\right) \in X^{\mathbb{N}}: \forall n \forall \gamma \exists m\left(\gamma \cdot x_{n}=x_{m}\right)\right\}
\end{aligned}
$$

Proposition 2.2. S is not G_{δ}.
Proof. First notice that S is dense: Given U_{0}, \ldots, U_{k-1} non- \emptyset open in X consider $U_{0} \times \cdots \times U_{k-1} \times X^{\mathbb{N}}$. We will show that it intersects S. Pick $x_{i}^{0} \in V_{i}, i<k$. Then clearly there are $x_{k}^{0}, x_{k+1}^{0}, \ldots$ such that $\left(x_{n}^{0}\right) \in S$.

So if S is G_{δ}, it is comeager. We will show that there is a dense G_{δ} set G such that $G \cap S=\emptyset$, a contradiction.

Let $\gamma \neq 1, \gamma \in \Gamma$ and put

$$
G=\left\{\left(x_{n}\right): \forall m\left(\gamma \cdot x_{0} \neq x_{m}\right)\right\} .
$$

Clearly $G \cap S=\emptyset$. Now

$$
\begin{gathered}
G=\bigcap_{m} G_{m}, \text { where } \\
G_{m}=\left\{\left(x_{n}\right): \gamma \cdot x_{0} \neq x_{m}\right\} .
\end{gathered}
$$

Clearly G_{m} is dense, open, so G is comeager.
Let now K be perfect, compact, metrizable and let a be a free, continuous action of Γ on K.

Proposition 2.3. QINV_{a} is not G_{δ} in $P(K)$.
Proof. It is enough to find a continuous function

$$
F: K^{\mathbb{N}} \rightarrow P(K)
$$

such that $F^{-1}\left(\mathrm{QINV}_{a}\right)=S$, where S is as above for (K, Γ).
Put

$$
F\left(\left(x_{n}\right)\right)=\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} \delta_{x_{n}}
$$

where δ_{x} is the Dirac measure at $x \in K$.
Claim. F is continuous.
Proof. We need to check that if $f \in C(K)$, and $\left(x_{n}^{i}\right) \rightarrow\left(x_{n}\right)$ in $K^{\mathbb{N}}$, then $F\left(\left(x_{n}^{i}\right)\right)(f)=\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} f\left(x_{n}^{i}\right) \rightarrow F\left(\left(x_{n}\right)\right)(f)=\sum_{n=0}^{\infty} \frac{1}{2^{n+1}} f\left(x_{n}\right)$, which is clear as $f\left(x_{n}^{i}\right) \rightarrow f\left(x_{n}\right), \forall n$.

Claim. $F^{-1}\left(\mathrm{QINV}_{\Gamma}\right)=S$.
Proof. If $\left(x_{n}\right) \in S$, then clearly $\gamma \cdot\left(F\left(x_{n}\right)\right) \sim F\left(\left(x_{n}\right)\right), \forall \gamma \in \Gamma$. Conversely assume $\left(x_{n}\right) \notin S$. Let then n, γ be such that $\forall m\left(\gamma \cdot x_{n} \neq\right.$ $\left.x_{m}\right)$. Then $\gamma \cdot F\left(\left(x_{n}\right)\right) \nsim F\left(\left(x_{n}\right)\right)$.

Thus we have shown:
Proposition 2.4. Let a be a continuous and free action of an infinite countable group Γ on the perfect, compact metrizable space K. Then QINV_{a} is not G_{δ} in $P(K)$.

Let now $Q=\{x \in \mathcal{C}: x(n)=0$ for all but finitely many $n\}$. Then Q is F_{σ} in the Cantor space \mathcal{C} and for any Polish space X and Borel set $A \subseteq X$, if A is not G_{δ}, then $Q \leq_{W} A$ (see [K, 24.20 and 22.13]). Thus we have:

Corollary 2.5. Let a be a continuous and free action of an infinite, countable group Γ on the perfect, compact metrizable space K Then there is a continuous function $f: \mathcal{C} \rightarrow P(K)$ with $f^{-1}\left(\mathrm{QINV}_{a}\right)=Q$.

Consider now the set $Q^{\mathbb{N}} \subseteq \mathcal{C}^{\mathbb{N}}$. It is known that $Q^{\mathbb{N}}$ is a $\Pi_{3^{-}}^{0}$ complete set (see [\mathbf{K}, page 179] where this set is denoted by P_{3}). Let now $K=\mathcal{C}^{\Gamma}$ with the shift action. By a result of Gao-JacksonSeward [GJS, 3.7], there are infinitely many, pairwise disjoint, invariant compact subsets K_{n} of K on which Γ acts minimally and freely. Note that each K_{n} is perfect. By the preceding corollary, there is a continuous function $f_{n}: \mathcal{C} \rightarrow P\left(K_{n}\right)$ such that $f_{n}^{-1}\left(\mathrm{QINV}_{a_{n}}\right)=Q$, where a_{n} is the restriction of the shift action to K_{n}. Define now $f: \mathcal{C}^{\mathbb{N}} \rightarrow P(K)$ by $f\left(\left(x_{n}\right)\right)=\sum_{n} \frac{1}{2^{n+1}} f_{n}\left(x_{n}\right)$. Then f is continuous and $f^{-1}\left(\mathrm{QINV}_{\Gamma}\right)=Q^{\mathbb{N}}$, so QINV_{Γ} is Π_{3}^{0}-complete.
(B) ERG_{Γ} is Π_{3}^{0}-hard.

This follows from the following more general result, where a Borel equivalence relation E on a Polish space X is smooth if there is a Borel $\operatorname{map} f: X \rightarrow Y, Y$ a Polish space, such that $x E y \Longleftrightarrow f(x)=f(y)$.

Theorem 2.6. Let E be a non-smooth, Borel equivalence relation on a Polish space X. Then ERG_{E} is $\boldsymbol{\Pi}_{3}^{0}$-hard.

Proof. Let E_{0}^{k} be the equivalence relation of $k^{\mathbb{N}}$ given by

$$
\left(x_{n}\right) E_{0}^{k}\left(y_{n}\right) \Longleftrightarrow \exists n \forall m \geq n\left(x_{m}=y_{m}\right)
$$

Then by [HKL], E_{0}^{3} can be continuously embedded, say by the function $f: 3^{\mathbb{N}} \rightarrow X$, into E. The function f_{*} from $P\left(3^{\mathbb{N}}\right)$ to $P(X)$ is continuous and μ is ergodic for E_{0}^{3} iff $f_{*}(\mu)$ is ergodic for E. It is thus enough to prove this result for $E=E_{0}^{3}$.

Consider the Π_{3}^{0}-complete set $P_{3}=Q^{\mathbb{N}} \subseteq \mathcal{C}^{\mathbb{N}}$, as in the paragraph following Corollary 2.5. We will define a continuous function $f: \mathcal{C}^{\mathbb{N}} \times$ $\mathcal{C} \rightarrow 3^{\mathbb{N}}$ as follows:

Fix a bijection $\langle\cdot, \cdot\rangle: \mathbb{N}^{2} \rightarrow \mathbb{N}$. Define first a function \bar{f} by:
$\bar{f}\left(\left(a_{k}\right), x\right)(\langle n, m\rangle)=x(n+m)$, if $a_{n}(m)=0 ; x \mid[n, n+m]$, if $a_{n}(m)=1$. Let then $f\left(\left(a_{k}\right), x\right)=y$, where letting $y_{n}(m)=y(\langle n, m\rangle)$, y_{n} is equal to:
$2 \bar{f}\left(\left(a_{k}\right), x\right)(\langle n, 0\rangle) 2 \bar{f}\left(\left(a_{k}\right), x\right)(\langle n, 1\rangle) 2 \cdots 2 \bar{f}\left(\left(a_{k}\right), x\right)(\langle n, m\rangle) 2 \cdots$,
which is the concatenation of 2 followed by $\bar{f}\left(\left(a_{k}\right), x\right)(\langle n, 0\rangle)$ followed by 2 followed by $\bar{f}\left(\left(a_{k}\right), x\right)(\langle n, 1\rangle) \ldots$

Since $y(\langle n, m\rangle)$ depends only on $a_{n}(l)$, for $l \leq m$, and $x(n), \ldots, x(n+$ m), it is clear that f is continuous.

It is also clear that for each fixed $\left(a_{k}\right)$, the section $f_{\left(a_{k}\right)}(x)=$ $f\left(\left(a_{k}\right), x\right)$ is injective. For each $\left(a_{k}\right) \in \mathcal{C}^{\mathbb{N}}$ let now

$$
\mu\left(\left(a_{k}\right)\right)=\left(f_{\left(a_{k}\right)}\right)_{*}(\lambda)
$$

where λ is the usual product measure on \mathcal{C}. The function $\mu: \mathcal{C}^{\mathbb{N}} \rightarrow$ $P\left(3^{\mathbb{N}}\right)$ is continuous, so its is enough to show that

$$
\left(a_{k}\right) \in P_{3} \Longleftrightarrow \mu\left(\left(a_{k}\right)\right) \in \operatorname{ERG}_{E_{0}^{3}} .
$$

(A) Let $\left(a_{k}\right) \in P_{3}$. We claim then that $x E_{0}^{2} y \Longrightarrow f_{\left(a_{k}\right)}(x) E_{0}^{3} f_{\left(a_{k}\right)}(y)$. Indeed, if $x E_{0} y$, say $x(k)=y(k)$ for all $k \geq n_{0}$, then for $n \geq n_{0}$, clearly $f_{\left(a_{k}\right)}(x)(\langle n, m\rangle)=f_{\left(a_{k}\right)}(y)(\langle n, m\rangle), \forall m$. Let also m be large enough so that $a_{n}(m)=0$, for all $n<n_{0}$ and all $m \geq m_{0}$. Then for some k_{0} and all $m \geq k_{0}, n<n_{0}$, we have $f_{\left(a_{k}\right)}(x)(\langle n, m\rangle)=f_{\left(a_{k}\right)}(y)(\langle n, m\rangle)$, so $f_{\left(a_{k}\right)}(x) E_{0}^{3} f_{\left(a_{k}\right)}(y)$.

Thus if $A \subseteq 3^{\mathbb{N}}$ is Borel, E_{0}^{3}-invariant, then $f_{\left(a_{k}\right)}^{-1}(A)$ is Borel $E_{0^{-}}^{2-}$ invariant, so, since λ is ergodic for E_{0}^{2}, it has λ-measure 0 or 1 , and thus A has $\mu\left(\left(a_{k}\right)\right)$-measure 0 or 1 . So $\mu\left(\left(a_{k}\right)\right) \in \mathrm{ERG}_{E_{0}^{3}}$.
(B) Let $\left(a_{k}\right) \notin P_{3}$. Fix then n_{0} and $1<m_{0}<m_{1}<m_{2} \ldots$ be such that $a_{n_{0}}\left(m_{i}\right)=1, \forall i$. Fix also a tree $T \subseteq 2^{<\mathbb{N}}$ such that $0<\lambda([T])<1$. Put

$$
B=\bigcup_{s \in 2^{n_{0}}} N_{s} \star[T]
$$

where for $s \in 2^{n_{0}}$:

$$
N_{s} \star[T]=\left\{a \in \mathcal{C}: s \subseteq a \&\left(a_{n_{0}}, a_{n_{0}+1}, \ldots\right) \in[T]\right\}
$$

Then $\lambda(B)=\lambda([T]) \in(0,1)$. Put $f_{\left(a_{k}\right)}(B)=C$ and $A=[C]_{E_{0}^{3}}$. Then A is Borel, E_{0}^{3}-invariant and we will show that $f_{\left(a_{k}\right)}^{-1}(A)=B$, so that $\mu\left(\left(a_{k}\right)\right)(A) \in(0,1)$, and thus $\mu\left(\left(a_{k}\right)\right)$ is not ergodic for E_{0}^{3}, completing the proof.

Let $f_{\left(a_{k}\right)}(x) \in A$ and choose $y \in B$ such that $f_{\left(a_{k}\right)}(x) E_{0}^{3} f_{\left(a_{k}\right)}(y)$. Then, in particular, if $f_{\left(a_{k}\right)}(x)=\left(x_{n}\right), f_{\left(a_{k}\right)}(y)=y_{n}$, we have $x_{n_{0}} E_{0}^{3} y_{n_{0}}$. Now $x_{n_{0}}=2 s_{0} 2 s_{1} \ldots, y_{n_{0}}=2 t_{0} 2 t_{1} \ldots$, where for each i, s_{i}, t_{i} are binary sequences of the same length. Let then k be such that for all $i \geq k, s_{i}=t_{i}$. If $m_{j} \geq k$, then $t_{m_{j}}=\left(y_{n_{0}}, \ldots, y_{n_{0}+m_{j}}\right)$ and so $s_{m_{j}}=t_{m_{j}} \in T$. Since also $s_{m_{j}}=\left(x_{n_{0}}, \ldots, x_{n_{0}+m_{j}}\right)$, we have that $\left(x_{n_{0}}, x_{n_{0}+1}, \ldots\right) \in[T]$, i.e., $x \in B$.

3. Proof of Theorem 2

Ditzen [D, page 47] shows that $\mathrm{EQINV}_{\mathbb{Z}}$ is $\boldsymbol{\Pi}_{3}^{0}$ and thus by Theorem 1 it is $\boldsymbol{\Pi}_{3}^{0}$-complete.

4. Proof of Theorem 3

Theorem 3 will follow from the next proposition:
Proposition 4.1. Let X be a Polish space and let $A \subseteq X$. If $A \leq_{W}$ $\mathrm{ERG}_{\mathbb{F}_{\infty}}$, then $A^{\mathbb{N}}\left(\subseteq X^{\mathbb{N}}\right) \leq_{W} \mathrm{ERG}_{\mathbb{F}_{\infty}}$.

Proof. Recall that for any countable Borel equivalence relation E, we denote by $E R G_{E}$ the set of probability Borel measures that are ergodic for E.

Lemma 4.2. Let E_{n} be a countable Borel equivalence relation in the Polish space X_{n} and let μ_{n} be a probability Borel measure on X_{n}. Let E_{∞} be the following equivalence relation on $X^{\mathbb{N}}$:

$$
\left(x_{n}\right) E_{\infty}\left(y_{n}\right) \Longleftrightarrow \forall n\left(x_{n} E_{n} y_{n}\right) \& \exists m \forall n \geq m\left(x_{n}=y_{n}\right)
$$

Then

$$
\prod_{n} \mu_{n} \in \mathrm{ERG}_{E_{\infty}} \Longleftrightarrow \forall n\left(\mu_{n} \in \mathrm{ERG}_{E_{n}}\right)
$$

Proof. \Longrightarrow : Put $\mu=\prod_{n} \mu_{n}$. Let $A \subseteq X_{n}$ be Borel and $E_{n}{ }^{-}$ invariant. Let $B=X_{0} \times \cdots X_{n-1} \times A \times X_{n+1} \times \cdots$. Then B is Borel and E_{∞}-invariant, so $\mu_{n}(A)=\mu(B) \in\{0,1\}$.
\Longleftarrow : Assume that each μ_{n} is ergodic for E_{n}. Let $A \subseteq \prod_{n} X_{n}$ be Borel and E_{∞}-invariant. For each Borel set $B \subseteq \prod_{n} X_{n}$, let $\nu(B)=$ $\mu(A \cap B)$. If we can show that for each Borel cylinder $B \subseteq \prod_{n} X_{n}$, $\nu(B)=\mu(A) \mu(B)$, then since the class of all Borel sets B with the property that $\nu(B)=\mu(A) \mu(B)$ is closed under complements and countable disjoint unions, by the $\pi-\lambda$ Theorem (see, e.g., $[\mathbf{K}, 10.1$, iii)]) it contains all Borel sets, and in particular A, so $\nu(A)=\mu(A)=\mu(A)^{2}$, thus $\mu(A) \in\{0,1\}$.

Let then $B=D \times \prod_{i \geq n} X_{i}$ be a Borel cylinder, where $D \subseteq \prod_{i<n} X_{i}$. For $y \in \prod_{i>n} X_{i}$, let $\left.A^{\bar{y}}=\left\{\left(x_{i}\right)_{i<n} \in \prod_{i<n} X_{i}:\left(\left(x_{i}\right)_{i<n}, y\right)\right) \in A\right\}$. Then A^{y} is $\prod_{i<n} E_{i}$-invariant.

Claim. $\prod_{i<n} \mu_{i} \in \mathrm{ERG}_{\prod_{i<n} E_{i}}$.
Proof. It is enough to consider the case $n=2$, so let $A \subseteq X_{0} \times X_{1}$ be Borel and $\left(E_{0} \times E_{1}\right)$-invariant. Note that for $x_{0} \in X_{0}$ the section $A_{x_{0}} \subseteq X_{1}$ is E_{1} invariant, so $\mu_{1}\left(A_{x_{0}}\right) \in\{0,1\}$. Let $P_{i}=\left\{x_{0}: \mu_{1}\left(A_{x_{0}}\right)=\right.$ $i\}$, for $i \in\{0,1\}$. Then each P_{i} is E_{0}-invariant. If $\mu_{0}\left(P_{0}\right)=0$, then $\mu_{0}\left(P_{1}\right)=1$, so $\left(\mu_{0} \times \mu_{1}\right)(A)=1$. If $\mu_{0}\left(P_{0}\right)=1$, then $\left(\mu_{0} \times \mu_{1}\right)(A)=1$.

Thus A^{y} has $\prod_{i<n} \mu_{i}$-measure 0 or 1 . Let

$$
C=\left\{y \in \prod_{i \geq n} X_{i}:\left(\prod_{i<n} \mu_{i}\right)\left(A^{y}\right)=1\right\} .
$$

Then $\mu(A)=\left(\prod_{i \geq n} \mu_{i}\right)(C)$. Now for $y \in C,\left(\prod_{i<n} \mu_{i}\right)\left(A^{y} \cap D\right)=$ $\left(\prod_{i<n} \mu_{i}\right)(D)$ and for $y \notin C,\left(\prod_{i<n} \mu_{i}\right)\left(A_{y} \cap D\right)=0$, so

$$
\begin{aligned}
\mu(A \cap B) & =\mu\left(A \cap\left(D \times \prod_{i \geq n} X_{i}\right)\right) \\
& =\int\left(\prod_{i<n} \mu_{i}\right)\left(A^{y} \cap D\right) d\left(\prod_{i \geq n} \mu_{i}\right)(y) \\
& =\left(\prod_{i<n} \mu_{i}\right)(D) \cdot\left(\prod_{i \geq n} \mu_{i}\right)(C) \\
& =\mu(B) \mu(A) .
\end{aligned}
$$

Let now E be the equivalence relation on $\mathcal{C}^{\mathbb{F}_{\infty}}$ induced by the shift action of \mathbb{F}_{∞}. We have to show that if $A \leq_{W}$ ERG $_{E}$, then $A^{\mathbb{N}} \leq_{W}$ ERG_{E}. Let $f: X \rightarrow P\left(\mathcal{C}^{\mathbb{F}_{\infty}}\right)$ be a continuous function witnessing that $A \leq_{W}$ ERG $_{E}$. Define $f_{\infty}: X^{\mathbb{N}} \rightarrow P\left(\left(\mathcal{C}^{\mathbb{F}_{\infty}}\right)^{\mathbb{N}}\right)$ by $f_{\infty}\left(\left(x_{n}\right)\right)=\prod_{n} f\left(x_{n}\right)$. Then f_{∞} is continuous and if E_{∞} is as in Lemma 4.2 with $E_{n}=E$ for each n, then

$$
f_{\infty}\left(\left(x_{n}\right)\right) \in \mathrm{ERG}_{E_{\infty}} \Longleftrightarrow \forall n\left(f\left(x_{n}\right) \in \mathrm{ERG}_{E}\right) \Longleftrightarrow\left(x_{n}\right) \in A^{\mathbb{N}} .
$$

So $A^{\mathbb{N}} \leq_{W} \mathrm{ERG}_{E_{\infty}}$.
Now consider the continuous action of $\bigoplus_{n} \mathbb{F}_{\infty}$ on $\left(\mathcal{C}^{\mathbb{F}}\right)^{\mathbb{N}}$ given by $\left(\gamma_{n}\right) \cdot\left(x_{n}\right)=\left(\gamma_{n} \cdot x_{n}\right)$. The equivalence relation it induces is exactly E_{∞}. Mapping \mathbb{F}_{∞} onto $\bigoplus_{n} \mathbb{F}_{\infty}$, this gives a continuous action a of \mathbb{F}_{∞} on $\left(\mathcal{C}^{\mathbb{F}}\right)^{\mathbb{N}}$ for which $\mathrm{ERG}_{a}=\mathrm{ERG}_{E_{\infty}}$ and thus $A^{\mathbb{N}} \leq_{W} \mathrm{ERG}_{a}$. Noting that $\left(\mathcal{C}^{\mathbb{F}}\right)^{\mathbb{N}}$ is homeomorphic to \mathcal{C}, we can embed this action to the shift action of \mathbb{F}_{∞} on $\mathcal{C}^{\mathbb{F}_{\infty}}$ and thus $A^{\mathbb{N}} \leq_{W}$ ERG $_{\mathbb{F}_{\infty}}$.

Using Proposition 4.1, we now complete the proof of Theorem 3 as follows. Let α be least such that $\mathrm{ERG}_{\mathbb{F}_{\infty}} \in \boldsymbol{\Pi}_{\alpha}^{0}$. By Theorem 1, $\alpha \geq 3$.

Claim. $\mathrm{ERG}_{\mathbb{F}_{\infty}}$ is $\boldsymbol{\Pi}_{\alpha}^{0}$-complete.
Proof. Let $\mathcal{A}=\left\{B \subseteq Y: Y\right.$ Polish, 0-dimensional, $B \leq_{W}$ ERG $\left._{\mathbb{F}_{\infty}}\right\}$. Then \mathcal{A} is closed under countable intersections, since if $B_{n} \in \mathcal{A}, B_{n} \subseteq$ Y, there is a continuous function $f_{n}: Y \rightarrow P\left(\mathcal{C}^{\mathbb{F}}\right)$ such that $B_{n}=$ $f_{n}^{-1}\left(\mathrm{ERG}_{\mathbb{F}_{\infty}}\right)$. Put $X=P\left(\mathcal{C}^{\mathbb{F}_{\infty}}\right), A=\mathrm{ERG}_{\mathbb{F}_{\infty}}$ and let $f: Y \rightarrow X^{\mathbb{N}}$ be given by $f(y)_{n}=f_{n}(y)$. Then f witnesses that $\bigcap_{n} B_{n} \leq_{W} A^{\mathbb{N}} \leq_{W} A=$ $\mathrm{ERG}_{\mathbb{F}_{\infty}}$, so $\bigcap_{n} B_{n} \in \mathcal{A}$.

Let now $B \in \Pi_{\alpha}^{0}, B \subseteq Y, Y$ Polish and 0-dimensional. Then $B=\bigcap_{n} B_{n}$, where $B_{n} \in \boldsymbol{\Sigma}_{\alpha_{n}}^{0}$, for some $\alpha_{n}<\alpha$. By a result of SaintRaymond (see $\left[\mathbf{K}, 24.20\right.$ and 22.13]) $B_{n} \leq_{W} \mathrm{ERG}_{\mathbb{F}_{\infty}}$, so $B \leq_{W} \mathrm{ERG}_{\mathbb{F}_{\infty}}$.

Now, as $\alpha \geq 3$, EQINV $\mathbb{F}_{\mathbb{F}_{\infty}}$ is in $\boldsymbol{\Pi}_{\alpha}^{0}$. Also by Lemma 2.1, if $B \in \boldsymbol{\Pi}_{\alpha}^{0}$, then $B \leq_{W} \mathrm{ERG}_{\mathbb{F}_{\infty}} \leq_{W} \mathrm{EQINV}_{\mathbb{F}_{\infty}}$, so $\mathrm{EQINV}_{\mathbb{F}_{\infty}}$ is Π_{α}^{0}-complete.
Remark 4.3. Note that the only property of \mathbb{F}_{∞} that we used in the preceding proof is that it can be mapped onto the direct sum of countably many copies of itself. It follows that Theorem 3 is valid as well for any countable group Γ that has this property.

References

[D] A. Ditzen, Definable equivalence relations on Polish spaces, Ph. D. Thesis, Caltech, 1992.
[GJS] S. Gao, S. Jackson and B. Seward, A coloring property for countable groups, Math. Proc. Cambridge Phil. Soc., 147(3) (2009), 579-592.
[G] E. Glasner, Ergodic Theory via Joinings, American Math. Society, 2003.
[HKL] L.A. Harrington, A.S. Kechris, and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations, J. Amer. Math. Soc., 3(4) (1990), 903-928.
[K] A.S. Kechris, Classical Descriptive Set Theory, Springer-Verlag, 1995.
[LM] A. Louveau and Mokobodzki, On measures ergodic with respect to an analytic equivalence relation, Trans. Amer. Math. Soc., 349(12) (1997), 4815-4823.

Department of Mathematics, California Institute of Technology, Mail Code 253-37, Pasadena, California 91125, USA

E-mail address: kechris@caltech.edu

[^0]: 2010 Mathematics Subject Classification. Primary 03C13, Secondary 03C15, 05D10, 37B05, 37A15, 54H20.

 Key words and phrases. group actions, invariant measures, quasi-invariant measures, ergodic measures.

