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Abstract. For a class K of countable relational structures, a countable Borel equiva-
lence relation E is said to be K-structurable if there is a Borel way to put a structure in K
on each E-equivalence class. We study in this paper the global structure of the classes of
K-structurable equivalence relations for various K. We show that K-structurability inter-
acts well with several kinds of Borel homomorphisms and reductions commonly used in
the classification of countable Borel equivalence relations. We consider the poset of classes
of K-structurable equivalence relations for various K, under inclusion, and show that it is
a distributive lattice; this implies that the Borel reducibility preordering among countable
Borel equivalence relations contains a large sublattice. Finally, we consider the effect on
K-structurability of various model-theoretic properties of K. In particular, we characterize
the K such that every K-structurable equivalence relation is smooth, answering a question
of Marks.
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1. Introduction. (A) A countable Borel equivalence relation on a stan-
dard Borel space X is a Borel equivalence relation E ⊆ X2 with the property
that every equivalence class [x]E , x ∈ X, is countable. We denote by E the
class of countable Borel equivalence relations. Over the last 25 years there
has been an extensive study of countable Borel equivalence relations and
their connection with group actions and ergodic theory. An important as-
pect of this work is an understanding of the kind of countable (first-order)
structures that can be assigned in a uniform Borel way to each class of a
given equivalence relation. This is made precise in the following definitions
(see [JKL, Section 2.5]).

Let L = {Ri | i ∈ I} be a countable relational language, where Ri
has arity ni, and K a class of countable structures in L closed under iso-
morphism. Let E be a countable Borel equivalence relation on a standard
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Borel space X. An L-structure on E is a Borel structure A = (X,RA
i )i∈I

of L with universe X (i.e., each RA
i ⊆ Xni is Borel) such that for i ∈ I and

x1, . . . , xni ∈ X, RA
i (x1, . . . , xni) ⇒ x1Ex2E · · ·Exni . Then each E-class C

is the universe of the countable L-structure A|C. If for all such C, A|C ∈ K,
we say that A is a K-structure on E. Finally, if E admits a K-structure, we
say that E is K-structurable.

Many important classes of countable Borel equivalence relations can be de-
scribed as theK-structurable relations for appropriateK. For example, the hy-
perfinite equivalence relations are exactly theK-structurable relations, where
K is the class of linear orderings embeddable in Z. The treeable equivalence
relations are the K-structurable relations, where K is the class of countable
trees (connected acyclic graphs). The equivalence relations generated by a free
Borel action of a countable group Γ are the K-structurable relations, where
K is the class of structures corresponding to free transitive Γ -actions. The
equivalence relations admitting no invariant probability Borel measure are
theK-structurable relations, where L = {R,S},R unary and S binary, andK
consists of all countably infinite structures A = (A,RA, SA), with RA an infi-
nite, co-infinite subset ofA and SA the graph of a bijection betweenA andRA.

For L = {Ri | i ∈ I} as before and a countable set X, we denote
by ModX(L) the standard Borel space of countable L-structures with uni-
verse X. Clearly every countable L-structure is isomorphic to some A ∈
ModX(L) for X ∈ {1, 2, . . . ,N}. Given a class K of countable L-structures,
closed under isomorphism, we say that K is Borel if K ∩ModX(L) is Borel
in ModX(L) for each countable set X. We are interested in Borel classes K
in this paper. For any Lω1ω-sentence σ, the class of countable models of σ
is Borel. By a classical theorem of Lopez-Escobar [LE], every Borel class K
of L-structures is of this form for some Lω1ω-sentence σ. We will also refer
to such σ as a theory.

Adopting this model-theoretic point of view, given a theory σ and a
countable Borel equivalence relation E, we write

E |= σ

if E is K-structurable, where K is the class of countable models of σ, and
we say that E is σ-structurable if E |= σ. We denote by Eσ ⊆ E the class of
σ-structurable countable Borel equivalence relations. Finally we say that a
class C of countable Borel equivalence relations is elementary if it is of the
form Eσ, for some σ (which axiomatizes C). In some sense the main goal of
this paper is to study the global structure of elementary classes.

First we characterize which classes of countable Borel equivalence rela-
tions are elementary. We need to review some standard concepts from the
theory of Borel equivalence relations. Given equivalence relations E,F on
standard Borel spaces X,Y , resp., a Borel homomorphism of E to F is a
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Borel map f : X → Y with x E y ⇒ f(x) F f(y). We denote this by f :
E →B F . If moreover f is such that all restrictions f |[x]E : [x]E → [f(x)]F
are bijective, we say that f is a class-bijective homomorphism, in symbols
f : E →cb

B F . If such an f exists we also write E →cb
B F . We similarly define

the notion of class-injective homomorphism, in symbols→ci
B. A Borel reduc-

tion of E to F is a Borel map f : X → Y with x E y ⇔ f(x) F f(y). We
denote this by f : E ≤B F . If f is also injective, it is called a Borel embed-
ding, in symbols f : E vB F . If there is a Borel reduction of E to F we write
E ≤B F and if there is a Borel embedding we write E vB F . An invariant
Borel embedding is a Borel embedding f as above with f(X) F -invariant.
We use the notation f : E viB F and E viB F for these notions. By the
usual Schroeder–Bernstein argument, E viB F and F viB E ⇔ E ∼=B F ,
where ∼=B is Borel isomorphism.

Kechris–Solecki–Todorcevic [KST, 7.1] proved a universality result for
theories of graphs, which was then extended by Miller to arbitrary theories;
see Corollary 4.4.

Theorem 1.1 (Kechris–Solecki–Todorcevic, Miller). For every theory σ,
there is an invariantly universal σ-structurable countable Borel equivalence
relation E∞σ, i.e., E∞σ |= σ, and F viB E∞σ for any other F |= σ.

Clearly E∞σ is uniquely determined up to Borel isomorphism. In fact in
Theorem 4.1 we formulate a “relative” version of this result and its proof
that allows us to capture more information.

Next we note that clearly every elementary class is downwards closed un-
der class-bijective Borel homomorphisms. We now have the following char-
acterization of elementary classes (see Corollary 4.12).

Theorem 1.2. A class C ⊆ E of countable Borel equivalence relations
is elementary iff it is (downwards) closed under class-bijective Borel homo-
morphisms and contains an invariantly universal element E ∈ C.

Examples of nonelementary classes include the class of nonsmooth count-
able Borel equivalence relations (a countable Borel equivalence relation is
smooth if it admits a Borel transversal), the class of equivalence relations
admitting an invariant Borel probability measure, and the class of equiva-
lence relations generated by a free action of some countable group. More
generally, nontrivial unions of elementary classes are never elementary (see
Corollary 4.5).

Next we show that every E ∈ E is contained in a (unique) smallest (under
inclusion) elementary class (see Corollary 4.10).

Theorem 1.3. For every E ∈ E, there is a smallest elementary class
containing E, namely EE := {F ∈ E | F →cb

B E}.
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Many classes of countable Borel equivalence relations that have been
extensively studied, like hyperfinite or treeable ones, are (downwards) closed
under Borel reduction. It turns out that every elementary class is contained
in a (unique) smallest (under inclusion) elementary class closed under Borel
reduction (see Theorem 5.2).

Theorem 1.4. For every elementary class C, there is a smallest elemen-
tary class containing C and closed under Borel reducibility, namely

Cr := {F ∈ E | ∃E ∈ C (F ≤B E)}.
We call an elementary class closed under reduction an elementary re-

ducibility class. In analogy with Theorem 1.2, we have the following char-
acterization of elementary reducibility classes (see Corollary 5.18). Below
by a smooth Borel homomorphism of E ∈ E into F ∈ E we mean a Borel
homomorphism for which the preimage of any point is smooth for E.

Theorem 1.5. A class C ⊆ E is an elementary reducibility class iff it
is (downwards) closed under smooth Borel homomorphisms and contains an
invariantly universal element E ∈ C.

We note that as a corollary of the proof of Theorem 1.4 every elementary
reducibility class is also downwards closed under class-injective Borel homo-
morphisms. Hjorth–Kechris [HK, D.3] proved that (in our terminology and
notation) every Cr (with C elementary) is closed under⊆, i.e., containment of
equivalence relations on the same space. Since containment is a class-injective
homomorphism (namely the identity), Theorem 1.4 generalizes this.

We also prove analogous results for Borel embeddability instead of Borel
reducibility (see Theorem 5.1).

For each countably infinite group Γ denote by EΓ the elementary class
of equivalence relations induced by free Borel actions of Γ . Its invariantly
universal element is the equivalence relation induced by the free part of the
shift action of Γ on RΓ . For trivial reasons this is not closed under Borel
reducibility, so let E∗Γ be the elementary class of all equivalence relations
whose aperiodic part is in EΓ . Then we have the following characterization
(see Theorem 7.1).

Theorem 1.6. Let Γ be a countably infinite group. Then the following
are equivalent:

(i) E∗Γ is an elementary reducibility class.
(ii) Γ is amenable.

We call equivalence relations of the form E∞σ universally structurable.
Denote by E∞ ⊆ E the class of universally structurable equivalence relations.
In view of Theorem 1.1, an elementary class is uniquely determined by its
invariantly universal such equivalence relation, and the poset of elementary
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classes under inclusion is isomorphic to the poset (E∞/∼=B,viB) of Borel
isomorphism classes of universally structurable equivalence relations under
invariant Borel embeddability. It turns out that this poset has desirable
algebraic properties (see Theorem 6.2).

Theorem 1.7. The poset (E∞/∼=B,viB) is an ω1-complete, distributive
lattice. Moreover, the inclusion (E∞/∼=B,viB) ⊆ (E/∼=B,viB) preserves
(countable) meets and joins.

This has implications concerning the structure of the class of univer-
sally structurable equivalence relations under Borel reducibility. The order-
theoretic structure of the poset (E/∼B,≤B) of all bireducibility classes
under ≤B is not well-understood, apart from that it is very complicated
(by [AK]). The first general study of this structure was made only re-
cently by Kechris–Macdonald [KMd]. In particular, they pointed out that
it was even unknown whether there exists any pair of ≤B-incomparable
E,F ∈ E for which a ≤B-meet exists. However it turns out that the sub-
poset (E∞/∼B,≤B) behaves quite well (see Corollary 6.9).

Theorem 1.8. The poset (E∞/∼B,≤B) of universally structurable bire-
ducibility classes, under ≤B, is an ω1-complete, distributive lattice. More-
over, the inclusion into the poset (E/∼B,≤B) of all bireducibility classes,
under ≤B, preserves (countable) meets and joins.

Adapting the method of Adams–Kechris [AK], we also show that this
poset is quite rich (see Theorem 6.20).

Theorem 1.9. There is an order-embedding from the poset of Borel sub-
sets of R under inclusion into (E∞/∼B,≤B).

The combination of Theorems 1.8 and 1.9 answers the question mentioned
in the paragraph following Theorem 1.7 by providing a large class of ≤B-
incomparable countable Borel equivalence relations for which≤B-meets exist.

An important question concerning structurability is which properties of
a theory σ yield properties of the corresponding elementary class Eσ. The
next theorem provides the first instance of such a result. Marks [M, end of
Section 4.3] asked (in our terminology) for a characterization of when the
elementary class EσA , where σA is a Scott sentence of a countable struc-
ture, consists of smooth equivalence relations, or equivalently, when E∞σA
is smooth. We answer this question in full generality, i.e., for an arbitrary
theory σ. Although this result belongs purely in the category of Borel equiv-
alence relations, our proof uses ideas and results from topological dynamics
and ergodic theory (see Theorem 8.1).

Theorem 1.10. Let σ be a theory. The following are equivalent:

(i) Eσ contains only smooth equivalence relations, i.e., E∞σ is smooth.
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(ii) There is an Lω1ω-formula φ(x) which defines a finite nonempty subset
in any countable model of σ.

Along these lines an interesting question is to find out what theories σ
have the property that every aperiodic countable Borel equivalence relation
is σ-structurable. A result that some particular σ axiomatizes all aperiodic
E shows that every such E ∈ E carries a certain type of structure, which can
be useful in applications. A typical example is the very useful Marker Lemma
(see [BK, 4.5.3]), which shows that every aperiodic E admits a decreasing
sequence of Borel complete sections A0 ⊇ A1 ⊇ · · · with empty intersection.
This can be phrased as: every aperiodic countable Borel equivalence relation
E is σ-structurable, where σ in the language L = {P0, P1, . . . } asserts that
each (unary) Pi defines a nonempty subset, P0 ⊇ P1 ⊇ · · · , and

⋂
i Pi = ∅.

A particular case is when σ = σA is a Scott sentence of a countable struc-
ture. For convenience we say that E is A-structurable if E is σA-structurable.
Marks recently pointed out that the work of [AFP] implies a very general
condition under which this happens (see Theorem 8.2).

Theorem 1.11 (Marks). Let A be a countable structure with trivial de-
finable closure. Then every aperiodic countable Borel equivalence relation is
A-structurable.

In particular (see Corollary 8.17) the following Fräıssé structures can
structure every aperiodic countable Borel equivalence relation: (Q, <), the
random graph, the random Kn-free graph (where Kn is the complete graph
on n vertices), the random poset, and the rational Urysohn space.

Finally, we mention two applications of the above results and ideas. The
first (see Corollary 8.13) is a corollary of the proof of Theorem 1.10.

Theorem 1.12. Let σ be a consistent theory in a language L such that
the models of σ form a closed subspace of ModN(L). Then for any countably
infinite group Γ , there is a free Borel action of Γ which admits an invariant
probability measure and is σ-structurable.

The second application is to a model-theoretic question that has nothing
to do with equivalence relations. The concept of amenability of a structure
in the next result (see Corollary 8.18) can be either the one in [JKL, 2.16(iii)]
or the one in [K91, 3.4]. This result was earlier proved by the authors by a
different method (still using results of [AFP]) but it can also be seen as a
corollary of Theorem 1.11.

Theorem 1.13. Let A be a countably infinite amenable structure. Then
A has nontrivial definable closure.

(B) This paper is organized as follows: In Section 2 we review some basic
background in the theory of Borel equivalence relations and model theory.
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In Section 3 we introduce the concept of structurability of equivalence rela-
tions and discuss various examples. In Section 4 we study the relationship
between structurability and class-bijective homomorphisms, obtaining the
tight correspondence given by Theorems 1.1 to 1.3; we also apply structura-
bility to describe a product construction (class-bijective or “tensor” prod-
uct) between countable Borel equivalence relations. In Section 5 we study
the relationship between structurability and other kinds of homomorphisms,
such as reductions; we also consider the relationship between reductions and
compressible equivalence relations. In Section 6 we introduce some concepts
from order theory convenient for describing the various posets of equiva-
lence relations we are considering, and then study the poset (E∞/∼=B,viB)
of universally structurable equivalence relations (equivalently of elementary
classes). In Section 7 we consider the elementary class EΓ of equivalence
relations induced by free actions of a countable group Γ . In Section 8 we
consider relationships between model-theoretic properties of a theory σ and
the corresponding elementary class Eσ. Finally, in Section 9 we list several
open problems related to structurability.

In the appendix, we introduce fiber spaces (previously considered in [G]
and [HK]), which provide a slightly more general context for several concepts
appearing in the body of this paper. We discuss the relationship between
fiber spaces and equivalence relations, as well as the appropriate generaliza-
tions of structurability and the various kinds of homomorphisms.

Remark 1.14. In a preprint of this paper uploaded to the arXiv, we
included two further appendices, with some miscellaneous concepts/results
which are tangential to the main subject of this paper. The first of these
concerns a categorical structure on the class of all theories which interacts
well with structurability. The second contains a lattice-theoretic result which
can be applied to the lattice (E∞/∼=B,viB) considered in Section 6.2.

2. Preliminaries. For general model theory, see [Hod]. For general clas-
sical descriptive set theory, see [K95].

2.1. Theories and structures. By a language, we will always mean
a countable first-order relational language, i.e., a countable set L = {Ri |
i ∈ I} of relation symbols, where each Ri has an associated arity ni ≥ 1.
The only logic we will consider is the infinitary logic Lω1ω. We use letters
like φ, ψ for formulas, and σ, τ for sentences. By a theory, we mean a pair
(L, σ) where L is a language and σ is an Lω1ω-sentence. When L is clear
from context, we will often write σ instead of (L, σ).

Let L be a language. An L-structure is understood in the usual sense
of first-order logic, i.e., as a tuple A = (X,RA)R∈L where X is a set and
for each n-ary relation symbol R ∈ L, RA ⊆ Xn is an n-ary relation on X.
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Then as usual, for each formula φ(x1, . . . , xn) ∈ Lω1ω with n free variables,
we have an interpretation φA ⊆ Xn as an n-ary relation on X.

We write ModX(L) for the set of L-structures with universe X. More
generally, for a theory (L, σ), we write ModX(σ) for the set of models of σ
with universe X. When X is countable, we equip ModX(σ) with its usual
standard Borel structure (see e.g. [K95, 16.C]).

If A = (X,RA)R∈L is an L-structure and f : X → Y is a bijection, then
we write f(A) for the pushforward structure, with universe Y and

Rf(A)(y) ⇔ RA(f−1(y))

for n-ary R and y ∈ Y n. When X = Y , this defines the logic action of SX
(the group of bijections of X) on ModX(L, σ).

If f : Y → X is any function, then f−1(A) is the pullback structure, with
universe Y and

Rf
−1(A)(y) ⇔ RA(f(y)).

When f is the inclusion of a subset Y ⊆ X, we also write A|Y for f−1(A).

Every countable L-structure A has a Scott sentence σA, which is an
Lω1ω-sentence whose countable models are exactly the isomorphic copies
of A (see e.g. [Bar, §VII.6]).

A Borel class of L-structures is a class K of countable L-structures which
is closed under isomorphism and such that K ∩ ModX(L) is a Borel sub-
set of ModX(L) for every countable set X (equivalently, for every X ∈
{1, 2, . . . ,N}). For example, for any Lω1ω-sentence σ, the class of countable
models of σ is Borel. By a classical theorem of Lopez-Escobar [LE], every
Borel class K of L-structures is of this form, for some σ. (While Lopez-
Escobar’s theorem is usually stated only for ModN(L), it is easily seen to
hold also for ModX(L) with X finite.)

2.2. Countable Borel equivalence relations. A Borel equivalence
relation E on a standard Borel space X is an equivalence relation which is
Borel as a subset of X2; the equivalence relation E is countable if each of its
classes is. We will also refer to the pair (X,E) as an equivalence relation.

Throughout this paper, we use E to denote the class of countable Borel
equivalence relations (X,E).

If Γ is a group acting on a set X, then we let EXΓ ⊆ X2 be the orbit
equivalence relation:

x EXΓ y ⇔ ∃γ ∈ Γ (γ · x = y).

If Γ is countable, X is standard Borel, and the action is Borel, then EXΓ is
a countable Borel equivalence relation. Conversely, by the Feldman–Moore
Theorem [FM], every countable Borel equivalence relation on a standard
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Borel space X is EXΓ for some countable group Γ with some Borel action
on X.

If Γ is a group and X is a set, the (right) shift action of Γ on XΓ is
given by

(γ · x)(δ) := x(δγ)

for γ ∈ Γ , x ∈ XΓ , and δ ∈ Γ . We let E(Γ,X) := EX
Γ

Γ ⊆ (XΓ )2 denote
the orbit equivalence of the shift action. If Γ is countable and X is standard
Borel, then E(Γ,X) is a countable Borel equivalence relation. If Γ already
acts on X, then that action embeds into the shift action, via

X → XΓ , x 7→ (γ 7→ γ · x).

In particular, any action of Γ on a standard Borel space embeds into the
shift action of Γ on RΓ .

The free part of a group action of Γ on X is

{x ∈ X | ∀1 6= γ ∈ Γ (γ · x 6= x)};
the action is free if the free part is all of X. We let F (Γ,X) denote the orbit
equivalence of the free part of the shift action of Γ on XΓ .

An invariant measure for a Borel group action of Γ on X is a nonzero
σ-finite Borel measure µ on X such that γ∗µ = µ for all γ ∈ Γ (where γ∗µ is
the pushforward). An invariant measure on a countable Borel equivalence
relation (X,E) is an invariant measure for some Borel action of a countable
group Γ on X which generates E, or equivalently for any such action (see
[KM, 2.1]). An invariant measure µ on (X,E) is ergodic if for any E-invariant
Borel set A ⊆ X, either µ(A) = 0 or µ(X \A) = 0.

2.3. Homomorphisms. Let (X,E), (Y, F ) ∈ E be countable Borel
equivalence relations, and let f : X → Y be a Borel map (we write f :
X →B Y to denote that f is Borel). We say that f is:

• a homomorphism, written f : (X,E)→B (Y, F ), if

∀x, y ∈ X (x E y ⇒ f(x) F f(y)),

i.e., f induces a map on the quotient spaces X/E → Y/F ;
• a reduction, written f : (X,E) ≤B (Y, F ), if f is a homomorphism and

∀x, y ∈ X (f(x) F f(y) ⇒ x E y),

i.e., f induces an injection on the quotient spaces;
• a class-injective homomorphism (respectively, class-surjective, class-bi-

jective), written f : (X,E) →ci
B (Y, F ) (respectively, f : (X,E) →cs

B
(Y, F ), f : (X,E) →cb

B (Y, F )), if f is a homomorphism such that for
each x ∈ X, the restriction f |[x]E : [x]E → [f(x)]F to the equivalence
class of x is injective (respectively, surjective, bijective);
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• an embedding, written f : (X,E) vB (Y, F ), if f is an injective (or equiv-
alently, class-injective) reduction;
• an invariant embedding, written f : (X,E) viB (Y, F ), if f is a class-

bijective reduction, or equivalently an embedding such that the image
f(X) ⊆ Y is F -invariant.

Among these various kinds of homomorphisms, the reductions have re-
ceived the most attention in the literature, while the class-bijective ones are
most closely related to the notion of structurability. Here is a picture of
the containments between these classes of homomorphisms, with the more
restrictive classes at the bottom:

viB

vB →cb
B

≤B →ci
B

→cs
B

→B

We say that (X,E) (Borel) reduces to (Y, F ), written (X,E) ≤B (Y, F )
(or simply E ≤B F ), if there is a Borel reduction f : (X,E) ≤B (Y, F ).
Similarly for the other kinds of homomorphisms, e.g., E embeds into F ,
written E vB F , if there is some f : E vB F , etc. We also write:

• E ∼B F (E is bireducible to F ) if E ≤B F and F ≤B E;
• E <B F if E ≤B F and F 6≤B E, and similarly for @B and @i

B;
• E ↔cb

B F (E is class-bijectively equivalent to F ) if E →cb
B F and F →cb

B E;
• E ∼=B F if E is Borel isomorphic to F , or equivalently (by the Borel

Schröder–Bernstein theorem) E viB F and F viB E.

Clearly ≤B, vB, →cb
B , etc., are preorders on the class E , and ∼B, ↔cb

B ,
∼=B are equivalence relations on E . The ∼B-equivalence classes are called
bireducibility classes, etc.

2.4. Basic operations. We have the following basic operations on
Borel equivalence relations. Let (X,E), (Y, F ) be Borel equivalence rela-
tions.

Their disjoint sum is (X,E) ⊕ (Y, F ) = (X ⊕ Y,E ⊕ F ) where X ⊕ Y
is the disjoint union of X,Y , and E ⊕ F relates elements of X according
to E and elements of Y according to F and does not relate elements of
X with elements of Y . The canonical injections ι1 : X →B X ⊕ Y and
ι2 : Y →B X ⊕ Y are then invariant embeddings E,F viB E ⊕ F . Clearly
the disjoint sum of countable equivalence relations is countable. We have ob-
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vious generalizations to disjoint sums of any countable family of equivalence
relations.

Their cross product is (X,E)× (Y, F ) = (X × Y,E × F ), where

(x, y) (E × F ) (x′, y′) ⇔ x E x′ ∧ y F y′.

(The “cross” adjective is to disambiguate from the tensor products to be
introduced in Section 4.4.) The projections π1 : X × Y → X and π2 :
X × Y → Y are class-surjective homomorphisms E × F →cs

B E,F . Cross
products also generalize to countably many factors; but note that only finite
cross products of countable equivalence relations are countable.

2.5. Special equivalence relations. Recall that an equivalence rela-
tion (X,E) is countable if each E-class is countable; similarly, it is finite if
each E-class is finite, and aperiodic countable if each E-class is countably
infinite. A countable Borel equivalence relation is always the disjoint sum of
a finite Borel equivalence relation and an aperiodic countable Borel equiva-
lence relation. Since many of our results become trivial when all classes are
finite, we will often assume that our equivalence relations are aperiodic.

For any set X, the indiscrete equivalence relation on X is IX := X ×X.

A Borel equivalence relation (X,E) is smooth if E ≤B ∆Y where ∆Y is
the equality relation on some standard Borel space Y . When E is countable,
this is equivalent to E having a Borel transversal, i.e., a Borel set A ⊆ X
meeting each E-class exactly once, or a Borel selector, i.e., a Borel map
f : X →B X such that xE f(x) and xE y ⇒ f(x) = f(y) for all x, y ∈ X.
Any finite Borel equivalence relation is smooth. Up to bireducibility, the
smooth Borel equivalence relations consist exactly of

∆0 <B ∆1 <B ∆2 <B · · · <B ∆N <B ∆R;

and these form an initial segment of the preorder (E ,≤B) (Silver’s di-
chotomy ; see [MK, 9.1.1]).

We will sometimes use the standard fact that a countable Borel equiv-
alence relation (X,E) is smooth iff every ergodic invariant (σ-finite Borel)
measure on E is atomic. (For the converse direction, note e.g. that if E is
not smooth, then Et viB E (see Theorem 2.1 below), and Et is isomorphic
to the orbit equivalence of the translation action of Q on R, which admits
Lebesgue measure as an ergodic invariant nonatomic σ-finite measure.)

If f : X → Y is any function between sets, the kernel of f is the equiv-
alence relation ker f on X given by x (ker f) y ⇔ f(x) = f(y). So a Borel
equivalence relation is smooth iff it is the kernel of some Borel map.

A countable Borel equivalence relation E is universal if E is ≤B-greatest
in E , i.e., for any other countable Borel equivalence relation F , we have
F ≤B E. An example is E(F2, 2) (where F2 is the free group on two genera-
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tors) [DJK, 1.8]. Note that by [MSS, 3.6], E is universal iff it is vB-greatest
in E , i.e., for any other F ∈ E , we have F vB E.

A countable Borel equivalence relation E is invariantly universal if E is
viB-greatest in E , i.e., for any other countable Borel equivalence relation F ,
we have F viB E. We denote by E∞ any such E; in light of the Borel
Schröder–Bernstein theorem, E∞ is unique up to isomorphism. Clearly E∞
is also≤B-universal. (Note: in the literature, E∞ is commonly used to denote
any ≤B-universal countable Borel equivalence relation (which is determined
only up to bireducibility).) One realization of E∞ is E(Fω,R). (This follows
from the Feldman–Moore Theorem.)

A (countable) Borel equivalence relation (X,E) is hyperfinite if E is the
increasing union of a sequence of finite Borel equivalence relations on X. We
will use the following facts (see [DJK, 5.1, 7.2, 9.3]):

Theorem 2.1. Let (X,E), (Y, F ) ∈ E be countable Borel equivalence
relations.

(a) E is hyperfinite iff E = EXZ for some action of Z on X.
(b) E is hyperfinite iff there is a Borel binary relation < on X such that on

each E-class, < is a linear order embeddable in (Z, <).
(c) If E,F are both hyperfinite and nonsmooth, then E vB F . Thus there

is a unique bireducibility (in fact biembeddability) class of nonsmooth
hyperfinite Borel equivalence relations.

(d) Let E0, Et be the equivalence relations on 2N given by

x E0 y ⇔ ∃i ∈ N ∀j ∈ N (x(i+ j) = y(i+ j)),

x Et y ⇔ ∃i, j ∈ N ∀k ∈ N (x(i+ k) = y(j + k)).

Up to isomorphism, the nonsmooth, aperiodic, hyperfinite Borel equiva-
lence relations are

Et @
i
B E0 @

i
B 2 · E0 @

i
B · · · @i

B ℵ0 · E0 @
i
B 2ℵ0 · E0,

where n · E0 := ∆n × E0. Each n · E0 has exactly n ergodic invariant
probability measures.

(e) (Glimm–Effros dichotomy) E is not smooth iff Et viB E.

A countable Borel equivalence relation (X,E) is compressible if there
is an f : E vB E such that f(C) ( C for every E-class C ∈ X/E. The
basic example is IN; another example is Et. A fundamental theorem of Nad-
karni [N] asserts that E is compressible iff it does not admit an invariant
probability measure. For more on compressibility, see [DJK, Section 2]; we
will use the results therein extensively in Section 5.4.

A countable Borel equivalence relation (X,E) is treeable if E is generated
by an acyclic Borel graph on X. For properties of treeability which we use
later on, see [JKL, Section 3].
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2.6. Fiber products. Let (X,E), (Y, F ), (Z,G) be Borel equivalence
relations, and let f : (Y, F ) →B (X,E) and g : (Z,G) →B (X,E) be
homomorphisms. The fiber product of F and G (with respect to f and g) is
(Y, F ) ×(X,E) (Z,G) = (Y ×X Z,F ×E G), where

Y ×X Z := {(y, z) ∈ Y ×Z | f(y) = g(z)}, F ×E G := (F ×G)|(Y ×X Z).

(Note that Y ×X Z, F ×E G are slight abuses of notation in that they hide
the dependence on the maps f, g.) The projections π1 : F ×E G → F and
π2 : F ×E G→ G fit into a commutative diagram:

F ×E G G

F E

π1

π2

g

f

It is easily verified that if g is class-injective, class-surjective, or a reduction,
then so is π1.

2.7. Some categorical remarks. For each of the several kinds of ho-
momorphisms mentioned in Section 2.3, we have a corresponding category
of countable Borel equivalence relations and homomorphisms of that kind.
We use, e.g. (E ,→cb

B ) to denote the category of countable Borel equivalence
relations and class-bijective homomorphisms, etc.

(Depending on context, we also use (E ,→cb
B ) to denote the preorder →cb

B
on E , i.e., the preorder gotten by collapsing all morphisms in the category
(E ,→cb

B ) between the same two objects.)

From a categorical standpoint, among these categories, the two most
well-behaved ones seem to be (E ,→B) and (E ,→cb

B ). The latter will be
treated in Sections 4.4 and 4.5. As for (E ,→B), we note that (countable)
disjoint sums, (finite) cross products, and fiber products give respectively
coproducts, products, and pullbacks in that category. It follows that (E ,→B)
is finitely complete, i.e., has all finite categorical limits (see e.g. [ML, V.2,
Exercise III.4.10]).

Remark 2.2. However, (E ,→B) does not have coequalizers. Let E0 on 2N

be generated by a Borel automorphism T : 2N → 2N. Then it is easy to
see that T : (2N, ∆2N) →B (2N, ∆2N) and the identity map do not have a
coequalizer.

For later reference, note that the category of (not necessarily countable)
Borel equivalence relations and Borel homomorphisms has inverse limits of
countable chains. That is, for each n ∈ N, let (Xn, En) be a Borel equivalence
relation, and fn : En+1 →B En be a Borel homomorphism. Then the inverse
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limit of the system is lim←−n(Xn, En) = (lim←−nXn, lim←−nEn), where

lim←−nXn := {x = (x0, x1, . . . ) ∈
∏
nXn | ∀n (xn = fn(xn+1))},

lim←−nEn :=
∏
nEn| lim←−nXn.

It is easily seen that lim←−nEn together with the projections πm : lim←−nEn→B Em has the universal property of an inverse limit, i.e., for any other
Borel equivalence relation (Y, F ) and homomorphisms gm : F →B Em such
that gm = fm ◦gm+1 for each m, there is a unique homomorphism g̃ : F →B

lim←−nEn such that πm ◦ g̃ = gm for each m. This is depicted in the following
commutative diagram:

F lim←−nEn

· · · E2 E1 E0

g̃

g2 g1 g0

π2
π1

π0

f2 f1 f0

It follows that the category of Borel equivalence relations and Borel homo-
morphisms is countably complete, i.e., has all limits of countable diagrams
(again see [ML, V.2, Exercise III.4.10]).

3. Structures on equivalence relations. We now define the central
notion of this paper.

Let L be a language and X be a standard Borel space. We say that an
L-structure A = (X,RA)R∈L with universe X is Borel if RA ⊆ Xn is Borel
for each n-ary R ∈ L.

Now let (X,E) be a countable Borel equivalence relation. We say that
a Borel L-structure A = (X,RA)R∈L is a Borel L-structure on E if for each
n-ary R ∈ L, RA only relates elements within the same E-class, i.e.,

RA(x1, . . . , xn) ⇒ x1 E x2 E · · · E xn.

For an Lω1ω-sentence σ, we say that A is a Borel σ-structure on E, written

A : E |= σ,

if for each E-class C ∈ X/E, the structure A|C satisfies σ. We say that E
is σ-structurable, written

E |= σ,

if there is some Borel σ-structure on E. Similarly, if K is a Borel class of
L-structures, we say that A is a Borel K-structure on E if A|C ∈ K for each
C ∈ X/E, and that E is K-structurable if there is some Borel K-structure
on E. Note that E is K-structurable iff it is σ-structurable for any Lω1ω-
sentence σ axiomatizing K.
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We let

Eσ ⊆ E , EK ⊆ E
denote respectively the classes of σ-structurable and K-structurable count-
able Borel equivalence relations. For any class C ⊆ E of countable Borel
equivalence relations, we say that C is elementary if C = Eσ for some theory
(L, σ), in which case we say that (L, σ) axiomatizes C.

3.1. Examples of elementary classes. Several notions of “sufficiently
simple” countable Borel equivalence relations which have been considered
in the literature are given by an elementary class.

For example, a countable Borel equivalence relation E is smooth iff E
is structurable by pointed sets (i.e., sets with a distinguished element). By
Theorem 2.1, E is hyperfinite iff E is structurable by linear orders that
embed in Z. Hyperfiniteness can also be axiomatized by the sentence in the
language L = {R0, R1, . . . } which asserts that each Ri is a finite equivalence
relation and R0 ⊆ R1 ⊆ · · · with union the indiscrete equivalence relation.
Similarly, it is straightforward to verify that for each α < ω1, α-Fréchet
amenability (see [JKL, 2.11–2.12]) is axiomatizable. Also, E is compressible
iff it is structurable via structures in the language L = {R} where R is the
graph of a nonsurjective injection.

For some trivial examples: every E is σ-structurable for logically valid σ,
or for the (nonvalid) sentence σ in the language L = {R0, R1, . . . } as-
serting that the Ri’s form a separating family of unary predicates (i.e.,
∀x, y (

∧
i(Ri(x) ↔ Ri(y)) ↔ x = y)); thus E is elementary. The class of

aperiodic countable Borel equivalence relations is axiomatized by the the-
ory of infinite sets, etc.

Let T1 denote the class of trees (i.e., acyclic connected graphs), and more
generally, Tn denote the class of contractible n-dimensional (abstract) sim-
plicial complexes. Then E is T1-structurable iff E is treeable. Gaboriau [G]
has shown that ET1 ( ET2 ( · · · .

For any language L and countable L-structure A, if σA denotes the Scott
sentence of A, then E is σA-structurable iff it is structurable via isomorphic
copies of A. For example, if L = {<} and (X,A) = (Z, <), then E is σA-
structurable iff it is aperiodic hyperfinite. We write

EA := EσA
for the class of A-structurable countable Borel equivalence relations.

Let Γ be a countable group, and regard Γ as a structure in the language
LΓ = {Rγ | γ ∈ Γ}, where RΓγ is the graph of the map δ 7→ γ · δ. Then a
model of σΓ is a Γ -action isomorphic to Γ , i.e., a free transitive Γ -action.
Thus a countable Borel equivalence relation E is Γ -structurable (i.e., σΓ -
structurable) iff it is generated by a free Borel action of Γ .
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Finally, we note that several important classes of countable Borel equiv-
alence relations are not elementary. This includes all classes of “sufficiently
complex” equivalence relations, such as (invariantly) universal equivalence
relations, nonsmooth equivalence relations, and equivalence relations admit-
ting an invariant probability measure; these classes are not elementary by
Proposition 3.1. Another example, of a different flavor, is the class of equiv-
alence relations generated by a free action of some countable group; more
generally, nontrivial unions of elementary classes are never elementary (see
Corollary 4.5).

3.2. Classwise pullback structures. Let (X,E), (Y, F ) be countable
Borel equivalence relations and f : E →cb

B F be a class-bijective homomor-
phism. For an L-structure A on F , recall that the pullback structure of A
along f , denoted f−1(A), is the L-structure with universe X given by

Rf
−1(A)(x) ⇔ RA(f(x))

for each n-ary R ∈ L and x ∈ Xn. Let f−1E (A) denote the classwise pullback
structure, given by

Rf
−1
E (A)(x) ⇔ RA(f(x)) ∧ x1 E · · · E xn.

Then f−1E (A) is a Borel L-structure on E such that for each E-class C ∈
X/E, the restriction f |C : C → f(C) is an isomorphism between f−1E (A)|C
and A|f(C). In particular, if A is a σ-structure for some Lω1ω-sentence σ,
then so is f−1E (A). We record the consequence of this simple observation for
structurability:

Proposition 3.1. Every elementary class Eσ ⊆ E is (downwards) closed
under class-bijective homomorphisms, i.e., if E →cb

B F and F ∈ Eσ, then
E ∈ Eσ.

This connection between structurability and class-bijective homomor-
phisms will be significantly strengthened in the next section.

4. Basic universal constructions. In this section we present the two
main constructions relating structures on equivalence relations to class-
bijective homomorphisms. Both are “universal” constructions: the first turns
any theory (L, σ) into a universal equivalence relation with a σ-structure,
while the second turns any equivalence relation into a universal theory.

4.1. The universal σ-structured equivalence relation. Kechris–
Solecki–Todorcevic [KST, 7.1] proved a universality result for graphs, which
was then extended by Miller to arbitrary Borel classes of structures. Here,
we formulate a version of this result and its proof that allows us to capture
more information.
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Theorem 4.1. Let (X,E) ∈ E be a countable Borel equivalence relation
and (L, σ) be a theory. Then there is a “universal σ-structured equivalence
relation lying over E”, i.e., a triple (E n σ, π,E) where

E n σ ∈ E , π : E n σ →cb
B E, E : E n σ |= σ,

such that for any other F ∈ E with f : F →cb
B E and A : F |= σ, there is a

unique class-bijective homomorphism f̃ : F →cb
B E n σ such that f = π ◦ f̃

and A = f̃−1F (E). This is illustrated by the following “commutative” diagram:

F

E n σ σ

E

f

f̃

A

π

E

Proof. First we describe Enσ while ignoring all questions of Borelness,
then we verify that the construction can be made Borel.

Ignoring Borelness, Enσ will live on a set Z and will have the following
form: for each E-class C ∈ X/E, and each σ-structure B on the universe C,
there will be one (E n σ)-class lying over C (i.e., projecting to C via π),
which will have the σ-structure given by pulling back B. Thus we let

Z := {(x,B) | x ∈ X, B ∈ Mod[x]E (σ)},
(x,B) (E n σ) (x′,B′) ⇔ x E x′ ∧ B = B′,
π(x,B) := x,

with the σ-structure E on E n σ given by

RE((x1,B), . . . , (xn,B)) ⇔ RB(x1, . . . , xn)

for n-ary R ∈ L, x1 E · · · E xn, and B ∈ Mod[x1]E (σ). It is immediate that
π is class-bijective and that E satisfies σ. The universal property is also
straightforward: for (Y, F ), f,A as above, the map f̃ is given by

f̃(y) := (f(y), f(A|[y]F )) ∈ Z,
and this choice is easily seen to be unique under the requirements f = π ◦ f̃
and A = f̃−1F (E).

Now we indicate how to make this construction Borel. The only obstruc-
tion is the use of Mod[x]E (σ) which depends on x in the definition of Z above.
We restrict to the case where E is aperiodic; in general, we may split E into
its finite part and aperiodic part, and it will be clear that the finite case can
be handled similarly. In the aperiodic case, the idea is to replace Mod[x]E (σ)
with ModN(σ), where [x]E is identified with N but in a manner which varies
depending on x.
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Let T : X → XN be a Borel map such that each T (x) is a bijection
N → [x]E (the existence of such T is easily seen from Luzin–Novikov uni-
formization), and replace Mod[x]E (σ) with ModN(σ) while inserting T (x)
into the appropriate places in the above definitions:

Z := {(x,B) | x ∈ X, B ∈ ModN(σ)} = X ×ModN(σ),

(x,B) (E n σ) (x′,B′) ⇔ x E x′ ∧ T (x)(B) = T (x′)(B′),
RE((x1,B1), . . . , (xn,Bn)) ⇔ RT (x1)(B1)(x1, . . . , xn),

f̃(y) :=
(
f(y), T (f(y))−1(f(A|[y]F ))

)
.

These are easily seen to be Borel and still satisfy the requirements of the
theorem.

Remark 4.2. It is clear that E n σ satisfies a universal property in the
formal sense of category theory. This in particular means that (E n σ, π,E)
is unique up to unique (Borel) isomorphism.

Remark 4.3. The construction of E n σ for aperiodic E in the proof of
Theorem 4.1 can be seen as an instance of the following general notion (see
e.g. [K10, 10.(E)]):

Let (X,E) be a Borel equivalence relation, and let Γ be a (standard
Borel) group. Recall that a Borel cocycle α : E → Γ is a Borel map satisfying
α(y, z)α(x, y) = α(x, z) for all x, y, z ∈ X, xE y E z. Given a cocycle α and
a Borel action of Γ on a standard Borel space Y , the skew product E nα Y
is the Borel equivalence relation on X × Y given by

(x, y) (E nα Y ) (x′, y′) ⇔ x E x′ ∧ α(x, x′) · y = y′.

Note that for such a skew product, the first projection π1 : X × Y → X is
always a class-bijective homomorphism E nα Y →cb

B E.

Now given a family T : X → XN of bijections N ∼=B [x]E , as in the proof
of Theorem 4.1, we call αT : E → S∞ given by αT (x, x′) := T (x′)−1 ◦ T (x)
the cocycle induced by T . Then the construction of Enσ for aperiodic E can
be seen as the skew product E nαT ModN(σ) (with the logic action of S∞
on ModN(σ)). (However, the structure E on E nαT ModN(σ) depends on T ,
not just on αT .)

Theorem 4.1 has the following consequence:

Corollary 4.4 (Kechris–Solecki–Todorcevic, Miller). For every theory
(L, σ), there is an invariantly universal σ-structurable countable Borel equiv-
alence relation E∞σ, i.e., E∞σ |= σ, and F viB E∞σ for any other F |= σ.

Proof. Let E∞σ := E∞ n σ. For any F |= σ, we have an invariant

embedding f : F viB E∞, whence there is f̃ : F →cb
B E∞ n σ = E∞σ such

that f = π ◦ f̃ ; since f is injective, so is f̃ .
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In other words, every elementary class Eσ of countable Borel equiva-
lence relations has an invariantly universal element E∞σ (which is unique
up to isomorphism). For a Borel class of structures K, we denote the in-
variantly universal K-structurable equivalence relation by E∞K. For an L-
structure A, we denote the invariantly universal A-structurable equivalence
relation by E∞A.

As a basic application, we can now rule out the elementarity of a class
of equivalence relations mentioned in Section 3.1:

Corollary 4.5. If (Ci)i∈I is a collection of elementary classes of count-
able Borel equivalence relations, then

⋃
i Ci is not elementary, unless there is

some j such that
⋃
i Ci = Cj. In particular, the class of equivalence relations

generated by a free Borel action of some countable group is not elementary.

Proof. If
⋃
i Ci is elementary, then it has an invariantly universal element

E, which is in some Cj ; then for every i and F ∈ Ci, we have F viB E ∈ Cj ,
whence F ∈ Cj since Cj is elementary.

For the second statement, the class in question is
⋃
Γ EΓ where Γ ranges

over countable groups (and EΓ is the class of equivalence relations generated
by a free Borel action of Γ ); and there cannot be a single EΓ which contains
all others, since if Γ is amenable then EΓ does not contain F (F2, 2) (see
[HK, A4.1]), while if Γ is not amenable then EΓ does not contain E0 (see
[K91, 2.3]).

We also have

Proposition 4.6. Let C denote the class of countable increasing unions
of equivalence relations generated by free Borel actions of (possibly different)
countable groups. Then C does not have a ≤B-universal element, hence is
not elementary.

Proof. Let E =
⋃
nEn ∈ C be the countable increasing union of count-

able Borel equivalence relations E0 ⊆ E1 ⊆ · · · on X, where each En is
generated by a free Borel action of a countable group Γn. Since there are
uncountably many finitely generated groups, there is a finitely generated
group L such that L does not embed in any Γn. Set ∆ := SL3(Z)× (L ∗Z),
and let F (∆, 2) live on Y ⊆ 2∆ (the free part of the shift action), with its
usual product probability measure µ. By [T2, 3.6] (see also 3.7–3.9 of that
paper), F (∆, 2)|Z 6≤B En for each n and Z ⊆ Y of µ-measure 1.

If E were ≤B-universal in C, then we would have some f : F (∆, 2) ≤B E.
Let Fn := f−1(En), so that F (∆, 2) =

⋃
n Fn. By [GT, 1.1] (and because

SL3(Z) acts strongly ergodically [HK, A4.1]), there is an n and a Borel
A ⊆ Y with µ(A) > 0 such that F (∆, 2)|A = Fn|A. By ergodicity of µ, Z :=
[A]F (∆,2) has µ-measure 1; but F (∆, 2)|Z ∼B F (∆, 2)|A = Fn|A ≤B En, a
contradiction.
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We conclude this section by explicitly describing the invariantly universal
equivalence relation in several elementary classes:

• The viB-universal finite Borel equivalence relation is
⊕

1≤n∈N(∆R × In).

• The viB-universal aperiodic smooth countable Borel equivalence relation
is ∆R × IN.
• TheviB-universal aperiodic hyperfinite Borel equivalence relation is 2ℵ0 ·E0

= ∆R × E0, and the viB-universal compressible hyperfinite Borel equiva-
lence relation is Et (see Theorem 2.1).
• The viB-universal countable Borel equivalence relation is E∞, and the
viB-universal compressible Borel equivalence relation is E∞× IN (see Sec-
tion 5.4).
• For a countable group Γ , the viB-universal equivalence relation E∞Γ gen-

erated by a free Borel action of Γ is F (Γ,R).

4.2. The “Scott sentence” of an equivalence relation. We now
associate to every E ∈ E a “Scott sentence” σE . Just as the Scott sentence
σA of an ordinary first-order structure A axiomatizes structures isomorphic
to A, the “Scott sentence” σE will axiomatize equivalence relations class-
bijectively mapping to E.

Theorem 4.7. Let (X,E) ∈ E be a countable Borel equivalence relation.
Then there is a sentence σE (in some fixed language not depending on E)
and a σE-structure H : E |= σE such that for any F ∈ E and A : F |= σE,
there is a unique class-bijective homomorphism f : F →cb

B E such that
A = f−1F (H). This is illustrated by the following diagram:

F

E σE

f A

H

Proof. We may assume that X is a Borel subspace of 2N. Let L =
{R0, R1, . . . } where each Ri is unary. The idea is that a Borel L-structure
will code a Borel map to X ⊆ 2N. Note that since L is unary, there is no
distinction between Borel L-structures on X and Borel L-structures on E,
or between pullback L-structures and classwise pullback L-structures.

Let H′ be the Borel L-structure on 2N given by

RH′
i (x) ⇔ x(i) = 1.

It is clear that for any standard Borel space Y , we have a bijection

(∗)
{Borel maps Y →B 2N} ↔ {Borel L-structures on Y },

f 7→ f−1(H′),(
y 7→ (i 7→ RA

i (y))
)
←[ A.
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It will suffice to find an Lω1ω-sentence σE such that for all (Y, F ) ∈ E and
f : Y →B 2N,

(∗∗) f−1(H′) : F |= σE ⇔ f(Y ) ⊆ X ∧ f : F →cb
B E.

Indeed, we may then set H := H′|X, and (∗) will restrict to a bijection
between class-bijective homomorphisms F →cb

B E and σE-structures on F ,
as claimed in the theorem.

Now we find σE satisfying (∗∗). The conditions f(Y ) ⊆ X and f :
F →cb

B E can be rephrased as: for each F -class D ∈ Y/F , the restriction
f |D : D → 2N is a bijection between D and some E-class. By (∗), this is
equivalent to: for each F -class D ∈ Y/F , the structure B := f−1(H′)|D on
D is such that

(∗∗∗)
y 7→ (i 7→RB

i (y)) is a bijection from the universe of B to some E-class.

So it suffices to show that the class K of L-structures B satisfying (∗∗∗) is
Borel (so we may let σE be any Lω1ω-sentence axiomatizing K), i.e., for any
I = 1, 2, . . . ,N, K∩ModI(L) ⊆ ModI(L) is Borel. By (∗) again, K∩ModI(L)
is the image of the Borel injection

{bijections I → (some E-class)} → ModI(L), f 7→ f−1(H′).
The domain of this injection is clearly a Borel subset of XI , whence its
image is Borel.

In the rest of this section, we give an alternative, more “explicit” con-
struction of σE (rather than obtaining it from Lopez-Escobar’s definability
theorem as in the above proof). Using the same notation as in the proof, we
want to find σE satisfying (∗∗).

By Luzin–Novikov uniformization, let E =
⋃
iGi where G0, G1, . . . ⊆ X2

are graphs of (total) Borel functions. For each i, let φi(x, y) be a quantifier-
free Lω1ω-formula whose interpretation in the structure H′ is φH

′
i = Gi ⊆

(2N)2. (Such a formula can be obtained from a Borel definition of Gi ⊆ (2N)2

in terms of the basic rectangles RH′
j ×RH′

k , by replacing each RH′
j ×RH′

k with
Rj(x) ∧Rk(y).) Define the Lω1ω-sentences

σhE := ∀x ∀y ∨i φi(x, y),

σciE := ∀x ∀y (
∧
i(Ri(x)↔ Ri(y))→ x = y),

σcsE := ∀x ∧i ∃y φi(x, y).

Lemma 4.8. In the notation of the proof of Theorem 4.7,

f−1(H′) : F |= σhE ⇔ f(Y ) ⊆ X ∧ f : F →B E,

f−1(H′) : F |= σciE ⇔ f |D : D → 2N is injective for all D ∈ Y/F,
f−1(H′) : F |= σcsE ⇔ f(Y ) ⊆ X ∧ f(D) is E-invariant for all D ∈ Y/F.
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Proof. f−1(H′) : F |= σhE iff for all (y, y′) ∈ F , there is some i such that

φ
f−1(H′)
i (y, y′); φ

f−1(H′)
i (y, y′) is equivalent to φH

′
i (f(y), f(y′)), i.e., f(y) Gi

f(y′), so we deduce that f−1(H′) : F |= σhE iff for all (y, y′) ∈ F , we have
f(y) E f(y′). (Taking y = y′ yields f(y) ∈ X.)

f−1(H′) : F |= σciE iff for all (y, y′) ∈ F with y 6= y′, there is some

i such that R
f−1(H′)
i (y) Y⇔ R

f−1(H′)
i (y), i.e., RH′

i (f(y)) Y⇔ RH′
i (f(y′)), i.e.,

f(y) 6= f(y′).
f−1(H′) : F |= σcsE iff for all y ∈ Y and all i ∈ N, there is some y′ F y

such that φ
f−1(H′)
i (y, y′), i.e., φH

′
i (f(y), f(y′)), i.e., f(y) Gi f(y′); from the

definition of the Gi, this is equivalent to: for all y ∈ Y , we have f(y) ∈ X,
and for every x′ E f(y) there is some y′ F y such that f(y′) = x′.

So defining σE := σhE ∧ σciE ∧ σcsE , we find that f−1(H′) : F |= σE iff
f : F →cb

B E, as desired. Moreover, by modifying these sentences, we may
obtain theories for which structures on F correspond to other kinds of ho-
momorphisms F → E. We will take advantage of this later, in Sections 5.1
and 5.2.

4.3. Structurability and class-bijective homomorphisms. The
combination of Theorems 4.1 and 4.7 gives the following (closely related)
corollaries, which imply a tight connection between structurability and class-
bijective homomorphisms.

Corollary 4.9. For E,F ∈ E, we have F |= σE iff F →cb
B E.

Proof. By Theorem 4.7 and Proposition 3.1.

Corollary 4.10. For every E ∈ E, there is a smallest elementary class
containing E, namely EσE = {F ∈ E | F →cb

B E}.
Proof. By Proposition 3.1, EσE is contained in every elementary class

containing E.

We define EE := EσE = {F ∈ E | F →cb
B E}, and call it the elementary

class of E.

Remark 4.11. E is not necessarily viB-universal in EE : for example,
E0 is not invariantly universal in EE0 = {aperiodic hyperfinite} (see Theo-
rem 2.1).

Corollary 4.12. A class C ⊆ E of countable Borel equivalence relations
is elementary iff it is (downwards) closed under class-bijective homomor-
phisms and contains an invariantly universal element E ∈ C, in which case
C = EE.

Proof. One implication is Proposition 3.1 and Corollary 4.4. Conversely,
if C is closed under →cb

B and E ∈ C is invariantly universal, then clearly
C = {F | F →cb

B E} = EE .
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So every elementary class C is determined by a canonical isomorphism
class contained in C, namely the invariantly universal elements of C. We now
characterize the class of equivalence relations which are invariantly universal
in some elementary class.

Corollary 4.13. Let E ∈ E. The following are equivalent:

(i) E ∼=B E∞σE , i.e., E is invariantly universal in EE.
(ii) E ∼=B E∞σ for some σ, i.e., E is invariantly universal in some ele-

mentary class.
(iii) For every F ∈ E, F →cb

B E iff F viB E.

Proof. Clearly (i)⇒(ii)⇒(iii), and if (iii) holds, then EE ={F | F →cb
B E}

= {F | F viB E}, so E is invariantly universal in EE .

Remark 4.14. The awkward notation E∞σE will be replaced in the next
section (with E∞ ⊗ E).

We say that E ∈ E is universally structurable if the equivalent conditions
in Corollary 4.13 hold. We let E∞ ⊆ E denote the class of universally struc-
turable countable Borel equivalence relations. The following summarizes the
relationship between E∞ and elementary classes:

Corollary 4.15. We have an order-isomorphism of posets

({elementary classes},⊆)↔ (E∞/∼=B,viB) = (E∞/↔cb
B ,→cb

B ),

C 7→ {viB-universal elements of C},
EE ←[ E.

In Section 6 we will study the purely order-theoretical aspects of the
poset (E∞/∼=B,viB) (equivalently, the poset of elementary classes).

We conclude this subsection by pointing out the following consequence
of universal structurability:

Corollary 4.16. If E∈E is universally structurable, then E∼=B∆R×E.
In particular, E has either none or continuum many ergodic invariant prob-
ability measures.

Proof. Clearly E viB ∆R × E, and ∆R × E →cb
B E, so ∆R × E viB E.

4.4. Class-bijective products. In this section and the next, we use the
theory of the preceding sections to obtain some structural results about the
category (E ,→cb

B ) of countable Borel equivalence relations and class-bijective
homomorphisms. For categorical background, see [ML].

This section concerns a certain product construction between countable
Borel equivalence relations, which, unlike the cross product E × F , is well-
behaved with respect to class-bijective homomorphisms.



Structurable equivalence relations 25

Proposition 4.17. Let E,F ∈ E be countable Borel equivalence rela-
tions. There is a countable Borel equivalence relation, denoted by E⊗F and
called the class-bijective product (or tensor product) of E and F , which is
the categorical product of E and F in the category (E ,→cb

B ). In other words,
there are canonical class-bijective projections

π1 : E ⊗ F →cb
B E, π2 : E ⊗ F →cb

B F,

such that the triple (E ⊗ F, π1, π2) is universal in the following sense: for
any other G ∈ E with f : G →cb

B E and g : G →cb
B F , there is a unique

class-bijective homomorphism 〈f, g〉 : G→cb
B E ⊗F such that f = π1 ◦ 〈f, g〉

and g = π2 ◦〈f, g〉. This is illustrated by the following commutative diagram:

G

E E ⊗ F F

f g
〈f,g〉

π1 π2

Proof. Let E ⊗F := E n σF . The rest follows from chasing through the
universal properties in Theorems 4.1 and 4.7 (or equivalently, the Yoneda
lemma). For the sake of completeness, we give the details.

From Theorem 4.1, we have a canonical projection π1 : E ⊗ F →cb
B E.

We also have a canonical σF -structure on E ⊗ F , namely E : E ⊗ F =
E n σF |= σF . This structure corresponds to a unique class-bijective map
π2 : E ⊗ F →cb

B F such that E = (π2)
−1
E⊗F (H), where H : F |= σF is the

canonical structure from Theorem 4.7.

Now given G, f, g as above, the map 〈f, g〉 is produced as follows. We
have the classwise pullback structure g−1G (H) : G |= σF , which, together
with f : G →cb

B E, yields (by Theorem 4.1) a unique map 〈f, g〉 : G →cb
B

E n σF = E ⊗ F such that f = π1 ◦ 〈f, g〉 and g−1G (H) = 〈f, g〉−1G (E).

Since E = (π2)
−1
E⊗F (H), we get g−1G (H) = 〈f, g〉−1G ((π2)

−1
E⊗F (H)) = (π2 ◦

〈f, g〉)−1G (H); since (by Theorem 4.7) g is the unique map h : G→cb
B F such

that g−1G (H) = h−1G (H), we get g = π2 ◦〈f, g〉, as desired. It remains to check
uniqueness of 〈f, g〉. If h : G→cb

B E⊗F is such that f = π1◦h and g = π2◦h,
then (reversing the above steps) we have g−1G (H) = h−1G (E); since 〈f, g〉 was
unique with these properties, we get h = 〈f, g〉, as desired.

Remark 4.18. It follows immediately from the definitions that EE⊗F =
EE ∩ EF .

Remark 4.19. As with all categorical products, ⊗ is unique up to unique
(Borel) isomorphism, as well as associative and commutative up to (Borel)
isomorphism. Note that the latter two properties are not immediately obvi-
ous from the definition E ⊗ F := E n σF .



26 R. Chen and A. S. Kechris

Remark 4.20. However, by unravelling the proofs of Theorems 4.1
and 4.7, we may explicitly describe E⊗F in a way that makes associativity
and commutativity more obvious. Since this explicit description also sheds
some light on the structure of E ⊗ F , we briefly give it here.

Let E live on X, F live on Y , and E ⊗ F live on Z. We have one
(E ⊗ F )-class for each E-class C, F -class D, and bijection b : C ∼= D; the
elements of the (E ⊗ F )-class corresponding to (C,D, b) are the elements
of C, or equivalently, via the bijection b, the elements of D. Thus, ignoring
Borelness, we set

Z := {(x, y, b) | x ∈ X, y ∈ Y, b : [x]E ∼= [y]F , b(x) = y},
(x, y, b) (E ⊗ F ) (x′, y′, b′) ⇔ x E x′ ∧ y F y′ ∧ b = b′,

π1(x, y, b) := x, π2(x, y, b) := y.

Given G, f, g as in Proposition 4.17 (G living on W , say), the map 〈f, g〉 :
G →cb

B E ⊗ F is defined by 〈f, g〉(w) = (f(w), g(w), (g|[w]G) ◦ (f |[w]G)−1),
where (g|[w]G)◦(f |[w]G)−1) : [f(w)]E ∼= [g(w)]F since f, g are class-bijective.

To make this construction Borel, we assume that E,F are aperiodic, and
replace Z in the above with a subspace of X × Y × S∞, where bijections
b : [x]E ∼= [y]F are transported to bijections N ∼= N via Borel enumerations
of the E-classes and F -classes, as with the map T : X → XN in the proof of
Theorem 4.1. (If E,F are not aperiodic, then we split them into the parts
consisting of classes with each cardinality n ∈ {1, 2, . . . ,ℵ0}; then there will
be no (E ⊗ F )-classes lying over an E-class and an F -class with different
cardinalities.)

The tensor product ⊗ and the cross product × are related as follows:
we have a canonical homomorphism (π1, π2) : E ⊗ F →ci

B E × F , where
(π1, π2)(z) = (π1(z), π2(z)) (where π1 : E ⊗ F →cb

B E and π2 : E ⊗ F →cb
B F

are the projections from the tensor product), which is class-injective because
π′1 ◦ (π1, π2) = π1 is class-injective (where π′1 : E×F →B E is the projection
from the cross product).

When we regard E ⊗ F as in Remark 4.20, (π1, π2) is the obvious pro-
jection from Z to X × Y . This in particular shows that

Proposition 4.21.

(a) (π1, π2) : E ⊗ F →ci
B E × F is surjective iff E and F have all classes of

the same cardinality (in particular, if both are aperiodic).
(b) (π1, π2) : E⊗F →ci

B E×F is an isomorphism if E = ∆X and F = ∆Y .

We now list some formal properties of ⊗:

Proposition 4.22. Let E,Ei, F,G ∈ E for i < n ≤ N and let (L, σ) be
a theory.

(a) If E |= σ, then E ⊗ F |= σ.
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(b) If f : E viB F and g : E →cb
B G, then 〈f, g〉 : E viB F ⊗G.

(c) If E is universally structurable, then so is E ⊗ F .
(d) (E ⊗F )n σ ∼=B E ⊗ (F n σ) (and the isomorphism is natural in E,F ).
(e)

⊕
i(Ei⊗F ) ∼=B (

⊕
iEi)⊗F (and the isomorphism is natural in Ei, F ).

Proof. (a) This follows from π1 : E ⊗ F →cb
B E.

(b) Since f = π1 ◦ 〈f, g〉 is class-injective, so is 〈f, g〉.
(c) If f : G →cb

B E ⊗ F , then π1 ◦ f : G →cb
B E, whence there is some

g : G viB E since E is universally structurable, whence 〈g, π2 ◦ f〉 : G viB
E ⊗ F (by (b)).

(d) This follows from a chase through the universal properties of ⊗ and n
(or the Yoneda lemma). (A class-bijective homomorphism G→cb

B (E⊗F )nσ
is the same thing as a pair of class-bijective homomorphisms G→cb

B E and
G →cb

B F together with a σ-structure on G, which is the same thing as a
class-bijective homomorphism G→cb

B E ⊗ (F n σ).)
(e) This is an instance of the following more general fact, which follows

easily from the construction of Enσ in Theorem 4.1 (and which could have
been noted earlier, in Section 4.1):

Proposition 4.23.
⊕

i(Einσ) ∼=B (
⊕

iEi)nσ. Moreover, the isomor-
phism can be taken to be the map d :

⊕
i(Ei n σ) →cb

B (
⊕

iEi) n σ such
that for each i, the restriction d|(Ei n σ) : Ei n σ →cb

B (
⊕

iEi) n σ is the
canonical such map induced by the inclusion Ei viB

⊕
iEi. (In other words,

the functor E 7→ E n σ preserves countable coproducts.)

To get from this to (e), simply set σ := σF . Naturality is straightfor-
ward.

Remark 4.24. The analog of Proposition 4.22(a) for cross products is
false: the class of treeable countable Borel equivalence relations is not closed
under cross products (see e.g. [JKL, 3.28]).

We note that for any E ∈ E , the equivalence relation E∞σE (i.e., the
invariantly universal element of EE) can also be written as the less awkward
E∞ ⊗ E, which is therefore how we will write it from now on.

Here are some sample computations of class-bijective products:

• ∆m ⊗ ∆n
∼=B ∆m × ∆n = ∆m×n for m,n ∈ N ∪ {ℵ0, 2ℵ0} (by Proposi-

tion 4.21(b)).
• IN⊗IN ∼=B ∆R×IN, since IN⊗IN is aperiodic smooth (Proposition 4.22(a))

and there are continuum many bijections N ∼= N.
• E∞ ⊗ E∞ ∼=B E∞, since E∞ viB E∞ ⊗ E∞ (Proposition 4.22(b)).
• If E is universally structurable and E →cb

B F , then E ⊗ F ∼=B E, since
E viB E⊗F (Proposition 4.22(b)), and π1 : E⊗F →cb

B E so E⊗F viB E.
• E0 ⊗ E0

∼=B ∆R × E0, since E0 ⊗ E0 is aperiodic hyperfinite (Proposi-
tion 4.22(a)), and there are 2ℵ0 pairwise disjoint copies of E0 in E0 ⊗E0.
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This last fact can be seen by taking a family (fr)r∈R of Borel automor-
phisms fr : E0

∼=B E0 such that fr, fs disagree on every E0-class whenever
r 6= s, and then considering the embeddings 〈1E0 , fr〉 : E0 viB E0 ⊗ E0,
which will have pairwise disjoint images (by Remark 4.20). (The existence
of the family (fr)r is standard; one construction is by regarding E0 as the
orbit equivalence of the translation action of Z on Z2, the 2-adic integers,
then taking fr : Z2 → Z2 for r ∈ Z2 to be translation by r.)

Note that the last example can be used to compute ⊗ of all hyperfinite
equivalence relations.

We conclude by noting that we do not currently have a clear picture
of tensor products of general countable Borel equivalence relations. For in-
stance, the examples above suggest that perhaps E⊗E is universally struc-
turable (equivalently, E ⊗ E ∼=B E∞ ⊗ E, since E∞ ⊗ E ⊗ E ∼=B E∞ ⊗ E)
for all aperiodic E; but we do not know if this is true.

4.5. Categorical limits in (E ,→cb
B ). This short section concerns gen-

eral categorical limits in the category (E ,→cb
B ) of countable Borel equivalence

relations and class-bijective homomorphisms. Throughout this section, we
use categorical terminology, e.g. “product” means categorical product (i.e.,
class-bijective product), “pullback” means categorical pullback (i.e., fiber
product), etc. For definitions, see [ML, III.3–III.4, V].

We have shown that (E ,→cb
B ) contains binary products. By iterating (or

by generalizing the construction outlined in Remark 4.20), we may obtain all
finite (nontrivial) products. The category (E ,→cb

B ) also contains pullbacks
(see Section 2.6). It follows that it contains all finite nonempty limits, i.e.,
limits of all diagrams F : J → (E ,→cb

B ) where the indexing category J is
finite and nonempty (see [ML, V.2, Exercise III.4.9]).

Remark 4.25. (E ,→cb
B ) does not contain a terminal object, i.e., a limit of

the empty diagram. This would be a countable Borel equivalence relation E
such that any other countable Borel equivalence relation F has a unique
class-bijective map F →cb

B E; clearly such E does not exist.

We now verify that (E ,→cb
B ) has inverse limits of countable chains, and

that these coincide with the same limits in the category of all Borel equiva-
lence relations and Borel homomorphisms (Section 2.7):

Proposition 4.26. Let (Xn, En)n∈N be countable Borel equivalence rela-
tions, and (fn : En+1 →cb

B En)n be class-bijective homomorphisms. Then the
inverse limit lim←−n(Xn, En) in the category of Borel equivalence relations and
Borel homomorphisms, as defined in Section 2.7, is also the inverse limit in
(E ,→cb

B ). More explicitly:

(a) the projections πm : lim←−nEn →B Em are class-bijective (so in particular

lim←−nEn is countable);
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(b) if (Y, F )∈E is a countable Borel equivalence relation with class-bijective
homomorphisms gn : F →cb

B En such that gn = fn◦gn+1, then the unique
homomorphism g̃ : F →B lim←−nEn such that πn ◦ g̃ = gn for each n

(namely g̃(y) = (gn(y))n) is class-bijective.

Proof. For (a), note that since πm = fm ◦ πm+1 and the fm are class-
bijective, it suffices to check that π0 is class-bijective, since we may then
inductively infer that π1, π2, . . . are class-bijective. Let x = (xn)n ∈ lim←−nXn

and x0 = π0(x) E0 x
′
0; we must find a unique x′ (lim←−nEn) x such that x′0 =

π0(x
′). For the coordinate x′1 = π1(x

′), we must have x′0 = f0(x
′
1) (in order

to have x′ ∈ lim←−nXn) and x′1 E1 x1 (in order to have x′ (lim←−nEn) x); since

x′0 E0 x0, by class-bijectivity of f0, there is a unique such x′1. Continuing
inductively, we see that there is a unique choice of x′n = πn(x′) for each
n > 0. Then x′ := (x′n)n is the desired element.

For (b), simply note that since πn ◦ g̃ = gn and πn, gn are class-bijective,
so must be g̃.

Corollary 4.27. (E ,→cb
B ) has all countable (nontrivial ) products.

Proof. To compute the product
⊗

iEi of E0, E1, E2, . . . ∈ E , take the
inverse limit of the chain · · · →cb

B E0⊗E1⊗E2 →cb
B E0⊗E1 →cb

B E0 (where
the maps are the projections).

Remark 4.28. Countable products can also be obtained by generalizing
Remark 4.20.

Corollary 4.29. (E ,→cb
B ) has all countable nonempty limits, i.e., limits

of all diagrams F : J → (E ,→cb
B ), where the indexing category J is countable

and nonempty.

Proof. This follows from countable products and pullbacks; again see
[ML, V.2, Exercise III.4.9].

5. Structurability and reducibility. This section has two parts: the
first part (Sections 5.1 to 5.3) relates structurability to various classes of
homomorphisms, in the spirit of Sections 4.1 to 4.3; while the second part
(Section 5.4) relates reductions to compressibility, using results from the
first part and from [DJK, Section 2].

We describe here the various classes of homomorphisms that we will be
considering. These fit into the table on the next page.

The last entry in the table corresponds to the following notion: we
say that a Borel homomorphism f : (X,E) →B (Y, F ) is smooth, writ-
ten f : E →sm

B F , if the f -preimage of every smooth set is smooth (where
by a smooth subset of Y (resp., X) we mean a subset to which the re-
striction of F (resp., E) is smooth). This notion was previously considered
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Table 5.1. Global and local classes of homomorphisms

Global Local

viB →cb
B

vB →ci
B

≤B →sm
B

by Clemens–Conley–Miller [CCM], under the name smooth-to-one homo-
morphism (because of Proposition 5.8(ii)). See Proposition 5.8 for basic
properties of smooth homomorphisms.

Let (G,L) be a row in Table 5.1. We say that G is a “global” class
of homomorphisms, while L is the corresponding “local” class. Note that
G ⊆ L. The idea is that G is a condition on homomorphisms requiring
injectivity between classes (i.e., G consists only of reductions), while L is an
analogous “classwise” condition which can be captured by structurability.

Our main results in this section state the following: for any elementary
class C ⊆ E , the downward closure of C under G is equal to the downward
closure under L, and is elementary. In particular, when C = EE , this implies
that the downward closure of {E} under L is elementary. In the case (G,L) =
(viB,→cb

B ), these follow from Section 4.3; thus, our results here generalize the
results therein to the other classes of homomorphisms appearing in Table 5.1.

Theorem 5.1. Let C ⊆ E be an elementary class. Then the downward
closures of C under vB and →ci

B, namely

Ce := {F ∈ E | ∃E ∈ C (F vB E)}, Ccih := {F ∈ E | ∃E ∈ C (F →ci
B E)},

are equal and elementary. In particular, if C = EE, then

EeE = EcihE = {F ∈ E | F →ci
B E}

( = {F ∈ E | F vB E} if E is universally structurable)

is the smallest elementary class containing E and closed under vB.

Theorem 5.2. Let C ⊆ E be an elementary class. Then the downward
closures of C under ≤B and →sm

B , namely

Cr := {F ∈ E | ∃E ∈ C (F ≤B E)},
Csmh := {F ∈ E | ∃E ∈ C (F →sm

B E)},
are equal and elementary. In particular, when C = EE, then

ErE = EsmhE = {F ∈ E | F →sm
B E}

( = {F ∈ E | F ≤B E}, if E is universally structurable)

is the smallest elementary class containing E and closed under ≤B.

Our proof strategy is as follows. For each (G,L) (that is, (vB,→ci
B) or

(≤B,→sm
B )), we prove a “factorization lemma” which states that L consists
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precisely of composites of homomorphisms in G followed by class-bijective
homomorphisms (in that order). This implies that the closures of C under
G and L are equal, since C is already closed under class-bijective homo-
morphisms. We then prove that for any E ∈ E , a variation of the “Scott
sentence” from Theorem 4.7 can be used to code L-homomorphisms to E.
Hence for any E ∈ E , the L-downward closure of {E} is elementary, which
completes the proof.

5.1. Embeddings and class-injective homomorphisms. We begin
with embeddings and class-injective homomorphisms, for which we have the
following factorization lemma:

Proposition 5.3. Let (X,E), (Y, F ) ∈ E be countable Borel equivalence
relations and f : E →ci

B F be a class-injective homomorphism. Then there is
a countable Borel equivalence relation (Z,G) ∈ E, an embedding g : E vB G,
and a class-bijective homomorphism h : G→cb

B F , such that f = h ◦ g:

(X,E) (Y, F )

(Z,G)
g

f

h

Furthermore, g can be taken to be a complete section embedding, that is,
[g(X)]G = Z.

Proof. Consider the equivalence relation (W,D) where

W := {(x, y) ∈ X × Y | f(x) F y},
(x, y)D (x′, y′) ⇔ x E x′ ∧ y = y′.

Then (W,D) is a countable Borel equivalence relation. We claim that it is
smooth. Indeed, by Luzin–Novikov uniformization, write F =

⋃
iGi where

Gi ⊆ Y 2 for i ∈ N are graphs of Borel functions gi : Y → Y . Then a Borel
selector for D is found by sending (x, y) ∈ W to ((f |[x]E)−1(gi(y)), y) for
the least i such that gi(y) is in the image of f |[x]E . (Here we are using the
fact that f is class-injective.)

Now set Z := W/D, and let G be the equivalence relation on Z given by

[(x, y)]D G [(x′, y′)]D ⇔ x E x′ ∧ y F y′.

Then (Z,G) is a countable Borel equivalence relation. Let g : X → Z and
h : Z → Y be given by

g(x) := [(x, f(x))]D, h([(x, y)]D) := y.

It is easily seen that g : E vB G is a complete section embedding,h : G→cb
B F ,

and f = h ◦ g, as desired.

Remark 5.4. It is easy to see that the factorization produced by Propo-
sition 5.3 (with the requirement that g be a complete section embedding)
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is unique up to unique Borel isomorphism. In other words, if (Z ′, G′) ∈ E ,
g′ : E vB G′, and h′ : G′ →cb

B F with f = h′◦g′ is another factorization, with
g′ a complete section embedding, then there is a unique Borel isomorphism
i : G ∼=B G′ such that i ◦ g = g′ and h = h′ ◦ i.

Corollary 5.5. If E ∈ E is universally structurable, then F vB E ⇔
F →ci

B E for all F ∈ E. Similarly, if C is an elementary class, then Ce = Ccih.

Proof. If E is universally structurable and F →ci
B E, then by Proposi-

tion 5.3, F vB G →cb
B E for some G; then G viB E, whence F vB E. The

second statement is similar.

We now have the following analog of Theorem 4.7 for class-injective
homomorphisms, which we state in the simpler but slightly weaker form of
Corollary 4.9 since that is all we will need:

Proposition 5.6. Let E ∈ E be a countable Borel equivalence relation.
Then there is a sentence σcihE (in some fixed language) such that for all
F ∈ E, we have F |= σcihE iff F →ci

B E.

Proof. We may either modify the proof of Theorem 4.7 (by considering
“injections I → (some E-class)” instead of bijections in the last few lines of
the proof), or take σcihE := σhE ∧ σciE where σhE and σciE are as in Lemma 4.8.

Corollary 5.7. If C = EE is an elementary class, then so is Ce =
Ccih = {F ∈ E | F →ci

B E}.
This completes the proof of Theorem 5.1.

5.2. Reductions, smooth homomorphisms, and class-surjectiv-
ity. Recall that a Borel homomorphism f : E →B F between countable
Borel equivalence relations E,F is smooth if the preimage of every smooth
set is smooth. We have the following equivalent characterizations of smooth
homomorphisms, parts of which are implicit in [CCM, 2.1–2.3]:

Proposition 5.8. Let (X,E), (Y, F ) ∈ E and f : E →B F . The follow-
ing are equivalent:

(i) f is smooth.
(ii) For every y ∈ Y , f−1(y) is smooth (i.e., E|f−1(y) is smooth).
(iii) E ∩ ker f is smooth (as a countable Borel equivalence relation on X).
(iv) f can be factored into a surjective reduction g : E ≤B G, followed by

a complete section embedding h : G vB H, followed by a class-bijective
homomorphism k : H →cb

B F , for some G,H ∈ E:

E F

G H
g

f

h k
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(In particular, f can be factored into a reduction h ◦ g (with image a
complete section) followed by a class-bijective homomorphism k, or a
surjective reduction g followed by a class-injective homomorphism k◦h.)

(v) f belongs to the smallest class of Borel homomorphisms between count-
able Borel equivalence relations which is closed under composition and
contains all reductions and class-injective homomorphisms.

Proof. (i)⇒(ii) is obvious.

(ii)⇒(iii) (see [CCM, 2.2]). If E ∩ker f is not smooth, then it has an er-
godic invariant σ-finite nonatomic measure µ. The pushforward f∗µ is then a
∆Y -ergodic (because µ is (ker f)-ergodic) measure on Y , hence concentrates
at some y ∈ Y , i.e., µ(f−1(y)) > 0, whence f−1(y) is not smooth.

(iii)⇒(iv). Letting g : X → X/(E ∩ ker f) be the projection and G
be the equivalence relation on X/(E ∩ ker f) induced by E, we observe
that g : E ≤B G is a surjective reduction, and f descends along g to a
class-injective homomorphism f ′ : G →ci

B F . By Proposition 5.3, f ′ factors
as a complete section embedding h : G vB H followed by a class-bijective
homomorphism k : H →cb

B F , for some H ∈ E .

(iv)⇒(v) is obvious.

(v)⇒(i). Clearly, reductions are smooth, as are class-bijective homomor-
phisms; it follows that so are class-injective homomorphisms, by Proposi-
tion 5.3 (see also [CCM, 2.3]).

Similarly to before we now have

Corollary 5.9. If E ∈ E is universally structurable, then F ≤B E ⇔
F →sm

B E for all F ∈ E. Similarly, if C is an elementary class, then Cr =
Csmh.

Proposition 5.10. Let E ∈ E be a countable Borel equivalence relation.
Then there is a sentence σsmhE (in some fixed language) such that for all
F ∈ E, we have F |= σsmhE iff F →sm

B E.

Proof. The language is L = {R0, R1, . . . } ∪ {P} where Ri, P are unary
predicates, and the sentence is σsmhE := σhE ∧ σsmE , where σhE is as in Lem-
ma 4.8, and

σsmE := ∀x ∃!y (P (y) ∧∧i(Ri(x)↔ Ri(y))).

It is easily seen that for any L-structure A on F , we will have A : F |= σsmE
iff the interpretation PA is a Borel transversal of F ∩ ker f , where f is the
Borel map to E coded by A.

Corollary 5.11. If C = EE is an elementary class, then so is Cr =
Csmh = {F ∈ E | F →sm

B E}.
This completes the proof of Theorem 5.2.
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Remark 5.12. Theorem 5.2 generalizes [CCM, 2.3], which shows that
some particular classes of the form Cr, with C elementary, are closed un-
der →sm

B .
Hjorth–Kechris [HK, D.3] proved that every Cr (C elementary) is closed

under ⊆, i.e., containment of equivalence relations on the same space. Since
containment is a class-injective homomorphism (namely the identity), The-
orem 5.2 also generalizes this.

See Appendix A.5 for more on the relation between [HK, Appendix D]
and the above.

We end this section by pointing out that exactly analogous proofs work
for yet another pair of (“global” resp. “local”) classes of homomorphisms
(which we did not include in Table 5.1), which forms a natural counterpart
to (vB,→ci

B). We write ≤csB to denote a (Borel ) class-surjective reduction,
and →cssm

B to denote a class-surjective smooth homomorphism. Then we
have

Theorem 5.13. Let C = EE be an elementary class. Then

Ccsr := {F ∈ E | ∃E ∈ C (F ≤csB E)},
Ccssmh := {F ∈ E | ∃E ∈ C (F →cssm

B E)}
are equal and elementary, and Ccsr = {F ∈ E | F →cssm

B E}.
Proof. Exactly as before, we have the following chain of results:

Proposition 5.14. Let (X,E), (Y, F ) ∈ E and f : E →cssm
B F . Then

there is a (Z,G) ∈ E, a surjective reduction g : E ≤B G, and a class-bijective
homomorphism h : G→cb

B F such that f = h ◦ g.

Proof. By Proposition 5.8, f can be factored into a surjective reduction
g followed by a class-injective homomorphism h; since h ◦ g = f is class-
surjective and g is surjective, hmust be class-surjective, i.e., class-bijective.

Corollary 5.15. If E ∈ E is universally structurable, then F ≤csB E ⇔
F →cssm

B E for all F ∈ E. Similarly, if C is an elementary class, then
Ccsr = Ccssmh.

Proposition 5.16. Let E ∈ E. Then there is a sentence σcssmhE (in some
fixed language) such that for all F ∈ E we have F |= σcssmhE iff F →cssm

B E.

Proof. Like Proposition 5.10, but set σcssmhE := σhE ∧ σcsE ∧ σsmE .

It follows that Ccsr = Ccssmh = {F ∈ E | F →cssm
B E} is elementary.

Remark 5.17. Since any reduction f : E ≤B F can be factored into a
surjective reduction onto its image followed by an embedding, we could have
alternatively proved that Cr is elementary (for elementary C) by combining
Theorem 5.1 with Theorem 5.13.
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5.3. Elementary reducibility classes. We say that an elementary
class C ⊆ E is an elementary reducibility class if it is closed under reductions.
The following elementary classes mentioned in Section 3.1 are elementary
reducibility classes: smooth equivalence relations, hyperfinite equivalence
relations, treeable equivalence relations [JKL, 3.3], E . The following classes
are not elementary reducibility classes: finite equivalence relations, aperi-
odic equivalence relations, compressible equivalence relations, compressible
hyperfinite equivalence relations. In Section 7, we will prove that for a count-
ably infinite group Γ , E∗Γ is an elementary reducibility class iff Γ is amenable,
where E∗Γ consists of equivalence relations whose aperiodic part is generated
by a free action of Γ .

By Theorem 5.2, for every E ∈ E , ErE is the smallest elementary re-
ducibility class containing E; this is analogous to Corollary 4.10. We also
have the following analog of Corollary 4.12:

Corollary 5.18. A class C ⊆ E is an elementary reducibility class
iff it is closed under smooth homomorphisms and contains an invariantly
universal element E ∈ C, in which case C = ErE.

As well, there is the analog of Corollary 4.13:

Corollary 5.19. Let E ∈ E. The following are equivalent:

(i) E is invariantly universal in ErE.
(ii) E is invariantly universal in some elementary reducibility class.
(iii) For every F ∈ E, F →sm

B E iff F viB E.

We call E ∈ E stably universally structurable if these equivalent con-
ditions hold. We write Er∞ ⊆ E for the class of stably universally struc-
turable countable Borel equivalence relations. For any E ∈ E , we write
Er∞E := E∞σsmhE

for the viB-universal element of ErE .

As a simple example illustrating these notions, consider the equivalence
relation E0. Its elementary class EE0 is the class of all aperiodic hyperfinite
equivalence relations: since E0 is aperiodic hyperfinite, so is every F ∈ EE0 ,
and conversely every aperiodic hyperfinite F admits a class-bijective homo-
morphism to E0 by the Dougherty–Jackson–Kechris classification (Theo-
rem 2.1). Thus, EE0 is not an elementary reducibility class. Its closure ErE0

under reduction is the class of all hyperfinite equivalence relations, whose
viB-universal element is Er∞E0

∼=
⊕

1≤n∈N(∆R × In)⊕ (∆R × E0).

Remark 5.20. We emphasize that being stably universally structurable
is a stronger notion than being universally structurable (Er∞ is a transversal
of ↔sm

B , which is a coarser equivalence relation than ↔cb
B ). In particular,

“stably universally structurable” is not the same as “≤B-universal in some
elementary class” (which would be a weaker notion).
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Remark 5.21. By Proposition 5.8, the preorder →sm
B on E is the com-

posite (→cb
B ) ◦ (≤B) of the two preorders ≤B and →cb

B on E , hence also the
join of ≤B and →cb

B in the complete lattice of all preorders on E (that are
∼=B-invariant, say), i.e., →sm

B is the finest preorder on E coarser than both
≤B and→cb

B . Similarly,↔sm
B is the join of ∼B and↔cb

B in the lattice of equiv-
alence relations on E ; this follows from noting that E ↔cb

B E∞⊗E ∼B Er∞E .
One may ask what is the meet of the preorders ≤B and →cb

B . We do not
know of a simple answer. Note that the meet is strictly coarser than viB;
indeed, 2 · E0 ≤B E0 and 2 · E0 →cb

B E0, but 2 · E0 6viB E0. (Similarly, the
meet of ∼B and ↔cb

B is strictly coarser than ∼=B.)

Remark 5.22. Clearly one can define similar notions of “elementary
embeddability class” and “elementary class-surjective reducibility class”.

5.4. Reductions and compressibility. Dougherty–Jackson–Kechris
proved several results relating Borel reducibility to compressibility [DJK,
2.3, 2.5, 2.6], which we state here in a form suited for our purposes.

Proposition 5.23 (Dougherty–Jackson–Kechris). Let E,F be countable
Borel equivalence relations.

(a) E is compressible iff E ∼=B E × IN (and the latter is always compress-
ible).

(b) If E is compressible and E vB F , then E viB F .
(c) If F is compressible and E ≤csB F , then E viB F .
(d) If E,F are compressible and E ≤B F , then E viB F .
(e) E ≤B F iff E × IN viB F × IN.

Proof. While these were all proved at some point in [DJK], not all of
them were stated in this form. For (a), see [DJK, 2.5]. For (b), see [DJK,
2.3]. Clearly, (e) follows from (a) and (d) (and from E ∼B E× IN). We now
sketch (c) and (d), which are implicit in the proof of [DJK, 2.6].

For (c), take f : E ≤csB F , and let G viB F be the image of f . Then
f is a surjective reduction E ≤B G, hence we can find a g : G vB E
such that f ◦ g = 1G; in particular, g is a complete section embedding.
Now G is compressible, so applying [DJK, 2.2], we get G ∼=B E, whence
E ∼=B G viB F .

For (d), take f : E ≤B F , and let G vB F be the image of f . Then
f : E ≤csB G and G vB F , whence E×IN ≤csB G×IN vB F ×IN. By (a)–(c),
E ∼=B E × IN viB G× IN viB F × IN ∼=B F .

Remark 5.24. In passing, we note that Propositions 5.23(b), 5.3 to-
gether give the following: if E is compressible and E →ci

B F , then E →cb
B F .

It follows from Proposition 5.23 that the compressible equivalence re-
lations (up to isomorphism) form a transversal of bireducibility, with cor-
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responding selector E 7→ E × IN, which is moreover compatible with the
reducibility ordering. We summarize this as follows. Let Ec ⊆ E denote the
compressible countable Borel equivalence relations.

Corollary 5.25. We have an order-isomorphism of posets

(E/∼B,≤B)↔ (Ec/∼=B,viB), E 7→ E × IN.
Remark 5.26. Unlike the selector E 7→ E∞ ⊗ E for ↔cb

B , the selector
E 7→ E × IN for ∼B does not take E to the viB-greatest element of its
∼B-class (e.g. E0 × IN ∼=B Et @i

B E0). Nor does it always take E to the
viB-least element of its ∼B-class, or even to an element viB-less than E: for
finite E clearly E×IN 6viB E, while for aperiodic E, a result of Thomas [T1]
(see also [HK, 3.9]) states that there are aperiodic E such that E×I2 6vB E.

We now relate compressibility to structurability. Let E∞c denote the
invariantly universal compressible countable Borel equivalence relation, i.e.,
the viB-universal element of Ec. Aside from E 7→ E × IN, we have another
canonical way of turning any E into a compressible equivalence relation,
namely E 7→ E∞c ⊗ E. These two maps are related as follows:

Proposition 5.27. Let (X,E) ∈ E be a countable Borel equivalence
relation.

(a) E∞c ⊗ E →cb
B E × IN.

(b) Suppose E is universally structurable. Then:

(i) E × IN is universally structurable;
(ii) E∞c ⊗ E viB E × IN;

(iii) E × IN vB E iff E × IN viB E∞c ⊗ E (iff E × IN ∼=B E∞c ⊗ E).

Proof. For (a), we observe that E∞c ⊗ E →cb
B E, whence E∞c ⊗ E ∼=B

(E∞c ⊗ E)× IN →cb
B E × IN.

For (i), let f : F →cb
B E × IN; we need to show that F viB E × IN.

Letting F0 := F |f−1(X × {0}), it is easily seen that F ∼= F0 × IN. We have
f |f−1(X × {0}) : F0 →cb

B (E × IN)|(X × {0}) ∼= E, so F0 viB E by universal
structurability of E, whence F ∼= F0× IN viB E× IN. (This argument is due
to Anush Tserunyan, and is simpler than our original argument.)

(ii) follows from (a) and (i).

For (iii), if E×IN viB E∞c⊗E, then E∞c⊗E viB E gives E×IN viB E.
Conversely, if E×IN vB E, then since E×IN is compressible, E×IN viB E,
and also E × IN viB E∞c, whence E × IN viB E∞c ⊗ E.

Remark 5.28. We do not know if there is an aperiodic universally struc-
turable E with E×IN 6vB E. The example by Thomas [T1] mentioned above
is far from universally structurable, since it has a unique ergodic invariant
probability measure.
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We call a bireducibility class C ⊆ E universally structurable if it contains
a universally structurable element. In this case, by Theorem 5.2, C contains
an invariantly universal (stably universally structurable) element, namely
Er∞E for any E ∈ C; and by Proposition 5.27, it also contains a compressible
universally structurable element, namely E × IN for any E ∈ C. Between
these two (in the ordering viB) lie all those universally structurable E ∈ C
such that E × IN vB E.

Let E∞c := E∞∩Ec denote the class of compressible universally structur-
able equivalence relations. Since E∞ forms a transversal (up to isomorphism)
of the equivalence relation↔cb

B , while Ec forms a transversal of ∼B, we would
expect E∞c to form a transversal of ↔sm

B , the join of ↔cb
B and ∼B. That

this is the case follows from the fact that the two corresponding selectors
E 7→ E∞ ⊗ E (for ↔B) and E 7→ E × IN (for ∼B) commute:

Proposition 5.29. For any E ∈ E, (E∞ ⊗E)× IN ∼=B E∞ ⊗ (E × IN).

Proof. We have E∞⊗E →cb
B E, whence (E∞⊗E)× IN →cb

B E× IN, and
so (E∞ ⊗ E)× IN viB E∞ ⊗ (E × IN). Conversely, we have E viB E∞ ⊗ E,
whence E×IN viB (E∞⊗E)×IN, and so E∞⊗ (E×IN) viB (E∞⊗E)×IN,
since the latter is universally structurable by Proposition 5.27.

6. The poset of elementary classes. In this section, we consider
the order-theoretic structure of the poset of elementary classes under in-
clusion (equivalently the poset (E∞/∼=B,viB)), as well as the poset of ele-
mentary reducibility classes under inclusion (equivalently (Er∞/∼=B,viB), or
(E∞c/∼=B,viB), or (E∞/∼B,≤B)).

In Section 6.1, we introduce some concepts from order theory which give
us a convenient way of concisely stating several results from previous sec-
tions. In Section 6.2, we discuss meets and joins in the poset (E∞/∼=B,viB).
In Section 6.4, we extend a well-known result of Adams–Kechris [AK] to
show that (E∞/∼B,≤B) is quite complicated, by embedding the poset of
Borel subsets of reals.

We remark that we always consider the empty equivalence relation ∅ on
the empty set to be a countable Borel equivalence relation; this is particu-
larly important in this section. Note that ∅ is (vacuously) σ-structurable for
any σ, hence is the viB-universal ⊥-structurable equivalence relation, where
⊥ denotes an inconsistent theory.

6.1. Projections and closures. Among the various posets (or pre-
ordered sets) of equivalence relations that we have considered so far (e.g.
(E ,→cb

B ), (E∞,viB), (Ec,viB)), there is one which is both the finest and the
most inclusive, namely (E/∼=B,viB). Several of the other posets and pre-
orders may be viewed as derived from (E/∼=B,viB) via the following general
order-theoretic notions.
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Let (P,≤) be a poset. A projection operator on P is an idempotent
order-preserving map e : P → P , i.e.,

∀x, y ∈ P (x ≤ y ⇒ e(x) ≤ e(y)), e ◦ e = e.

The image e(P ) of a projection operator e is a retract of P , i.e., the inclusion
i : e(P ) → P has a one-sided (order-preserving) inverse e : P → e(P ) such
that e ◦ i = 1e(P ). A projection operator e also gives rise to an induced
preorder . on P , namely the pullback of ≤ along e, i.e.,

x . y ⇔ e(x) ≤ e(y).

Letting ∼ := ker e, which is also the equivalence relation associated with .,
we thus have two posets derived from (P,≤) associated with each projection
operator e, namely the quotient poset (P/∼,.) and the subposet (e(P ),≤).
These are related by an order-isomorphism:

(P/∼,.)↔ (e(P ),≤) = (e(P ),.),

[x]∼ 7→ e(x),

e−1(y) = [y]∼ ←[ y.

(There is the following analogy with equivalence relations: set ↔ poset,
equivalence relation ↔ preorder, selector ↔ projection, and transversal ↔
retract.)

Summarizing previous results, we list here several projection operators
on (E/∼=B,viB) that we have encountered, together with their images and
induced preorders:

• E 7→ E∞ ⊗ E, which has image E∞/∼=B (the universally structurable
equivalence relations) and induces the preorder →cb

B (Section 4.3);
• E 7→ E × IN, which has image Ec/∼=B (the compressible equivalence rela-

tions) and induces the preorder ≤B (Proposition 5.23);
• E 7→ (E∞⊗E)×IN ∼=B E∞⊗(E×IN) (Proposition 5.29), which has image
E∞c/∼=B (the compressible universally structurable equivalence relations)
and induces the preorder →sm

B ;
• E 7→ Er∞E (the viB-universal element of ErE), which has image Er∞/∼=B

(the stably universally structurable equivalence relations) and also induces
the preorder →sm

B ;
• similarly, E 7→ the viB-universal element of EeE , which induces →ci

B.

Also note that some of these projection operators can be restricted to the
images of others; e.g. the restriction of E 7→ E × IN to E∞ is a projection
operator on E∞/∼=B (by Proposition 5.27), with image E∞c/∼=B.

Again let (P,≤) be a poset, and let e : P → P be a projection operator.
We say that e is a closure operator if

∀x ∈ P (x ≤ e(x)).
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In other words, each e(x) is the (≤-)greatest element of its ∼-class. In that
case, the induced preorder . satisfies

x . y ⇔ x ≤ e(y) (⇔ e(x) ≤ e(y)).

Among the projection operators on (E/∼=B,viB) listed above, three are
closure operators, namely E 7→ the viB-universal element of EE , ErE , or EeE
(the first of these being E 7→ E∞ ⊗ E).

For another example, let us say that a countable Borel equivalence rela-
tion E ∈ E is idempotent if E ∼=B E⊕E. This is easily seen to be equivalent
to E ∼=B ℵ0 · E; hence, the idempotent elements of E form the image of
the closure operator E 7→ ℵ0 · E on (E/∼=B,viB). Note that all universally
structurable equivalence relations are idempotent (Corollary 4.16).

6.2. The lattice structure. We now discuss the lattice structure of
the poset of elementary classes under inclusion, equivalently the poset
(E∞/∼=B,viB) of universally structurable isomorphism classes under viB.

Let us first introduce the following notation. For theories (L, σ) and
(L′, τ), we write

(L, σ)⇒∗ (L′, τ) (or σ ⇒∗ τ)

to mean that Eσ ⊆ Eτ , i.e., for every E ∈ E , if E |= σ, then E |= τ . Thus
⇒∗ is a preorder on the class of theories which is equivalent to the poset of
elementary classes (via σ 7→ Eσ), and hence also to the poset (E∞/∼=B,viB)
(via σ 7→ E∞σ). We denote the associated equivalence relation by ⇔∗.

Remark 6.1. We stress that in the notation σ ⇒∗ τ , σ and τ may
belong to different languages. Of course, if they happen to belong to the
same language and σ logically implies τ , then also σ ⇒∗ τ ; but the latter is
in general a weaker condition.

Let (P,≤) be a poset. We say that P is an ω1-complete lattice if every
countable subset A ⊆ P has a meet (i.e., greatest lower bound)

∧
A, as well

as a join (i.e., least upper bound)
∨
A. We say that P is an ω1-distributive

lattice if it is an ω1-complete lattice which satisfies the ω1-distributive laws

x ∧∨i yi =
∨
i(x ∧ yi), x ∨∧i yi =

∧
i(x ∨ yi),

where i runs over a countable index set.

Theorem 6.2. The poset (E∞/∼=B,viB) is an ω1-distributive lattice, in
which joins are given by

⊕
, nonempty meets are given by

⊗
, the greatest

element is E∞, and the least element is ∅.
Moreover, the inclusion (E∞/∼=B,viB) ⊆ (E/∼=B,viB) preserves (count-

able) meets and joins. In other words, if E0, E1, . . . ∈ E∞ are universally
structurable equivalence relations, then

⊗
iEi (respectively

⊕
iEi) is their

meet (respectively join) in (E/∼=B,viB) as well as in (E∞/∼=B,viB).



Structurable equivalence relations 41

Before giving the proof of Theorem 6.2, we discuss the operations on the-
ories which correspond to the operations

⊗
and

⊕
. That is, let ((Li, σi))i be

a countable family of theories; we want to find theories (L′, σ′) and (L′′, σ′′)
such that

⊗
iE∞σi

∼=B E∞σ′ and
⊕

iE∞σi
∼=B E∞σ′′ .

Proposition 6.3. Let
⊗

i(Li, σi) = (
⊔
i Li,

⊗
i σi) be the theory where⊔

i Li is the disjoint union of the Li, and
⊗

i σi is the conjunction of the
σi’s regarded as being in the language

⊔
i Li (so that the different σi’s have

disjoint languages). Then
⊗

iE∞σi
∼=B E∞

⊗
i σi

.

Proof. For each i, the
⊗

j σj-structure on E∞
⊗
j σj

has a reduct which is

a σi-structure, so E∞
⊗
j σj
|= σi, i.e., E∞

⊗
j σj
viB E∞σi ; hence E∞

⊗
j σj
viB⊗

iE∞σi . Conversely, for each j we have
⊗

iE∞σi →cb
B E∞σj |= σj so⊗

iE∞σi |= σj ; combining these σj-structures yields a
⊗

j σj-structure, so⊗
iE∞σi viB E∞

⊗
j σj

.

While we can similarly prove that
⊕

iE∞σi corresponds to the theory
given by the disjunction of the σi’s, we prefer to work with the following
variant, which is slightly better behaved with respect to structurability. Let⊕

i(Li, σi) = (
⊕

i Li,
⊕

i σi) be the theory where
⊕

i Li :=
⊔
i(Li t {Pi})

where each is Pi is a unary relation symbol, and⊕
i σi :=

∨
i((∀xPi(x)) ∧ σi ∧

∧
j 6=i
∧
R∈Lit{Pi} ∀x¬R(x))

(on the right-hand side, σi is regarded as having language
⊕

i Li). In other
words,

⊕
i σi asserts that for some (unique) i, Pi holds for all elements, and

we have a σi-structure; and for all j 6= i, Pj and all relations in Lj hold for
no elements. Then for a countable Borel equivalence relation (X,E) ∈ E ,
a
⊕

i σi-structure A : E |= ⊕
i σi is the same thing as a Borel E-invariant

partition (PA
i )i of X, together with a σi-structure A|PA

i : E|PA
i |= σi

for each i.

Proposition 6.4.
⊕

iE∞σi
∼=B E∞

⊕
i σi

.

Proof. The σi-structure on each E∞σi yields a
⊕

j σj-structure (with

PA
i = everything, and PA

j = ∅ for j 6= i); so
⊕

iE∞σi viB E∞
⊕
j σj

. Con-

versely, letting A : E∞
⊕
j σj
|= ⊕

j σj , we have E∞
⊕
j σj

=
⊕

iE∞
⊕
j σj
|PA
i

and A|PA
i : E∞

⊕
j σj
|PA
i |= σi for each i, whence E∞

⊕
i σi
viB

⊕
iE∞σi .

As noted in [KMd, 2.(C)], the next lemma follows from abstract proper-
ties of the poset (E/∼=B,viB); for the convenience of the reader, we include
a direct proof.

Lemma 6.5. Let E0, E1, . . . ∈ E be countably many idempotent countable
Borel equivalence relations. Then

⊕
iEi is their join in the preorder (E ,viB).
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Proof. ClearlyEj viB
⊕

iEi for each j. LetF ∈ E andEi viB F for each i;
we must show that

⊕
iEi viB F . Since each Ei viB F , we have F ∼=B Ei⊕Fi

for some Fi; since Ei ∼=B Ei ⊕ Ei, we have F ∼=B Ei ⊕ Ei ⊕ Fi ∼=B Ei ⊕ F .
So an invariant embedding

⊕
iEi viB F is built by invariantly embedding

E0 into E0 ⊕ F ∼=B F so that the remainder (complement of the image) is
isomorphic to F , then similarly embedding E1 into the remainder, etc.

Proof of Theorem 6.2. By Propositions 6.3 and 6.4, we may freely switch
between the operations

⊗
and

⊕
on universally structurable equivalence

relations, and the same operations on theories.
First we check that

⊗
is meet and

⊕
is join. Let (L0, σ0), (L1, σ1), . . . be

theories; it suffices to show that
⊗

i σi, resp.
⊕

i σi, is their meet, resp. join,
in the preorder ⇒∗. For

⊗
this is clear, since a (

⊗
i σi)-structure on E ∈ E

is the same thing as a σi-structure for each i. For
⊕

, a σi-structure on E for
any i yields a (

⊕
j σj)-structure (corresponding to the partition of E where

the ith piece is everything); thus σi ⇒∗
⊕

j σj for each i. And if (L′, τ) is
another theory with σi ⇒∗ τ for each i, then given a (

⊕
i σi)-structure on E,

we have a partition of E into pieces which are σi-structured for each i, so
by σi ⇒∗ τ we can τ -structure each piece of the partition; thus

⊕
i σi ⇒∗ τ .

That the inclusion (E∞/∼=B,viB)→ (E/∼=B,viB) preserves (all existing)
meets follows from the fact that E∞/∼=B ⊆ E/∼=B is the image of the clo-
sure operator E 7→ E∞ ⊗ E. That it preserves countable joins follows from
Lemma 6.5.

Now we check the ω1-distributive laws. Distributivity of ⊗ over
⊕

follows from Proposition 4.22(e). To check distributivity of ⊕ over
⊗

, we
again work with theories. Let σ, τ0, τ1, . . . be theories; we need to show
that σ ⊕ ⊗i τi ⇔∗

⊗
i(σ ⊕ τi). The ⇒∗ inequality, as in any lattice, is

trivial. For the converse, let (X,E) ∈ E and A : E |= ⊗
i(σ ⊕ τi), which

amounts to an Ai : E |= σ ⊕ τi for each i. Then for each i, we have a
Borel E-invariant partition X = Ai ∪ Bi such that Ai|Ai : E|Ai |= σ and
Ai|Bi : E|Bi |= τi. By combining the various Ai, we get E|⋃iAi |= σ and
G|⋂iBi |=

⊗
i τi; and so the partition X = (

⋃
iAi)∪ (

⋂
iBi) witnesses that

E |= σ ⊕⊗i τi.

Remark 6.6. It is not true that
⊕

is join in (E/∼=B,viB), since there
exist E ∈ E such that E 6∼=B E ⊕ E (e.g. E = E0). Similarly, it is not true
that

⊗
is meet in (E/∼=B,viB), since there are E with E 6∼=B E ⊗ E (see

examples near the end of Section 4.4).

Remark 6.7. That the inclusion (E∞/∼=B,viB)→ (E/∼=B,viB) preserves
countable joins suggests that perhaps E∞/∼=B ⊆ E/∼=B is also the image of
an “interior operator”. This would mean that every countable Borel equiv-
alence relation E ∈ E contains (in the sense of viB) a greatest universally
structurable equivalence relation. We do not know if this is true.
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By restricting Theorem 6.2 to the class Ec of compressible equivalence
relations, which is downward closed under viB, closed under

⊕
, and has

greatest element E∞c, we immediately obtain

Corollary 6.8. The poset (E∞c/∼=B,viB) is an ω1-distributive lattice,
in which joins are given by

⊕
, nonempty meets are given by

⊗
, the great-

est element is E∞c, and the least element is ∅. Moreover, the inclusion
(E∞c/∼=B,viB) ⊆ (Ec/∼=B,viB) preserves (countable) meets and joins.

Now since (Ec/∼=B,viB) is isomorphic to (E/∼B,≤B), we may rephrase
this as

Corollary 6.9. The poset of universally structurable bireducibility
classes under ≤B is an ω1-distributive lattice. Moreover, the inclusion into
the poset (E/∼B,≤B) of all bireducibility classes under ≤B preserves
(countable) meets and joins.

Remark 6.10. We stress that the ≤B-meets in Corollary 6.9 must be
computed using the compressible elements of bireducibility classes. That is,
if E,F are universally structurable, then their ≤B-meet is (E×IN)⊗(F×IN),
but not necessarily E ⊗ F . For example, if E is invariantly universal finite
and F is invariantly universal aperiodic, then E ⊗ F = ∅ is clearly not the
≤B-meet of E,F . Also, if there is an aperiodic universally structurable E
with E× IN 6vB E, then (by Proposition 5.27) E⊗E∞c is not the ≤B-meet
of E and E∞c ∼B E∞.

The order-theoretic structure of the poset (E/∼B,≤B) of all bireducibil-
ity classes under ≤B is not well-understood, apart from that it is very com-
plicated (by [AK]). The first study of this structure was made by Kechris–
Macdonald [KMd]. In particular, they raised the question of whether there
exists any pair of ≤B-incomparable E,F ∈ E for which a ≤B-meet exists.
Corollary 6.9, together with the existence of many ≤B-incomparable univer-
sally structurable bireducibility classes (Theorem 6.20), answers this ques-
tion by providing a large class of bireducibility classes for which ≤B-meets
always exist.

There are some natural order-theoretic questions one could ask about the
posets (E∞/∼=B,viB) and (E∞/∼,≤B), which we do not know how to answer.
For example, is either a complete lattice? If so, is it completely distributive?
Is it a “zero-dimensional” ω1-complete lattice, in that it embeds (preserving
all countable meets and joins) into 2X for some set X? (See Corollary 6.15
below for some partial results concerning this last question.)

Remark 6.11. It can be shown that every ω1-distributive lattice is a
quotient of a sublattice of 2X for some set X (see the arXiv version of this
paper). In particular, this implies that the set of algebraic identities involving
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and

⊕
which hold in (E∞/∼=B,viB) is “completely understood”, in that

it consists of exactly those identities which hold in 2 = {0 < 1}.

6.3. Closure under independent joins. We mention here some con-
nections with recent work of Marks [M].

Let E0, E1, . . . be countably many countable Borel equivalence relations
on the same standard Borel space X. We say that the Ei are independent if
there is no sequence x0, x1, . . . , xn of distinct elements of X, where n ≥ 1,
such that x0 Ei0 x1 Ei1 · · ·Ein−1 xn Ein x0 for some i0, . . . , in with ij 6= ij+1

for each j. In that case, their independent join is the smallest equivalence
relation on X containing each Ei. For example, the independent join of
treeable equivalence relations is still treeable. Marks proves the following
for elementary classes closed under independent joins [M, 4.15, 4.16]:

Theorem 6.12 (Marks). If Eσ is an elementary class of aperiodic equiv-
alence relations closed under binary independent joins, then for any Borel
homomorphism p : E∞σ →B ∆X (where X is any standard Borel space),
there is some x ∈ X such that E∞σ ∼B E∞σ|p−1(x).

Theorem 6.13 (Marks). If Eσ is an elementary class of aperiodic equiva-
lence relations closed under countable independent joins, then for any E ∈ E,
if E∞σ ≤B E, then E∞σ vB E.

Remark 6.14. Clearly the aperiodicity condition in Theorems 6.12
and 6.13 can be loosened to the condition that IN ∈ Eσ (so that restricting
Eσ to the aperiodic elements does not change E∞σ up to biembeddability).

Above we asked whether the ω1-distributive lattice (E∞/∼B,≤B) is zero-
dimensional, i.e., embeds into 2X for some set X. This is equivalent to asking
whether there are enough ω1-prime filters (i.e., filters closed under countable
meets whose complements are closed under countable joins) in (E∞/∼B,≤B)
to separate points. Theorem 6.12 gives some examples of ω1-prime filters:

Corollary 6.15. If Eσ contains IN and is closed under binary indepen-
dent joins, then

{E ∈ E∞ | E∞σ ≤B E}
is an ω1-prime filter in (E∞/∼B,≤B).

Proof. If g : E∞σ ≤B
⊕

iEi then we have a homomorphism E∞σ →B

∆N sending the g-preimage of Ei to i; by Theorem 6.12, it follows that
E∞σ ≤B Ei for some i.

We also have the following simple consequence of Theorem 6.13:

Corollary 6.16. If Eσ is an elementary class such that Erσ is closed
under countable independent joins, then Eeσ = Erσ.
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Proof. The viB-universal element of Erσ reduces to E∞σ, whence by The-
orem 6.13 it embeds into E∞σ, i.e., belongs to Eeσ.

Remark 6.17. Although the conclusions of Theorems 6.12 and 6.13
are invariant with respect to bireducibility (respectively biembeddability),
Marks has pointed out that the notion of being closed under independent
joins is not similarly invariant: there are E∞σ ∼B E∞τ such that Eσ is closed
under independent joins but Eτ is not. In particular, if σ axiomatizes trees
while τ axiomatizes trees of degree ≤ 3, then E∞σ ∼B E∞τ by [JKL, 3.10];
but it is easy to see (using an argument like that in Proposition 6.18 be-
low) that independent joins of τ -structurable equivalence relations can have
arbitrarily high cost, so are not all τ -structurable.

Clearly if Eσ, Eτ are closed under independent joins, then so is Eσ⊗τ =
Eσ ∩ Eτ . In particular, the class Ec of compressible equivalence relations is
closed under arbitrary (countable) joins, since the join of compressible equiv-
alence relations contains a compressible equivalence relation; thus the class
of compressible treeable equivalence relations is closed under independent
joins. We note that this is the smallest nontrivial elementary class to which
Theorems 6.12 and 6.13 apply:

Proposition 6.18. If Eσ is an elementary class containing IN and closed
under binary independent joins, then Eσ contains all compressible treeable
equivalence relations.

Proof. Since Eσ is elementary and contains IN, it contains all aperiodic
smooth countable Borel equivalence relations. Now let (X,E) ∈ E be com-
pressible treeable. By [JKL, 3.11], there is a Borel treeing T ⊆ E with
degree ≤ 3. By [KST, 4.6] (see also remarks following [KST, 4.10]), there
is a Borel edge coloring c : T → 5. Then E is the independent join of the
equivalence relations Ei := c−1(i) ∪∆X for i = 0, 1, 2, 3, 4. Since the Ei are
not aperiodic, consider the following modification. Let

X ′ := X t (X × 5× N),

let T ′ be the tree on X ′ consisting of T on X and the edges (x, (x, i, 0)) and
((x, i, n), (x, i, n+1)) for x ∈ X, i ∈ 5, and n ∈ N, and let c′ : T ′ → 5 extend
c with c′(x, (x, i, 0)) = c′((x, i, n), (x, i, n + 1)) = i (note that c′ is not an
edge coloring). Then the inclusion X → X ′ is a complete section embedding
of each Ei into the equivalence relation E′i generated by c′−1(i), and of E
into the equivalence relation E′ generated by T ′. It follows that each E′i is
(aperiodic) smooth (because Ei is), hence in Eσ, while E ∼=B E′ (because
E is compressible). But it is easily seen that E′ is the independent join of
the E′i, whence E ∈ Eσ.
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6.4. Embedding the poset of Borel sets. Adams–Kechris [AK]
proved the following result showing that the poset (E/∼B,≤B) is extremely
complicated:

Theorem 6.19 (Adams–Kechris). There is an order-embedding from the
poset of Borel subsets of R under inclusion into the poset (E/∼B,≤B).

In this short section, we show that their proof may be strengthened to
yield

Theorem 6.20. There is an order-embedding from the poset of Borel
subsets of R under inclusion into the poset (E∞/∼B,≤B).

Proof. By [AK, 4.2], there is a countable Borel equivalence relation
(X,E), a Borel homomorphism p : (X,E) →B (R, ∆R), and a Borel map
x 7→ µx taking each x ∈ R to a Borel probability measure µx on X, such
that, letting Ex := E|p−1(x), we have

(i) for each x ∈ R, µx is nonatomic, concentrated on p−1(x), Ex-invariant,
and Ex-ergodic;

(ii) if x, y ∈ R with x 6= y, then every Borel homomorphism f : Ex →B Ey
maps a Borel Ex-invariant set M ⊆ p−1(x) of µx-measure 1 to a single
Ey-class.

For Borel A ⊆ R, let EA := E|p−1(A) and FA := E∞⊗EA. We claim that
A 7→ FA gives the desired order-embedding. It is clearly order-preserving.
Now suppose A,B ⊆ R with A 6⊆ B but FA ≤B FB. By taking x ∈ A\B, we
get x 6∈ B but Ex viB E∞ ⊗Ex = F{x} ≤B FA ≤B FB. Let f : Ex ≤B FB =

E∞ ⊗ EB, and let π2 : E∞ ⊗ EB →cb
B EB be the second projection. Then

p◦π2◦f : Ex →B ∆B, whence by Ex-ergodicity of µx, there is a y ∈ B and an
Ex-invariant M ⊆ p−1(x) of µx-measure 1 such that (p ◦ π2 ◦ f)(M) = {y},
i.e., (π2 ◦ f)(M) ⊆ p−1(y). By (ii) above, there is a further Ex-invariant
N ⊆ M of µx-measure 1 such that (π2 ◦ f)(N) is contained in a single
Ey-class. But since π2 is class-bijective and f is a reduction, this implies
that E|N is smooth, a contradiction.

Remark 6.21. If we replace (E∞/∼B,≤B) with (E∞/∼=B,viB) in The-
orem 6.20 (thus weakening the result), then a simpler proof may be given,
using groups of different costs (see [KM, 36.4]) instead of [AK].

6.5. A global picture. The picture below is a simple visualization
of the poset (E/∼=B,viB). For the sake of clarity, among the hyperfinite
equivalence relations, only the aperiodic ones are shown.

Six landmark universally structurable equivalence relations are shown
(circled dots): ∅, 2ℵ0 · IN (viB-universal aperiodic smooth), Et (viB-universal
compressible hyperfinite), 2ℵ0 ·E0 (viB-universal aperiodic hyperfinite), E∞c
(viB-universal compressible), and E∞ (viB-universal).
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∅

IN

2·IN

. .
.

ℵ0·IN
2ℵ0 · IN

Et

E0

2·E0

. . .

ℵ0·E0

2ℵ0 · E0 E∞c

E∞

E × IN

Er
∞E

E⊕(E×IN)

E

universally structurable

non-universally structurable

compressible

∼B-class

Also shown is the “backbone” of compressible equivalence relations (bold
line), which contains one element from each bireducibility class (dotted
loops).

The middle of the picture shows a “generic” universally structurable E
and its relations to some canonical elements of its bireducibility class: the
viB-universal element Er∞E and the compressible element E× IN. Note that
E × IN is not depicted as being below E, in accordance with Remark 5.28.
Note also that for nonsmooth E, the viB-universal element Er∞E of its bire-
ducibility class would indeed be above 2ℵ0 ·E0, as shown: E0 ≤B E implies
2ℵ0 · E0 viB Er∞E since Er∞E is stably universally structurable.

Finally, note that the picture is somewhat misleading in a few ways. It
is not intended to suggest that the compressibles form a linear order. Nor
is it intended that any of the pairs E @i

B F do not have anything strictly
in between them (except of course for the things below 2ℵ0 · E0, which are
exactly as shown).

7. Free actions of a group. Let Γ be a countably infinite group.
Recall (from Section 3.1) that we regard Γ as a structure in the language
LΓ = {Rγ | γ ∈ Γ}, where RΓγ ⊆ Γ 2 is the graph of the left multiplication of
γ on Γ . Thus, EΓ = EσΓ (where σΓ is the Scott sentence of Γ in LΓ ) is the
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class of Borel equivalence relations generated by a free Borel action of Γ .
Our main goal in this section is to characterize when EΓ is an elementary
reducibility class.

Actually, to deal with a technicality, we need to consider the following
variant of EΓ . Let E∗Γ := EσΓ⊕σf , where σf is a sentence axiomatizing the
finite equivalence relations. Thus E∗Γ consists of countable Borel equivalence
relations whose aperiodic part is generated by a free Borel action of Γ . This
is needed because every equivalence relation in EΓ must have all classes of
the same cardinality as Γ .

Theorem 7.1. Let Γ be a countably infinite group. The following are
equivalent:

(i) Γ is amenable.
(ii) E∗Γ is closed under vB.
(iii) E∗Γ is closed under ≤B, i.e., E∗Γ is an elementary reducibility class.

To motivate Theorem 7.1, consider the following examples. By Theo-
rem 2.1, E∗Z is the class of all hyperfinite equivalence relations, which is
closed under ≤B. On the other hand, for every 2 ≤ n ≤ ℵ0, the free group
Fn on n generators is such that (E∗Fn)r is the class of treeable equivalence
relations, by [JKL, 3.17]; but E∗Fn is not itself the class of all treeables, since
every E ∈ E∗Fn with a nonatomic invariant probability measure has cost n
(see [KM, 36.2]).

Recall that the viB-universal element of EΓ is F (Γ,R), the orbit equiva-
lence of the free part of the shift action of Γ on RΓ . Thus the viB-universal
element of E∗Γ is F (Γ,R)⊕E∞f , where E∞f is the viB-universal finite equiv-
alence relation (given by E∞f =

⊕
1≤n∈N 2ℵ0 · In).

Remark 7.2. Seward and Tucker–Drob [ST] have shown that for count-
ably infinite Γ , every free Borel action of Γ admits an equivariant class-
bijective map into F (Γ, 2) (clearly the same holds for finite Γ ). It follows
that F (Γ, 2) is →cb

B -universal in EΓ .

A well-known open problem asks whether every orbit equivalence of a
Borel action of a countable amenable group Γ is hyperfinite. In the purely
Borel context, the best known general result is the following [SS]:

Theorem 7.3 (Schneider–Seward). If Γ is a countable locally nilpotent
group, i.e., every finitely generated subgroup of Γ is nilpotent, then every
orbit equivalence EXΓ of a Borel action of Γ is hyperfinite.

Remark 7.4. Recently Conley, Jackson, Marks, Seward, and Tucker-
Drob have found examples of solvable but not locally nilpotent countable
groups for which the conclusion of Theorem 7.3 still holds.
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If Theorem 7.3 generalizes to arbitrary countable amenable Γ , then it
would follow that E∗Γ is the class of all hyperfinite equivalence relations (since
it contains F (Γ,R), which admits an invariant probability measure); then
the main implication (i)⇒(iii) in Theorem 7.1 would trivialize.

In the measure-theoretic context, a classical result of Ornstein–Weiss
[OW] states that the orbit equivalence of a Borel action of an amenable
group Γ is hyperfinite almost everywhere with respect to every probabil-
ity measure. We will need a version of this result which is uniform in the
measure, which we now state. For a standard Borel space X, we let P (X)
denote the space of probability Borel measures on X (see [K95, 17.E]).

Lemma 7.5. Let X,Y be standard Borel spaces, E = EXΓ be the orbit
equivalence of a Borel action of a countable amenable group Γ on X, and
m : Y →B P (X). Then there is a Borel set A ⊆ Y × X, with π1(A) = Y
(where π1 : Y ×X →B Y is the first projection), such that

(i) for each y ∈ Y , Ay := {x ∈ X | (y, x) ∈ A} has m(y)-measure 1 and is
E-invariant;

(ii) (∆Y × E)|A is hyperfinite.

Proof. This follows from verifying that the proofs of [KM, 9.2, 10.1] can
be made uniform. We omit the details, which are tedious but straightfor-
ward.

We now have the following, which forms the core of Theorem 7.1:

Proposition 7.6. Let Γ be a countable amenable group, and let (X,E),
(Y, F ) ∈ E be countable Borel equivalence relations. If E ≤B F and F = EYΓ
for some Borel action of Γ on Y , then E is the disjoint sum of a hyperfinite
equivalence relation and a compressible equivalence relation.

Proof. If E is compressible, then we are done. Otherwise, E has an
invariant probability measure. Consider the ergodic decomposition of E; see
e.g. [KM, 3.3]. This gives a Borel homomorphism p : E →B ∆P (X) such that

(i) p is a surjection onto the Borel set Pe(E) ⊆ P (X) of ergodic invariant
probability measures on E;

(ii) for each µ ∈ Pe(E), we have µ(p−1(µ)) = 1.

Let f : E ≤B F , and apply Lemma 7.5 to F and f∗ : Pe(E) →B P (Y ),
where f∗ is the pushforward of measures. This gives Borel A ⊆ Pe(E) × Y
such that

(iii) for each µ ∈ Pe(E), µ(f−1(Aµ)) = (f∗µ)(Aµ) = 1, and Aµ ⊆ Y is
F -invariant (so A is (∆Pe(E) × F )-invariant);

(iv) (∆Pe(E) × F )|A is hyperfinite.
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Now consider the homomorphism g := (p, f) : E →B ∆Pe(E) × F , i.e.,
g(x) = (p(x), f(x)). Then g is a reduction because f is. It follows that
B := g−1(A) is E-invariant and E|B is hyperfinite. It now suffices to note
that E|(X \B) is compressible. Indeed, otherwise it would have an ergodic
invariant probability measure, i.e., there would be some µ ∈ Pe(E) such that
µ(X \ B) = 1. But then µ(p−1(µ) ∩ f−1(Aµ)) = 1, while p−1(µ) ∩ f−1(Aµ)
⊆ B, a contradiction.

Proof of Theorem 7.1. Clearly (iii)⇒(ii). If (ii) holds, then by the Glimm–
Effros dichotomy, E0 vB F (Γ,R), so (ii) implies E0 →cb

B F (Γ,R), i.e., E0 is
generated by a free action of Γ , and so since E0 is hyperfinite and has
an invariant probability measure, Γ is amenable (see [JKL, 2.5(ii)]). So it
remains to prove (i)⇒(iii).

Let E ≤B F ∈ E∗Γ . Then E splits into a smooth part, which is clearly in
E∗Γ , and a part which reduces to some F ′ ∈ EΓ ; so we may assume F ∈ EΓ .
Factor the reduction E ≤B F into a surjective reduction f : E ≤B G
(onto the image) followed by an embedding G vB F . By Proposition 7.6,
G = G′ ⊕ G′′, where G′ is hyperfinite and G′′ is compressible. Then E =
f−1(G′) ⊕ f−1(G′′). Since f−1(G′′) ≤csB G′′vBF and G′′ is compressible, we
have f−1(G′′) viB F (Proposition 5.23) and so f−1(G′′) ∈ EΓ . Finally, we
have f−1(G′) ∈ E∗Γ , since E∗Γ contains all hyperfinite equivalence relations
(because E0 viB F (Γ,R), by Ornstein–Weiss’s theorem and Theorem 2.1).

8. Structurability and model theory. In the previous sections, we
have studied the relationship between structurability and common notions
from the theory of countable Borel equivalence relations. This section, by
contrast, concerns the other side of the |= relation, i.e., logic. In particular,
we are interested in model-theoretic properties of theories (L, σ) which are
reflected in the elementary class Eσ that they axiomatize.

A general question one could ask is when two theories (L, σ), (L′, τ) ax-
iomatize the same elementary class, i.e., in the notation of Section 6.2, when
σ ⇔∗ τ . Our main result here answers one instance of this question. Let σsm
denote any sentence axiomatizing the smooth countable Borel equivalence
relations.

Theorem 8.1. Let (L, σ) be a theory. The following are equivalent:

(i) There is an Lω1ω-formula φ(x) which defines a finite nonempty subset
in any countable model of σ.

(ii) σ ⇒∗ σsm, i.e., any σ-structurable equivalence relation is smooth, or
equivalently E∞σ is smooth.

(iii) For any countably infinite group Γ , we have σ ⊗ σΓ ⇒∗ σsm, i.e., any
σ-structurable equivalence relation generated by a free Borel action of Γ
is smooth.
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(iv) There is a countably infinite group Γ such that σ ⊗ σΓ ⇒∗ σsm.

In particular, this answers a question of Marks [M, end of Section 4.3],
who asked for a characterization of when E∞σA (σA a Scott sentence) is
smooth. The proof uses ideas from topological dynamics and ergodic theory.

Marks observed that recent work of Ackerman–Freer–Patel [AFP] im-
plies the following sufficient condition for a structure A to structure every
aperiodic countable Borel equivalence relation. In Section 8.2, we present
his proof of this result, as well as several corollaries and related results. The
result refers to the model-theoretic notion of trivial definable closure; see
Section 8.2 for details. Let σa denote any sentence axiomatizing the aperi-
odic countable Borel equivalence relations.

Theorem 8.2 (Marks). Let L be a language and A be a countable L-
structure with trivial definable closure. Then σa ⇒∗ σA, i.e., every aperiodic
countable Borel equivalence relation is A-structurable.

In Section 8.3 we discuss the problem of when an elementary class can
be axiomatized by a Scott sentence.

8.1. Smoothness of E∞σ. We now begin the proof of Theorem 8.1.
The implication (i)⇒(ii) is easy: given a formula φ as in (i), φ may be used to
uniformly pick out a finite nonempty subset of each E∞σ-class, thus E∞σ is
smooth. The implications (ii)⇒(iii)⇒(iv) are obvious. So let Γ be as in (iv).

Consider the logic action of SΓ on ModΓ (L), the space of L-structures
with universe Γ . Recall that this is given as follows: for f ∈ SΓ , δ ∈ Γn,
n-ary R ∈ L, and A ∈ ModΓ (L), we have

Rf(A)(δ) ⇔ RA(f−1(δ)).

We regard Γ as a subgroup of SΓ via the left multiplication action, so that
Γ acts on ModΓ (L).

In an earlier version of this paper, we had stated the following lemma
without the condition on finite stabilizers; only the⇒ direction (without the
condition) is used in what follows. Anush Tserunyan pointed out to us that
the ⇐ direction was wrong, and gave the corrected version below together
with the necessary additions to its proof.

Lemma 8.3. Let Γ be a countably infinite group. Then σ⊗σΓ ⇒∗ σsm iff

E
ModΓ (σ)
Γ is smooth and the action of Γ on ModΓ (σ) has finite stabilizers.

Proof. The proof is largely based on that of [KM, 29.5].

⇐: Suppose (X,E) is generated by a free Borel action of Γ and A :
E |= σ. Define f : X → ModΓ (σ) by

Rf(x)(γ1, . . . , γn) ⇔ RA(γ−11 · x, . . . , γ−1n · x).
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Then f is Γ -equivariant, so since Γ y ModΓ (σ) has finite stabilizers, f is
finite-to-one on every E-class. Thus f is a smooth homomorphism, and

therefore since E
ModΓ (σ)
Γ is smooth, so is E.

⇒: First, suppose E
ModΓ (σ)
Γ is not smooth. Let ν be an ergodic nonatomic

invariant σ-finite measure on E
ModΓ (σ)
Γ . Consider the free part Y ⊆ 2Γ of

the shift action of Γ on 2Γ , with orbit equivalence F = F (Γ, 2). The usual
product measure ρ on 2Γ concentrates on Y , and is invariant and mixing
with respect to the action of Γ on Y (see [KM, 3.1]). Then consider the
product action of Γ on Y ×ModΓ (σ), which is free since Γ acts freely on Y .
By [SW, 2.3, 2.5], this product action admits ρ× ν as an ergodic nonatomic

invariant σ-finite measure. Thus E
Y×ModΓ (σ)
Γ is not smooth.

Observe that E
Y×ModΓ (σ)
Γ is the skew product FnModΓ (σ) with respect

to the cocycle α : F → Γ associated to the free action of Γ on Y ; and that α,
when regarded as a cocycle F → SΓ , is induced, in the sense of Remark 4.3,
by T : Y → Y Γ where T (y)(γ) := γ−1 ·y. So (as in the proof of Theorem 4.1)

E
Y×ModΓ (σ)
Γ is σ-structurable, hence witnesses that σ ⊗ σΓ 6⇒∗ σsm.

Now, suppose that the stabilizer ΓA of some A ∈ ModΓ (σ) is infinite.
Again, we let Y ⊆ 2Γ be the free part of the shift action, and consider the
product action of Γ on Y × [A]Γ , which is σ-structurable as above. The
action of ΓA on Y × [A]Γ is not smooth because it contains the action on
Y × {A} ∼= Y which in turn contains the free part of the shift on 2ΓA ∼=
2ΓA × {0}Γ\ΓA ⊆ 2Γ . Since E

Y×[A]Γ
ΓA

⊆ E
Y×[A]Γ
Γ , it follows that E

Y×[A]Γ
Γ is

not smooth, hence witnesses that σ ⊗ σΓ 6⇒∗ σsm.

So we have converted (iv) in Theorem 8.1 into a property of the action
of Γ on ModΓ (σ). Our next step requires some preparation.

Let L be a language and A = (X,RA)R∈L be a countable L-structure.
We say that A has the weak duplication property (WDP) if for any finite
sublanguage L′ ⊆ L and finite subset F ⊆ X, there is a finite subset G ⊆ X
disjoint from F such that (A|L′)|F ∼= (A|L′)|G (here A|L′ denotes the reduct
in the sublanguage L′).

Remark 8.4. If we define the duplication property (DP) for A by replac-
ing L′ in the above by L, then clearly the DP is equivalent to the strong joint
embedding property (SJEP) for the age of A: for any F,G ∈ Age(A), there
is H ∈ Age(A) and embeddings F → H and G → H with disjoint images.
(Recall that Age(A) is the class of finite L-structures embeddable in A.)

For a countable group Γ acting continuously on a topological space X,
we say that a point x ∈ X is recurrent if x is not isolated in the orbit Γ · x
(with the subspace topology). When X is a Polish space, a basic fact is that
EXΓ is smooth iff it does not have a recurrent point (see e.g. [K10, 22.3]).
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Thus far, we have only regarded the space ModX(L) of L-structures on
a countable set X as a standard Borel space. Below we will also need to
consider the topological structure on ModX(L) (see e.g. [K95, 16.C]). In
particular, we will use the system of basic clopen sets consisting of

NF := {A ∈ ModX(L) | (A|L′)|F = F}
where L′ ⊆ L is a finite sublanguage and F = (F,RF)R∈L′ is an L′-structure
on a finite nonempty subset F ⊆ X.

The next lemma, which translates between the dynamics of ModΓ (σ)
and a model-theoretic property of σ, is the heart of the proof of (iv)⇒(i) in
Theorem 8.1:

Lemma 8.5. Let Γ be a countably infinite group. Let L be a language, and
let σ be an Lω1ω-sentence such that ModΓ (σ) ⊆ ModΓ (L) is a Gδ subspace.
Suppose there is a countable model A |= σ with the WDP and such that
the interpretation RA

0 of some R0 ∈ L is not definable (without parameters)
from equality. Then the action of Γ on ModΓ (σ) has a recurrent point, thus

E
ModΓ (σ)
Γ is not smooth.

Proof. We claim that it suffices to show that

(∗) every basic clopen set NF ⊆ ModΓ (L) containing some isomorphic copy
of A also contains two distinct isomorphic copies of A from the same
Γ -orbit, i.e., there is B ∈ NF and γ ∈ Γ such that B ∼= A and γ ·B 6= B.

Suppose this has been shown; we complete the proof. Note that since A has
WDP, A must be infinite. Let ModΓ (σA) denote the closure in ModΓ (σ) of
ModΓ (σA) (where σA is the Scott sentence of A). Since ModΓ (σ) ⊆ ModΓ (L)

is Gδ, ModΓ (σA) is a Polish space, which is nonempty because it contains
an isomorphic copy of A. For each basic clopen set NF ⊆ ModΓ (L), the set
of B ∈ ModΓ (σA) such that

(∗∗) B ∈ NF ⇒ ∃γ ∈ Γ (B 6= γ · B ∈ NF)

is clearly open; and by (∗), it is also dense. Thus the set of recurrent points in
ModΓ (σA), i.e., the set of B ∈ ModΓ (σA) for which (∗∗) holds for every NF,
is comeager.

So it remains to prove (∗). Let F be such that NF contains an isomorphic
copy of A. Let A = (X,RA)R∈L, and let F = (F,RF)R∈L′ where F ⊆ Γ is
finite nonempty and L′ ⊆ L is finite. We may assume R0 ∈ L′.

Since NF contains an isomorphic copy of A, there is a map f : F → X
which is an embedding F→ A. We will extend f to a bijection Γ → X, and
then define B := f−1(A), thus ensuring that B ∈ NF; we need to choose f
appropriately so that there is γ ∈ Γ with B 6= γ · B ∈ NF.

Let G := f(F ) ⊆ X. By WDP, there is a G′ ⊆ X disjoint from G
such that (A|L′)|G ∼= (A|L′)|G′, say via g : G → G′. By the hypothesis



54 R. Chen and A. S. Kechris

that RA
0 is not definable from equality, there are x = (x1, . . . , xn) ∈ Xn

and x′ = (x′1, . . . , x
′
n) ∈ Xn, where n is the arity of R0, such that x ∈ RA

0 ,
x′ 6∈ RA

0 , and x, x′ have the same equality type, i.e., we have a bijection
{x1, . . . , xn} → {x′1, . . . , x′n} sending xi to x′i. Again by WDP, we may find
x, x′ disjoint from G, G′, and each other.

Now pick δ = (δ1, . . . , δn) ∈ Γn disjoint from F and with the same
equality type as x, and pick γ ∈ Γ such that γ−1F and γ−1δ are disjoint
from F and δ. Extend f : F → X to a bijection f : Γ → X such that

f |γ−1F = g ◦ (f |F ) ◦ γ : γ−1F → G′, f(δ) = x, f(γ−1δ) = x′.

Then letting B := f−1(A), it is easily verified that (γ · B|L′)|F = F, i.e.,

γ ·B ∈ NF; but Rγ·B0 (δ) ⇔ RB
0 (γ−1δ) ⇔ RA

0 (x′) ⇔ ¬RA
0 (x) ⇔ ¬RB

0 (δ),
so γ · B 6= B.

Corollary 8.6. Let Γ be a countably infinite group. Let L be a lan-
guage, and let σ be an Lω1ω-sentence such that ModΓ (σ) ⊆ ModΓ (L) is a
Gδ subspace. If σ⊗σΓ ⇒∗ σsm, then no countable model of σ has the WDP.

Proof. Suppose a countable (infinite) A |= σ has the WDP. If for some
R0 ∈ L, the interpretation RA

0 is not definable (without parameters) from
equality, then σ ⊗ σΓ 6⇒∗ σsm by Lemmas 8.3 and 8.5. Otherwise, clearly,
any aperiodic countable Borel equivalence relation is σA-structurable, hence
σ-structurable; taking F (Γ, 2) then shows that σ ⊗ σΓ 6⇒∗ σsm.

Working towards (i) in Theorem 8.1, which asserts the existence of a
formula with certain properties, we now encode the WDP into formulas,
using the following combinatorial notion.

Let X be a set and 1 ≤ n ∈ N. An n-ary intersecting family on X
is a nonempty collection F of subsets of X of size n such that every pair
A,B ∈ F has A ∩B 6= ∅.

Lemma 8.7. Let L be a language. There are Lω1ω-formulas
φn(x0, . . . , xn−1) for each 1 ≤ n ∈ N such that for any countable L-structure
A = (X,RA)R∈L without the WDP, there is some n such that

{{x0, . . . , xn−1} | φAn(x0, . . . , xn−1)}
is an n-ary intersecting family on X.

Proof. Let ((Lk, nk,Fk))k enumerate all countably many triples where
Lk ⊆ L is a finite sublanguage, 1 ≤ nk ∈ N, and Fk ∈ Modnk(Lk)
is an Lk-structure with universe nk (= {0, . . . , nk − 1}). For each k, let
ψk(x0, . . . , xnk−1) be an Lk-formula asserting that x0, . . . , xnk−1 (are pair-
wise distinct and) form an Lk-substructure isomorphic to Fk which is not
disjoint from any other such substructure. Thus A does not have the WDP
iff some ψk holds for some tuple in A; and in that case, the collection of all
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tuples (regarded as sets) for which ψk holds will form an nk-ary intersecting
family. Finally let

φn(x) :=
∨
nk=n

(ψk(x) ∧ ¬∨k′<k ∃y ψk′(y)),

so that φnk is equivalent to ψk for the least k which holds for some tu-
ple.

Recall that clause (i) in Theorem 8.1 asserts the existence of a single
formula defining a finite nonempty set. The following lemma, due to Cle-
mens–Conley–Miller [CCM, 4.3], gives a way of uniformly defining a finite
nonempty set from an intersecting family. For the convenience of the reader,
we include its proof here.

Lemma 8.8 (Clemens–Conley–Miller). Let F be an n-ary intersecting
family on X. For 1 ≤ m < n, define

F (m) :=
{
A ⊆ X

∣∣ |A| = m ∧ |{B ∈ F | A ⊆ B}| ≥ ℵ0
}
.

Then there exist mk < mk−1 < · · · < m1 < n such that F (m1),F (m1)(m2), . . .
are (respectively m1-ary, m2-ary, etc.) intersecting families, and F (m1)···(mk)

is finite.

Proof. It suffices to show that if F is infinite, then there is some 1 ≤ m
< n such that F (m) is an m-ary intersecting family. Indeed, having shown
this, we may find the desired m1,m2, . . . inductively; the process must ter-
minate since a 1-ary intersecting family is necessarily a singleton.

So assume F is infinite, and let m < n be greatest so that F (m) is
nonempty. Let A,B ∈ F (m). For each x ∈ B \ A, by our choice of m,
there are only finitely many C ∈ F such that A ∪ {x} ⊆ C. Thus by
definition of F (m), there is C ∈ F such that A ⊆ C and (B \ A) ∩ C = ∅.
Similarly, there is D ∈ F such that B ⊆ D and (C \ B) ∩ D = ∅. Then
A ∩B = C ∩B = C ∩D 6= ∅, as desired.

Corollary 8.9. Let L be a language. There is an Lω1ω-formula φ(x)
such that for any countable L-structure A without the WDP, φA is a finite
nonempty subset.

Proof. This follows from Lemmas 8.7 and 8.8, by a straightforward en-
coding of the operation F 7→ F (m) in Lω1ω.

In more detail, for each Lω1ω-formula ψ(x0, . . . , xn−1) and m < n, let
ψ(m)(x0, . . . , xm−1) be a formula asserting that x0, . . . , xm−1 are pairwise
distinct and there are infinitely many extensions (xm, . . . , xn−1) such that
ψ(x0, . . . , xn−1) holds, so that if ψ defines (in the sense of Lemma 8.7)
a family F of subsets of size n, then ψ(m) defines F (m). Let φn for 1 ≤
n ∈ N be given by Lemma 8.7. For each finite tuple t = (n,m1, . . . ,mk)
such that n > m1 > · · · > mk ≥ 1, let τt be a sentence asserting that

φ
(m1)···(mk)
n holds for at least one but only finitely many tuples. Then letting
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(tl = (nl,ml
1, . . . ,m

l
kl

))l∈N enumerate all such tuples, the desired formula φ
can be given by

φ(x) =
∨
l

(
τtl ∧ ∃x

(
φ
(ml1)···(mlkl )
nl

(x) ∧∨i(x = xi)
)
∧ ¬∨l′<l τtl′

)
.

By Lemmas 8.7 and 8.8, in any countable L-structure A without the WDP,
φA will be the union of the finitely many sets in some intersecting family.

Corollary 8.10. Let Γ be a countably infinite group. Let L be a lan-
guage, and let σ be an Lω1ω-sentence such that ModΓ (σ) ⊆ ModΓ (L) is a
Gδ subspace. If σ ⊗ σΓ ⇒∗ σsm, then there is an Lω1ω-formula φ(x) which
defines a finite nonempty subset in any countable model of σ.

Proof. By Corollaries 8.6 and 8.9.

To complete the proof of Theorem 8.1, we need to remove the assumption
that ModΓ (σ) ⊆ ModΓ (L) is Gδ from Corollary 8.10. This can be done
using the standard trick of Morleyization, as described for example in [Hod,
Section 2.6] for finitary first-order logic, or [AFP, 2.5] for Lω1ω. Given any
language L and Lω1ω-sentence σ, by adding relation symbols for each formula
in a countable fragment of Lω1ω containing the sentence σ, we obtain a new
(countable) language L′ and an L′ω1ω-sentence σ′ such that

• the L-reduct of every countable model of σ′ is a model of σ;
• every countable model of σ has a unique expansion to a model of σ′;
• σ′ is (logically equivalent to a formula) of the form∧

i ∀x ∃y
∨
j φi,j(x, y),

where each φi,j is a quantifier-free finitary L′-formula, whence ModΓ (σ′)
⊆ ModΓ (L′) is Gδ.

It follows that the conditions (i) and (iv) in Theorem 8.1 for (L, σ) are
equivalent to the same conditions for (L′, σ′). So Corollary 8.10 holds also
without the assumption that ModΓ (σ) ⊆ ModΓ (L) is Gδ, which completes
the proof of Theorem 8.1.

We conclude this section by pointing out the following analog of
Lemma 8.3:

Lemma 8.11. Let Γ be a countably infinite group and (L, σ) be a theory.

Then σ ⊗ σΓ ⇒∗ σc iff E
ModΓ (σ)
Γ is compressible.

Proof. For⇒, the proof is exactly the same as the first part of the proof
of ⇒ in Lemma 8.3, but using probability measures instead of nonatomic
σ-finite measures. Similarly, for ⇐, let (X,E) and f : X → ModΓ (σ) be
as in the proof of ⇐ in Lemma 8.3; if E were not compressible, then it
would have an invariant probability measure µ, whence f∗µ would be an
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invariant probability measure on E
ModΓ (σ)
Γ , contradicting compressibility of

the latter.

This has the following corollaries. The first one strengthens [AFP, Sec-
tion 6.1.10]:

Corollary 8.12. Let T1 denote the class of trees, and more generally,
let Tn denote the class of contractible n-dimensional simplicial complexes.
Then for each n, there is some countably infinite group Γ such that ModΓ (Tn)
admits no Γ -invariant measure (and thus no SΓ -invariant measure).

Proof. For each n, let σn be a sentence axiomatizing Tn. For n = 1, take
Γ to be any infinite Kazhdan group. By [AS], no free Borel action of Γ
admitting an invariant probability measure is treeable, i.e., σ1 ⊗ σΓ ⇒∗ σc;
thus ModΓ (Tn) admits no Γ -invariant measure by Lemma 8.11. For n > 1,
take Γ := Fn2 × Z. By a result of Gaboriau (see e.g. [HK, p. 59]), no free
Borel action of Γ admitting an invariant probability measure can be Tn-
structurable.

Corollary 8.13. Let L be a language, and let σ be an Lω1ω-sentence
such that ModN(σ) ⊆ ModN(L) is a closed subspace. Then for any countably
infinite group Γ , there is a free Borel action of Γ which admits an invariant
probability measure and is σ-structurable.

Proof. Since ModΓ (σ) ⊆ ModΓ (L) is closed, it is compact, so since SΓ
is amenable, ModΓ (σ) admits an SΓ -invariant probability measure, thus a
Γ -invariant probability measure; then apply Lemma 8.11.

8.2. Universality of E∞σ. Several theories (L, σ) are known to axiom-
atize E , the class of all countable Borel equivalence relations. For example, by
[JKL, (proof of) 3.12], every E ∈ E is structurable via locally finite graphs.
More generally, one can consider σ such that every aperiodic or compress-
ible countable Borel equivalence relation is σ-structurable. For example, it
is folklore that every aperiodic countable Borel equivalence relation can be
structured via dense linear orders (this will also follow from Theorem 8.2),
while the proof of [JKL, 3.10] shows that every compressible E ∈ E is struc-
turable via graphs of vertex degree ≤ 3.

A result that some particular σ axiomatizes E (or all aperiodic E) shows
that every (aperiodic) E ∈ E carries a certain type of structure, which can be
useful in applications. A typical example is the very useful Marker Lemma
(see [BK, 4.5.3]), which shows that every aperiodic E admits a decreasing
sequence of Borel complete sections A0 ⊇ A1 ⊇ · · · with empty intersection.
This can be phrased as: every aperiodic countable Borel equivalence relation
E is σ-structurable, where σ in the language L = {P0, P1, . . . } asserts that
each (unary) Pi defines a nonempty subset, P0 ⊇ P1 ⊇ · · · , and

⋂
i Pi = ∅.
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We now give the proof of Theorem 8.2, which provides a large class of ex-
amples of such theories. To do so, we first review the main result from [AFP].

Let L be a language and A = (X,RA)R∈L be a countable L-structure.
For a subset F ⊆ X, let AutF (A) ⊆ Aut(A) denote the pointwise stabilizer
of F , i.e., the set of all automorphisms f ∈ Aut(A) fixing every x ∈ F . We
say that A has trivial definable closure (TDC ) if the following equivalent
conditions hold (see [AFP, 2.12–2.15], [Hod, 4.1.3]):

• for every finite F ⊆ X, AutF (A) y X fixes no element of X \ F ;
• for every finite F ⊆ X, AutF (A) y X has infinite orbits on X \F (trivial

algebraic closure);
• for every finite F ⊆ X and Lω1ω-formula φ(x) with parameters in F , if

there is a unique x ∈ X such that φA(x) holds, then x ∈ F ;
• for every finite F ⊆ X and Lω1ω-formula φ(x) with parameters in F , if

there are only finitely many x1, . . . , xn ∈ X such that φA(xi) holds, then
xi ∈ F for each i.

Remark 8.14. If A is a Fräıssé structure, then TDC is further equiva-
lent to the strong amalgamation property (SAP) for the age of A: for any
F,G,H ∈ Age(A) living on F,G,H respectively and embeddings f : H→ F
and g : H → G, there is K ∈ Age(A) and embeddings f ′ : F → K and
g′ : G→ K with f ′ ◦ f = g′ ◦ g and f ′(F ) ∩ g′(G) = (f ′ ◦ f)(H).

Theorem 8.15 (Ackerman–Freer–Patel [AFP, Theorem 1.1]). Let L be
a language and A = (X,RA)R∈L be a countably infinite L-structure. The
following are equivalent:

(i) The logic action of SX on ModX(σA) (σA the Scott sentence of A)
admits an invariant probability measure.

(ii) A has TDC.

We will in fact need the following construction from Ackerman–Freer–
Patel’s proof of Theorem 8.15. Starting with a countable L-structure A
with TDC, they consider the Morleyization (L′, σ′A) of the Scott sentence
σA of A, where

σ′A =
∧
i ∀x ∃y ψi(x, y)

with each ψi quantifier-free, as described following Corollary 8.10. They then
produce (see [AFP, Section 3.4]) a Borel L′-structure A′ |= σ′A with universe
R such that for each i and x ∈ R, the corresponding subformula ∃y ψi(x, y)
in σ′A is witnessed either by some y in the tuple x, or by all y in some
nonempty open interval. Clearly then the restriction of A′ to any countable
dense set of reals still satisfies σ′A, hence (its L-reduct) is isomorphic to A.
This shows:



Structurable equivalence relations 59

Corollary 8.16 (of [AFP, proof of 1.1]). Let L be a language and A
be a countable L-structure with TDC. Then there is a Borel L-structure A′
with universe R such that for any countable dense set A ⊆ R, A′|A ∼= A.

Proof of Theorem 8.2 (Marks). If E is smooth, then clearly it is A-
structurable. So we may assume X = 2N. Let Ns = {x ∈ 2N | s ⊆ x} for
s ∈ 2<N denote the basic clopen sets in 2N. Note that the set

X1 := {x ∈ X | ∃s ∈ 2<N (|[x]E ∩Ns| = 1)}
of points whose class contains an isolated point is Borel, and E|X1 is smooth
(with a selector given by x 7→ the unique element of [x]E ∩Ns for the least s
such that |[x]E ∩Ns| = 1), hence A-structurable. For x ∈ X \X1, the closure
[x]E has no isolated points, hence is homeomorphic to 2N. For each such x,
define fx(t) inductively for t ∈ 2<N by

fx(∅) := ∅,
fx(t̂i) := ŝi for the unique s ⊇ fx(t) such that [x]E ∩Nfx(t) ⊆ Ns

but [x]E ∩Nfx(t) 6⊆ Nŝ0, Nŝ1
(for i = 0, 1), so that fx : 2N → [x]E , fx(y) :=

⋃
t⊆y fx(t) is a homeomor-

phism, such that xE x′ ⇒ fx = fx′ . It is easy to see that (x, y) 7→ fx(y) is
Borel.

Now let the structure A′ on R be given by Corollary 8.16. Let Z =
{z0, z1, . . . } ⊆ 2N be a countable set so that there is a continuous bijection
g : 2N \ Z → R. Let

X2 := {x ∈ X \X1 | ∃x′ ∈ [x]E (f−1x (x′) ∈ Z)}.
Then E|X2 is smooth (with selector x 7→ x′ ∈ [x]E such that f−1x (x′) =
zj with j minimal), hence A-structurable. Finally, E|(X \ (X1 ∪ X2)) is
A-structurable: for each x ∈ X \ (X1 ∪X2), we see that f−1x ([x]E) ⊆ 2N \ Z
is dense, so g ◦ f−1x gives a bijection between [x]E and a dense subset of R,
along which we may pull back A′ to get a structure on [x]E isomorphic
to A.

Theorem 8.2 has the following immediate corollary.

Corollary 8.17. The following Fräıssé structures can structure every
aperiodic countable Borel equivalence relation: (Q, <), the random graph, the
random Kn-free graph (where Kn is the complete graph on n vertices), the
random poset, and the rational Urysohn space.

The concept of amenability of a structure in the next result can be either
the one in [JKL, 2.6(iii)] or the one in [K91, 3.4]. This result was first proved
by the authors by a different method but it can also be seen as a corollary
of Theorem 8.2.
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Corollary 8.18. Let A be a countably infinite amenable structure. Then
A fails TDC.

Proof. Since A is amenable, every A-structurable equivalence relation is
amenable (see [JKL, 2.18] or [K91, 2.6]), thus it is not true that A structures
every aperiodic countable Borel equivalence relation, and so A fails TDC by
Theorem 8.2.

We do not know of a counterexample to the converse of Theorem 8.2,
i.e., of a single structure A without TDC such that every aperiodic E ∈ E
is A-structurable. There do exist structures without TDC which structure
every compressible E, as the following simple example shows:

Proposition 8.19. For any countable linear order (Y,<), every com-
pressible (X,E) ∈ Ec is structurable via linear orders isomorphic to Q ×
(Y,<) with the lexicographical order. In particular, Q × Z structures every
compressible equivalence relation.

Proof. By Theorem 8.2, E is structurable via linear orders isomor-
phic to Q. Take the lexicographical order on E × IY and apply Proposi-
tion 5.23(a).

Concerning classes of structures (or theories) which can structure every
(compressible) equivalence relation, we can provide the following examples.
Below, a graphing of an equivalence relation E is a K-structuring, where K
is the class of connected graphs.

Proposition 8.20. Every (X,E) ∈ E is structurable via connected bi-
partite graphs.

Proof. The finite part of E can be treed, so assume E is aperiodic. Then
we may partition X = Y ∪ Z where Y, Z are complete sections (this is
standard; see e.g. [BK, 4.5.4]). Then the graph G ⊆ E which connects each
y ∈ Y and z ∈ Z (and with no other edges) works.

Proposition 8.21. For every k ≥ 1, every compressible (X,E) ∈ Ec is
structurable via connected graphs in which all cycles have lengths divisible
by k.

Proof. Let < be a Borel linear order on X, and let G ⊆ E be any Borel
graphing, e.g. G = E \∆X . Let

X ′ := X t (G× {1, . . . , k − 1}),
let E′ be the equivalence relation on X ′ generated by E and xE′ (y, z, i) for
xE yE z, (y, z) ∈ G, and 1 ≤ i < k, and let G′ ⊆ E′ be the graph generated
by, for each (x, y) ∈ G with x < y,

x G′ (x, y, 1)G′ (x, y, 2)G′ · · ·G′ (x, y, k − 1)G′ y
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(and no other edges). That is, every edge in G has been replaced by a
length-k path with the same endpoints. It is clear that G′ graphs E′ and
every cycle in G′ has length divisible by k. Now since E is compressible, and
the inclusion X ⊆ X ′ is a complete section embedding E vB E′, we have
E ∼=B E′, thus E is structurable via a graph isomorphic to G′.

A similar example is provided by

Theorem 8.22 (Kechris–Miller [Mi1, 3.2]). Let E be a countable Borel
equivalence relation and n ∈ N. Then every graphing of E admits a spanning
subgraphing with no cycles of length ≤ n.

Thus in contrast to the fact that not every countable Borel equivalence
relation is treeable, we have the following result, using also [JKL, proof of
3.12].

Corollary 8.23. Every countable Borel equivalence relation has locally
finite graphings of arbitrarily large girth.

8.3. Classes axiomatizable by a Scott sentence. Let us say that
an elementary class C ⊆ E is Scott axiomatizable if it is axiomatizable by a
Scott sentence σA of some structure A, or equivalently by some sentence σ
which is countably categorical (i.e., it has exactly one countable model up to
isomorphism). Several elementary classes we have considered are naturally
Scott axiomatizable: e.g. aperiodic, aperiodic smooth, aperiodic hyperfinite
(by σZ), free actions of a group Γ (by σΓ ), and compressible (by the sentence
in the language {R} asserting that R is the graph of an injective function
with infinite and coinfinite image and with no fixed points).

It is an open problem to characterize the elementary classes which are
Scott axiomatizable. In fact, we do not even know if every elementary class
of aperiodic equivalence relations is Scott axiomatizable. Here we describe
a general construction which can be used to show that certain compressible
elementary classes are Scott axiomatizable.

Let (L, σ), (M, τ) be theories. Let σ × τ be a sentence in the language
L tM t {R1, R2} asserting

(i) R1, R2 are equivalence relations such that the quotient maps X → X/R1

and X → X/R2 (where X is the universe) exhibit a bijection between
X and X/R1 ×X/R2, and

(ii) the L-reduct (respectively M -reduct) is an R1-invariant (resp. R2-in-
variant) structure which induces a model of σ (resp. τ) on the quotient
X/R1 (resp. X/R2).

Thus, a countable (σ × τ)-structure A on a set X is essentially the same
thing as a σ-structure B on a set Y and a τ -structure C on a set Z, together
with a bijection X ∼= Y × Z. The following are clear:
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Proposition 8.24. E∞σ ×E∞τ |= σ × τ (equivalently, E∞σ ×E∞τ viB
E∞(σ×τ)).

Remark 8.25. It is not true in general that E∞σ × E∞τ ∼=B E∞(σ×τ).
For example, if σ = σΓ and τ = σ∆ axiomatize free actions of countable
groups Γ,∆, then it is easy to see that σΓ × σ∆ axiomatizes free actions
of Γ × ∆; taking Γ = ∆ = F2, we see that E∞(σ×τ) is the universal orbit
equivalence of a free action of F2 × F2, which does not reduce to a product
of two treeables (such as E∞σ × E∞τ ) by [HK, 8.1(iii)].

Proposition 8.26. If σ, τ are countably categorical, then so is σ × τ .

Now consider the case where τ in the language {P0, P1, . . . } asserts that
the Pi are disjoint singleton subsets which enumerate the universe. Then
clearly τ axiomatizes the aperiodic smooth countable Borel equivalence re-
lations, i.e., E∞τ = ∆R × IN, whence E∞σ × E∞τ ∼=B E∞σ × IN.

Proposition 8.27. For this choice of τ , E∞(σ×τ) ∼=B E∞σ × E∞τ ∼=B

E∞σ × IN.

Proof. Let E∞(σ×τ) live on X and let E : E∞(σ×τ) |= σ × τ . Then from
the definition of σ × τ , we deduce that (the reduct to the language of σ of)
E|PE

0 : E∞(σ×τ)|PE
0 |= σ (where Pi is from the language of τ as above).

Let f : E∞(σ×τ)|PE
0 viB E∞σ. Then it is easy to see that g : E∞(σ×τ) viB

E∞σ × IN, where g(x) := (f(x), i) for the unique i such that x ∈ PE
i .

Since τ is clearly countably categorical, this yields

Corollary 8.28. If an elementary class EE is Scott axiomatizable, then
so is EE×IN. In particular, if an elementary class C is Scott axiomatizable
and closed under E 7→ E × IN, then C ∩ Ec (i.e., the compressible elements
of C) is Scott axiomatizable.

Proof. If EE = Eσ where σ is countably categorical, then E∞⊗(E×IN) =
(E∞ ⊗ E) × IN = E∞σ × IN = E∞(σ×τ) (using Proposition 5.29), whence
EE×IN = Eσ×τ .

For the second statement, if C = EE where E is universally structurable,
then C ∩ Ec = EE×IN (Proposition 5.27).

Corollary 8.29. The following elementary classes are Scott axiomati-
zable: compressible hyperfinite, compressible treeable.

Proof. For the compressible treeables, use the fact that E∞F2 (i.e., the
viB-universal orbit equivalence of a free action of F2) isvB-universal treeable
[JKL, 3.17]; it follows that EF2 is closed under E 7→ E × IN, and also that
EF2 ∩ Ec is the class of compressible treeables.

However, we do not know if the elementary class of aperiodic treeable
equivalence relations is Scott axiomatizable.
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9. Some open problems

9.1. General questions. At the end of Section 4.4 we asked:

Problem 9.1. Is E ⊗ E universally structurable (or equivalently iso-
morphic to E∞ ⊗ E) for every aperiodic E?

The following question (Remark 5.28) concerns the structure of univer-
sally structurable ∼B-classes:

Problem 9.2. Is it true that E × IN vB E for every aperiodic uni-
versally structurable E? Equivalently, is the compressible element of every
universally structurable ∼B-class the viB-least of the aperiodic elements?

By Theorem 6.20, we know that there are many incomparable elemen-
tary reducibility classes, or equivalently many ≤B-incomparable universally
structurable E. However, these were produced using the results in [AK],
which use rigidity theory for measure-preserving group actions. One hope for
the theory of structurability is the possibility of producing ≤B-incomparable
equivalence relations using other methods, e.g. using model theory.

Problem 9.3. Show that there are ≤B-incomparable E∞σ, E∞τ without
using ergodic theory.

9.2. Order-theoretic questions. We turn now to the order-theoretic
structure of the lattice (E∞/∼=B,viB) (equivalently the poset of elementary
classes) and the lattice (E∞/∼B,≤B) (equivalently the poset of elementary
reducibility classes). The following questions, posed in Section 6.2 (near
end), are natural from an abstract order-theoretic perspective, though per-
haps not so approachable:

Problem 9.4. Is either (E∞/∼=B,viB) or (E∞/∼B,≤B) a complete lat-
tice? If so, is it completely distributive?

Problem 9.5. Is either (E∞/∼=B,viB) or (E∞/∼B,≤B) a zero-dimen-
sional ω1-complete lattice, in that it embeds into 2X for some set X?

We noted then (Corollary 6.15) that the recent work of Marks [M]
gives some examples of ω1-prime filters on (E∞/∼B,≤B), and also (Proposi-
tion 6.18) that these filters cannot separate elements of (E∞/∼B,≤B) below
the universal treeable equivalence relation E∞T .

Regarding Problem 9.4, a natural attempt at a negative answer would
be to show that some “sufficiently complicated” collection of universally
structurable equivalence relations does not have a join. For example, one
could try to find the join of a strictly increasing ω1-sequence.

Problem 9.6. Is there an “explicit” strictly increasing ω1-length se-
quence in (E∞/∼=B,viB)? Similarly for (E∞/∼B,≤B).
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Note that by Theorem 6.20, such a sequence does exist, abstractly; the
problem is thus to find a sequence which is in some sense “definable”, prefer-
ably corresponding to some “natural” hierarchy of countable structures. For
example, a long-standing open problem (implicit in e.g. [JKL, Section 2.4])
asks whether the sequence of elementary classes (Eα)α<ω1 , where

E0 := {hyperfinite},
Eα := {countable increasing union of E ∈ Eβ for β < α},

stabilizes (or indeed is constant); a negative answer would constitute a pos-
itive solution to Problem 9.6.

One possible approach to defining an ω1-sequence would be by iterating
a “jump” operation, E 7→ E′, that sends any nonuniversal E ∈ E∞ to some
nonuniversal E′ ∈ E∞ such that E <B E′.

Problem 9.7. Is there an “explicit” jump operation on the nonuniversal
elements of (E∞/∼B,≤B)?

On the other hand, this would not be possible if there were a greatest
nonuniversal element:

Problem 9.8. Is there a greatest element among the nonuniversal el-
ements of (E∞/∼=B,viB), or of (E∞/∼B,≤B)? If so, do the nonuniversal
equivalence relations form an elementary class, that is, are they downward
closed under →cb

B?

9.3. Model-theoretic questions. The general model-theoretic ques-
tion concerning structurability is which properties of a theory (L, σ) (or a
Borel class of structures K) yield properties of the corresponding elementary
class Eσ (or EK). Theorem 8.1 fits into this mold, by characterizing the σ
which yield smoothness. One could seek similar results for other properties
of countable Borel equivalence relations.

Problem 9.9. Find a model-theoretic characterization of the σ such that
Eσ consists of only hyperfinite equivalence relations, i.e., such that σ ⇒ σhf
for any sentence σhf axiomatizing hyperfiniteness.

Less ambitiously, one might look for “natural” examples of such σ, for
specific classes of structures. For example, for the Borel class of locally finite
graphs, we have:

• If E is structurable via locally finite trees with one end, then E is hyper-
finite [DJK, 8.2].
• If E is structurable via locally finite graphs with two ends, then E is

hyperfinite [Mi1, 5.1].

Remark 9.10. If E is structurable via locally finite graphs with at least
three but finitely many ends, then E is smooth; this follows from [Mi1, 6.2],
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or simply by observing that in any such graph, a finite nonempty subset
may be defined as the set of all vertices around which the removal of a ball
of minimal radius leaves ≥ 3 infinite connected components.

Problem 9.11. Find “natural” examples of σ such that Eσ consists of
only Fréchet-amenable equivalence relations (see [JKL, 2.12]).

For example, every E structurable via countable scattered linear orders is
Fréchet-amenable [JKL, 2.19] (recall that a countable linear order is scattered
if it does not embed the rationals); note however that the scattered linear
orders do not form a Borel class of structures.

Problem 9.12. Find “natural” examples of σ such that Eσ consists of
only compressible equivalence relations.

For example, by [Mi2], the class of E structurable via locally finite graphs
whose space of ends is not perfect but has cardinality at least three is ex-
actly Ec.

There is also the converse problem of determining for which σ is every
equivalence relation of a certain form (e.g. compressible) σ-structurable.
Theorem 8.2 fits into this mold, by giving a sufficient condition for a single
structure to structure every aperiodic equivalence relation.

Problem 9.13. Is there a structure A without TDC which structures
every aperiodic countable Borel equivalence relation? That is, does the con-
verse of Theorem 8.2 hold?

In particular, does Q×Z structure every aperiodic equivalence relation?
We noted above that it structures every compressible equivalence relation,
thus the analogous question for the compressibles has a negative answer.

Problem 9.14. Find a model-theoretic characterization of the struc-
tures A such that every compressible equivalence relation is A-structurable,
i.e., Ec ⊆ EA.

We also have the corresponding questions for theories (or classes of struc-
tures):

Problem 9.15. Find a model-theoretic characterization of the σ such
that Eσ = E, or more generally, Ec ⊆ Eσ.

We gave several examples in Section 8.2. Another example is the follow-
ing [Mi1, 4.1]: every E ∈ E is structurable via locally finite graphs with at
most one end.

For a different sort of property that Eσ may or may not have, recall (Sec-
tion 5.3) that Eσ is an elementary reducibility class, i.e., closed under ≤B,
when σ axiomatizes linear orders embeddable in Z, or when σ axiomatizes
trees.
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Problem 9.16. Find a model-theoretic characterization of the σ such
that Eσ is closed under ≤B.

We considered in Section 8.3 the question of which elementary classes
are Scott axiomatizable, i.e., axiomatizable by a Scott sentence.

Problem 9.17. Find other “natural” examples of Scott axiomatizable
elementary classes.

We showed above (Corollary 8.29) that the class of compressible treeable
equivalence relations is Scott axiomatizable.

Problem 9.18. Is the class of aperiodic treeable (countable Borel) equiv-
alence relations Scott axiomatizable?

Remark 9.19. The class of aperiodic treeables cannot be axiomatized
by the Scott sentence of a single countable tree T . Indeed, since E0 would
have to be treeable by T , by a result of Adams (see [KM, 22.3]), T can have
at most two ends; but then by [DJK, 8.2] and [Mi1, 5.1], every E treeable
by T is hyperfinite.

Problem 9.20. Find a model-theoretic characterization of the σ such
that Eσ is axiomatizable by a Scott sentence (possibly in some other lan-
guage). In particular, is every elementary class of aperiodic, or compressible,
equivalence relations axiomatizable by a Scott sentence?

We conclude by stating two very general (and ambitious) questions con-
cerning the relationship between structurability and model theory. For the
first, note that by (i)⇔(ii) in Theorem 8.1, the condition σ ⇒∗ σsm is equiv-
alent to the existence of a formula(s) in the language of σ with some defin-
able properties which are logically implied by σ. Our question is whether a
similar equivalence continues to hold when σsm is replaced by an arbitrary
sentence τ .

Problem 9.21. Is there, for any τ , a sentence τ ′(R1, R2, . . . ) in a lan-
guage consisting of relation symbols R1, R2, . . . (thought of as “predicate
variables”) such that for any σ, we have σ ⇒∗ τ iff there are formulas
φ1, φ2, . . . in the language of σ such that σ logically implies τ ′(φ1, φ2, . . . )
(the result of “substituting” φi for Ri in τ ′)?

Finally, there is the question of completely characterizing containment
between elementary classes:

Problem 9.22.Find a model-theoretic characterization of the pairs (σ, τ)
such that σ ⇒∗ τ .

Appendix: Fiber spaces. We discuss here fiber spaces on countable
Borel equivalence relations, which provide a more general context for struc-
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turability and related notions. The application of fiber spaces to structura-
bility was previously considered in [G] and [HK, Appendix D].

We will use categorical terminology somewhat more liberally than in the
body of this paper.

A.1. Fiber spaces. Let (X,E) ∈ E be a countable Borel equivalence
relation. A fiber space over E consists of a countable Borel equivalence rela-
tion (U,P ) together with a surjective countable-to-one class-bijective homo-
morphism p : P →cb

B E. We refer to the fiber space by (U,P, p), by (P, p,E),
by (P, p), or (ambiguously) by P . We call (U,P ) the total space, (X,E)
the base space, and p the projection. For x ∈ X, the fiber over x is the set
p−1(x) ⊆ U . For x, x′ ∈ X such that x E x′, we let

p−1(x, x′) : p−1(x)→ p−1(x′)

denote the fiber transport map, where for u ∈ p−1(x), p−1(x, x′)(y) is the
unique u′ ∈ p−1(x′) such that u P u′.

For two fiber spaces (U,P, p), (V,Q, q) over (X,E), a fiberwise map be-

tween them over E, denoted f̃ : (P, p) →E (Q, q) (we use letters like f̃ , g̃

for maps between total spaces), is a homomorphism f̃ : P →B Q such that

p = q ◦ f̃ (note that this implies that f̃ is class-bijective):

(U,P ) (V,Q)

(X,E)

p

f̃

q

For a fiber space (U,P, p) over (X,E) and a fiber space (V,Q, q) over
(Y, F ), a fiber space homomorphism from (P, p,E) to (Q, q, F ), denoted f :
(P, p,E) → (Q, q, F ), consists of two homomorphisms f : E →B F and

f̃ : P →B Q such that f ◦ p = q ◦ f̃ :

(U,P ) (V,Q)

(X,E) (Y, F )

p

f̃

q

f

We sometimes refer to f̃ as the fiber space homomorphism; note that f
is determined by f̃ (since p is surjective). We say that f̃ is a fiber space
homomorphism over f . Note that a fiberwise map over E is the same thing
as a fiber space homomorphism over the identity function on E.

A fiber space homomorphism f : (P, p,E)→ (Q, q, F ) is fiber-bijective if

f̃ |p−1(x) : p−1(x)→ q−1(f(x)) is a bijection for each x ∈ X (where E lives
on X); fiber-injective, fiber-surjective are defined similarly.
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Let (U,P, p) be a fiber space over (X,E), and let (Y, F ) ∈ E be a
countable Borel equivalence relation with a homomorphism f : F →B E.
Recall (Section 2.6) that we have the fiber product equivalence relation
(Y ×X U,F ×E P ) with respect to f and p, which comes equipped with the
canonical projections π1 : F ×E P →B F and π2 : F ×E P →B P obeying
f ◦ π1 = p ◦ π2. It is easy to check that π1 is class-bijective, surjective, and
countable-to-one (because p is). In this situation, we also use the notation

(f−1(U), f−1(P ), f−1(p)) = f−1(U,P, p) := (Y ×X U,F ×E P, π1).
Note that f̃ := π2 : f−1(P ) →B P is then a fiber space homomorphism
over f . We refer to f−1(U,P, p) as the pullback of (U,P, p) along f . Here is
a diagram:

f−1(U,P ) (U,P )

(Y, F ) (X,E)

f−1(p)

f̃

p

f

Let Fib(E) denote the category of fiber spaces and fiberwise maps
over E, and let

	
E Fib denote the category of fiber spaces and fiber space

homomorphisms. For a homomorphism f : E →B F , pullback along f gives
a functor f−1 : Fib(F ) → Fib(E) (with the obvious action on fiberwise
maps). The assignment f 7→ f−1 is itself functorial, and turns Fib into a
contravariant functor from the category (E ,→B) to the category of (essen-
tially small) categories. (Technically f 7→ f−1 is only pseudofunctorial, i.e.,
f−1(g−1(P )) is naturally isomorphic, not equal, to (g ◦ f)−1(P ); we will not
bother to make this distinction.)

A.2. Fiber spaces and cocycles. Let (U,P, p) be a fiber space over
(X,E) ∈ E . By Luzin–Novikov uniformization, we may Borel partition X
according to the cardinalities of the fibers. Suppose for simplicity that each
fiber is countably infinite. Again by Luzin–Novikov uniformization, there is
a Borel map T : X → UN such that each T (x) is a bijection N → p−1(x).
Let αT : E → S∞ be the cocycle given by

αT (x, x′) := T (x′)−1 ◦ p−1(x, x′) ◦ T (x)

(where p−1(x, x′) is the fiber transport map; compare Remark 4.3). We then
have a (fiberwise) isomorphism of fiber spaces over E, between (U,P, p) and
the skew product EnαT N (with its canonical projection q : EnαT N→cb

B E):

(U,P, p)↔ (X × N, E nαT N, q),
u 7→

(
p(u), T (p(u))−1(u)

)
,

T (x)(n)←[ (x, n).
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Recall that two cocycles α, β : E → S∞ are cohomologous if there is
a Borel map φ : X → S∞ such that φ(x′)α(x, x′) = β(x, x′)φ(x) for all
(x, x′) ∈ E. It is easy to see that in the above, changing the map T :
X → UN results in a cohomologous cocycle αT : E → S∞; so we get a
well-defined map from (isomorphism classes of) fiber spaces over E with
countably infinite fibers to S∞-valued cohomology classes on E. Conversely,
given any cocycle α : E → S∞, the skew product EnαN yields a fiber space
over E with countably infinite fibers. These two operations are inverse to
each other, so we have a bijection

{isomorphism classes of fiber spaces over E with ℵ0-sized fibers}
∼= {S∞-valued cohomology classes on E}.

Remark A.1. In fact, we have the following more refined correspon-
dence, which also smoothly handles the case with finite fibers. Let C denote
the category whose objects are 1, 2, . . . ,N and morphisms are maps between
them (where as usual, n = {0, . . . , n− 1} for n ∈ N). Then C is a “standard
Borel category”. Regarding E as the groupoid on X with a single morphism
between any two related points, we have a Borel functor category CE

B, whose
objects are Borel functors E → C and morphisms are Borel natural trans-
formations. We then have a functor

CE
B → Fib(E)

which takes a Borel functor α : E → C to the obvious generalization of the
skew product of E with respect to α (but where the fibers are no longer
uniformly N, but vary from point to point according to α); and this functor
is an equivalence of categories. We leave the details to the reader.

Using this correspondence between fiber spaces and cocycles, we obtain

Proposition A.2. There is a fiber space (U∞, P∞, p∞) over E∞ which is
universal with respect to fiber-bijective invariant embeddings: for any other
fiber space (U,P, p) over E, there is a fiber-bijective homomorphism f̃ :
P → P∞ over an invariant embedding f : E viB E∞.

Proof. For simplicity, we restrict again to the case where P has countably
infinite fibers. Let σ be a sentence over the language L = {Rij}i,j∈N, where
each Rij is binary, asserting that

α(x, y)(i) = j ⇔ Rij(x, y)

defines a cocycle α : IX → S∞, where X is the universe of the structure
(and IX is the indiscrete equivalence relation on X). Then the canonical σ-
structure on E∞σ corresponds to a cocycle α∞ : E∞σ → S∞. We will in fact
define the universal fiber space P∞ over E∞σ, since clearly E∞ viB E∞σ
(by giving E∞ the trivial cocycle). Let P∞ := E∞σ nα∞ N, with p∞ :
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P∞ →cb
B E∞σ the canonical projection. For another fiber space (U,P, p)

over E with countably infinite fibers, by the above remarks, P is isomorphic
(over E) to a skew product E nα N for some cocycle α : E → S∞. This
α corresponds to a σ-structure on E which yields an invariant embedding
f : E viB E∞σ such that α is the restriction of α∞ along f , giving the

desired fiber-bijective homomorphism f̃ := f × N : E nα N → E∞σ nα∞ N
over f .

There is a different kind of universality one could ask for, which we
do not know how to obtain. Namely, for each E ∈ E , is there a fiber space
(U∞, P∞, p∞) over E which is universal with respect to fiber-injective maps?

A.3. Equivalence relations as fiber spaces. Let (X,E) ∈ E be a
countable Borel equivalence relation. The tautological fiber space over E is
(E, Ê, π1), where Ê is the equivalence relation on the set E ⊆ X2 given by

(x, x′) Ê (y, y′) ⇔ x′ = y′,

and π1 : (E, Ê) →cb
B (X,E) is the first coordinate projection (i.e., π(x, x′)

= x). In other words, the Ê-fiber over each E-class C ∈ X/E consists of the
elements of C.

Note that Ê is the kernel of the second coordinate projection π2 : E → X;
thus Ê is smooth, and in fact E/Ê is isomorphic to X (via π2). Now let
(U,P, p) be any smooth fiber space over (X,E), and let F be the (countable
Borel) equivalence relation on Y := U/P given by

[u]P F [u′]P ⇔ p(u) E p(u′).

By Luzin–Novikov uniformization, there is a Borel map X → U which is
a section of p, which when composed with the projection U → Y gives a
reduction f : (X,E) ≤B (Y, F ) whose image is a complete section.

Let us say that a presentation of the quotient space X/E consists of a
countable Borel equivalence relation (Y, F ) ∈ E together with a bijection
X/E ∼= Y/F which admits a Borel lifting X →B Y (which is then a reduc-
tion E ≤B F with image a complete section). By the above, every smooth
fiber space over E gives rise to a presentation of X/E. Conversely, given any
presentation (Y, F ) of X/E, letting f : E ≤B F with image a complete sec-

tion, the pullback f−1(F̂ ) is a fiber space over E, which is smooth (because

f−1(F̂ ) reduces to F̂ , via the map f̃ coming from the pullback). It is easily
seen that the two operations we have just described are mutually inverse up
to isomorphism, yielding a bijection

{isomorphism classes of smooth fiber spaces over E}
∼= {isomorphism classes of presentations of X/E}.
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Remark A.3. This correspondence between smooth fiber spaces and
presentations of the same quotient space is essentially the proof of [HK,
D.1].

We now describe the correspondence between homomorphisms of equiv-
alence relations and fiber space homomorphisms. Let (X,E), (Y, F ) ∈ E .

A homomorphism f : E →B F induces a fiber space homomorphism f̂ :
Ê → F̂ over f , given by

f̂(x, x′) := (f(x), f(x′)).

Conversely, let g̃ : Ê→ F̂ be any fiber space homomorphism over g : E →B F .
Then g̃ must be given by g̃(x, x′) = (g(x), f(x′)) for some f : X → Y such
that g(x)F f(x) for each x ∈ X; in particular, f is a homomorphismE →B F .

Let us say that two homomorphisms f, g : E →B F are equivalent,
denoted f ' g, if f(x) F g(x) for each x ∈ X; equivalently, they induce the
same map on the quotient spaces X/E → Y/F . The above yield mutually
inverse bijections

{homomorphisms E →B F}
∼= {'-classes of fiber space homomorphisms Ê → F̂}.

Class-injectivity on the left translates to fiber-injectivity on the right, etc.

A.4. Countable Borel quotient spaces. We discuss here an alter-
native point of view on fiber spaces and equivalence relations. The idea is
that the tautological fiber space Ê over an equivalence relation (X,E) al-
lows a clean distinction to be made between the quotient space X/E and
the presentation (X,E).

A countable Borel quotient space is, formally, the same thing as a count-
able Borel equivalence relation (X,E), except that we denote it by X/E.
A Borel map between countable Borel quotient spaces X/E and Y/F , de-
noted f : X/E →B Y/F , is a map which admits a Borel lifting X → Y ,
or equivalently an '-class of Borel homomorphisms E →B F . Let (Q,→B)
denote the category of countable Borel quotient spaces and Borel maps.
(Note that X/E, Y/F are isomorphic in (Q,→B) iff they are bireducible as
countable Borel equivalence relations.)

Let B denote the class of standard Borel spaces. By identifying X ∈ B
with X/∆X ∈ Q, we regard (B,→B) as a full subcategory of (Q,→B). By
regarding Borel maps in Q as '-classes of homomorphisms, we deduce that
(Q,→B) is the quotient category of (E ,→B) (with the same objects) by the
congruence '.

A (quotient) fiber space over a quotient space X/E ∈ Q is a quotient
space U/P ∈ Q together with a countable-to-one surjection p : U/P →B

X/E. This definition agrees with the previous notion of fiber space over
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(X,E), in that fiber spaces over X/E are in natural bijection with fiber
spaces over (X,E), up to isomorphism. Indeed, by Proposition 5.8, we may
factor any lifting (U,P ) →B (X,E) of p into a reduction with image a
complete section, followed by a class-bijective homomorphism; the former
map becomes an isomorphism when we pass to the quotient, so U/P is
isomorphic to a fiber space with class-bijective projection.

We have obvious versions of the notions of fiberwise map over X/E, fiber
space homomorphism, and fiber-bijective homomorphism for quotient fiber
spaces. Let Fib(X/E) denote the category of fiber spaces over X/E; in light
of the above remarks, Fib(X/E) is equivalent to Fib(E). Let

	
QFib denote

the category of quotient fiber spaces and homomorphisms (
	
QFib is then

the quotient of
	
E Fib by '). We now have a full embedding

(E ,→B)→
�

Q
Fib

that sends an equivalence relation (X,E) to its tautological fiber space

(E, Ê) but regarded as the quotient fiber space Ê/E ∼= X over X/E, and

sends a homomorphism f to the corresponding fiber space homomorphism f̂
given above. Thus, we may regard equivalence relations as special cases of
fiber spaces over quotient spaces.

To summarize, here is a (noncommuting) diagram of several relevant
categories and functors:

	
E Fib

(E ,→B)
	
QFib

(B,→B) (Q,→B)

The horizontal arrows are full embeddings, the diagonal arrows are quotients
by ', and the vertical arrows are forgetful functors that send a fiber space
to its base space.

A.5. Factorizations of fiber space homomorphisms. Let (U,P, p),
(V,Q, q) be fiber spaces over (X,E), (Y, F ) respectively, and f : E →B F .

A fiber space homomorphism f̃ : P → Q over f corresponds, via the universal

property of the pullback f−1(V,Q, q), to a fiberwise map f̃ ′ : P →E f
−1(Q)

over E:
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P

f−1(Q) Q

E F

p

f̃ ′

f̃

f−1(q) q

f

Note that f̃ is fiber-bijective iff f̃ ′ is an isomorphism. In general, since f̃ ′ is
countable-to-one, we may further factor it into the surjection onto its image
(f̃ ′(U), f̃ ′(P )) followed by an inclusion:

P

f̃ ′(P ) f−1(Q) Q

E F
p

f̃ ′

f̃

f−1(q) q

f

So we have a canonical factorization of any fiber space homomorphism f̃
into a fiberwise surjection over E, followed by a fiberwise injection over E,
followed by a fiber-bijective homomorphism.

In the case where P = Ê, Q = F̂ , and f̃ = f̂ : Ê → F̂ is the fiber space
homomorphism induced by f , the fiber space f−1(V,Q, q) = f−1(F, F̂ , π1)
is given by

f−1(F ) = {(x, (y1, y2)) ∈ F | f(x) = y1} ∼= {(x, y) ∈ F | f(x) F y},
(x, y) f−1(F̂ ) (x′, y′) ⇔ y = y′,

f−1(π1)(x, y) = x,

while the map f̃ ′ : (E, Ê) = (U,P )→ f−1(V,Q) = f−1(F, F̂ ) is given by

f̃ ′(x, x′) = (x, f(x′)).

Comparing with the proofs of Propositions 5.3 and 5.8 reveals that when
f : E →B F is smooth, the above factorization of f̂ corresponds (via the
correspondence between smooth fiber spaces and presentations from Ap-
pendix A.3) to the factorization of f produced by Proposition 5.8. In par-
ticular, we obtain a characterization of smooth homomorphisms in terms of
fiber spaces:

Proposition A.4. f : E →B F is smooth iff the fiber space f−1(F̂ )
over E is smooth.

Remark A.5. In fact, the proof of Proposition 5.3 is essentially just the
above correspondence, plus the observation that f̃ ′(Ê) →ci

B F̂ and smooth-

ness of F̂ imply that f̃ ′(Ê) is smooth (compare also [HK, D.2]).
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A.6. Structures on fiber spaces. Let L be a language and (U,P, p)
be a fiber space over (X,E) ∈ E . A Borel L-structure on (U,P, p) is a Borel
L-structure A = (U,RA)R∈L with universe U which only relates elements
within the same fiber, i.e.,

RA(u1, . . . , un) ⇒ p(u1) = · · · = p(un),

such that structures on fibers over the same E-class are related via fiber
transport, i.e.,

x E x′ ⇒ p−1(x, x′)(A|p−1(x)) = A|p−1(x′).
For an Lω1ω-sentence σ, we say that A is a Borel σ-structure on (U,P, p),
denoted

A : (U,P, p) |= σ,

if A|p−1(x) satisfies σ for each x ∈ X.

For (X,E) ∈ E , σ-structures on E are in bijection with σ-structures on

the tautological fiber space (Ê, π1) over E, where A : E |= σ corresponds to

Â : (Ê, π1) |= σ given by

RÂ((x, x1), . . . , (x, xn)) ⇔ RA(x1, . . . , xn).

In other words, for each x ∈ X, A|[x]E and Â|π−11 (x) are isomorphic via the
canonical bijection x′ 7→ (x, x′) between [x]E and π−11 (x).

For a fiber space homomorphism f : (P, p,E)→ (Q, q, F ) and a σ-struc-
ture A : (Q, q) |= σ, the fiberwise pullback structure f−1(P,p)(A) : (P, p) |= σ is

defined in the obvious way, i.e.,

R
f−1
(P,p)

(A)
(u1, . . . , un) ⇔ RA(f̃(u1), . . . , f̃(un)) ∧ p(u1) = · · · = p(un).

We have the following generalization of Theorem 4.1:

Proposition A.6. Let (U,P, p) be a fiber space over (X,E) ∈ E and
(L, σ) be a theory. There is a fiber space (U,P, p) n σ = (U np σ, P np σ,
pnσ) over an equivalence relation Enpσ ∈ E, together with a fiber-bijective
homomorphism π : (P, p,E)nσ → (P, p,E) and a σ-structure E : (P, p)nσ
|= σ, such that the triple ((U,P, p) n σ, π,E) is universal: for any other
fiber space (V,Q, q) over (Y, F ) ∈ E with a fiber-bijective homomorphism
f : (Q, q, F ) → (P, p,E) and a structure A : (Q, q) |= σ, there is a unique
fiber-bijective g : (Q, q, F ) → (P, p,E) n σ such that f = π ◦ g and A =
g−1(Q,q)(E).

Proof sketch. This is a straightforward generalization of Theorem 4.1
(despite the excessive notation). The equivalence relation E np σ lives on

{(x,B) | x ∈ X, B ∈ Modp−1(x)(σ)},
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and is given by

(x,B) (E np σ) (x′,B′) ⇔ x E x′ ∧ p−1(x, x−1)(B) = B′.

As usual, the Borel structure on E np σ is given by uniformly enumerating
each p−1(x). The base space part of π is given by π(x,B) := x, the fiber
space (U,P, p)nσ is given by the pullback π−1(U,P, p), and the structure E
is given by

RE((x,B, u1), . . . , (x,B, un)) ⇔ RB(u1, . . . , un)

for x ∈ X, B ∈ Modp−1(x)(σ), and u1, . . . , un ∈ p−1(x). The universal prop-
erty is straightforward.

Remark A.7. However, our other basic universal construction for struc-
turing equivalence relations, the “Scott sentence” (Theorem 4.7), fails to
generalize in a straightforward fashion to fiber spaces; this is essentially
because we require languages to be countable, whereas the invariant Borel
σ-algebra of a nonsmooth fiber space is not countably generated.

Remark A.8. Nonetheless, we may define the fiber-bijective product
(P, p,E)⊗ (Q, q, F ) of two fiber spaces (U,P, p), (V,Q, q) over (X,E), (Y, F )
∈ E respectively, by generalizing Remark 4.20, yielding their categorical
product in the category of fiber spaces and fiber-bijective homomorphisms;
we leave the details to the reader. In particular, by taking (Q, q, F ) to be
the universal fiber space (P∞, p∞, E∞) from Proposition A.2, we obtain

Proposition A.9. For every fiber space (P, p) over E ∈ E, there is
a fiber space (P∞, p∞, E∞)⊗ (P, p,E) admitting a fiber-bijective homomor-
phism to (P, p,E) and which is universal among such fiber spaces with respect
to fiber-bijective embeddings.

We conclude by noting that restricting attention to smooth fiber spaces
and applying the correspondence with presentations gives a different per-
spective on some results from Section 5:

• [HK, D.1] If (X,E) ∈ E admits a smooth fiber space (P, p), and A :
(P, p) |= σ, then (P, p) corresponds to a presentation (Y, F ) of X/E,

and A corresponds to a structure (F̂ , π1) |= σ, i.e., a structure F |= σ;
hence E is bireducible with a σ-structurable equivalence relation.
• In particular, if f : E →sm

B F and A : F |= σ, then pulling back Â :

(F̂ , π1) |= σ along f gives a smooth σ-structured fiber space (namely

f−1(F̂ )) over E, whence E is bireducible with a σ-structurable equivalence
relation. So Erσ is closed under →sm

B (Theorem 5.2).

• If f : E →ci
B F , then the induced f̂ : Ê → F̂ is fiber-injective, which

yields a fiberwise injection Ê →E f
−1(F̂ ) over E, whence E embeds into
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the σ-structurable presentation corresponding to f−1(F̂ ); this similarly
re-proves part of Theorem 5.1.
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