
Trigonometric series and set theory

Alexander S. Kechris

This is a short historical survey concerning the interactions between the
theory of trigonometric series and descriptive set theory. We concentrate
here on the area related to problems of uniqueness for trigonometric series.
Detailed historical and bibliographical references can be found in the books
and survey papers listed at the end.

(A) Trigonometric and Fourier Series

A trigonometric series is an expression of the form

s ∼
∞∑

n=−∞

cne
inx, x ∈ T, cn ∈ C.

A Fourier series is an expression of the form

s ∼
∞∑

n=−∞

f̂(n)einx, f ∈ L1(T),

where f̂(n) = 1
2π

∫ 2π

0
f(x)e−inx dx. (We identify here the unit circle T with

the interval [0, 2π] with 0 and 2π identified.)

(B) Riemann, Heine and Cantor

Riemann in his Habilitationsschrift (1854) initiated the study of the struc-
ture of functions that can be represented by trigonometric series

f(x) =
∞∑

n=−∞

cne
inx.
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Riemann

This work suggests three general problems:

• (The Uniqueness Problem) Is such an expansion unique, whenever
it exists?

• (The Characterization Problem) Can one characterize the func-
tions that admit a trigonometric expansion?

• (The Coefficient Problem) How does one “compute” the coefficients
of the expansion from the function?

I will concentrate on the Uniqueness Problem but here are some comments
on the other two problems.

• (The Characterization Problem) Even for continuous functions, al-
though there are many well-known sufficient criteria for the expansion
in a trigonometric series, one can argue (on the basis of a result that I
will mention later – see Section (F)) than no reasonable exact criteria
can be found.

• (The Coefficient Problem) If an integrable function can be represented
by a trigonometric series, then the coefficients are its Fourier coefficients
(de la Vallée-Poussin). However there are everywhere convergent series,
like

∞∑
n=2

sin(nx)

log n
,

whose sum is not integrable. Denjoy from 1941 to 1949 wrote a 700 (!)
page book describing a general procedure for computing the coefficients.
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Heine suggested to Cantor to study the Uniqueness Problem, who ob-
tained the following two results. As it is well-known, it was through his work
on trigonometric series that Cantor was led to the creation of set theory.

Heine Cantor

Theorem 1 (Cantor, 1870) If
∑∞

n=−∞ cne
inx = 0,∀x ∈ T, then cn =

0,∀n. Thus trigonometric series expansions are unique.

Theorem 2 (Cantor, 1872) If
∑∞

n=−∞ cne
inx = 0, ∀x ∈ T, except on a

countable closed set of finite Cantor-Bendixson rank, then cn = 0,∀n.

These results were extended later on by Lebesgue, Bernstein and W.H.
Young.

Lebesgue Bernstein W.H. Young

Theorem 3 (Lebesgue, 1903) If
∑∞

n=−∞ cne
inx = 0,∀x ∈ T, except on a

countable closed set, then cn = 0,∀n.

Theorem 4 (Bernstein, 1908, W.H.Young, 1909) If
∑∞

n=−∞ cne
inx =

0,∀x ∈ T, except on a countable set, then cn = 0,∀n.
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(C) Sets of Uniqueness

A Borel set A ⊆ T is called a set of uniqueness if
∑∞

n=−∞ cne
inx =

0,∀x 6∈ A, implies cn = 0,∀n. Otherwise it is called a set of multiplicity.

We denote by U the class of Borel sets of uniqueness and byM the class
of Borel sets of multiplicity. Thus

countable ⊆ U ⊆ (Lebesgue) null.

The following two questions come immediately to mind.

• Is U = countable?

• Is U = (Lebesgue) null?

(D) The Russian and Polish Schools (mid 1910s - mid 1930s)

The structure of sets of uniqueness was investigated intensely during the
1910’s and 1920’s by the Russian school of Luzin, Menshov and Bari, and
the Polish school of Rajchman, Zygmund and Marcinkiewicz.

Luzin Menshov Bari

Rajchman Zygmund Marcinkiewicz
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Here are some of the main results obtained in that period.

Theorem 5 (Bari, Zygmund, 1923) The union of countably many closed
sets of uniqueness is also a set of uniqueness.

Given real numbers ξ1, ξ2, . . . , with 0 < ξn < 1/2, denote by Eξ1,ξ2,...
the Cantor-type set (in T) constructed with successive ratios of dissection
ξ1, ξ2, . . . (the ratio of dissection is the ratio of the length of one of the
intervals that are being kept to the length of the whole interval). We also let
Eξ = Eξ,ξ,.... In particular, E1/3 is the usual Cantor set.

Theorem 6 (Menshov, 1916) There is a closed null set of multiplicity.

In fact, Eξ1,ξ2,..., with ξn = (n+1)
2(n+2)

, is such a set.

Theorem 7 (Bari, Rajchman, 1921-1923) There are perfect (nonempty)
sets of uniqueness. In fact, E1/3 is such a set.

It follows that
countable $ U $ null.

Thus by the 1920’s it had become clear that the class of (even closed) sets
of uniqueness is hard to delineate in terms of classical notions of smallness
in analysis.

Bari’s memoir in 1927 stated some classical problems on sets of unique-
ness.

• (The Characterization Problem) Find necessary and sufficient
conditions for a perfect set to be a set of uniqueness.

It appears that the intended meaning was to ask for geometric, analytic
(or, as we will see later, even number theoretic) structural properties
of a given perfect set, expressed “explicitly” in terms of some standard
description of it, that will determine whether it is a set of uniqueness
or multiplicity.

• (The Union Problem) Is the union of two Borel sets of unique-
ness also a set of uniqueness?

The first open case is that of two Gδ sets.
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• (The Category Problem) Is every Borel set of uniqueness of
the first category (meager)?

(E) Thin sets in harmonic analysis (early 1950s - mid 1970s)

During that period there was an explosion of research into the struc-
ture of thin sets in harmonic analysis, including the study of closed sets of
uniqueness.

Piatetski-Shapiro

Piateski-Shapiro in 1952-54 introduced functional analysis methods into
the subject of uniqueness. This has become the standard language of the
subject since then.

We denote by A(T) the Banach algebra of functions with absolutely con-
vergent Fourier series. This is of course the same as `1(Z). Its dual is the
space `∞(Z), which in this context is called the space of pseudomeasures
and denoted by PM. Its predual is the space c0(Z), which in this context is
called the space of pseudofunctions and denoted by PF.

The support of a pseudomeasure S is the complement of the largest open
set on which S vanishes, i.e., annihilates all functions in A(T) supported by
it.

Piatetski-Shapiro’s reformulation of the concept of closed set of unique-
ness is the following.

Theorem 8 (Piatetski-Shapiro, 1952) A closed set E is a set of unique-
ness iff it does not contain the support a non-0 pseudofunction.

At this point it is time to introduce an important variation of the concept
of set of uniqueness, which really goes back to Menshov’s work. His example
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of a null closed set of multiplicity was witnessed by the Fourier-Stieltjes
series of a (probability Borel) measure. Such a set is called a set of strict
multiplicity.

A Borel set is called a set of extended uniqueness if it satisfies unique-
ness for Fourier-Stieltjes series of measures. Otherwise it is called a set of
strict multiplicity. The class of Borel sets of extended uniqueness is de-
noted by U0 and the class of Borel sets of strict multiplicity is denoted by
M0.

A Rajchman measure is a measure whose Fourier-Stieltjes coefficients
converge to 0, i.e., form a pseudofunction. Lebesgue measure is of this form
and a Rajchman measure is thought of as a measure with “large support”.
However, Menshov showed that there are singular Rajchman measures. In
terms of Rajchman measures, the sets of extended uniqueness are exactly
those that are null for all such measures.

Theorem 9 (Piatetski-Shapiro, 1954) There is a closed set of extended
uniqueness but not of uniqueness.

This result of Piatetski-Shapiro was amplified in the work of Körner in
the early 1970’s, who solved a major problem at that time by constructing
a particular kind of closed thin set, called a Helson set, which is of multi-
plicity. As Helson in 1954 had already shown that these sets are of extended
uniqueness, this also implied Theorem 9. This result of Körner was one of
the last major results of that period. Its original proof was extremely com-
plicated and despite a major simplification by Kaufman it remains a subtle
and difficult result.

During that period there was also a major advance in the characterization
problem.

A real number is called a Pisot (or Pisot-Vijayaraghavan) number if
it is an algebraic integer > 1 all of whose conjugates have absolute value < 1.
Examples include the integers > 1 and the golden mean.

Intuitively, these are numbers whose powers approach integers. We now
have the following striking results.
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Salem

Theorem 10 (Salem, 1944) The Pisot numbers form a closed set of alge-
braic integers.

Theorem 11 (Salem-Zygmund, 1955) The set Eξ is a set of uniqueness
iff 1/ξ is a Pisot number.

(F) Applications of descriptive set theory (mid 1980s - mid 1990s)

We have seen that the problems of uniqueness have involved ideas from
many subjects, such as classical real analysis, modern harmonic analysis,
functional analysis, number theory, etc. Although set theory owes its origin
to Cantor’s work on the uniqueness problem, relatively little contact existed
between set theory and the study of sets of uniqueness until the 1980’s,
when ideas from a basic area of set theory, called descriptive set theory,
were brought to bear in the study of this subject. This is interesting since
descriptive set theory was also originally developed in the Russian and Polish
schools during the same period 1915-1935.

Luzin’s school was concerned with what was then called the theory of
real functions and there was at that time a distinction between the so-called
metric theory (differentiation, integration, trigonometric series, etc.) and the
descriptive theory (called today descriptive set theory). Strangely enough,
according to Kolmogorov, who was a member of that school, Luzin divided
his students to those that would study the metric theory and those that
would study the descriptive one. (Kolmogorov actually violated this rule
and worked on both.) In the following years the subjects drifted apart, the
first one practiced by analysts and the second one by logicians. They were
brought back together in the 1980’s in the study of sets of uniqueness.
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Descriptive set theory is the study of definable sets and functions in Pol-
ish (complete, separable metric) spaces, like the Euclidean spaces, separable
Hilbert space and more generally separable Banach spaces, second countable
locally compact groups, etc.

In this theory sets are classified in hierarchies according to the complexity
of their definitions and the structure of sets at each level of these hierarchies
is systematically studied.

Of particular importance are the Borel and projective sets. The Borel sets
are obtained from the open sets by applying repeatedly countable Boolean
operations and the projective sets are obtained from the Borel sets by the
operations of complementation and projection.

These classes of sets are ramified in natural hierarchies as follows:

open Fσ Fσδ · · · A PCA · · ·
closed Gδ Gδσ · · ·︸ ︷︷ ︸

Borel

CA CPCA · · ·︸ ︷︷ ︸
Projective

(Here Fσ is the collection of all countable unions of closed sets, Gδ the col-
lection of all countable intersections of open sets, etc., A (= analytic sets)
is the collection of all projections of Borel sets, CA (= co-analytic sets) the
collection of complements of analytic sets, etc.)

Intuitively, sets whose membership is characterized in “effective” terms,
even allowing countable operations, are Borel.

Here are a couple of examples of co-analytic non-Borel sets in analysis:

• In the space C(T), the set of differentiable functions is co-analytic but
not Borel (Mazurkiewicz, 1936)

• In the space C(T), the set of functions that can be expanded in a
trigonometric series is co-analytic but not Borel (Ajtai-Kechris, 1987).

In the 1980’s and 1990’s methods of descriptive set theory were combined
with previous work in analysis to further the study of sets of uniqueness.
This was primarily developed in series of papers (and unpublished work)
of the following authors: Debs-Saint Raymond, Kaufman, Kechris-Louveau,
Kechris-Louveau-Woodin, Solovay. Detailed history of these developments
can be found in the references [C], [KS], [KL1], [KL2], [L].
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The main point is that descriptive set theory allows one to develop a
“global” theory of closed sets of uniqueness, with many applications to the
classical theory.

The appropriate space here is the compact metric space K(T) of closed
subsets of the circle, with the usual Hausdorff metric. One studies the struc-
ture of the following two subsets of this space:

• U = {E ∈ K(T) : E is a set of uniqueness}

• U0 = {E ∈ K(T) : E is a set of extended uniqueness}

The global theory can be encapsulated in the following main theorem,
whose proof is contained in a series of papers (and unpublished work) of the
above authors (detailed references can be found in [KL]). It states three basic
principles that describe the structure of the classes U, U0.

Below a subset I ⊆ K(T) is hereditary if E,F ∈ K(T), E ⊆ F, F ∈ I
implies E ∈ I. It is a σ-ideal if it is hereditary and En ∈ I,∀n ∈ N, and E =⋃
nEn ∈ K(T) implies that E ∈ I. It is calibrated if it satisfies the following

stronger property: If F ∈ K(T), Fn ∈ I,∀n ∈ N, and K(F \
⋃
n Fn) ⊆ I, then

F ∈ I, where for any G ⊆ T, K(G) is the collection of all compact subsets of
G. Finally, a σ-ideal I has a Borel basis if there is Borel hereditary subset
B of I such that every E in I is a countable union of sets in B.

Theorem 12 a) (Stability property) The sets U,U0 are calibrated σ-ideals.

b) (Descriptive complexity, I) Both U,U0 are co-analytic and locally non-
Borel, i.e., for every closed set E not in U (resp., not in U0) the set U∩K(E)
(resp., U0 ∩K(E)) is not Borel.

c) (Descriptive complexity, II) The σ-ideal U0 admits a Borel basis but
the σ-ideal U does not.
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U has no Borel basis U0 has a Borel basis

Co-analytic
locally non-Borel

Calibrated σ-ideals

This theory has numerous applications both in the solution of classical
problems and also in understanding and proving in a new way previously
established results.

• (Characterization Problem) One can argue that this has a negative
solution in a strong sense, since not only there is no “explicit” charac-
terization of closed (as well as perfect) sets of uniqueness of the sought
after type but also there is no way to characterize such sets in terms of
decomposing them into a countable number of explicitly characterizable
components.

• Every known until the early 1980’s closed set of uniqueness could be
written as a union of a countable sequence of simpler uniqueness sets,
belonging to a class denoted by U ′. This is a Borel class, so the non-
basis theorem shows that there are many new kinds of U -sets. This
result can therefore be viewed as a powerful new existence theorem. For
example, it answers a question of Piatetski-Shapiro, on the existence of
U -sets not expressible as countable unions of so-called H(n)-sets (with
varying n).

• (Category Problem) This is solved affirmatively in a strong sense, as
it follows that every Borel set of extended uniqueness is of the first
category. Equivalently this means that every Borel set of the second
category supports a Rajchman measure. This in turn has several appli-
cations, including in particular a unified, simple way of proving some
well-known results in the theory, originally established by various tech-
niques and constructions.
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• Menshov’s Theorem says that there are (Lebesgue) null sets that sup-
port Rajchman measures. This is now clear as it well-known that there
are comeager null sets. Thus Menshov’s result is seen as a consequence
of the orthogonality between measure and category.

Ivashev-Musatov and Kaufman have extended Menshov’s Theorem to
show that for any function h there are h-Hausdorff measure 0 closed
sets that support Rajchman measures. The same argument as above
applies.

• A problem of Kahane-Salem (1964) asks whether the set of non-normal
numbers supports a Rajchman measure. This was solved affirmatively
by Lyons (1986). Again this follows from the fact that the set of non-
normal numbers is comeager. The same argument applies to show that
the set of Liouville numbers supports a Rajchman measure, a result
proved by Bluhm (2000).

• (The Union Problem) This is still open, even for the union of two Gδ

sets. It is mostly believed that there is a counterexample. The pre-
ceding theory however implies that from a counterexample one obtains
a closed set with properties similar to those obtained by Körner (Hel-
son sets of multiplicity). Thus conceivably Körner’s Theorem could be
useful in the construction of such a counterexample.

There are several further applications of descriptive set theoretic methods
also to other aspects of the subject, e.g., Lyons’ important characterization
of Rajchman measures by their null sets is seen as following from a general
descriptive set theoretic result of Mokobodzki about analytic classes of mea-
sures. Also such ideas have been applied by S. Kahane to the solution of
some old problems about other types of thin sets in harmonic analysis.

(G) Conclusion

This is where we stand now. Despite the progress made over the last 150
years many mysteries remain. Here are for example some intriguing problems
that are still open:

• Where is the dividing line in the Characterization Problem?

Eξ: characterizable
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Eξ1,ξ2,...: ???

E in general: uncharacterizable

• The Union Problem for Gδ sets and for arbitrary Borel sets.

• (The Interior Problem, Bari 1927) Is the concept of set of uniqueness
determined by the closed sets, i.e., does a Borel set of multiplicity
contain a closed set of multiplicity?
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