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Problems concerning the uniqueness of an expansion of a function in a trigonometric
series have a long and fascinating history, starting back in the 19th Century with the work
of Riemann, Heine and Cantor. The origins of set theory are closely connected with this
subject, as it was Cantor’s research into the nature of exceptional sets for such uniqueness
problems that led him to the creation of set theory. And the earliest application of one of
Cantor’s fundamental concepts, that of ordinal numbers and transfinite induction, can be
glimpsed in his last work on this subject.

The purpose of this paper is to give a basic introduction to the application of set
theoretic methods to problems concerning uniqueness for trigonometric series. It is written
in the style of informal lecture notes for a course or seminar on this subject and, in
particular, contains several exercises. The treatment is as elementary as possible and only
assumes some familiarity with the most basic results of general topology, measure theory,
functional analysis, and descriptive set theory. Standard references to facts that are used
without proof are given in the appropriate places.

The notes are divided into three parts. The first deals with ordinal numbers and
transfinite induction, and gives an exposition of Cantor’s work. The second gives an
application of Baire category methods, one of the basic set theoretic tools in the arsenal
of an analyst. The final part deals with the role of descriptive methods in the study of
sets of uniqueness. It closes with an introduction to the modern use of ordinal numbers in
descriptive set theory and its applications, and brings us back full circle to the concepts
that arose in the beginning of this subject.

There is of course much more to this area than what is discussed in these introductory
notes. Some references for further study include: Kechris-Louveau [1989, 1992], Cooke
[1993], Kahane-Salem [1994], Lyons [1995]. The material in these notes is mostly drawn
from these sources.

Stelios Pichorides always had a strong interest in the problems of uniqueness for
trigonometric series, and, in particular, in the problem of characterizing the sets of unique-
ness. I remember distinctly a discussion we had, in the early eighties, during a long ride in
the Los Angeles freeways, in which he wondered whether lack of further progress on this
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deep problem perhaps had some logical or foundational explanation. (It should be pointed
out that mathematical logic was Stelios’ first love, and he originally went to the University
of Chicago to study this field.) His comments are what got me interested in this subject
and we have had extensive discussions about this for many years afterwards. Certainly the
results proved in the 1980’s (some of which are discussed in Part III below) concerning the
Characterization Problem seem to confirm his intuition.

Problems concerning sets of uniqueness have fascinated mathematicians for over 100
years now, in part because of the intrinsic nature of the subject and in part because of
its intriguing interactions with other areas of classical analysis, measure theory, functional
analysis, number theory, and set theory. Once someone asked Paul Erdös, after he gave
a talk about one of his favorite number theory problems, somewhat skeptically, why he
was so interested in this problem. Erdös replied that if this problem was good enough for
Dirichlet and Gauss, it was good enough for him. To paraphrase Erdös, if the problems
of uniqueness for trigonometric series were good enough for Riemann, Cantor, Luzin,
Menshov, Bari, Salem, Zygmund, and Pichorides, they are certainly good enough for me.
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PART I. ORDINAL NUMBERS AND TRANSFINITE INDUCTION.

§1. The problem of uniqueness for trigonometric series.

A trigonometric series S is an infinite series of the form

S ∼ a0

2
+

∞∑

n=1

(an cosnx+ bn sinnx),

where an ∈ C, x ∈ R. We view this as a formal expression without any claims about its
convergence at a given point x.

The Nth partial sum of this series is the trigonometric polynomial

SN(x) =
a0

2
+

N∑

n=1

(an cosnx+ bn sinnx).

If, for some given x, SN (x) → s ∈ C, we write

s =
a0

2
+

∞∑

n=1

(an cosnx+ bn sinnx)

and call s the sum of the series at x.

A function f : R→ C admits a trigonometric expansion if there is a series S as above
so that for every x ∈ R

f(x) =
a0

2
+

∞∑

n=1

(an cosnx+ bn sinnx).

It is clear that any such function is periodic with period 2π.

It is a very difficult problem to characterize the functions f which admit a trigono-
metric expansion, but it is a classical result that any “nice” enough 2π-periodic function
f , for example a continuously differentiable one, admits a trigonometric expansion

f(x) =
a0

2
+

∞∑

n=1

(an cosnx+ bn sinnx),

there the coefficients an, bn can be, in fact, computed by the well-known Fourier formulas

an =
1

π

∫ 2π

0

f(t) cos nt dt,

bn =
1

π

∫ 2π

0

f(t) sin nt dt.
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The following question now arises naturally: Is such an expansion unique?

If f(x) = a0

2 +
∑∞

n=1(an cosnx+ bn sinnx) =
a′
0

2 +
∑∞

n=1(a
′
n cosnx+ b′n sinnx), then,

by subtracting, we would have a series c0

2 +
∑∞

n=1(cn cosnx+ dn sinnx) with

0 =
c0
2

+
∞∑

n=1

(cn cosnx+ dn sinnx)

for every x. So the problem is equivalent to the following:

Uniqueness Problem. If a0

2
+

∑∞
n=1(an cosnx+ bn sinnx) is a trigonometric series and

a0

2
+

∞∑

n=1

(an cosnx+ bn sinnx) = 0

for all x ∈ R, it is true that an = bn = 0 for all n?

This is the problem (which arose through the work of Riemann and Heine) that Heine
proposed, in 1869, to the 24 year old Cantor, who had just accepted a position at the
university in Halle, where Heine was a senior colleague.

In the next few sections we will give Cantor’s solution to the uniqueness problem and
see how his search for extensions, allowing exceptional points, led him to the creation of set
theory, including the concepts of ordinal numbers and the method of transfinite induction.
We will also see how this method can be used to prove the first such major extension.

Before we proceed, it would be convenient to also introduce an alternative form for
trigonometric series.

Every series

S ∼ a0

2
+

∞∑

n=1

(an cosnx+ bn sinnx)

can be also written as

S ∼
∞∑

n=−∞
cne

inx,

where, letting b0 = 0,

cn =
an − ibn

2
, c−n =

an + ibn
2

(n ∈ N).

(Thus an = cn + c−n, bn = i(cn − c−n).) In this notation, the partial sums SN (x) are given
by

SN (x) =
N∑

n=−N

cne
inx;
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and if they converge as N → ∞ with limit s, we write

s =
+∞∑

n=−∞
cne

inx.

The standard examples of trigonometric series are the Fourier series of integrable
functions. Given a 2π-periodic function f : R → C we say that it is integrable if it is
Lebesgue measurable and

1

2π

∫ 2π

0

|f(t)|dt <∞.

In this case we define its Fourier coefficients f̂(n), n ∈ Z, by

f̂(n) =
1

2π

∫ 2π

0

f(t)e−intdt.

We call the trigonometric series

S(f) ∼
∞∑

n=−∞
f̂(n)einx

the Fourier series of f , and write

SN(f, x) =

+N∑

n=−N

f̂(n)einx

for its partial sums.

Remark. There are trigonometric series, like
∑∞

n=2
sin nx
log n , which converge everywhere but

are not Fourier series.

§2. The Riemann Theory.

Riemann was the first mathematician to seriously study general trigonometric series
(as opposed to Fourier series), in his Habilitationsschrift (1854). We will prove here two
of his main results, that were used by Cantor. These results are beautiful applications of
elementary calculus.

Let S ∼ ∑
cne

inx be an arbitrary trigonometric series with bounded coefficients,i.e.,
|cn| ≤ M for some M and all n ∈ Z. Then Riemann had the brilliant idea to consider
the function obtained by formally integrating

∑
cne

inx twice. This function, called the
Riemann function FS of S, is thus defined by

FS(x) =
c0x

2

2
−

+∞/∑

n=−∞

1

n2
cne

inx, x ∈ R,
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where
∑′

means n = 0 is excluded.

Clearly, as cn is bounded, FS is a continuous function on R (but is not periodic), since
the above series converges absolutely and uniformly, as | 1

n2 cne
inx| ≤ M

n2 .

Now, intuitively, one would hope that F ′′
S (x) should be the same as

∑
cne

inx, if this
sum exists. This may not be quite true, but something close enough to it is.

Given a function F : R→ C, let

∆2F (x, h) = F (x+ h) + F (x− h) − 2F (x)

and define the second symmetric derivative or second Schwartz derivative of F at x by

D2F (x) = lim
h→0

∆2F (x, h)

h2
,

provided this limit exists.

2.1. Exercise. If F ′′(x) exists, then so does D2F (x) and they are equal, but the converse
fails.

2.2. Riemann’s First Lemma. Let S ∼ ∑
cne

inx be a trigonometric series with bounded
coefficients. If s =

∑
cne

inx exists, then D2FS(x) exists and D2FS(x) = s.

Proof. We have by calculating

∆2FS(x, 2h)

4h2
=

+∞∑

n=−∞

[
sinnh

nh

]2

cne
inx

(for n = 0, we let sinnh
nh = 1). So it is enough to prove the following:

2.3. Lemma.
∞∑

n=0
an = a⇒ lim

h→0

[ ∞∑
n=0

[
sin nh

nh

]2

an

]
= a.

Proof. Put AN =
N∑

n=0
an. Then

∞∑

n=0

(
sinnh

nh

)2

an =
∞∑

n=0

[(
sinnh

nh

)2

−
(

sin(n+ 1)h

(n + 1)h

)2]
An.

Let hk → 0, hk > 0 and put

skn =

(
sinnhk

nhk

)2

−
(

sin(n+ 1)hk

(n+ 1)hk

)2

.

Then we have to show that

An
n−→ a⇒

∞∑

n=0

Anskn
k−→ a.
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We view the infinite matrix (skn) as a summability method, i.e., a way of transforming
a sequence (xn) into the sequence

(yk) = (skn) · (xn),

i.e., yk =
∞∑

n=0
sknxn.

Example. If skn = 1
k+1 for n ≤ k, skn = 0 for n > k, then yk = x0+···+xk

k+1 .

A summability method is called regular if xn
n−→ x ⇒ yk

k−→ x. Toeplitz proved the
following result which we leave as an exercise.

2.4. Exercise. (a) If the matrix (skn) satisfies the following conditions, called Toeplitz
conditions:

(i) skn
k−→ 0, ∀n ∈ N,

(ii)
∞∑

n=0
|skn| ≤ C <∞, ∀k ∈ N,

(iii)
∞∑

n=0
skn

k−→ 1,

then (skn) is regular.

(b) If (skn) satisfies only (i), (ii) and xn → 0, then yk → 0.

So it is enough to check that (i), (ii), (iii) hold for

skn =

(
sinnhk

nhk

)2

−
(

sin(n+ 1)hk

(n+ 1)hk

)2

.

Clearly (i), (iii) hold. For (ii), let u(x) = ( sin x
x )2. Then we have

2.5. Exercise.
∞∫
0

|u′(x)|dx <∞.

Thus ∞∑

n=0

|skn| =
∞∑

n=0

∣∣∣∣
∫ (n+1)hk

nhk

u′(x)dx

∣∣∣∣

≤
∫ ∞

0

|u′(x)|dx = C <∞.

⊣

2.6. Riemann’s Second Lemma. Let S ∼ ∑
cne

inx be a trigonometric series with
cn → 0. Then

∆2FS(x, h)

h
=
FS(x+ h) + FS(x− h) − 2FS(x)

h
→ 0,
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as h→ 0, uniformly on x.

Proof. By direct calculation we have again

∆2FS(x, 2h)

4h
=

∑ sin2(nh)

n2h
cne

inx

(where for n = 0, sin2(nh)
n2h

is defined to be h). Let as before 0 < hk ≤ 1, hk → 0 and put

tkn =
sin2(nhk)

n2hk
.

We have to show that
∑

(cne
inx)tkn → 0 as k → ∞, uniformly on x. Since cne

inx → 0,
uniformly on x, it is enough to verify that (tkn) satisfies the first two Toeplitz conditions
(i), (ii), of 2.4.

Clearly (i) holds. To prove (ii) fix k and choose N > 1 with

N − 1 ≤ h−1
k < N.

Then
∞∑

n=1

|tkn| =

N−1∑

n=1

sin2(nhk)

n2hk
+

∞∑

n=N

sin2(nhk)

n2hk

≤ (N − 1) · hk +
1

hk

∞∑

n=N

1

n2

≤ 1 +
1

hk

∞∑

n=N

1

n(n− 1)

= 1 +
1

hk
· 1

N − 1
≤ 3,

and we are done. ⊣
Note that this implies that the graph of FS can have no corners, i.e., if the left- and

right-derivatives of FS exist at some point x, then they must be equal.

§3. The Cantor Uniqueness Theorem.

The following result was proved originally by Cantor with “set of positive measure”
replaced by “interval”.

3.1. The Cantor-Lebesgue Lemma. If an cos(nx) + bn sin(nx) → 0, for x in a set of
positive (Lebesgue) measure, then an, bn → 0. So if

∑
cne

inx = 0 for x in a set of positive
measure, then cn → 0.
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Proof. We can assume that an, bn ∈ R. Let ρn =
√
a2

n + b2n and ϕn be such that

an cos(nx) + bn sin(nx) = ρn cos(nx+ ϕn).

Thus ρn cos(nx + ϕn) → 0 on E ⊆ [0, 2π), a set of positive measure. Assume ρn 6→ 0,
toward a contradiction. So there is ǫ > 0 and n0 < n1 < n2 < · · · such that ρnk ≥ ǫ. Then
cos(nkx + ϕnk) → 0, so 2 cos2(nkx + ϕnk) → 0, i.e., 1 + cos 2(nkx+ ϕnk) → 0 for x ∈ E.
By Lebesgue Dominated Convergence

∫
E

(1 + cos 2(nkx+ ϕnk))dx → 0, i.e., letting χE be
the characteristic function of E in the interval [0, 2π) extended with period 2π over all of
R, and µ(E) be the Lebesgue measure of E:

µ(E) +

∫ 2π

0

χE(x) cos 2(nkx+ ϕnk)dx

=µ(E) + 2π

[
Re χ̂E(−2nk) · cos 2ϕnk − Im χ̂E(−2nk) · sin 2ϕnk

]
→ 0.

We now have:

3.2. Exercise (Riemann-Lebesgue). If f is an integrable 2π-periodic function, then

f̂(n) → 0 as |n| → ∞. [Remark. This is really easy if f is the characteristic function of an
interval.]

So it follows that µ(E) = 0, a contradiction. ⊣
We are only one lemma away from the proof of Cantor’s Theorem. This lemma was

proved by Schwartz in response to a request by Cantor.

3.3 Lemma (Schwartz). Let F : (a, b) → R be continuous such that D2F (x) ≥ 0, ∀x ∈
(a, b). Then F is convex on (a, b). In particular, if F : (a, b) → C is continuous and
D2F (x) = 0, ∀x ∈ (a, b), then F is linear on (a, b).

Proof. By replacing F by F + ǫx2, ǫ > 0, and letting ǫ→ 0, we can assume actually that
D2F (x) > 0 for all x ∈ (a, b).

Assume F is not convex, toward a contradiction. Then there is a linear function
µx + ν and a < c < d < b such that if G(x) = F (x) − (µx + ν), then G(c) = G(d) = 0
and G(x) > 0 for some x ∈ (c, d). Let x0 be a point where G achieves its maximum in
[c, d]. Then c < x0 < d. Now for small enough h, ∆2F (x0, h) ≤ 0, so D2F (x0) ≤ 0, a
contradiction. ⊣

We now have:

3.4. Theorem (Cantor, 1870). If
∑
cne

inx = 0 for all x, then cn = 0, ∀n ∈ Z.
Proof. Let S ∼ ∑

cne
inx. By the Cantor-Lebesgue Lemma, cn → 0, as |n| → ∞, so, in

particular, cn is bounded. By Riemann’s First Lemma, D2FS(x) = 0, ∀x ∈ R, and so by
Schwartz’s Lemma FS is linear, i.e.,

c0
x2

2
−

∑′ 1

n2
cne

inx = ax+ b.
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Put x = π, x = −π and subtract to get a = 0. Put x = 0, x = 2π and subtract to get
c0 = 0. Then

∑′ 1
n2 cne

inx = b. Since this series converges uniformly, if m 6= 0 we have

0 =

∫ 2π

0

be−imxdx

=
∑′ 1

n2
cn

∫ 2π

0

ei(n−m)xdx

=
cm
m2

,

so cm = 0 and we are done. ⊣
Remark. Kronecker (when he was still on speaking terms with Cantor) pointed out
that the use of the fact that cn → 0 was unnecessary, i.e., if one can prove that (1)∑
cne

inx = 0, ∀x ∈ R & cn → 0 ⇒ cn = 0,∀n ∈ Z, then it follows that (2)
∑
cne

inx =
0,∀x ∈ R⇒ cn = 0,∀n ∈ Z.

To see this assume (1) and take any series
∑
cne

inx such that
∑
cne

inx = 0,∀x ∈ R
(without any other assumption on the cn). Put for x, x+ u and x− u, add and divide by
2 to get ∑

cne
inx cosnu = 0, ∀x, u ∈ R.

or equivalently

c0 +
∞∑

n=1

(an cosnx+ bn sinnx) cos nu = 0,∀x, u ∈ R.

Considering x fixed now, we note that an cosnx+ bn sinnx→ 0 (since c0 +
∑

(an cosnx+
bn sinnx) = 0) so we can apply (1) to get that an cosnx+ bn sinnx = 0, for all x, n ∈ N,
from which easily an = bn = 0, ∀n ∈ N.

§4. Sets of uniqueness.

Cantor next extended his uniqueness theorem in 1871 by allowing a finite number of
exceptional points.

4.1. Theorem (Cantor, 1871). Assume that
∑
cne

inx = 0 for all but finitely many x ∈ R.
Then cn = 0, ∀n ∈ Z.
Proof. Let S ∼ ∑

cne
inx. Suppose x0 = 0 ≤ x1 < x2 < · · · < xn < 2π = xn+1 are such

that for x 6= xi,
∑
cne

inx = 0. Then, by Schwartz’s Lemma, FS is linear in each interval
(xi, xi+1). Since by Riemann’s Second Lemma the graph of FS has no corners, it follows
that FS is linear in [0, 2π). The same holds of course for any interval of length 2π, so FS

is linear and thus as in the proof of 3.4, cn = 0, ∀n ∈ Z. ⊣
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In the sequel it will be convenient to identify the unit circle T = {eix : 0 ≤ x < 2π}
with R/2πZ via the map x 7→ eix. Often we can think of T as being [0, 2π), or [0, 2π] with
0, 2π identified. Functions on T can be also thought of as 2π-periodic functions on R. We
denote by λ the Lebesgue measure on T (i.e., the one induced by the above identification
with [0, 2π)) normalized so that λ(T) = 1.

We now introduce the following basic concept.

Definition. Let E ⊆ T. We say that E is a set of uniqueness if every trigonometric series∑
cne

inx which converges to 0 off E (i.e.,
∑
cne

inx = 0, for eix /∈ E, which we will simply
write “x /∈ E”) is identically 0. Otherwise it is called a set of multiplicity.

So 3.4 says that ∅ is a set of uniqueness and 4.1 says that every finite set is a set of
uniqueness.

We denote by U the class of sets of uniqueness and by M the class of sets of multiplicity.

Our next goal is to prove the following extension of Cantor’s Theorem.

4.2. Theorem (Cantor, Lebesgue – see Remarks in §6 below). Every countable closed set
is a set of uniqueness.

We will give a proof using the method of transfinite induction.

§5. The Cantor-Bendixson Theorem.

Let E ⊆ T be a closed set. We define its Cantor-Bendixson derivative E′ by

E′ = {x ∈ E : x is a limit point of E}.

Note that E′ ⊆ E and E′ is closed as well.

Now define by transfinite induction for each ordinal α a closed set E(α) as follows:

E(0) = E,

E(α+1) = (E(α))′

E(λ) =
⋂

α<λ

E(α), λ a limit ordinal.

The E(α) form a decreasing sequence of closed sets contained in E:

E(0) ⊇ E(1) ⊇ E(2) ⊇ · · · ⊇ E(α) ⊇ · · · ⊇ E(β) ⊇ · · · , α ≤ β.

5.1. Lemma. If Fα, α an ordinal, is a decreasing sequence of closed sets, then for some
countable ordinal α0 we have that

Fα0
= Fα0+1.
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Proof. Fix a basis {Un} for the topology of T and let

Aα = {n : Un ∩ Fα = ∅}.

Then α ≤ β ⇒ Aα ⊆ Aβ . If Aα $ Aα+1 for all countable ordinals α, let f(α) be the least
n with n ∈ Aα+1 \ Aα. Then, if ω1 is the first uncountable ordinal, which by standard
practice we also identify with the set {α : α < ω1} of all countable ordinals, we have that
f : ω1 → N is injective, which is a contradiction. So for some α0 < ω1, Aα0

= Aα0+1, so
Fα0

= Fα0+1. ⊣
Thus for each closed set E ⊆ T, there is a least countable α with E(α) = E(α+1)

and thus E(α) = E(β) for all α ≤ β. We denote this ordinal by rkCB(E) and call it the
Cantor-Bendixson rank of E. We also put

E(∞) = E(rkCB(E)).

Notice that (E(∞))′ = E(∞), so E(∞) is perfect, i.e., every point of it is a limit point
(it could be ∅ though). We call it the perfect kernel of E.

5.2. Exercise. Show that E(∞) is the largest perfect set contained in E.

5.3. Theorem (Cantor-Bendixson). Let E be closed. Then the set E \E(∞) is countable.
In particular,

E is countable⇔ E(∞) = ∅.

Proof. Let x ∈ E \ E(∞), so that for some (unique) α < rkCB(E), x ∈ E(α) \ E(α+1).
Since there are only countably many such α, it is enough to prove the following:

5.4. Lemma. For any closed set F,F \ F ′ is countable.

Proof. Fix a countable basis {Un}n∈N. If x ∈ F \F ′, then there is some n with F ∩Un =
{x}. So F \ F ′ =

⋃{F ∩ Un : F ∩ Un is a singleton}, which is clearly countable. ⊣
5.5. Exercise. Show that for each closed set E there is a unique decomposition E =
P ∪ C, P ∩ C = ∅, P perfect, C countable.

5.6. Exercise. For each countable successor ordinal α find a countable closed set E with
rkCB(E) = α.

§6. Sets of uniqueness (cont’d).

We are now ready to give the

Proof of Theorem 4.2.

Let E be a countable closed set. Let S ∼ ∑
cne

inx be such that
∑
cne

inx = 0 off E.
Since it is clear that any translate (in T) of a set of uniqueness is also a set of uniqueness,
we can assume that 0 /∈ E. So we can view E as being a closed set contained in (0, 2π).
The complement in (0, 2π) of any closed subset F of (0, 2π) is a disjoint union of open
intervals with endpoints in F ∪ {0, 2π}, called its contiguous intervals. We will prove by
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transfinite induction on α, that FS is linear on each contiguous interval of E(α). Since
E(α0) = ∅ for some α0, it follows that FS is linear on (0, 2π), so, as before, cn = 0,∀n.

α = 0: This is clear since
∑
cne

inx = 0 on each contiguous interval of E(0) = E.

α⇒ α+1: Assume FS is linear in each contiguous interval of E(α). Let then (a, b) be a
contiguous interval of E(α+1). Then in each closed subinterval [c, d] ⊆ (a, b) there are only
finitely many points c ≤ x0 < x1 < · · · < xn ≤ d of E(α). Then (c, x0), (x0 , x1), · · · , (xn , d)
are contained in contiguous intervals of E(α), so, by induction hypothesis, FS is linear in
each one of them, so by the Riemann Second Lemma again, FS is linear on [c, d] and thus
on (a, b).

α < λ ⇒ λ (λ a limit ordinal): We use a compactness argument. Fix a contiguous
interval (a, b) of E(λ) and a closed subinterval [c, d] ⊆ (a, b). Then

[c, d] ⊆ (0, 2π) \ E(λ)

= (0, 2π) \
⋂

α<λ

E(α)

=
⋃

α<λ

[(0, 2π) \ E(α)].

Since (0, 2π) \ E(α) is open and [c, d] is compact, there are finitely many α1, · · · , αn < λ
with

[c, d] ⊆
⋃

α∈{α1,···,αn}
[(0, 2π) \ E(α)] ⊆ (0, 2π) \ E(β)

for any α1, · · · , αn ≤ β < λ. Then [c, d] is contained in a contiguous interval of E(β), so,
by induction hypothesis, FS is linear on [c, d] and thus on (a, b).

This completes the proof. ⊣
Remark. Cantor published in 1872 the proof of Theorem 4.2 only for the case rkCB(E) <
ω, i.e., when the Cantor-Bendixson process terminates in finitely many steps. Apparently
at this stage he had, at least at some intuitive level, the idea of extending this process
into the transfinite at levels ω, ω + 1, · · ·. However this involved conceptual difficulties
which led him to re-examine the foundations of the real number system and eventually to
create set theory, including, several years later, the rigorous development of the theory of
ordinal numbers and transfinite induction. However, after 1872 Cantor never returned to
the problem of uniqueness and never published a complete proof of 3.5. This was done,
much later, by Lebesgue in 1903.

Theorem 4.1 was further extended by Bernstein (1908) and W. H. Young (1909) to
show that an arbitrary countable set is a set of uniqueness. Finally in 1923 Bari showed
that the union of countably many closed sets of uniqueness is a set of uniqueness.

6.1. Exercise (Bernstein, Young). Assume these results and the fact that any uncount-
able Borel set contains a non-∅ perfect subset. Show that every set which contains no
perfect non-∅ set is a set of uniqueness.
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PART II. BAIRE CATEGORY METHODS.

§7. Sets of uniqueness and Lebesgue measure.

To get some idea about the size of sets of uniqueness, we will first prove the following
easy fact.

7.1. Proposition. Let A ⊆ T be a (Lebesgue) measurable set of uniqueness. Then A is
null, i.e., λ(A) = 0.

Proof. Assume λ(A) > 0, towards a contradiction. Then, by regularity, λ(F ) > 0 for
some closed subset F ⊆ A. Consider the characteristic function χF of F and its Fourier
series S(χF ). We need the following standard fact.

7.2. Lemma (Localization principle for Fourier series). Let f be an integrable
function on T. Then the Fourier series of f converges to 0 in any open interval in which
f vanishes.

Proof. We have

SN(f, x) =
N∑

−N

f̂(n)einx

=
N∑

−N

(
1

2π

∫ 2π

0

f(t)e−intdt)einx

=
1

2π

∫ 2π

0

f(t)

( N∑

−N

ein(x−t)

)
dt

=
1

2π

∫ 2π

0

f(t)DN (x− t)dt (= f ∗Dn(x)),

where the Dirichlet kernel Dn is defined by

Dn(u) =
N∑

−N

einu =
sin(n+ 1

2
)u

sin u
2

= cosnu+ cot(
u

2
) sinnu.

So (changing
∫ 2π

0
to

∫ π

−π
)

SN (f, 0) =
1

2π

∫ π

−π

f(t) cos ntdt+
1

2π

∫ π

−π

f(t) cot(
t

2
) sinntdt.

If now f vanishes in an interval around 0, then clearly f(t) cot( t
2 ) is integrable, so these

two integrals converge to 0 by the Riemann-Lebesgue Lemma (3.2). So SN(f, 0) → 0.

14



Thus we have shown that if f vanishes in an interval around 0, then its Fourier series
converges to 0 at 0. By translation this is true for any other point. ⊣

So S(χF ) converges to 0 in any interval disjoint from F , i.e., S(χF ) converges to 0
off F . So, since F is a set of uniqueness, χ̂F (n) = 0 for all n. But χ̂F (0) = λ(F ) > 0, a
contradiction. ⊣
7.3. Exercise (Bernstein). Show that there is A ⊆ T such that neither A nor T \ A
contain a non-∅ perfect set (such a set is called a Bernstein set). Conclude that A is not
measurable and therefore that A is a set of uniqueness which is not null.

So we have
countable ⊆ U ∩ measurable ⊆ null.

In the beginning of the century it was widely believed that U ∩ measurable = null,
i.e., if a trigonometric series

∑
cne

inx converges to 0 almost everywhere (a.e.), then it is
identically 0. Recall, for example, here the following standard fact (which we will not use
later on).

7.4. Theorem. (Fejér-Lebesgue). For every integrable function f on T, let

σN (f, x) =
S0(f, x) + S1(f, x) + · · · + SN(f, x)

N + 1

be the average of the partial sums SN(f, x) of the Fourier series of f . Then σN (f, x) →
f(x) a.e. In particular, if a Fourier series converges a.e. to 0, it is identically 0.

For example, in Luzin’s dissertation Integration and trigonometric series (1915), this
problem is discussed and is considered improbable that there is a non-zero trigonometric
series that converges to 0 a.e. It thus came as a big surprise when in 1916 Menshov proved
that there are indeed trigonometric series which converge to 0 a.e. but are not identically 0.
It follows, for example, that any function which admits a trigonometric expansion admits
actually more than one, if only convergence a.e. to the function is required.

Remark. Menshov also showed that every measurable function admits an a.e. trigono-
metric expansion, i.e., for any 2π-periodic measurable f there is a trigonometric series∑
cne

inx such that f(x) =
∑
cne

inx a.e. By the above this series is not unique.

Menshov actually constructed an example of a closed set of multiplicity of measure
0, by an appropriate modification of the standard construction of the Cantor set. The
Cantor set in the interval [0, 2π] is constructed by removing the middle 1/3 open interval,
then in each of the remaining two closed intervals remaining the middle 1/3 open interval,
etc. Now suppose we modify the construction by removing in the first stage the middle
1/2 interval, at the second stage, the middle 1/3 interval, at the third stage the middle
1/4 interval, etc. Denote the resulting perfect set by EM .

7.5. Exercise. Show that λ(EM ) = 0.

Now Menshov showed that EM is a set of multiplicity as follows: This set is in a
canonical 1-1 correspondence with the set of infinite binary sequences 2N. Take the usual
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coin-tossing measure on 2N and transfer it by this correspondence to EM . Call this measure
µM . (Thus µM gives equal measure 1/2n to each of the 2n closed intervals at the nth stage
of this construction.) It is a probability Borel measure on T, so we can define its Fourier(-
Stieltjes) coefficients µ̂M (n), as usual, by

µ̂M (n) =

∫
e−intdµM (t).

Then it turns out that
∑
µ̂M (n)einx = 0 for x /∈ E, so E is a set of multiplicity (as

µ̂M (0) = µ(E) > 0). This might seem not too surprising, since after all the measure µ
“lives” on EM . However by the same token one should also expect that if we consider
the usual Cantor set EC and denote the corresponding measure by µC we should have∑
µ̂C(n)einx = 0 off the Cantor set as well, i.e., the Cantor set should also be a set of

multiplicity, which is false! This is only one of the many phenomena in this subject which
challenge your intuition.

What is the difference between µM , µC that accounts for this phenomenon? It turns
out that it is the following: µ̂M (n) → 0 but µ̂C(n) 6→ 0 as |n| → ∞. In fact, we have the
following result.

7.6. Theorem. Let E ⊆ T, E 6= T be a closed set and let µ be a probability Borel measure
on T with µ(E) = 1. Then the following are equivalent:

(i) µ̂(n) → 0;

(ii)
∑
µ̂(n)einx = 0, ∀x /∈ E.

Clearly (ii) ⇒ (i) by the Cantor-Lebesgue Lemma. The proof of (i) ⇒ (ii) requires
some further background in the theory of trigonometric series and we will postpone it for
a while (see §§12,13).

Thus Menshov’s proof is based on the fact that µ̂M (n) → 0, which is proved by a
delicate calculation.

We will develop in the sequel a totally different approach to Menshov’s Theorem on
the existence of null sets of multiplicity, an approach based on the Baire category method.

§8. Baire category.

A set in a topological space is nowhere dense if its closure has empty interior. A set
is first category or meager if it is contained in a countable union of nowhere dense sets.
Otherwise it is of the second category or non-meager. It is clear that meager sets form a
σ-ideal, i.e., are closed under subsets and countable unions. So this concept determines
a notion of “topological smallness” analogous to that of null sets in measure theory. Of
course, for this to be of any interest it better be that it doesn’t trivialize, i.e., that the
whole space is not meager. This is the case in well-behaved spaces, like complete metric
spaces. In fact we have an even stronger statement known as the Baire Category Theorem
(for such spaces). We call a set comeager if its complement is meager. Notice that a set is
comeager iff it contains a countable intersection of dense open sets.
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8.1 Theorem (The Baire Category Theorem). Let X be a complete metric space. Every
comeager set is dense (in particular non-∅).

This is the basis of a classical method of existence proof in mathematics: Suppose we
want to show the existence of a mathematical object x satisfying some property P . The
category method consists of finding an appropriate complete metric spaceX (or other “nice”
topological space satisfying the Baire Category Theorem) and showing that {x ∈ X : P (x)}
is comeager in X. This not only shows that ∃xP (x), but in fact that in the space X
“most” elements of X have property P or as it is often expressed the “generic” element
of X satisfies property P . (Similarly, if a property holds a.e. we say that the “random”
element satisfies it.)

A standard application of the Baire Category Theorem is Banach’s proof of the exis-
tence of continuous nowhere differentiable functions (originally due to Bolzano and Weier-
strass in the 19th century). The argument goes as follows:

Let C(T) be the space of real valued continuous 2π-periodic functions with the uniform
(or sup) metric

d(f, g) = sup{ |f(x) − g(x)| : x ∈ T}.
It is well-known that this is a complete metric space. We want to show that

{f ∈ C(T) : ∀x(f ′(x) does not exist)}

is comeager in C(T), so non-∅. Consider, for each n, the set

Un = {f ∈ C(T) : ∀x∃h > 0

∣∣∣∣
f(x + h) − f(x)

h

∣∣∣∣ > n}.

8.2. Exercise. Show that Un is open in C(T).

It is not hard to show now that Un is also dense in U(T). Simply approximate any
f ∈ C(T) by a piecewise linear function g and then approximate g by a piecewise linear
function with big slopes, so that it belongs to Un.

Thus
⋂

n Un is a countable intersection of dense open sets, so it is comeager. But
clearly if f ∈ ⋂

n Un, f is nowhere differentiable. (So the “generic” continuous function is
nowhere differentiable.)

Before we proceed, let us recall that a set A, in a topological space X, is said to have
the Baire property (BP) if there is an open set U such that A∆U is meager. The class of
sets with the BP is a σ-algebra (i.e., is closed under countable unions and complements),
in fact it is the smallest σ-algebra containing the open sets and the meager sets. The sets
with the BP are analogs of the measurable sets.

Although there is some analogy between category and measure it should be emphasized
that the concepts are “orthogonal”. This can be expressed by the following important fact:

8.3. Proposition. There is a dense Gδ (so comeager) set G ⊆ T such that λ(G) = 0
(i.e., G is null).
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Proof. Let {dn} be a countable dense set in T. For each m let In,m be an open interval
around dn with λ(In,m) ≤ 1

m · 2−n. Let Um =
⋃

n In,m, so that Um is dense open with
λ(Um) ≤ ∑

n λ(In,m) ≤ 2/m. Let G =
⋂

m Um. ⊣
§9. Sets of uniqueness and category.

We have seen in §7 that a (measurable) set of uniqueness is measure theoretically
negligible, i.e., null. The question was raised, already in the 1920’s (see, e.g., the memoir
of N. Bari in Fundamenta Mathematica, Bari [1927]) whether they are also topologically
negligible, i.e., meager (assuming they have the BP). So we have

9.1. The Category Problem. Is every set of uniqueness with the BP of the first
category?

This problem was solved affirmatively by Debs and Saint Raymond in 1986. Their
original proof used the descriptive set theoretic methods that we will discuss in Part
III and was quite sophisticated, making use of machinery established in earlier work of
Solovay, Kaufman, Kechris-Louveau-Woodin and Kechris-Louveau. In fact Debs and Saint
Raymond established the following stronger result.

9.2. Theorem (Debs-Saint Raymond). Let A ⊆ T be a non-meager set with the BP. Then
there is a Borel probability measure µ on T with µ(A) = 1 and µ̂(n) → 0, as |n| → ∞.

To see that this implies 9.1 we argue as follows:

Let A be a set of uniqueness with the BP. If A is not meager, there is µ, a Borel
probability measure, with µ(A) = 1, and µ̂(n) → 0. Since every Borel probability measure
is regular, there is closed F ⊆ A with µ(F ) > 0. Let ν = µ|F , i.e., ν(X) = µ(X ∩ F ).

9.3. Proposition. ν̂(n) → 0, as |n| → ∞.

Proof. We have for any continuous function on T,
∫
fdν =

∫
fχF dµ,

so

ν̂(n) =

∫
χF (t)e−intdµ(t).

For each ǫ > 0, there is a trigonometric polynomial P (x) =
∑N

−N cke
ikx such that∫

|χF − P |dµ < ǫ. Now if

dn =

∫
P (t)e−intdµ(t),

we have

dn =

∫ ( N∑

−N

cke
ikx

)
e−intdµ(t)

=
N∑

k=−N

ckµ̂(n − k) → 0
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as |n| → ∞. Moreover

|ν̂(n) − dn| =

∣∣∣∣
∫

(χF (t) − P (t))e−intdµ

∣∣∣∣

≤
∫

|χF − P |dµ < ǫ,

so limn|ν̂(n)| ≤ ǫ, and thus ν̂(n) → 0. ⊣
Then we can apply 7.6 to conclude that

∑
ν̂(n)einx = 0 off E and thus off A. As

ν̂(0) 6= 0, this shows that A is a set of multiplicity, a contradiction.

Starting with the next section we will give a very different than the original and much
simpler proof of 9.2, due to Kechris-Louveau, which is based on the category method and
employs only elementary functional analysis. Before we do that though we want to show
how 9.2 gives also a much different proof of Menshov’s Theorem, which “explains” this
result as an instance of the “orthogonality” of the concepts of null and meager sets.

Indeed, by 8.3 fix a dense Gδ set G ⊆ T with λ(G) = 0. Then G is comeager, so by
9.2, there is a Borel probability measure µ with µ(G) = 1 and µ̂(n) → 0. As before, find
F ⊆ G closed with µ(F ) > 0. Then

∑
µ̂(n)einx = 0 off F and thus off G and this shows

that
∑
µ̂(n)einx converges to 0 a.e. without being identically 0 (it also shows that F is a

null closed set of multiplicity, as Menshov also showed).

But this method has also many other applications. For example, in the 1960’s Kahane
and Salem raised the following question: Recall that a number x ∈ [0, 2π] is called normal
in base 2 (say) if for x

2π = 0 · x1x2 · · · , xi ∈ {0, 1}, and all (a0, · · · , ak−1), ai ∈ {0, 1}, we
have

lim
n→∞

1

n
card {1 ≤ m ≤ n : xm+i = am+i, 0 ≤ i ≤ k − 1} =

1

2k
.

Denote byN the set of normal numbers and byN ′ its complement. A famous theorem
of Borel asserts that almost every number is normal, i.e., λ(N) = 1, so λ(N ′) = 0. Kahane
and Salem asked whether N ′ supports any probability Borel measure µ (i.e., µ(N ′) =
1) with µ̂(n) → 0. (Measures with µ̂(n) → 0 are somehow considered “thick” - recall

that λ̂(n) → 0, since in fact λ̂(n) = 0 if n 6= 0. It can be also shown that they are
continuous, i.e., give every singleton measure 0. In fact a theorem of Wiener asserts that
∑
x∈T

µ({x})2 = lim
n→∞

1
2N+1

N∑
−N

|µ̂(n)|2.) Lyons, in 1983, answered this affirmatively, by using

delicate analytical tools. However, a totally different proof can be based on 9.2 by noticing
that

9.4. Proposition. N ′ is comeager.

Proof. We show that N is meager. Note that

N ⊆
⋃

n≥1

Fn,
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where
Fn =

⋂

k≥n

F ′
k,

with

F ′
k =

{
2π

∞∑

l=1

xl2
−l : xl = 0, 1 and

∣∣∣∣
x1 + · · · xk

k
− 1

2

∣∣∣∣ ≤
1

4

}
.

Now F ′
k is closed being the continuous image of the closed (thus compact) subset of 2N

{
(x1, x2, · · ·) ∈ 2N :

∣∣∣∣
x1 + · · · + xk

k
− 1

2

∣∣∣∣ ≤
1

4

}
,

by the continuous map

(x1, x2, · · ·) 7→ 2π

∞∑

l=1

xl2
−l.

So Fn is closed.

9.5. Exercise. Fn contains no open interval.

So each Fn is nowhere dense and N is meager. ⊣

§10. Review of duality in Banach spaces.

Good references for the basic results of functional analysis and measure theory that
we will use in the sequel are Rudin [1973], [1987].

Let X be a Banach space, i.e., a complete normed linear space, over the complex
numbers. Denote by X∗ the dual space of X, i.e., the Banach space of all (bounded or,
equivalently, continuous) linear functionals x∗ : X → C with the norm

||x∗|| = sup

{ ||x∗(x)||
||x|| : x ∈ X,x 6= 0

}

= sup

{
||x∗(x)|| : x ∈ X, ||x|| ≤ 1

}
.

It is often convenient to write

x∗(x) = 〈x, x∗〉 = 〈x∗, x〉.

A set A ⊆ X is called convex if for every x, y ∈ A and t ∈ [0, 1], tx+ (1 − t)y ∈ A.

There is a fundamental collection of results, collectively known as the Hahn-Banach
Theorems, which assert the existence of appropriate linear functionals. We will need here
the following separation form of Hahn-Banach.
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10.1. Theorem (Hahn-Banach). Let X be a Banach space and let A,B ⊆ X be convex,
nonempty, A∩B = ∅, with A compact and B closed. Then there is x∗ ∈ X∗, and α, β ∈ R
with

Re 〈x∗, x〉 < α < β < Re 〈x∗, y〉,
for x ∈ A, y ∈ B.

We now define the weak-topology of X as follows: It is the smallest topology on X
for which the maps

x 7→ 〈x∗, x〉, for x∗ ∈ X∗,

are continuous. It is thus contained in the usual or norm-topology ofX, i.e., the one induced
by its norm, and unless X is finite-dimensional, it is properly contained. By definition, a
subbasis of this topology consists of all sets of the form

{x : 〈x∗, x〉 ∈ U}

for x∗ ∈ X, U ⊆ C open.

10.2. Exercise. Show that X with the weak-topology is a topological vector space (i.e.,
scalar multiplication and vector addition are continuous) and that a local basis at 0 is
given by the sets Ux∗

1
,···,x∗

n,ǫ = {x ∈ X : |〈x∗1 , x〉|, · · · , |〈x∗n, x〉| < ǫ}, for x∗1 , · · · , x∗n ∈ X∗.

We will denote by A
w

the closure of A ⊆ X in the weak-topology. Clearly A (= the
closure of A in the norm-topology) ⊆ A

w
, since there are more norm closed sets than weak

closed sets. However, for convex sets these closures coincide.

10.3. Theorem (Mazur). Let X be a Banach space. For every convex set A ⊆ X, A =
A

w
.

Proof. It is enough to show that A
w ⊆ A. Let x0 /∈ A in order to show that x0 /∈ A

w
. By

Hahn-Banach applied to {x0}, A (which is easily convex) there is x∗ ∈ X∗ and α ∈ R with

Re 〈x∗, x0〉 < α < Re 〈x∗, y〉

for y ∈ A. Then {x : Re〈x∗, x〉 < α} is a weak-nbhd of x0 which is disjoint from A, so
x0 /∈ A

w
. ⊣

On the dual Banach spaceX∗ we of course have its weak-topology but we can also con-
sider an even weaker (fewer open sets) topology called the weak∗-topology or w∗-topology.
This is the smallest topology for which the functions

x∗ 7→ 〈x, x∗〉

for x ∈ X are continuous. Since every x ∈ X gives rise to a linear functional x∗∗ ∈ X∗∗,
defined by

〈x∗∗, x∗〉 = 〈x, x∗〉 for x∗ ∈ X∗,

this shows that the weak∗-topology of X∗ is contained in its weak-topology (in general
properly).
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10.4. Exercise. Verify that X∗ with the weak∗-topology is a topological vector space and
that a local basis at 0 is given by the sets Vx1,···,xn,ǫ = {x∗ ∈ X : |〈x1, x

∗〉|, · · · , |〈xn, x
∗〉| <

ǫ} for x1, · · · , xn ∈ X.

The crucial property of the weak∗-topology is given by the following.

10.5. Theorem (Banach-Alaoglu). Let X be a Banach space and consider a closed ball

Br(X
∗) = {x∗ ∈ X∗ : ||x∗|| ≤ r}

of X∗. Then Br(X
∗) is weak∗-compact, i.e., compact in the weak∗-topology.

Proof. It is enough to consider r = 1. Consider the product space
∏

x∈X ∆||x||, where
∆r = {z ∈ C : |z| ≤ r}. This is compact, by Tychonoff’s Theorem. Note that B1(X

∗) ⊆∏
x∈X ∆||x||, since |x∗(x)| ≤ ||x∗|| · ||x|| ≤ ||x||. Moreover, the relative topology that

B1(X
∗) inherits from

∏
x∈X ∆||x|| is exactly the weak∗-topology. So it is enough to

show that B1(X
∗) is closed in

∏
x∈X ∆||x||. Clearly B1(X

∗) = {f ∈ ∏
x∈X ∆||x|| : f is

linear} =
⋂

α,β∈C
⋂

x,y∈X{f : f(αx + βy) = αf(x) + βf(y)}. Since the map f 7→ f(x)
from

∏
x∈X ∆||x|| into ∆||x|| is continuous, B1(X

∗) is the intersection of closed sets, thus
closed. ⊣
10.6. Exercise. Show that when X is separable (i.e., has a countable dense set), then
Br(X

∗) with the weak∗-topology is also metrizable with compatible metric

d(x∗, y∗) =
∑

2−n|〈xn, x
∗〉 − 〈yn, y

∗〉|,

where {xn} is dense in the unit ball B1(X) of X.

Remark. Every element x of X can be identified with the element x∗∗ of X∗∗ = (X∗)∗

given by

〈x∗∗ , x∗〉 = 〈x, x∗〉.

So we can view X as a subset of X∗∗ (it is in fact a closed subspace of X∗). It is obvious
from the definition that the weak-topology on X is exactly the same as the weak∗-topology
of X, when it is viewed as a subset of X∗∗(= (X∗)∗).

We will now discuss some important, and crucial for our purposes, examples.

A) First, we denote by c0 = c0(Z) the Banach space of all sequences (xn)n∈Z, xn ∈ C
such that xn → 0 as |n| → ∞, equipped with the sup norm

||(xn)||∞ = sup
n∈Z

|xn|.

We denote by ℓ1 = ℓ1(Z) the Banach space of all sequences (xn)n∈Z such that
∑ |xn| <∞

with the norm

||(xn)||1 =
∑

n∈Z
|xn|.
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Finally, we denote by ℓ∞ = ℓ∞(Z) the Banach space of all bounded sequences (xn)n∈Z
(i.e., supn∈Z |xn| <∞) with the sup norm

||(xn)||∞ = sup
n∈Z

|xn|

10.7. Exercise. Show that c0 is a closed (linear) subspace of ℓ∞. Show that c0, ℓ
1 are

separable, but ℓ∞ is not.

We will now identify c∗0, (ℓ
1)∗. Let Λ ∈ c∗0 and put λn = Λ(e−n), where

en(i) =

{
0, if i 6= n

1, if i = n
, for n, i ∈ Z.

(The use of Λ(e−n) instead of Λ(en) is for technical convenience and assures consistency
with the definition of Fourier coefficients µ̂(n) =

∫
e−intdµ(t) later on.)

10.8. Exercise. For any (xn) ∈ c0,

Λ((xn)) =
∑

λnx−n,

∑ |λn| <∞ and ||Λ|| = ||(λn)||1.
From this it immediately follows that the bijection

Λ ↔ (λn)

is a Banach space isomorphism between ℓ1 and c∗0, so we simply identify c∗0 with ℓ1,

c∗0 = ℓ1,

and view every element of ℓ1, (λn), as operating on an element (xn) of c0, by

〈(λn), (xn)〉 = 〈(xn), (λn)〉 =
∑

λnx−n.

Now consider (ℓ1)∗ and put, as before, λn = Λ(e−n).

10.9. Exercise. For any (xn) ∈ ℓ1,

Λ((xn)) =
∑

λnx−n,

sup |λn| <∞ and ||Λ|| = sup |λn|.
So, as before, we can identify (ℓ1)∗ with ℓ∞,

(ℓ1)∗ = ℓ∞
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and view any element (λn) ∈ ℓ∞ as operating on (xn) ∈ ℓ1 by

〈(λn), (xn)〉 = 〈(xn), (λn)〉 =
∑

λnx−n.

Note that as c0 ⊆ ℓ∞ there are two meanings of 〈(λn), (xn)〉 for (λn) ∈ c0, (xn) ∈ ℓ1, but
both give, of course, the same value.

10.10. Exercise. Let (xn) be a bounded sequence of elements of c0, i.e., sup ||xn||∞ <∞.
Let x ∈ c0. Show that xn → x in the weak-topology iff xn(i) → x(i), ∀i ∈ Z. Show that
if (xn) is a bounded sequence in ℓ1, and x ∈ ℓ1, then xn → x in the weak∗-topology iff
xn(i) → x(i), ∀i ∈ Z. Finally, if (xn) is a bounded sequence in ℓ∞ and x ∈ ℓ∞, then
xn → x in the weak∗-topology (of ℓ∞ = (ℓ1)∗) iff xn(i) → x(i), ∀i ∈ Z.

B) Now consider the Banach space C(T) of all continuous (complex) functions on T
with the sup norm

||f ||∞ = sup
t∈T

|f(t)|.

10.11. Exercise. The trigonometric polynomials with coefficients in Q+ iQ are dense in
C(T), so C(T) is separable.

The dual of C(T) is identified by the Riesz Representation Theorem.

First recall that a positive Borel measure on T is a function µ : {Borel subsets of
T} → [0,∞] such that (i) µ(∅) = 0 and (ii) µ(

⋃
i∈NAi) =

∑
µ(Ai), if Ai are pairwise

disjoint Borel sets. It is finite, if µ(T) < ∞, and a probability measure, if µ(T) = 1. A
complex Borel measure is a map µ : {Borel subsets of T} → C which satisfies the above
properties (i) and (ii). It turns out that every complex Borel measure µ can be written as
µ = µ1 − µ2 + i(µ3 −µ4), where µ1, µ2, µ3, µ4 are finite positive Borel measures. It follows
that there is C <∞ such that

∞∑

i=1

|µ(Ei)| ≤ C

for any Borel partition {Ei}∞i=1 of T. Put

||µ||M = sup
∞∑

i=1

|µ(Ei)|,

where the sup is over all these partitions. Notice that ||µ||M = µ(T), if µ is a finite positive
Borel measure.

Denote by M(T) the vector space of complex Borel measures on T (where we put
(αµ + λν)(E) = αµ(E) + λν(E)). Then M(T) with the norm ||µ||M is a Banach space.

10.12. Exercise. For each x ∈ T, let δx be the Dirac measure at x, i.e., δx(E) ={
1, if x ∈ E
0, if x /∈ E

. Show that if x 6= y, ||δx − δy|| = 2. Conclude that M(T) is not separable.

24



The Riesz Representation Theorem identifies C(T)∗ with M(T). Let’s explain this
more carefully. First, one can define for each f ∈ C(T) the integral

∫
fdµ and show the

properties

(i)
∫
(αf + βg)dµ = α

∫
fdµ + β

∫
gdµ,

(ii) |
∫
fdµ| ≤ ||f ||∞||µ||M ,

so that µ gives rise to the element

f 7→
∫
fdµ

of C(T)∗. The Riesz Representation Theorem asserts that these are all the elements of
C(T)∗. More precisely, to each Λ ∈ C(T)∗ one can associate a unique complex Borel
measure µ on T such that

Λ(f) =

∫
fdµ, for f ∈ C(T).

Moreover Λ ↔ µ is a Banach space isomorphism between C(T)∗ and M(T).

So we identify C(T)∗ and M(T),

C(T)∗ = M(T).

Each µ ∈M(T) operates on f ∈ C(T) by

〈f, µ〉 = 〈µ, f〉 =

∫
fdµ.

Now denote by
P (T)

the set of all probability Borel measures on T. Since

µ ∈ P (T) ⇒ ||µ|| = µ(T ) = 1,

it follows that P (T) ⊆ B1(M(T)).

Another part of the Riesz Representation Theorem asserts that in the correspondence
Λ ↔ µ, µ is a positive measure iff Λ is positive, i.e., Λ(f) ≥ 0 for f ≥ 0. Thus µ ∈ C(T)
is positive, i.e., µ(E) ≥ 0 for Borel E, iff

∫
fdµ ≥ 0 for any f ∈ C(T), with f ≥ 0. (This

can be also proved directly by approximation arguments.) Thus P (T) consists exactly of
all members of B1(M(T)) which satisfy

∫
1dµ = 1, ∀f ∈ C(T) (f ≥ 0 ⇒

∫
fdµ ≥ 0).

It follows that P (T) is a closed subset of B1(M(T)) when the latter is equipped with the
weak∗-topology, so it is compact metrizable in this topology. To summarize:

The space P (T) of probability Borel measures on T with the weak∗-topology, i.e., the
smallest topology for which the maps
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µ 7→
∫
fdµ, f ∈ C(T)

are continuous, is compact metrizable.

Notice again that the sets of the form

Vf1,···,fn,ǫ = {ν :

∣∣∣∣
∫
fidµ−

∫
fidν

∣∣∣∣ < ǫ, i = 1, · · · , n},

where ǫ > 0 and f1, · · · , fn ∈ C(T), form a nbhd basis of µ ∈ P (T) in the weak∗-topology.

A finite support probability measure is a measure of the form µ =
∑n

i=1 αiδxi , where
δx is the Dirac measure at x, and αi ≥ 0,

∑n
i=1 αi = 1. We say that µ is supported by

{x1, · · · , xn}.

10.13. Proposition. Let D ⊆ T be a dense set in T. Then the set of finite support
probability measures supported by D is dense in P (T) with the weak∗-topology.

Proof. Fix µ ∈ P (T) and an open nbhd {ν : |
∫
fidµ −

∫
fidν| < ǫ, i = 1, · · · , n}

(f1, · · · , fn ∈ C(T), ǫ > 0) of µ in the weak∗-topology. We want to find a finite support
probability measure ν supported by D which belongs in this nbhd. Since the functions
f1, · · · , fn are uniformly continuous, we can find δ > 0 such that

|x− y| < δ ⇒ |fi(x) − fi(y)| ≤ ǫ1 < ǫ,

for any x, y ∈ T and i = 1, · · · , n. So there is a finite partition I1, · · · , Ik of T into half-open
intervals such that

x, y ∈ Ij ⇒ |fi(x) − fi(y)| ≤ ǫ1, j ≤ k, i ≤ n.

Choose xi ∈ Ii ∩D, let αi = µ(Ii) and put ν =
∑
αiδxi . Then ν is supported by D and
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for f ∈ {f1, · · · , fn} ∣∣∣∣
∫
fdµ −

∫
fdν

∣∣∣∣

=

∣∣∣∣
∫
fdµ −

∑
αif(xi)

∣∣∣∣ (since

∫
fd(δx) = f(x))

=

∣∣∣∣
k∑

i=1

(

∫

Ii

fdµ−
∫

Ii

f(xi)dµ)

∣∣∣∣ (since µ(Ii) = αi)

=

∣∣∣∣
k∑

i=1

∫

Ii

(f(x) − f(xi))dµ

∣∣∣∣

≤
k∑

i=1

∫

Ii

∣∣∣∣f(x) − f(xi)

∣∣∣∣dµ

≤
k∑

i=1

∫

Ii

ǫ1dµ

= ǫ1

∫
dµ = ǫ1 < ǫ.

⊣
We can generalize this as follows. Fix a closed set E ⊆ T and let

P (E) = {µ ∈ P (T) : µ(E) = 1}.
We claim that P (E) is closed in the weak∗-topology of P (T), thus also compact. To see
this, let I1, I2, · · · enumerate a sequence of open intervals whose union is the complement of
E and note that µ ∈ P (E) ⇔ ∀n(µ(In) = 0). If Cn = {f ∈ C(T): f vanishes outside In},
then clearly χIn is the pointwise limit of a sequence fi ≤ 1 from Cn, so by the Lebesgue
Dominated Convergence Theorem, µ(In) = 0 ⇔

∫
χIndµ = 0 ⇔ ∀f ∈ Cn(

∫
fdµ = 0), so

P (E) is an intersection of closed sets, thus is closed.

10.14. Exercise. Let E ⊆ T be closed and let D ⊆ E be dense in E. Then the probability
measures supported by finite subsets of D are dense in P (E) with the weak∗-topology.

There is a very interesting connection between M(T) and ℓ∞. To each µ ∈ M(T)
associate its Fourier coefficients

µ̂(n) =

∫
e−intdµ.
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As |µ̂(n)| ≤ |
∫
e−intdµ| ≤ ||µ||M , we see that µ̂ ∈ ℓ∞. Next note that if µ̂ = ν̂ for

two complex measures µ, ν, then
∫
fdµ =

∫
fdν for any trigonometric polynomial f and

thus, as these are dense in C(T),
∫
fdµ =

∫
fdν for f ∈ C(T), i.e., µ = ν. So µ 7→ µ̂

is an injection from M(T) into ℓ∞. Denote by M̂(T) its image, and more generally for

A ⊆M(T) let Â = {µ̂ : µ ∈ A}. Then P̂ (T) ⊆ B1(ℓ
∞). We claim that actually µ 7→ µ̂ is a

homeomorphism of P (T) with the weak∗-topology and P̂ (T) with the weak∗-topology (of
B1(ℓ

∞), where ℓ∞ = (ℓ1)∗). Since P (T) is compact, it is enough to show that µ 7→ µ̂ is
continuous. So let µn → µ in the weak∗-topology of P (T). Then

∫
fdµn → fdµ for any

f ∈ C(T), so in particular µ̂n(i) → µ̂(i), thus µ̂n → µ̂ in the weak∗-topology of P̂ (T).

So we can identify, for all practical purposes, P (T) and P̂ (T) by identifying µ with µ̂,
so we often view P (T) as a subset of ℓ∞.

§11. Rajchman measures and the proof of the Debs-Saint Raymond Theorem.

We say that µ ∈ P (T) is a Rajchman measure if µ̂(n) → 0, as |n| → ∞. (By the way,
Rajchman was Zygmund’s teacher.) Denote their class by R. Then Theorem 9.2 says that
for every non-meager A ⊆ T with the BP, ∃µ ∈ R(µ(A) = 1).

We will now give the promised proof of 9.2, due to Kechris-Louveau, which is based
on the Baire category method.

The streamlined presentation below is due to Lyons.

First, since A ⊆ T has the property of Baire, there is an open set U ⊆ T, with A∆U
meager. As A is not meager, U 6= ∅, so there is a closed interval I = [a, b], a 6= b, and a
sequence Un ⊆ I of open sets, dense in I, with

⋂
n Un ⊆ A.

Let for E ⊆ T
R(E) = {µ ∈ R : µ(E) = 1}.

We want to show that R(A) 6= ∅. If we try to apply the category method in P (T) with the
weak∗-topology, we run into a problem since R(A) ⊆ R and R is unfortunately meager in
P (T) with the weak∗-topology. (See 11.1 below). The trick is to work instead with R̂ ⊆ c0
and the norm-topology.

Claim 1. R̂ is a norm-closed subset of c0. More generally, if E ⊆ T is closed, R̂(E) is a
norm-closed subset of c0.

Proof. Take µn ∈ R(E) and assume µ̂n → x ∈ c0 in norm, i.e., ||µ̂n −x||∞ → 0. Now this
implies immediately that µ̂n(i) → x(i), ∀i ∈ Z. But recall that P (T) is compact, so there
is a subsequence n0 < n1 < · · · with µnj → µ ∈ P (T) (for some µ ∈ P (T)), with respect

to the weak∗-topology, so µ̂nj (i) → µ̂(i), ∀i ∈ Z, i.e., µ̂(i) = x(i), so x = µ̂ ∈ R̂. We now

want to show that µ ∈ P (E), i.e., µ(E) = 1, so that µ̂ ∈ R̂(E). But this is clear as P (E)
is closed in the weak∗-topology of P (T). ⊣

So R̂(I) is in particular a complete metric space and we can apply the Baire Category

Theorem to it. It will be clearly enough to show that each R̂(Un) is dense, Gδ in R̂(I)
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in the norm-topology of R̂(I). Because then
⋂

n R̂(Un) is dense, Gδ in R̂(I) and so non-
empty, i.e., there is µ ∈ R such that for each n, µ(Un) = 1, thus µ(

⋂
n Un) = 1 and since⋂

n Un ⊆ A, µ(A) = 1, and the proof is complete.

Thus our final claim is:

Claim 2. If I is a closed non-trivial interval in T and U ⊆ I is open and dense in I, then

R̂(U) is dense Gδ in R̂(I), in the norm-topology of R̂(I).

Proof. First we check that R̂(U) is Gδ in R̂(I) in the norm-topology. We have

R̂(U) =
⋂

n≥1

⋃

f∈C(T)
0≤f≤χU

{µ̂ ∈ R̂(I) :

∫
fdµ > 1 − 1

n
}.

(To see this recall that U is a disjoint union of open intervals.) It is then enough to check
that for each f ∈ C(T),

{µ̂ ∈ R̂(I) :

∫
fdµ > 1 − 1

n
}

is open in R̂(I) in the norm-topology of c0. In fact, we can easily see that it is open in

R̂(I) in the weak-topology of c0. This is because

µ 7→
∫
fdµ

is continuous in the weak∗-topology of R(I) and thus in the weak∗-topology of R̂(I). But

since R̂(I) ⊆ c0, the weak∗-topology of R̂(I) is the same as the weak-topology of R̂(I).

It remains to prove that R̂(U) is dense in R̂(I) for the norm-topology. Since clearly

R̂(U) is a convex subset of c0, it is enough, by Mazur’s Theorem 10.3, to show that R̂(U)

is weakly dense in R̂(I). But again, as R̂(I) ⊆ c0, this is the same thing as saying that

R̂(U) is weak∗-dense in R̂(I), where we now view these as subsets of ℓ∞. But this again
means the same thing as R(U) being weak∗-dense in R(I), where we work in P (T) now.

We will in fact show that R(U)
w∗

(= the weak∗-closure of R(U) in P (T)) = P (I), which of
course completes the proof. Since the probability measures with finite support contained
in U are dense in P (I), and R(U) is convex, it is enough to show that every Dirac measure
δx, with x ∈ U , is the limit of a sequence in R(U) in the weak∗-topology. But this is easy.
Let In ⊆ U be a decreasing sequence of open intervals with λ(In) < 1

n
and {x} =

⋂
n In.

Let µn = (λ|In)/λ(In). Then, by direct calculation, µ̂n(i) → 0, as |i| → ∞, so µn ∈ R(U).
Now µn → δx in the weak∗-topology. This is because for any f ∈ C(T),

∫
fdµn −

∫
fd(δx) =

1

λ(In)

∫

In

f(t)dt − f(x)

=
1

λ(In)

∫

In

(f(t) − f(x))dt,
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so that if ǫ is given and n is large enough, so that |f(t) − f(x)| < ǫ for t ∈ In, we have

∣∣∣∣
∫
fdµn −

∫
fd(δx)

∣∣∣∣ < ǫ.

This completes the proof.

11.1. Exercise. Show that R is meager in P (T) with the weak∗-topology.

Although R is meager, it still has an interesting largeness property. Note that for a
set A in a complete metric space, if A has the BP, then A is comeager iff for each open
non-∅ set U ⊆ X and each sequence of open dense in U sets, Un, we have A∩ (

⋂
n)Un 6= ∅.

Now R, although meager, is convexly comeager, in the following sense.

11.2. Theorem (Kechris-Louveau). For every non-empty open set U ⊆ P (T) (in
the weak∗-topology) and any sequence Un of open dense in U convex sets, we have
R ∩ (

⋂
n Un) 6= ∅.

I will omit the proof (see Kechris-Louveau [1989], VIII. 3.6]).

11.3. Exercise. Use this to give another proof of the Debs-Saint Raymond Theorem.

§12. Paying a debt: Proof of 7.6.

To bring this chapter into conclusion I will give the proof that (i) ⇒ (ii) in 7.6, which
we omitted earlier. The proof will be based on a classical result of Riemann, known as the
localization principle.

12.1. Riemann localization principle. Let S ∼ ∑
cne

inx be a trigonometric series
with cn → 0. If the Riemann function FS is linear in some open interval (a, b), then∑
cne

inx = 0 on (a, b) (and uniformly on closed subintervals).

Note that the hypothesis is equivalent (by Schwartz’s Lemma 3.3) to saying that
D2FS(x) = 0, ∀x ∈ (a, b). Recall also Riemann’s First Lemma 2.2 which implies that if∑
cne

inx = 0, then D2FS(x) = 0. So 12.1 asserts a converse, but only under the hypothesis
that D2FS(x) vanishes in a whole interval.

Before proving 12.1, let me first show how it can be used to prove (i) ⇒ (ii) in 7.6.
To start with, note the following fact.

12.2. Exercise. Let f ∈ C(T) be such that
∑ |f̂(n)| < ∞. Then f(x) =

∑
f̂(n)einx

uniformly on x.

Now fix a ∈ R, 0 < h < π and let ψa,h be the 2π-periodic function defined in the
period [a− π, a + π] as follows: ψa,h(a) = 2π/h, ψa,h(x) = 0 off [a− h, a + h], and ψa,h in
linear in [a− h, a], [a, a+ h]. Then one can easily check that the Fourier series of ψa,h is

S(ψa,h) ∼
∞∑

n=−∞
e−ina

(
sin(nh/2)

nh/2

)2

einx,
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so that
∑ |ψ̂a,h(n)| <∞ and

ψa,h(x) =

∞∑

n=−∞
e−ina

(
sin(nh/2)

nh/2

)2

einx.

Let us next note another fact.

12.3. Exercise. Let f ∈ C(T) be such that
∑ |f̂(n)| <∞. Then for any µ ∈M(T),

∫
fdµ =

∑
µ̂(n)f̂ (−n).

So if E ⊆ T is a closed set and µ(E) = 1, we have for any a /∈ E and h small enough
that

0 =

∫
ψa,hdµ =

∞∑

n=−∞
µ̂(n)ψ̂a,h(−n)

=

∞∑

n=−∞
µ̂(n)

(
sin(nh/2)

nh/2

)2

eina

=
∆2FS(a, h)

h2

where S ∼ ∑
µ̂(n)einx. So FS is linear on each open interval disjoint from E and thus, by

the Riemann Localization Principle,
∑
µ̂(n)einx = 0 off E.

So it only remains to prove 12.1.

§13. The Rajchman Multiplication Theory.

We will first develop a theory, due to Rajchman, concerning the formal multiplication
of trigonometric series by “nice” functions. Beyond being useful in proving the Riemann
localization principle, it has many other applications, some of which we will see later on.

Let S ∼ ∑
cne

inx have bounded coefficients |cn| ≤M <∞. Let f ∈ C(T) have abso-

lutely convergent Fourier coefficients
∑ |f̂(n)| <∞, so that f(x) =

∑
f̂(n)einx uniformly.

Define the formal product S(f) · S (another trigonometric series) by

S(f) · S ∼
∑

Cne
inx,

where Cn =
∑
k

ckf̂(n − k). Clearly
∑
k

ckf̂(n − k) is convergent and |Cn| ≤ sup
k

|ck| ·
∑
n∈Z

|f̂(n)|.
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13.1. Exercise. cn → 0 ⇒ Cn → 0.

13.2. Lemma. If
∞∑

ℓ=0

∑
|n|≥ℓ

|f̂(n)| < ∞ (e.g., if f̂(n) = O( 1
|n|3 )) and cn → 0, then

N∑
−N

Cne
inx − f(x)

N∑
−N

cne
inx → 0 uniformly on x (i.e.,

∞∑
−∞

(Cne
inx − f(x)cne

inx) = 0,

uniformly on x).

Proof. First we prove that if f(x) = 0 for x ∈ P ⊆ T, then
N∑
−N

Cne
inx = 0 uniformly on

x ∈ P . To see this note that

N∑

−N

Cne
inx =

N∑

n=−N

(

∞∑

k=−∞
cke

ikxf̂(n − k)ei(n−k)x)

=
∞∑

k=−∞
cke

ikx

( N∑

n=−N

f̂(n− k)ei(n−k)x

)

=

∞∑

k=−∞
cke

ikx

( N−k∑

m=−N−k

f̂(m)eimx

)

= I1 + I2,

where

I1 =
∑

|k|≤1
2
N

· · · ,

I2 =
∑

|k|>1
2
N

· · · .

Since
∞∑

m=−∞
f̂(m)eimx = 0,

N−k∑
m=−N−k

f̂(m)eimx = −(
−N−k−1∑
m=−∞

f̂(m)eimx +
∞∑

m=N−k+1

f̂(m)eimx), so

|I1| ≤ sup
k

|ck| · 2(
∑

ℓ≥N/2

∑

|m|≥ℓ

|f̂(m)|) → 0
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as N → ∞, uniformly on x, since
∞∑

ℓ=0

∑
|m|≥ℓ

|f̂(m)| <∞. Also

|I2| ≤ sup
|k|> N

2

|ck| ·
∑

k∈Z

(−N−k−1∑

m=−∞
|f̂(m)| +

N−k+1∑

m=−∞
|f̂(m)|

)

≤ sup
|k|> N

2

|ck| · 3
( ∞∑

ℓ=0

∑

|m|≥ℓ

|f̂ |(m)|
)

→ 0

uniformly on x (consider cases as k ≤ −N, k ∈ (−N,N), k ≥ N.)

Note that this argument applies as well to any series of the form
∑

f̃(n, x)einx

provided that
∑

|n|≥ℓ |f̃(n, x)| ≤ Mℓ, with
∑

ℓ≥0Mℓ < ∞. In this case

Cn =
∑
k

ckf̃(n− k, x) and the hypothesis f(x) = 0 is replaced by
∑
f̃(n, x)einx = 0.

Now consider the general situation. We have

N∑

−N

Cne
inx − f(x)

N∑

−N

cne
inx

=

N∑

−N

(Cn − f(x)cn)einx.

But

Cn − f(x)cn =

∞∑

−∞
ckf̂(n− k) − f(x)cn

=
∞∑

−∞
ckf̃(n− k, x),

where f̃(m,x) =

{
f̂(m), if m 6= 0

f̂(0) − f(x), if m = 0
. Now

∑
f̃(n, x)einx =

∑
f̂(n)einx − f(x) = 0

for all x. Also if Mk =
∑

|n|≥k

|f̂(n)|, for k > 0, and M0 =
∑ |f̂(n)| + ||f ||∞, we have

∑
|n|≥k

|f̃(n, x)| = Mk if k > 0 and
∑
n
|f̃(n, x)| = M0. Since

∑
k≥0

Mk <∞, it follows from the

preceding remarks that
N∑

−N

(Cn − f(x)cn)einx → 0
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uniformly on x, i.e.,
N∑

−N

Cne
inx − f(x)

N∑

−N

cne
inx → 0

uniformly on x. ⊣
We are now ready to prove the Riemann Localization Principle.

Let S ∼ ∑
cne

inx be a trigonometric series with cn → 0 and assume FS is linear on
(a, b). Let [c, d] ⊆ (a, b). Take a nice function f ∈ C(T), say with continuous derivatives
of all orders, such that f = 1 on [c, d] and 0 off (a, b). Integration by parts shows that

f̂(n) = O

(
1

|n|k

)
for all k ≥ 0, so in particular

∑
k

∑
|n|≥k

|f̂(n)| <∞. So

∞∑

−∞

(
Cne

inx − f(x)cne
inx

)
= 0,

uniformly on x. Then by 2.3

lim
h→0

∞∑

−∞

(
Cne

inx − f(x)cne
inx

)(
sinnh

nh

)2

= 0.

Now FS is linear on (a, b), so for x ∈ (a, b) and small enough h,

∞∑

−∞
cne

inx

(
sinnh

nh

)2

=
∆2FS(x, 2h)

4h2
= 0,

so for x ∈ (a, b)

lim
h→0

∞∑

−∞
f(x)cne

inx

(
sinnh

nh

)2

= 0,

thus this is true for all x since f(x) = 0 off (a, b). So

lim
h→0

∞∑

−∞
Cne

inx

(
sinnh

nh

)2

= 0.

But if T ∼ ∑
Cne

inx, then this limit is simply D2FT (x), so

D2FT (x) = 0

for all x, thus FT is linear, and so Cn = 0 for all n, thus

∞∑

−∞
f(x)cne

inx = 0

uniformly for all x, thus as f(x) = 1 on [c, d],
∑
cne

inx = 0 uniformly for x ∈ [c, d]. ⊣
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PART III. DESCRIPTIVE METHODS

§14. Perfect sets of uniqueness.

Until now the only examples of sets of uniqueness that we have seen are the countable
ones. So it is conceivable that U = countable. This turned out to be false since in the
period 1921–23 Rajchman and Bari came up independently with examples of perfect sets of
uniqueness. We will give here Rajchman’s approach which makes use of his multiplication
theory.

For x ∈ [0, 2π] and m ∈ Z we let mx = mx(mod 2π). (If we identify x with eix ∈ T,
then mx = eimx.) For A ⊆ T we let mA = {mx : x ∈ A}. The next definition is due to
Rajchman.

Definition. (Rajchman). A set E ⊆ T is called an H-set if for some nonempty open
interval I ⊆ T and some sequence 0 ≤ n0 < n1 < n2 < · · ·, we have (nkE) ∩ I = ∅ for all
k.

Examples. (i) Every finite set is an H-set (but not every countable set).

(ii) The Cantor 1/3-set in [0, 2π], i.e., the set E of numbers of the form 2π
∞∑

n=1
ǫn/3

n,

with ǫn = 0, 2, is an H-set. Indeed, 3nE avoids the middle 1/3 interval.

14.1. Theorem (Rajchman). Every H-set is a set of uniqueness. So the Cantor 1/3-set
is a set of uniqueness.

Proof. Notice that the closure of an H-set is an H-set, so we will work with a closed H-set
E. Let I 6= ∅ be an open interval and let 0 ≤ n0 < n1 < · · · be such that (nkE) ∩ I = ∅.
Let S ∼ ∑

cne
inx be a trigonometric series with

∑
cne

inx = 0 off E. We will show that
cn = 0. Clearly cn → 0, by the Cantor-Lebesgue Lemma.

Choose a f ∈ C(T) which has derivatives of all orders, f̂(0) = 1 and supp(f) =
{x : f(x) 6= 0} ⊆ I. Put

fk(x) = f(nkx).

Then fk = 0 on E. Let

S(fk) · S ∼
∑

Ck
ne

inx.

Claim. Ck
n → cn, as k → ∞

Since by 13.2 we have that

N∑

−N

Ck
ne

inx − fk(x)
N∑

−N

cne
inx → 0

for all x, it follows that
∞∑

−∞
Ck

ne
inx = 0
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for all x (as fk(x) = 0 on E and
∞∑
−∞

cne
inx = 0 off E). So Ck

n = 0 and thus by the claim,

cn = 0.

Proof of the claim. Note that since

f(x) =
∑

f̂(n)einx,

we have that
fk(x) = f(nkx) =

∑
f̂(n)ein·nkx,

thus

f̂k(i) =





f̂(n), if i = n · nk

0, otherwise

,

so that
∑
i∈Z

|f̂k(i)| ≤ C <∞ for all k, f̂k(0) = 1, and lim
k→∞

f̂k(i) = 0, for i 6= 0.

Now we have
Ck

n =
∑

m

cn−mf̂k(m)

=
∑

|m|≤N

· · · +
∑

|m|>N

· · ·

for any N > |n|. The first sum converges to cn as k → ∞ and the second is bounded by
sup{|ck| : |k| ≥ N − |n|} · C , which goes to 0 as N → ∞, so Ck

n → cn as k → ∞. ⊣

§15. The Characterization Problem and the Salem-Zygmund Theorem.

We have now seen that (for measurable sets)

countable $ U $ null,

so an attempt to identify the sets of uniqueness with other types of “thin” sets like count-
able or null has failed. This raises the more general question of whether it is possible to
characterize in some sense the sets of uniqueness. This problem was already prominent in
the 1920’s and in fact even in the simplest case, that of closed sets or even perfect sets. For
example, in Bari’s memoir on the problems of uniqueness in Fundamenta Mathematicae,
Bari [1927], the following problem is explicitly stated.

The Characterization Problem. Find a necessary and sufficient condition for a perfect
set to be a set of uniqueness.

As usual with such characterization problems this is a somewhat vague question. It
appears though that the intended meaning was to find a characterization which can be
expressed fairly explicitly in terms of a standard description of a given perfect set E, e.g.,
its sequence of contiguous intervals. Many attempts have been made to obtain such a
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characterization (see, e.g., Bari’s monograph, Bari [1964]) without success in the general
case of an arbitrary perfect set. However, in the 1950’s Salem and Zygmund, following
earlier work of Bari and Piatetski-Shapiro, proved a remarkable theorem which character-
ized when a perfect symmetric set of constant ratio of dissection is a set of uniqueness. We
will next state the Salem-Zygmund Theorem.

Fix a sequence of numbers ξ1, ξ2, · · · with 0 < ξi < 1/2. The symmetric perfect set
with dissection ratios ξ1, ξ2, · · ·, in symbols Eξ1,ξ2,···, is defined as follows: For each interval
[a, b], and 0 < ξ < 1/2 consider the middle open interval (a + ξℓ, b− ξℓ), where ℓ = b − a,
and let E = [0, a + ξℓ] ∪ [b − ξℓ, b] be the remaining closed intervals. We say that E is
obtained from [a, b] by a dissection of ratio ξ. Starting with [0, 2π] define E1 ⊇ E2 ⊇ · · ·,
where Ek is a union of 2k closed intervals in [0, 2π], by letting E1 be obtained from [0, 2π]
by a dissection of ratio ξ1 and Ek+1 be obtained form Ek by applying a dissection of ratio
ξk+1 to each interval of Ek. Let

Eξ1,ξ2,··· =
⋂

k

Ek.

Then Eξ1,ξ2,··· is a perfect nowhere dense set and λ(Eξ1,ξ2,···) = 0 iff 2kξ1ξ2 · · · ξk → 0.

If ξ = ξ1 = ξ2 = · · ·, we write Eξ instead of Eξ1,ξ2,··· and call Eξ the symmetric perfect
set of constant ratio of dissection ξ. Clearly (as ξ < 1/2) λ(Eξ) = 0. The classical Cantor
set is the set E1/3.

The Salem-Zygmund Theorem characterizes when Eξ is a set of uniqueness. Remark-
ably this depends on a subtle number theoretic property of ξ. We need the following
definition.

Definition. An algebraic number θ is called an algebraic integer if θ is the root of a
polynomial P (x) ∈ Z[x] with leading coefficient 1. Then there is a unique polynomial
P (x) of least degree with leading coefficient 1 for which P (θ) = 0, called the minimal
polynomial by θ. Say it has degree n ≥ 1. Write θ = θ(1), θ(2), · · · , θ(n) for its roots. We
call θ(2), · · · , θ(n) the conjugates of θ. We say that θ is a Pisot number if θ > 1 and all its
conjugates have absolute value < 1. (So θ must be real.)

Examples. (i) Every n ∈ N, n ≥ 2 is Pisot, since it satisfies x−n = 0 which has only one
root.

(ii) 1+
√

5
2

is Pisot, since it satisfies x2 − x − 1 = 0 and its conjugate is 1−
√

5
2

with

| 1−
√

5
2 | < 1.

(iii) A rational p/q is Pisot iff it is an integer > 1 (otherwise it is not an algebraic
integer).

(iv)
√

2 is not Pisot.

Intuitively, a Pisot number is a number θ > 1, whose powers θm are “almost” integers.
To see this first let θ(2), · · · θ(n) be the conjugates of the Pisot number θ. Then θm +
(θ(2))m + · · · + (θ(n))m is a symmetric polynomial of the roots of the minimal polynomial
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P (x) of θ, so it is an integer. But |θ(i)| < 1, so (θ(i))m → 0 as m → ∞, for i > 1, so θ(m)

is closer and closer to an integer as m → ∞. Conversely, it can be shown that if we let

{x} = distance of x to the nearest integer, and θ > 1 is such that
∞∑

n=0
{θn}2 < ∞, then θ

is a Pisot number, and if θ is already algebraic, then {θn} → 0 is enough.

One remarkable fact about Pisot numbers is the following:

(Pisot) The set of Pisot numbers is closed (and of course countable).

It turns out that it has Cantor-Bendixson rank exactly ω.

We now have:

15.1. The Salem-Zygmund Theorem. Let 0 < ξ < 1
2 and let Eξ be the symmetric

perfect set of constant ratio dissection ξ Then

Eξ is a set of uniqueness ⇔ θ =
1

ξ
is P isot.

Thus it appears that number theoretic issues enter into the arena of the characteriza-
tion problem.

Salem and Zygmund extended somewhat their theorem to a wider class of perfect sets.
We will state this generalization for further reference.

Fix η0 = 0 < η1 < · · · < ηk < ηk+1 = 1 and put ξ = 1−ηk. Assume that ξ < ηi+1−ηi

for i < k. The so-called homogeneous perfect set associated to (ξ; η1, · · · , ηk), E(ξ; η1, · · · ηk)
is defined as follows:

For each closed interval [a, b] with length ℓ = [a, b], consider the disjoint intervals
[a + ℓηi, a + ℓηi + ℓξ], i = 0, · · · , k and let E be their union. We say then that E results
from [a, b] by a dissection of type (ξ; η1, · · · , ηk). Starting from [0, 2π] define closed sets of
E1 ⊇ E2 ⊇ · · · by performing to each interval of En a dissection of type (ξ; η1, · · · , ηk) to
get En+1, and let

E(ξ; η1, · · · , ηk) =
⋂

n

En.

Clearly En is made up of (k + 1)n intervals of length ξn, so, as (k + 1)ξ < 1 we have that
(k + 1)nξn → 0, thus λ(E(ξ; η1 · · · ηk)) = 0. Note that E(ξ; η1) = E(ξ; 1 − ξ) = Eξ.

We now have:

15.2. The General Salem-Zygmund Theorem. The set E(ξ; η1, · · · , ηk) is a set of
uniqueness iff

(i) θ =
1

ξ
is Pisot

and

(ii) η1, · · · , ηk ∈ Q(θ).
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The proof of 15.2 can be found in Kahane-Salem [1994].

This is essentially the best known positive result concerning the Characterization
Problem. For example, there is no known characterization of when Eξ1,ξ2,··· is a set of
uniqueness. Any such potential characterization would have to look quite different since
Meyer has shown that if

∑
ξ2n <∞, then Eξ1,ξ2,··· is a set of uniqueness.

In the preface of Zygmund’s classic treatise, Zygmund [1979], he states: “Two other
major problems of the theory also await their solution. These are the structure of the sets
of uniqueness and the structure of the functions with absolutely convergent Fourier series
.... in a search for solutions we shall probably have to go beyond the domains of the theory
of functions, in the direction of the theory of numbers and Diophantine approximation.”
(This was of course written after the proof of the Salem-Zygmund Theorem, which was
proved in 1955.)

In the rest of this chapter we will develop another approach to the Characterization
Problem based on the concepts and methods of descriptive set theory. This approach has
led also to other significant dividends, as, for example, the original solution of the Category
Problem.

This approach, based on the idea of studying the global structure of the class of
closed sets of uniqueness from a descriptive standpoint, has led to interesting conclusions
concerning the Characterization Problem for arbitrary perfect sets, by providing sharp
limitations on the possibility of a positive solution. Whether these results actually provide
a negative solution to the Characterization Problem is a matter of interpretation of the
original question, which is rather vague. It certainly rules out characterizations of the
type that researchers in the field have tried to establish over the years. Independently, of
this, the point of view and the techniques that will be explained in the sequel should be
useful in general in attacking similar characterization problems in analysis or other areas
of mathematics.

§16. The hyperspace K(T) of closed subsets of the circle.

Descriptive set theory is the study of “definable” sets in Polish, i.e., complete separable
metric spaces (like R,C,Rn, etc.). In this theory, sets in such spaces are classified in
hierarchies according to the complexity of their definitions, and the structure of the sets
in each level of these hierarchies is studied in detail.

We want to apply this theory to the study of the global structure of closed sets of
uniqueness which we will denote by U :

U = {E ⊆ T : E is a closed set of uniqueness}.

It is also important to consider a wider class, the so-called sets of extended uniqueness
which are those sets E ⊆ T which satisfy uniqueness for series of the form

∑
µ̂(n)einx with

µ ∈M(T). We denote the class by U0, so that

E ∈ U0 ⇔ for every µ ∈M(T), if
∑

µ̂(n)einx = 0 off E, then µ̂(n) = 0,∀n ∈ Z.
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We also let

U0 = {E ⊆ T : E is a closed set of extended uniqueness}.

Clearly U ⊆ U0 (and Piatetski-Shapiro actually showed that this inclusion is proper).

Both the sets U,U0 are “definable” subsets (and we will see later on at what level
of complexity) of the so-called hyperspace of T, i.e., the space of all closed subsets of the
circle equipped with an appropriate topology, which we will now describe.

Let us start more generally with a compact metric space (X, d), with d ≤ 1 (for
normalization purposes), like, e.g., the circle T with the usual metric (normalized arc-
length). Denote by K(X) the set of all closed (= compact) subsets of X. Define on K(X)
the following metric, called the Hausdorff metric (associated to d), dH :

dH(K,L) = 0, if K = L = ∅,

= 1, if K 6= L,K = ∅ or L = ∅,

= max{δ(K,L), δ(L,K) : K,L 6= ∅},

where

δ(K,L) = max
x∈K

d(x,L).

16.1. Exercise. If

B(E, ǫ) = {x : d(x,E) < ǫ},

show that

dH(K,L) < ǫ⇔ K ⊆ B(L, ǫ) & L ⊆ B(K, ǫ).

16.2. Exercise. (i) Show that (K(X), dH ) is complete. Hint. If {Kn} is Cauchy with

Kn 6= ∅, then K =
⋂

n(
⋃∞

i=n Ki) is the limit of {Kn}.

(ii) Show that (K(X), dH ) is compact. Hint. If F ⊆ X is finite, with ∀x ∈ X∃y ∈
F (d(x, y) < ǫ), then K(F ) = {K ∈ K(T) : K ⊆ F} is finite and ∀K ∈ K(X)∃L ∈
K(F )(dH (K,L) < 2ǫ).

(iii) Show that if D ⊆ X is dense, then Kf (D) = {K ∈ K(T) : K ⊆ D,K finite} is
dense in K(X).

Thus (K(X), dH ) ≡ K(X) is a compact metric space, so it is separable, and thus a
Polish space.

Although the metric on K(X) depends on the chosen metric on X, the topology of
K(X) depends only on the topology of X.
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For any topological space X, we let K(X) be the space of compact subsets of X. We
give K(X) the so-called Vietoris topology which is the one generated by the sets

{K ∈ K(X) : K ⊆ U},

{K ∈ K(X) : K ∩ U 6= ∅},

where U ⊆ X is open. So a basis of this topology is given by the sets

{K ∈ K(X) : K ⊆ U0 & K ∩ U1 6= ∅ & · · · & K ∩ Un 6= ∅}

for U0, U1, · · · , Un ⊆ X open.

16.3. Exercise. Show that the topology of (K(X), dH ) is exactly the Vietoris topology
on K(X).

The following facts are not hard to prove. (Sometimes the best method is to use 16.3.)

16.4. Exercise. (i) x 7→ {x} is an isometry of X into K(X).

(ii) {(x,K) : x ∈ K}, {(K,L) : K ⊆ L}, {(K,L) : K ∩ L 6= ∅}, are closed in
X ×K(X),K(X) ×K(X), resp.

(iii) (K,L) 7→ K ∪ L is continuous (from K(X) ×K(X) into K(X)) but, in general
(K,L) 7→ K ∩ L is not.

(iv) If f : X → Y is continuous, so is f ′′ : K(X) → K(Y ) given by f ′′(K) = f [K].

(v) The operation
⋃

: K(K(X)) → K(X) given by
⋃K =

⋃{K : K ∈ K} for any
closed K ⊆ K(X) is continuous.

(vi) Kf (X) = {K ∈ K(X) : K is finite} is Fσ in K(X),Kp(X) = {K ∈ K(X) : K is
perfect} is Gδ in K(X).

(vii) If A ⊆ X, let

K(A) = {K ∈ K(X) : K ⊆ A}.

If A is closed, open, Gδ, then K(A) is closed, open, Gδ , resp.

§17. Review of descriptive set theory.

Our reference for the concepts and results of descriptive set theory that we will use
here is Kechris [1995].

Let X be a Polish space. A set A ⊆ X is Borel if it belongs to the smallest σ-algebra
containing the open sets. So all open, closed, Fσ, Gδ, · · · sets are Borel. We ramify Borel
sets in a transfinite hierarchy of ω1 (= the first uncountable ordinal) stages, called the
Borel hierarchy. We let

Σ0
1 = open, Π0

1 = closed,
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and for α < ω1, we inductively define Σ0
α,Π

0
α by

Σ0
α = {

⋃

n

An : An is Π0
αn

for some αn < α},

Π0
α = {X \A : A ∈ Σ0

α}.

So Σ0
2 = Fσ,Π

0
2 = Gδ,Σ

0
3 = countable unions of Gδ sets = Gδσ,Π

0
3 = complements of Σ0

3

sets = countable intersections of Fσ sets = Fσδ , etc.

Let also
∆0

α = Σ0
α ∩Π0

α,

so that ∆0
1 = clopen, for example. To emphasize that we work in the space X, we denote

this also by Σ0
α(X),Π0

α(X),∆0
α(X) if necessary. We also let B = B(X) be the class of

Borel sets in X.

We have Σ0
α ∪ Π0

α ⊆ Σ0
α+1 ∩Π0

α+1 = ∆0
α+1, so that we have an increasing hierarchy

of sets and

B =
⋃

α<ω1

Σ0
α

(
=

⋃

α<ω1

Π0
α =

⋃

α<ω1

∆0
α

)
.

We call {Σ0
α,Π

0
α,∆

0
α}α<ω1

the Borel hierarchy. It is proper, i.e., Σ0
α 6= Π0

α,Σ
0
α ∪ Π0

α $
∆0

α+1, if X is uncountable.

A subset A ⊆ X is Σ1
1 or analytic if for some Polish space Y , Borel B ⊆ Y , and

continuous f : Y → X we have f [B] = A. A set A ⊆ X is Π1
1 or co-analytic if X \ A is

Σ1
1. Inductively define

Σ1
n+1 = the class of continuous images of Π1

n sets,

Π1
n+1 = the complements of Σ1

n+1 sets.

Also put ∆1
n = Σ1

n ∩ Π1
n. Again we write Σ1

n(X),Π1
n(X),∆1

n(X) to emphasize that we
look at subsets of X. It turns out that Σ1

n ∪Π1
n ⊆ ∆1

n+1. The projective subsets of X are
defined by

P = P(X) =
⋃

n

Σ1
n(X)(=

⋃

n

Π1
n(X) =

⋃

n

∆1
n(X)).

We call {Σ1
n,Π

1
n,∆

1
n} the projective hierarchy. It is proper, i.e., Σ1

n 6= Π1
n,Σ

1
n∪Π1

n $
∆1

n+1, if X is uncountable.

In descriptive set theory one studies the structure of sets in these hierarchies (and
even more extended ones). We will only need to consider in these lectures Borel sets and
sets in the 1st level of the projective hierarchy, i.e., analytic (Σ1

1) and co-analytic (Π1
1)

sets.
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These are tied up by the well-known Souslin Theorem

B = ∆1
1.

(It is not hard to check that B ⊆ ∆1
1; it is the inclusion that ∆1

1 ⊆ B that is the main
point here.) So if a set is both analytic and co-analytic, it is Borel. However, there are, in
every uncountable Polish space X, analytic (and so co-analytic sets) which are not Borel.
One of the early examples is due to Hurewicz: If X is an uncountable compact metric
space, then Kω(X) = {K ∈ K(X): K is countable} is Π1

1 but not Borel. Another early
example is due to Mazurkiewicz: In C(T), the set {f ∈ C(T): f is differentiable} is Π1

1

but not Borel.

If a set A, in a given space X, is not Borel, then this implies that one cannot give
a necessary and sufficient criterion for membership in A, i.e., a characterization of mem-
bership in A, which is simple enough to be expressible in terms of countable operations
starting from the basic information describing the members of X. So such a fact about the
descriptive complexity of A gives important information about possible characterizations
of membership in A. We want to apply this descriptive approach to the (closed) sets of
uniqueness.

For that purpose it will be useful to first discuss another example of a co-analytic
non-Borel set. First we recall a standard fact from the theory of analytic sets.

17.1. Theorem. For every Polish space X and Σ1
1 set A ⊆ X, there is a Gδ set

G ⊆ X × C, where C = 2N is the Cantor space, such that A = projX [G], i.e.,

x ∈ A⇔ ∃y ∈ 2N(x, y) ∈ G.

Proof. This is clear if A = ∅, so we assume that A 6= ∅. The nonempty analytic sets
can be also characterized as the continuous images of Polish spaces and since every Polish
space is the continuous image of the Baire space N = NN (which is homeomorphic to the
irrationals), it follows that there is continuous g : N −→ X with g[N ] = A. Let G ⊆ X×N
be defined by

(x, y) ∈ G⇔ f(y) = x.

Then A = projX[G]. So A is the projection of a closed subset of X ×N . But it is easy to
see that N is (homeomorphic to) a Gδ subset of C. (View C as 2N×N and identify x ∈ NN
with its graph which is a subset of N × N.) So G, viewed as a subset of X × C, is Gδ in
X × C and we are done. ⊣

We now have:

17.2. Theorem (Hurewicz). Let Q′ = Q ∩ [0, 1]. Then K(Q′) is Π1
1 but not Borel in

K([0, 1]).
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Proof. Note first that K(Q′) is Π1
1: Put N = [0, 1] \Q′. Then

∼ K(Q′) = {K ∈ K([0, 1]) : K ∩N 6= ∅}

= {K ∈ K([0, 1]) : ∃x(x ∈ K & x ∈ N)}

= projK([0,1])[G],

where G ⊆ K([0, 1]) × [0, 1] is defined by

(K,x) ∈ G⇔ x ∈ K & x ∈ N.

So G is Gδ and thus ∼ K(Q′) is Σ1
1, and K(Q′) is Π1

1.

To show that K(Q′) is not Borel, we will first work with K(Q), where Q ⊆ C = 2N

is the countable dense consisting of the eventually periodic sequences. We will show that
K(Q) is not Borel (in K(C)). Granting this, we complete the proof as follows: Let f : C →
[0, 1] be defined by f(x) =

∞∑
n=0

x(n)2−n−1. Then f is continuous and x ∈ Q⇔ f(x) ∈ Q′.

Let F : K(C) → K([0, 1]) be defined by F (K) = f ′′(K) = f [K]. Then F is continuous and

K ∈ K(Q) ⇔ F (K) ∈ K(Q′),

so K(Q) = F−1(K(Q′)). If K(Q′) was Borel, then K(Q) would be Borel too, being a
continuous preimage of a Borel set, a contradiction.

So it is enough to show K(Q) is not Borel in K(C). We will, in fact, prove that this
holds for any countable dense set Q ⊆ C. This is based on the following lemma.

Lemma. Let F ⊆ 2N be Fσ. Then there is a continuous function g : 2N → 2N such that
F = g−1(Q).

Assuming this, we complete the proof as follows: Fix a Π1
1 not Borel set P ⊆ C. Then,

by 17.1, let F be Fσ in C × C such that

x /∈ P ⇔ ∃y(x, y) /∈ F

or

x ∈ P ⇔ ∀y(x, y) ∈ F.

Now C×C is homeomorphic to C, so that there is continuous g : C×C → C with g−1[Q] = F .
Let G : C → K(C) be defined by

G(x) = g({x} × C).
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Then G is continuous and
x ∈ P ⇔ ∀y(x, y) ∈ F

⇔ ∀y(g(x, y) ∈ Q)

⇔ G(x) ⊆ Q

⇔ G(x) ∈ K(Q).

So, as before, if K(Q) was Borel, so would be P , a contradiction.

Proof of the Lemma. Consider the following game: In a run of the game, Players
I,II take turns (I starting first) choosing successively x(0), y(0), x(1), y(1), · · · ;x(i), y(i) ∈
{0, 1}. II wins iff x ∈ F ⇔ y ∈ Q. A strategy for II is a map σ : {0, 1}<N → {0, 1}.
II follows this strategy in a run of this game if for each n, y(n) = σ(x|n) (where x|n =
(x(0), · · · , x(n− 1))). It is a winning strategy if II wins every run of the game in which he
follows σ. (Strategies for I are similarly defined.) Put σ∗(x) = y iff ∀n(y(n) = σ(x|n)),
i.e., σ∗(x) is what II plays following σ, when I plays x in a given run of the game. Thus
if σ is a winning strategy for II, clearly x ∈ F ⇔ σ∗(x) ∈ Q. Since easily σ∗ : C → C is a
continuous function, it is enough to show that II has a winning strategy in this game. We
will define such a strategy below.

Let F =
⋃

n Fn, Fn closed. Let for each closed set H ⊆ C, TH = {x|n : x ∈ H}.
Then TH is a tree on {0, 1}, i.e., a subset of {0, 1}<N closed under initial segments (i.e.,
s = (s0, · · · , sn−1) ∈ TH and m < n implies that (s0, · · · , sm−1) ∈ TH). Moreover

[TH ] = {x : ∀n(x|n ∈ TH)} = H.

Let TFn = Tn and Q = {qn}. Here is then the strategy for II:

As I plays x(0), x(1), · · · II plays y(0), y(1), · · · as follows: As long as I stays within T0,
i.e., x|n ∈ T0, II plays y(0) = q0(0), y(1) = q0(1), · · ·, i.e., follows q0 ≡ q′0. If x ever gets out
of T0 let n0 + 1 be least with x|(n0 + 1) /∈ T0. Then II plays y(n0) 6= q0(n0) and chooses
q′1 ∈ Q with y|(n0 + 1) an initial segment of q′1. This can be done as Q is dense. From
then on, if x stays within T1, II follows q′1. If x ever gets out of T1, let n1 > n0 be least
with x|(n1 + 1) /∈ T1. Then II plays y(n1) 6= q1(n1) and chooses q′2 ∈ Q with y|(n1 + 1) an
initial segment of q′2, and so on ad infinitum. ⊣

§18. The theorem of Kaufman and Solovay.

I will prove here that the set U of closed sets of uniqueness is not Borel in the space
K(T). This result is due to Kaufman and Solovay independently. The proof that I will
give is a simplification of Solovay’s argument and is based on two facts about U : (1) Bari’s
Theorem that the countable union of closed sets of uniqueness is also a set of uniqueness
and (2) the general form of the Salem-Zygmund. I will give the proof of Bari’s Theorem
after giving the proof of the Kaufman-Solovay result.
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18.1. Theorem (Kaufman,Solovay). The set U of closed sets of uniqueness is not Borel
(in K(T)).

Proof. In the notation of 15.2, let, for each x ∈ [0, 1],

f(x) = E(1/4;
3

8
+
x

9
, 3/4).

Then f(x) is a perfect set in T, so f : [0, 1] → K(T).

18.2. Exercise. f is continuous.

From 15.2 it now follows that

x ∈ Q⇔ f(x) ∈ U.

Let F : K([0, 1]) → K(T) be defined by

F (K) =
⋃
f ′′(K)

=
⋃

{f(x) : x ∈ K}.

Then F is continuous and
K ⊆ Q⇔ F (K) ∈ U,

since the union of countably many closed sets of uniqueness is a set of uniqueness. Thus,
in the notation of 17.2,

K(Q′) = F−1(U),

so U cannot be Borel, since K(Q′) is not Borel. ⊣
In 15.2 it is actually proved that if 1/ξ is not a Pisot or else one of η1, · · · , ηk is not

in Q(ξ), then not only E(ξ; η1, · · · , ηk) /∈ U but also E(ξ; η1, · · · , ηk) /∈ U0. So it follows, in
the notation of the preceding proof, that

K(Q′) = F−1(U0),

so we also have:

18.3. Corollary (of the proof). U0 is not Borel.

Remark. Another proof of (much stronger versions of) 18.2 and 18.3, which is self-
contained and independent of the Salem-Zygmund theorem, will be given in §27 below.

Since the sets F (K) are also perfect it finally follows that:

18.4. Corollary. The class of perfect sets of uniqueness is not Borel (in K(T)).

This result has obvious implications for the Characterization Problem: It is impossible
to characterize, given a standard description of a perfect set (e.g., in terms of the sequence
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of its contiguous intervals), whether it is a set of uniqueness, by conditions which are
explicit enough to be expressed by countable operations involving this description. This is
because any such description would give a Borel definition of the set U inK(T). It should be
noted that all positive results obtained so far, including the Salem-Zygmund Theorem and
its generalizations, are of this nature. Later on we will see some even stronger conclusions
ruling out even more general types of characterization (see §24).

§19. Descriptive classification as a method of existence proof.

We describe here a method of existence proof based on the concept of descriptive
classification of sets in Polish spaces. Suppose we have two properties R,S and every
object satisfying R satisfies also S. Our problem is to find an object satisfying S but
not R. The descriptive method consists of finding an appropriate Polish space X and
calculating the descriptive complexity of {x ∈ X : R(x)} = R∗, {x ∈ X : S(x)} = S∗.
Clearly R∗ ⊆ S∗. If for instance R∗ turns out to be of descriptive complexity different
than S∗, e.g., if R∗ is non-Borel but S∗ is Borel, or R∗ is not Σ1

1 but S∗ is Σ1
1, then

clearly R∗ $ S∗, thus ∃x ∈ X(S(x) & ¬R(x)), so we have shown the existence of an object
satisfying S but not R.

Here is an example (due to Bourgain) of the application of this method: Given a class
S of separable Banach spaces, a separable Banach space X is universal for S if every Y ∈ S
is isomorphic to a closed subspace of X, i.e., can be embedded into X. An old problem
in the theory of Banach spaces asked whether there is a separable Banach space with
separable dual which is universal for the class of separable Banach spaces with separable
dual (Problem 49 in the Scottish book, Mauldin [1981]). This was answered negatively by
Wojtaszczyk. Bourgain then showed that any separable Banach space universal for the
above class must be universal for the class of all Banach spaces (so it cannot have separable
dual). The method of proof is the following: Let X0 be universal for the class of separable
Banach spaces with separable dual. Then one can calculate that

S = {K ∈ K(C) : C(K) is isomorphic to a closed subspace of X0}

is Σ1
1. Let

R = {K ∈ K(e) : K is countable }.
Then, by a result of Hurewicz (see §22 below), R is Π1

1 but not Borel, so not Σ1
1 (by

Souslin’s Theorem). Now
R ⊆ S

(as the dual of C(K) is the space M(K), which, as K is countable, is easily separable). So
R 6= S and there is K ∈ K(C),K uncountable with C(K) isomorphic to a closed subspace
of X0. But, as K is uncountable, C(K) is universal for all separable Banach spaces, and
thus so is X0.

19.1. Exercise. Show that {K ∈ K(T) : λ(K) = 0} is Gδ in K(T). Use this and just
the statement of 18.1 to deduce Menshov’s Theorem (that there is a closed null set of
multiplicity).
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§20. Bari’s Theorem.

I will now prove the following important result of Bari that was used in the proof of
18.1.

20.1. Bari’s Theorem. The union of countably many closed sets of uniqueness is a set
of uniqueness.

Proof. We will need the following result of de la Vallée-Poussin (1912), which should be
contrasted with Menshov’s Theorem that a trigonometric series can converge a.e. without
being identically 0.

20.2. Theorem (de la Vallée-Poussin). Let S ∼ ∑
cne

inx be a trigonometric series such

that for each x, there is Mx < ∞ with |
N∑

n=−N

cne
inx| ≤ Mx for all N ≥ 0 (i.e.,

∑
cne

inx

has bounded partial sums). Then if
∑
cne

inx = 0 a.e., we have that cn = 0,∀n.
I will postpone for a while the proof of 20.2 and use it to prove Bari’s Theorem. So

assume En ⊆ T are closed and En ∈ U . Put E =
⋃

nEn. Let
∑
cne

inx = 0 off E, in order
to show that cn = 0,∀n. Clearly λ(En) = 0, so λ(E) = 0, thus cn → 0. Assume cn is not
identically 0, towards a contradiction. Let

G = {x : {SN(x)} is unbounded},

where

SN (x) =

N∑

n=−N

cne
inx.

Then G ⊆ E, G is Gδ and G 6= ∅ by de la Vallé-Poussin’s Theorem. So G is Polish in
the relative topology and if En ∩ G = Gn, clearly Gn is closed in G and

⋃
nGn = G, so,

by the Baire Category Theorem, there is an open interval I0 and some n0 with G ∩ I0 =
Gn0

∩ I0 6= ∅. We will show that
∑
cne

inx = 0 on I0, thus I0 ∩ G = ∅, so we have a
contradiction.

We use Rajchman multiplication. Choose f ∈ C(T) infinitely differentiable with
f > 0 on I0 and f = 0 off I0. Let T = S(f) · S, T ∼ ∑

Cne
inx. Recall that, by 13.2,

∞∑
−∞

(Cn − f(x)cn)einx = 0,∀x. If we can show that Cn = 0,∀n, then we are done. As En0

is a set of uniqueness, it is enough to show that
∑
Cne

inx = 0 for x /∈ En0
. So let x /∈ En0

.
We can assume that x ∈ I0 ∩ E, since

∑
Cne

inx = 0 off I0 ∩ E. So let J0 ⊆ I0 be an
interval containing x such that J ∩En0

= ∅.
Choose again an infinitely differentiable g ∈ C(T) with g(x) = 1 and supp(g) ⊆ J .

Again if

R ∼ S(g) · T, R ∼
∑

Dne
inx,

∑
Dne

inx = 0 a.e., because
∑
Cne

inx = 0 a.e. (as
∑
cne

inx = 0 a.e.), and has bounded
partial sums outside J0 ∩ G = J0 ∩ Gn0

= ∅ (since
∑
cne

inx, and thus
∑
Cne

inx, has the
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same property outside G), i.e.,
∑
Dne

inx has bounded partial sums everywhere, so by de
la Vallé-Poussin again, Dn = 0,∀n, and, by 13.2,

∑
Cne

inx = 0.

Proof of 20.2.

Lemma. Let G ⊆ [0, 2π] be Gδ and null. Then there is g ≥ 0 continuous nondecreasing
in [0, 2π] with g′(x) = +∞ for x ∈ G.

Proof. Let G =
⋂

n Gn, Gn open, λ(Gn) < 2−n. Let gn(x) = 1
2π

∫ x

0
χGn(t)dt. Then

0 ≤ gn ≤ 2−n. Let g =
∑
gn. It is enough to show that g′(x) = ∞ for x ∈ G. Fix K > 0.

For any n0 > K, let ǫ > 0 be such that (x− ǫ, x+ ǫ) ⊆ G0 ∩ · · · ∩Gn0
. Then if 0 < |h| < ǫ,

g(x+ h) − g(x)

h
≥ (n0 + 1)h

2π · h >
k

2π
,

so g′(x) = +∞. ⊣
Now assume

∑
cne

inx = 0 a.e., and
∑
cne

inx has bounded partial sums at each point
x. Let G be a null Gδ set with

x /∈ G⇒
∑

cne
inx = 0.

Let g be as in the preceding lemma. Put

f(x) =

∫ x

0

g(t)dt+ C,

where C < 0 is chosen so that f(2π) = 0. So f(x) is convex and f ′(x) = g(x).

Let FS be the Riemann function of S and choose a, b so that if

F (x) = FS(x) + ax+ b,

then F (0) = F (2π) = 0. If we can show that F = 0 on [0, 2π], then FS is linear on [0, 2π],
so cn = 0,∀n.

We will show that F ≥ 0, F ≤ 0 on [0, 2π]:

F ≤ 0: For ǫ > 0, x ∈ [0, 2π] let

Fǫ(x) = F (x) − ǫx(2π − x) + ǫf(x).

Then Fǫ(0) < 0, Fǫ(2π) = 0, so if F ≤ 0 fails, towards a contradiction, there is ǫ > 0 and
x0 ∈ (0, 2π) at which Fǫ achieves a maximum which is positive. Then for small enough h

0 ≥ ∆2Fǫ(x0, h)

h2
=

∆2F (x0, h)

h
+ 2ǫ+

ǫ∆2f(x0 , h)

h2
.

Now consider 2 cases:
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Case 1. x0 /∈ G. Then
∑
cne

inx0 = 0, so D2FS(x0) = D2F (x0) = 0, thus ∆2FS(x0,h)
h2 → 0

as h→ 0. But, f being convex, ∆2f(x0, h) ≥ 0, so we have a contradiction.

Case 2. x0 ∈ G. Since {SN(x0)} is bounded, we claim that
∣∣∣∣
∆2F (x0, h)

h2

∣∣∣∣ < K <∞ (∗)

But D2f(x0) = g′(x0) = +∞, so again we have a contradiction.

We can see (∗) as follows: we have

∆2F (x0, 2h)

4h2
=

∆2FS(x0, 2h)

4h2

=
∑

n∈Z

(
sinnh

nh

)2

cne
inx0

=
∞∑

n=0

(
sinnh

nh

)2

(an cosnx0 + bn sinnx0).

We know that the partial sums

SN (x0) =

N∑

n=0

(an cosnx0 + bn sinnx0)

=

N∑

n=−N

cne
inx0

are bounded, say in absolute value by M . But we have

∞∑

n=0

(
sinnh

nh

)2

(an cosnx0 + bn sinnx0)

=
∞∑

n=0

SN (x0)

((
sinnh

nh

)2

−
(

sin(n + 1)h

(n+ 1)h

)2)
,

so ∣∣∣∣
∆2F (x0 , 2h)

4h2

∣∣∣∣ ≤M ·
∞∑

n=0

∣∣∣∣
(

sinnh

nh

)2

−
(

sin(n + 1)h

(n+ 1)h

)2∣∣∣∣

≤M · C = K <∞,
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where

C =

∫ ∞

0

|u′(x)|dx,

with u(x) = (sinx/x)2 (see 2.5).

F ≥ 0: Replace ǫ by −ǫ in the above argument. ⊣
It follows from Bari’s Theorem that the union of countably many Fσ sets of uniqueness

is a set of uniqueness. It is not known if the union of even two Gδ sets of uniqueness is a
set of uniqueness.

§21. Computing the exact descriptive complexity of U,U0.

We have seen that U,U0 are not Borel sets. We will now compute that they are both
Π1

1, and since then they are not Σ1
1, this determines the exact descriptive complexity of

U,U0. If one looks at the definition of U,U0, a rather straightforward calculation shows
that U,U0 must be Π1

2. However, this is a very crude estimate and with some more work,
which is based on some appropriate generalizations of the nontrivial Theorem 7.6, we can
bring the complexity down to Π1

1, which is the exact level.

Given a closed set K ∈ K(T), and a trigonometric series S ∼ ∑
cne

inx, with |cn|
bounded, we reformulate the condition “

∑
cne

inx = 0 off K” in functional analytic terms.
The key is to identify S with the element of ℓ∞ = (ℓ1)∗ given by {cn}. So from now on we
will view trigonometric series S ∼ ∑

cne
inx with bounded coefficients as elements of ℓ∞

and simply write cn = S(n).

Next we view an element λn of ℓ1 as identified with the function f(x) =
∑
λne

inx.

Note that f̂(n) = λn. These are of course exactly the functions with absolutely convergent
Fourier series, and their class is traditionally denoted by A(T) = A. Thus we let A ≡ ℓ1.
Under this identification the element en of ℓ1 (where en(j) = 1, if j = n, en(j) = 0, if
j 6= n) is identified with einx.

Now each S ∈ ℓ∞ operates on f =
∑
cne

inx ∈ A by

〈f, S〉 =
∑

f̂(n)S(−n).

Thus S(n) = 〈einx, S〉. In particular, if µ ∈ M(T) and S = µ̂, then S ∈ ℓ∞ (as |µ̂(n)| ≤
||µ||M <∞) and

〈f, µ̂〉 =
∑

f̂(n)S(−n) =

∫
fdµ

for f ∈ A. So we can view 〈f, S〉 as some kind of generalized integral and S as some kind
of generalized measure (operating though only on functions in A) and thus it is customary
to call elements of ℓ∞ pseudomeasures and write PM instead of ℓ∞,

PM = ℓ∞.
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Finally, every f ∈ L1(T) gives rise to f̂ ∈ c0, so that it is customary to think of the
elements of c0 as generalized functions and thus call them pseudofunctions and write PF
instead of c0,

PF = c0.

So we have PF∗ = A,A∗ = PM (and also PF is a closed subspace of PM).

Using this idea, we can define what it means to say that a closed set K ⊆ T supports
a pseudomeasure S.

Definition. Let S ∈ PM and K ∈ K(T). Then K supports S iff for any open interval
I ∩ E = ∅ and infinitely differentiable ϕ ∈ C(T) supported by I (i.e., supP (ϕ) ⊆ I), we
have 〈ϕ, S〉 = 0. (Note that ϕ ∈ A too.)

21.1. Exercise. Show that if µ ∈ P (T), E ∈ K(T), then E supports µ iff µ(E) = 1.

Remark. One can easily see that if S is supported by K, then actually for any interval
I disjoint from K and any f ∈ A supported by I we also have 〈f, S〉 = 0. To see this
fix ǫ > 0 and let ϕ be infinitely differentiable with ϕ = 1 on supP (f) and supP (ϕ) ⊆ I.
Letting for f ∈ A

||f ||A = ||f̂ ||ℓ1 =
∑

|f̂(n)|,

let P be a trigonometric polynomial with ||f − P ||A < ǫ/||ϕ||A. Then noting that A is
actually a Banach algebra under pointwise multiplication, i.e., for f, g ∈ A, fg ∈ A and
||fg||A ≤ ||f ||A||g||A, we have that

||f − Pϕ||A = ||fϕ− Pϕ||A

≤ ||f − P ||A · ||ϕ||A < ǫ.

Thus f can be approximated in the norm of A by infinitely differentiable functions ψ with
support contained in I, so 〈f, S〉 = 0, as 〈ψ, S〉 = 0 for any such ψ.

We now have the following generalization of 7.6.

21.2. Theorem. Let K ∈ K(T) be a closed set and let S ∈ PF. Then the following are
equivalent:

(i) S is supported by K,

(ii)
∑
S(n)einx = 0 off K.

We will postpone the proof of this for a while. From 21.2 it immediately follows that,
letting

M = K(T) \ U,M0 = K(T) − U0

be the classes of closed sets of multiplicity and restricted multiplicity, resp., we have

21.3 Corollary. Let E ∈ K(T). Then

(i) E ∈M ⇔ ∃S ∈ PM(||S||∞ ≤ 1 & S ∈ PF & S 6= 0 & E supports S),
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(ii) E ∈M0 ⇔ ∃µ ∈M(T)(||µ||M ≤ 1 & µ ∈ PF & E supports µ).

Using this one can easily prove the following.

21.4. Theorem. The sets U,U0 are Π1
1.

Proof. It is clearly enough to show that M,M0 are Σ1
1.

First consider M . By 21.3 (i) the set M ⊆ K(T) is the projection of the following set
in K(T)×B1 (PM), where B1 (PM) is the unit ball of PM (= ℓ∞) with the weak∗-topology:

P = {(K,S) ∈ K(T) ×B1(PM) : lim
|n|→∞

|S(n)| = 0 & S 6= 0 & K supports S}.

Since for each n, the map S 7→ S(n) = 〈e−inx, S〉 is continuous in B1 (PM), the
condition lim

|n|→∞
|S(n)| = 0 & S 6= 0 is clearly Borel. We next claim that

Q = {(K,S) ∈ K(T) ×B1(PM) : K supports S}

is closed, which shows that P is Borel, so M is Σ1
1.

To see that S is closed, let Ki, Si ∈ Q and Ki → K (in the Hausdorff metric or,
equivalently, the Vietoris topology) and Si → S (in the weak∗-topology, i.e., 〈f, Si〉 →
〈f, S〉 for each f ∈ A). Now take an interval I disjoint from K and infinitely differentiable
ϕ supported by I, in order to show that 〈ϕ, S〉 = 0.

Let J ⊆ I be a closed interval containing supp(ϕ). Then if U = T\J we have K ⊆ U ,
so, by the definition of the Vietoris topology, Kn ⊆ U for all large enough n. Thus ϕ is
supported by an interval disjoint from Kn, and so 〈ϕ, S〉 = 0 and we are done.

The proof for M0 is similar, with B1(M(T)) instead of B1 (PM). ⊣
We finally give the proof of 21.2:

Proof of 21.2. (i) ⇒ (ii) By the Riemann Localization Principle it is enough to show
that FS is linear in each open interval I disjoint from K. Let a ∈ I and choose h small
enough so that ψa,h, as defined in §12, is supported by I. Then

0 = 〈ψa,h, S〉 =
∑

ψ̂a,h(−n)S(n)

=
∆2FS(a, h)

h2
,

so FS is linear on I.

(ii) ⇒ (i). Let I be an open interval disjoint from K and let ϕ ∈ C(T) be infinitely
differentiable supported by I. We want to show that

〈ϕ, S〉 =
∑

ϕ̂(n)S(−n) = 0.
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Consider the formal product
S(ϕ) · S = T,

where T (m) =
∑
ϕ̂(n)S(m − n). Then T (0) =

∑
ϕ̂(n)S(−n) = 〈ϕ, S〉, so it is enough to

show that T = 0. But by the Rajchman multiplication theory

∑
(T (n) − ϕ(x)S(n))einx = 0,

so, as
∑
S(n)einx = 0 on I and ϕ(x) = 0 off I,

∑
T (n)einx = 0 for all x, so T = 0. ⊣

§22. Co-analytic σ-ideals of compact sets.

We summarize two key properties of the classes U,U0.

(1) U,U0 are Π1
1 (and not Borel).

(2) U,U0 are σ-ideals in the following sense:

Definition. Let X be a compact metric space and I ⊆ K(X) a class of closed sets in X.
We say that I is a σ-ideal of closed sets if it satisfies the following two properties:

(i) K ∈ I, L ⊆ K,L ∈ K(X) ⇒ L ∈ I;

(ii) Kn ∈ I,K ∈ K(X),K =
⋃

n Kn ⇒ K ∈ I.

Kechris, Louveau and Woodin undertook the general study of Π1
1 σ-ideals of closed

sets in compact metric spaces. This theory turned out to have interesting applications to
several problems concerning uniqueness sets. I will next discuss some of the main results
of this theory and some of its applications.

Before getting into these though, I want to give some examples of σ-ideals.

Examples. (i) For A ⊆ X, let

K(A) = {K ∈ K(X) : K ⊆ A},

Kω(A) = {K ∈ K(X) : K ⊆ A,K countable}.

If A is Π1
1, then K(A) and Kω(A) are Π1

1. The first is easy and the second follows from:

22.1. Exercise. The set Kω(X) is Π1
1. Hint. Use the Cantor-Bendixson Theorem.

(ii) Imeager = {K ∈ K(X): K is meager (e.g. nowhere dense)} is a σ-ideal, which is
in fact Gδ.

(iii) If µ is a Borel probability Borel measure onX, then Iµ = {K ∈ K(X) : µ(K) = 0}
is a σ-ideal, which is also Gδ.

(iv) More generally, if M is a class of Borel probability measures on X and M ⊆ P (X)
is Σ1

1 in P (X) with the weak∗-topology (P (X) is defined as in §10, where we dealt with
the special case X = T), then

IM = {K ∈ K(T) : ∀µ ∈M(µ(K) = 0)}
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is a Π1
1 σ-ideal.

(v) U,U0 are Π1
1 σ-ideals. Note that U0 = IR, where R = {µ ∈ P (T): µ is a Rajchman

measure}.
The first result I will discuss is a surprising dichotomy which limits sharply the possible

descriptive complexities of Π1
1 σ-ideals of closed sets.

22.2. The Dichotomy Theorem (Kechris-Louveau-Woodin). Let I be a Π1
1 σ-ideal of

closed sets in a compact metric space X. Then either I is Gδ or else it is not Borel (and
thus Π1

1 but not Σ1
1).

We can prove this theorem by applying the following result of Hurewicz. Below, if Y
is a topological space and C ⊆ Y , we say that C is a Cantor set if C is homeomorphic to
C = 2N.

22.3. Theorem (Hurewicz). Let Y be a Polish space and A ⊆ Y a Π1
1 set. Then either

A is Gδ or else there is a Cantor set C ⊆ Y such that C ∩A is countable dense in C.

Note that exactly one of these possibilities must occur, since if A is Gδ, C ∩ A is Gδ

in C and so cannot be countable dense in C .

Proof of 22.2. Let Y = K(X) and assume I ⊆ Y is not Gδ. Then by 22.3 there is a
Cantor set C ⊆ Y with C ∩ I countable dense in C . This means that there is a ϕ : C → C
and a countable dense set Q ⊆ C, with ϕ−1[C ∩ I) = Q. Let f : K(C) → K(X) be defined
by f(K) =

⋃
ϕ′′(K) =

⋃
ϕ[K]. Clearly f is continuous. Moreover we claim that

K ∈ K(Q) ⇔ f(K) ∈ I,

because if K ⊆ Q, then ϕ[K] ⊆ I and since ϕ[K] is countable,
⋃
ϕ[K] = f(K) ∈ I.

Conversely if K 6⊆ Q, and x ∈ K \ Q, then ϕ(x) ∈ ϕ[K] \ ϕ[Q], so ϕ(x) ∈ ϕ[K] \ I, and,
since

⋃
ϕ[K] ⊇ ϕ(x), f(K) =

⋃
ϕ[K] /∈ I.

We have seen in the proof of 17.2 that K(Q) = f−1[I] is not Borel, so I can’t be Borel
either. ⊣

This result distinguishes all Π1
1 σ-ideals of closed sets into two main categories ac-

cording to descriptive complexity:

(1) The simple ones, which are Gδ. Examples include:

(a) K(A), for A ∈ Gδ;

(b) Imeager;

(c) Iµ.

(2) The complicated ones, which are Π1
1 but not Borel. Examples include:

(a) K(A), if A is not Gδ.

(Proof. Since x ∈ A ⇔ {x} ∈ K(A), if A is not Gδ, K(A) cannot be Gδ , so it must be
complicated.)
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(b) (Hurewicz) Kω(A), if A contains a Cantor set (e.g., if A = X and X is uncount-
able).

(Proof. Let C ⊆ A be a Cantor set. Since Kω(C) = K(C) ∩Kω(A), it is enough to show
Kω(C) is not Borel. If it was, then it would be Gδ. But notice that Kω(C) is dense in
K(C), since it contains all the finite sets. But Kp(C) = {K ∈ K(C): K is perfect} is also
dense in Gδ in K(C), so it must intersect Kω(C) by the Baire category theorem, which is
a contradiction.)

(c) U,U0.

22.4. Exercise. Show that Kω(A) is complicated for any uncountable A ⊆ X, A ∈ Π1
1.

(If A is countable, clearly Kω(A) = K(A).) [Hint. Consider cases as A is Borel or not.
Use the fact that every uncountable Borel set contains a Cantor set.]

Before I proceed I will say a few things about the proof of 22.3. A nice proof of
22.3 can be given using games. I will consider only the case when Y is actually compact
metrizable.

First we can reduce the problem to C. For this we use the fact that, since Y is compact
metrizable, there is a continuous surjection ϕ : C → Y . Consider the ϕ−1[A] = A′. Then
A′ is Π1

1. Assume the result has been proved for the space C. Then either A′ is Gδ or else
there is a Cantor set C ′ ⊆ C with C ′ ∩ A′ countable dense in C ′.

In the first case B′ = C \ A′ is Fσ, so ϕ[B′] = X \ A is Fσ (since we are working in
compact spaces), so A is Gδ.

In the second case, let C ′′ = ϕ[C ′]. Then C ′′ is closed in Y , and A ∩ C ′′ is countable
dense in C ′′. Note also that (Y \A) ∩ C ′′ is dense in C ′′, so C ′′ is perfect. It is now easy,
by a Cantor-type construction, to find a Cantor set C ⊆ C ′′ such that C ∩A is countable
dense in C . So it is enough to assume that Y = C.

Fix a countable dense subset Q ⊆ C and consider the following game as in the proof
of the lemma in 17.2: I plays x ∈ C, II plays y ∈ C and II wins iff x ∈ Q⇔ y ∈ A.

If I has a winning strategy, this gives a continuous function f : C → C such that
y ∈ A⇔ f(y) /∈ Q, so A = f−1[C \Q], and since C \Q is Gδ, so is A. If on the other hand
II has a winning strategy, then this gives a continuous function g such that

x ∈ Q⇔ g(x) ∈ A.

Let g[C] = K. Then notice that K is closed and g[Q], g[C \Q] are disjoint and dense in K,
so K is perfect. Moreover A ∩K = g[Q], so A ∩K is countable dense in K. So again, by
a simple Cantor-type construction, we can find a Cantor set C ⊆ K with A∩C countable
dense in C .

So if this game is determined, i.e., one of the players has a winning strategy, the proof
is complete. The payoff set of this game, i.e., the set

{(x, y) : x ∈ Q⇔ y ∈ A}
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is a Boolean combination of Π1
1 sets (in C×C), so by a theorem of Martin, the determinacy

of this game follows from appropriate large cardinal axioms in set theory. However, we
cannot prove the determinacy of such complex games in classical set theory (ZFC), since
the best result provable in it is the determinacy of all Borel games (Martin). This problem
can be handled by considering an appropriate modification of this game, which still does the
job, and turns out to be Borel, in fact a Boolean combination of Fσ sets, so its determinacy
can be established in classical set theory (see Kechris [1995], §21].

§23. Bases for σ-ideals.

Definition. Let I be a σ-ideal of closed sets in a compact metric space X. A basis for I
is a subset B ⊆ I such that B is hereditary, i.e., K ∈ B,L ⊆ K,L ∈ K(X) ⇒ L ∈ B, and
B generates I, i.e., for any K ∈ I,∃{Kn} ⊆ B with K =

⋃
nKn.

We will consider here the question of whether a given σ-ideal admits a Borel basis.
The motivation comes again from the Characterization Problem for U .

Although one cannot hope to find a very explicit characterization of when a closed set
K ⊆ T is in U or not, it may still be possible to find a simple subclass B of U , like e.g., the
H-sets that we considered in §14, so that every U -set can be written on a countable union
of sets in B. Such questions have been raised in this subject periodically. For example,
it was indeed considered whether every U set can be written as a countable union of H-
sets or more generally a countable union of so-called H(n)-sets, a generalization of H-sets
(H = H(1))). The answer turned out to be negative in this case (Piatetski-Shapiro). The
general philosophy is the following: Is it possible to understand U -sets as countable unions
of some explicitly characterizable subclass? This can then be formalized as follows:

The Basis Problem. Does the σ-ideal U of closed uniqueness sets admit a Borel basis?

A negative answer would provide a much stronger limitative result concerning the
characterization problem. But it would also be a powerful existence theorem (again a use
of the descriptive method): Given any simply definable (i.e., Borel) hereditary collection
of closed uniqueness sets B, there exists a K ∈ U which cannot be written as a countable
union of sets in B. For example, since the H-sets (and the H(n)-sets) can be easily
shown to form a Borel class, this would immediately imply the result of Piatetski-Shapiro
quoted earlier. But instead of relying on ad-hoc constructions to deal with existence
of such examples for any potentially proposed class B, a negative answer to the Basis
Problem would once and for all deal with all such (reasonable) possibilities without such
constructions.

A similar basis problem can of course be raised for the σ-ideal U0.

Our main goal here is to develop a method for demonstrating non-existence of Borel
bases. In fact, the main result that I will prove below establishes (under certain conditions)
an important and quite strong property that all σ-ideals with Borel bases must necessarily
have. This can be used to prove non-existence of Borel bases by showing that a given
σ-ideal fails to have this strong property. This is how one shows that U has no Borel basis.
But on the other hand, if it happens to be the case that one deals with an ideal that has a
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Borel basis (and, as it turns out, U0 is such an example) this establishes this very strong
property. And this is how the original solution of the Category Problem came about.

Before I proceed I would like to mention a couple of examples.

Examples. (i) Every Gδ σ-ideal has a Borel basis (namely itself).

(ii) Kω(X) has a Borel basis, namely {∅} ∪ {{x} : x ∈ X}.
(iii) K(A) has no Borel basis, if A is Π1

1 but not Borel (since for any basis B ⊆
K(A), x ∈ A ⇔ {x} ∈ B). In fact it turns out K(A) has a Borel basis iff A is the
difference of two Gδ sets (Kechris-Louveau-Woodin).

For any hereditary B ⊆ K(X) let

Bσ = {K ∈ K(X) : K =
⋃

n

Kn,Kn ∈ B},

be the σ-ideal generated by I. Thus B is a basis for I iff I = Bσ.

23.1. Exercise. For B ⊆ K(X) hereditary and any K ∈ K(X) define the B-derivative
K ′

B of F by
K ′

B = {x ∈ K : ∀ open V (x ∈ V ⇒ K ∩ V /∈ B)}.
(Notice that for B = {∅} ∪ {{x} : x ∈ B},K ′

B = K ′). Then by transfinite induction define

K
(0)
B = K,K

(α+1)
B = (K

(α)
B )′,K(λ)

B =
⋂

α<λK
(α)
B . There is again a countable ordinal α0

such that K
(α0)
B = K

(β)
B ,∀β ≥ α0. The least one is denoted by rkB(K) and called the

Cantor-Bendixson rank of K associated to B. Put K
(∞)
B = K

(rkB(K))
B . Show that

K ∈ Bσ ⇔ K
(∞)
B = ∅.

Call K ∈ K(X) B-perfect if K ′
B = K, i.e., ∀ open V (K ∩V 6= ∅ ⇒ K ∩ V /∈ B). Show the

analog of Cantor-Bendixson, namely that any K can be uniquely written as

K = P ∪ C

with P B-perfect and C contained in a countable union of sets in B. Show that P =

K \ ⋃{V open: K ∩ V ∈ Bσ} = K
(∞)
B .

Show that if B is Π1
1, then

{K ∈ K(X) : K is B−perfect}

in Σ1
1. [Hint. Show that f : Y → K(X) is Borel iff for any open W ⊆ Y, {y : f(y)∩W 6= ∅}

is Borel. Use this to show that K 7→ K ∩ V is Borel, for any open V ⊆ X.]

Conclude that if B ⊆ K(X) is hereditary Π1
1, then Bσ is also Π1

1.

(In particular, this shows that only Π1
1 σ-ideals can have Borel (in fact even Π1

1)
bases.)
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If B is Borel show that the map

K 7→ K ′
B

is Borel. Thus one has a “semi-Borel” test for membership in Bσ : K ∈ Bσ iff the
transfinite iteration of the Borel operation K 7→ K ′

B terminates after countably many
steps (depending on K) with the empty set.

Remark. It can be also shown that the following are equivalent for any Π1
1 σ-ideal I:

(i) I admits a Borel basis,

(ii) I admits a Σ1
1 basis.

(iii) There is B ⊆ I (not necessarily hereditary), B ∈ Σ1
1, such that I = {K ∈ K(X):

∃{Kn} ⊆ B(K ⊆ ⋃
nKn)}.

Before I state the main result I need one more definition.

Definition. A σ-ideal I of closed sets is calibrated if for any closed set F , and any sequence
Fn ∈ I if K(F \ ⋃

n Fn) ⊆ I, then F ∈ I.

Examples. (i) Imeager (in any perfect X) is not calibrated. Because if {xn} is dense,
Fn = {xn} ∈ Imeager,K(X \ ⋃

n Fn) ⊆ Imeager, but X /∈ Imeager.

(ii) Kω(X) is calibrated (since every uncountable Gδ set contains an uncountable
closed set).

(iii) If M ⊆ P (X), then IM is calibrated (since for every µ ∈ P (X), every Borel set
of positive µ-measure contains a closed set of positive µ-measure).

Thus calibration can be thought of as a (weak) generalization of the idea of inner
regularity of measures.

We now have the following result.

23.2. The Basis Theorem (Kechris-Louveau-Woodin) Let I be a calibrated σ-ideal of
closed subsets of X. Assume I admits a non-trivial basis, in the local sense that there is
a basis B ⊆ I such that for every open ∅ 6= V ⊆ X, there is K ⊆ V, K ∈ I \ B. Then if
A ⊆ X has the Baire property and K(A) ⊆ I (i.e., every closed subset of A is in I), then
A is meager.

Proof. Assume A is not meager. Then, as A has the property of Baire, there is an open
set U 6= ∅ on which A is comeager, so A contains a Gδ set G which is dense in U . We will
derive a contradiction by showing that there is K /∈ I, K ∈ K(X),K ⊆ G.

To simplify the notation, we will also assume that U = X (otherwise we can do the
construction below within U). So the context is the following:

G ⊆ X is dense Gδ and we want to construct K ∈ K(X), K /∈ I,K ⊆ G.

Notice first that every K ∈ I is meager: Otherwise K =
⋃

nKn,Kn ∈ B, and so for
some Kn ∈ B, Kn is non-meager, so there is non-∅ open V with V ⊆ Kn. Thus

I ∩K(V ) = B ∩K(V )(= K(V )),
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a contradiction.

Notice also that if K ∈ K(X) is meager and V is open with K ⊆ V , then there
is a countable set of points, say D(K,V ), with no point of D(K,V ) a limit point of
D(K,V ),D(K,V ) ⊆ (G ∩ V ) \ K, and D(K,V ) = K ∪ D(K,V ). To see this, let

{d1, d2, · · ·} ⊆ K be dense in K and let for each n, x
(n)
1 , · · · , x(n)

n be points of (G∩ V ) \K
which have distance < 1

n from d1, · · · , dn, resp. (We are using here that no open ball can

be contained in K, and that G is dense in V .) Let D(K,V ) = {x(n)
i : n ≥ 1, i ≤ n}.

Finally, from our hypothesis, for each nonempty open U ⊆ X there is compact KU ⊆
U,KU ∈ I \B.

Let nowG =
⋂

n Wn,Wn ⊇ Wn+1,Wn dense open. We will construct for each s ∈ 2<N,
by induction on |s| = length(s), a compact set Ks and an open set Us satisfying the
following:

(i) Us 6= ∅, Us ⊆ W|s|,Ks = KUs (so Ks ∈ I \B);

(ii) Usˆn ⊆ Us, Usˆn ∩ ⋃
m6=n Usˆm = ∅;

(iii) Ks ∩ Usˆn = ∅;
(iv) diam(Usˆn) ≤ min{2−|s|, 1

n};

(v)
⋃

sUsˆn =
⋃

n Usˆn ∪Ks;

(vi) Ks ⊆ ⋃
nKsˆn.

Step 1. U∅ = W0,K∅ = KU∅
.

Step k + 1. Suppose we have constructed Us,Ks for |s| ≤ k, satisfying (i)–(vi). Let for
s ∈ Nk, D(Ks , Us) = {xsˆn : n ∈ N} and let Usˆn ⊆ Wk+1 be a small enough open
set containing xsˆn so that diam(Usˆn) < min{ 1

n
, 2−|s|} and (ii), (iii), (iv) are satisfied.

This can be done as no point of D(Ks , Us) in a limit point of D(Ks , Us), D(Ks , Us) ⊆
(G ∩ Us) \K ⊆ (Wn+1 ∩ Us) \Ks, and D(Ks, Us) = D(Ks, Us) ∪Ks. It also follows that⋃

n Usˆn =
⋃

n Usˆn∪Ks. Also if Ksˆn = KUsˆn clearly Ks ⊆ ⋃
nKsˆn, as Ks ⊆ D(Ks, Us).

Let H =
⋂

n

⋃
s∈Nn Us,K = H∪⋃

s Ks. Clearly H is Gδ and as
⋃

s∈Nn Us ⊆ Wn, H ⊆
G.

Claim. K is closed.

Proof. It is enough to show that if L =
⋂

n

⋃
s∈Nn Us, then K = L. Clearly H ⊆⋂

n

⋃
s∈Nn Us. Since, by (vi), Ks ⊆ ⋃

nKsˆn, for all s we have that Ks ⊆ ⋃
nKsˆn,Ks ⊆⋃

n,mKsˆnˆm, · · · so if |s| = k, Ks ⊆ ⋃
s∈Nk+1 Us,Ks ⊆ ⋃

s∈Nk+2 Us, · · ·, i.e., Ks ⊆ L

and so
⋃

s Ks ⊆ L. Thus K ⊆ ⋂
n

⋃
s∈Nn Us. Let now x ∈ ⋂

n

⋃
s∈Nn Us, in order to

show that x ∈ K. If x ∈ ⋃
sKs we are done. So assume x /∈ ⋃

sKs, in order to show

that x ∈ H. Then, since x ∈ ⋃
n U(n), we have, by (v), that x ∈ ⋃

n Un, so x ∈ U(n0)

for some n0 ∈ N. Again x ∈ ⋃
s∈N2 Us, so, as x ∈ U(n0), by (ii), x ∈ ⋃

n U(n0,n),
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and thus by (v) again x ∈ ⋃
n U(n0,n), so x ∈ U(n0,n1) for some n1 ∈ N, etc. Thus

∀k(x ∈ U(n0,n1,···,nk,nk+1) ⊆ U(n0,n1···,nk)), so x ∈ ⋂
k

⋃
s∈Nk Us, i.e., x ∈ H.

Claim. K /∈ I: Otherwise, K =
⋃

nKn, Kn ∈ B, so by the Baire Category Theorem there
is open U0, and n0 with ∅ 6= U0 ∩K ⊆ Kn0

, so U0 ∩K ∈ B. Let x ∈ U0 ∩K. If x ∈ H,
then there is unique α ∈ NN with x ∈ Uα|n for each n. Since diam(Uα|n) → 0, there is n

with Uα|n ⊆ U0, so Kα|n ⊆ U0 and thus Kα|n ⊆ U0 ∩K, so, as Kα|n /∈ B,U0 ∩K /∈ B, a
contradiction. If now x ∈ Ks for some s, then, by (v) and (iv), Ksˆn ⊆ U0 for some n, so
Ksˆn ⊆ U0 ∩K, and again U0 ∩K /∈ B, a contradiction.

Since K = H ∪ ⋃
s Ks and Ks ∈ I, while K /∈ I, it follows, by calibration, that

K(K\⋃s Ks) 6⊆ I, so asK\⋃s Ks ⊆ H,K(H) 6⊆ I, i.e., there isK ⊆ H,K ∈ K(X),K /∈ I.
But H ⊆ G, so ∃K ∈ K(X),K ⊆ H,K /∈ I and the proof is complete. ⊣

The following is an important application of the Basis Theorem.

23.3 The Covering Theorem (Debs-Saint Raymond). Let I be a σ-ideal of closed sets
in X. Assume

(i) I is calibrated,

(ii) I admits a basis B such that for any L ∈ K(X)\I, there is K ∈ K(L),K ∈ I \B.

Then for any Σ1
1 set A ⊆ X, if K(A) ⊆ I, then there is a sequence {Kn} ⊆ I with

A ⊆ ⋃
n Kn.

Proof. Assume A ⊆ X is Σ1
1, and A cannot be covered by countably many sets in I. We

will show that there is K ∈ K(X),K /∈ I with K ⊆ A.

By 17.1, let G ⊆ X × C be Gδ such that A = projX [G]. Let G′ = G \ ⋃{V open in
X × C: projX [V ∩G] can be covered by countably many sets from I}. Since A cannot be
covered by countably many sets from I, G′ 6= ∅. Let F = G′, so that F is compact. We
define the following σ-ideal J ⊆ K(F ):

K ∈ J ⇔ projX [K] ∈ I.

We claim that J satisfies the hypothesis of the Basis Theorem 23.2, i.e., is calibrated
and has a non-trivial basis. It will follow then (as G′ is dense in Gδ in F ) that there is
compact L ⊆ F with L ⊆ G′ and L /∈ J , i.e., projX [L] = K ∈ K(A) \ I, so we are done.

J is calibrated: Let K ∈ K(F ), {Kn} ⊆ J,K(K \ ⋃
nKn) ⊆ J . Consider projX [K] \ ⋃

n

projX [Kn]. We have projX [Kn] ∈ I. IfK /∈ J , towards a contradiction, then projX [K] /∈ I,
so by the calibration of I, projX [K] \⋃

n projX [Kn] contains a compact set L with L /∈ I.
Then K ∩ (L× C) ⊆ K \⋃

nKn is not in J (as projX [K ∩ (L× C)] = L), a contradiction.

J has a non-trivial basis: Let D = {K ∈ K(F ): projX [K] ∈ B}. Then D is a basis for J .
If V is an open set intersecting F , then, by the definition of G′, projX [V ∩ G′] cannot be
covered by countably many sets in I (otherwise projX [V ∩G] can be so covered, so V ∩G′ =
∅, contradicting the density of G′ in F ). So L = projX [V ∩ F ] = projX [V ∩G′] /∈ I. Then
there is K ⊆ L,K ∈ I \B. Now L = projX [V ∩ F ] = projX [V ∩ F ] (by compactness), so
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by looking at (K × C) ∩ [V ∩ F ] we conclude that J ∩K(V ∩ F ) 6= D ∩K(V ∩ F ). Since
this is true for all open V that intersect F , it follows that J ∩K(U) 6= D ∩K(U) for all
non-∅ U open relative to F and the proof is complete. ⊣

The following corollary gives a definability context under which 23.3 can be applied.

23.4. Corollary. Let I be a σ-ideal of closed sets in X. Assume

(i) I is calibrated;

(ii) if L ∈ K(X) \ I, then I ∩K(L) is not Borel;

(iii) I admits a Borel basis.

Then for any Σ1
1 set A ⊆ X, if K(A) ⊆ I, then there is a sequence {Kn} ⊆ I with

A ⊆ ⋃
n Kn.

§24. Non-existence of Borel bases for U .

We will now apply the methods of §23 to the σ-ideal U of closed sets of uniqueness.

Debs and Saint Raymond used a deep result from harmonic analysis due to Körner
(the existence of so-called Helson sets of multiplicity), to show that there is a closed set E
such that for every open W with W ∩ E 6= ∅,W ∩ E /∈ U and a Gδ set G ⊆ E which is
dense in E such that K(G) ⊆ U . This is one of the ingredients needed to apply 23.2. The
other two ingredients are

(i) If E ∈M = K(T) \ U , then U ∩K(E) is not Borel.

This is a local version of the Kaufman-Solovay Theorem 18.1 and has been proved
independently by Debs-Saint Raymond, Kaufman and Kechris-Louveau.

(ii) U is calibrated.

This was proved independently by Debs-Saint Raymond and Kechris-Louveau. The
proofs of all these results are given in Kechris-Louveau [1989].

Putting all them together we have:

24.1. Theorem (Debs-Saint Raymond). The σ-ideal U of closed sets of uniqueness has
no Borel basis.

Proof. Assume U had a Borel basis B ⊆ U . Let E ∈ K(T) be such that for every open
W with W ∩ E 6= ∅ we have W ∩ E /∈ U , but there is a Gδ set G ⊆ E, dense in E, with
K(G) ⊆ U . Now consider

I = U ∩K(E).

It is a Π1
1 σ-ideal of closed subsets ofK(E). It is (i) calibrated, (ii) for every L ∈ K(E), L /∈

I, I ∩ K(L) is not Borel and (iii) I admits a Borel basis, namely B ∩ K(E). So by 23.4
applied to A = G we must have that there is a sequence Kn ∈ I with G ⊆ ⋃

nKn. But
each Kn is meager in E, since otherwise there would be W open with W ∩ E 6= ∅ and
W ∩ E ⊆ Kn, so W ∩E ⊆ Kn, a contradiction since W ∩ E ∈ M and Kn ∈ U . So G is
meager, a contradiction. ⊣
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This result, as we explained earlier, has very strong implications concerning the Char-
acterization Problem for U -sets. One cannot characterize U -sets as countable unions of
any reasonably explicitly characterizable subclass, e.g., H-sets, H(n)-sets, etc. Or, one can
use this as an existence theorem: Given any reasonable explicitly characterizable sublcass
of U -sets, say B, there is a closed set E ∈ U which is not a countable union of sets in
B. Thus this gives a new proof that for each n there are U -sets which are not countable
unions of H(n)-sets (a result originally due to Piatetski-Shapiro) or that there are U -sets
which are not countable unions of H(n)-sets for varying n (a new result), etc.

§25. Existence of a Borel basis for U0.

Recall that U0 is the class of all closed sets of extended uniqueness, i.e., K ∈ U0 if for
every measure µ ∈M(T), if

∑
µ̂(n)einx = 0 off K, then µ̂(n) = 0,∀n ∈ Z (i.e., µ = 0). By

21.3, this is equivalent to saying that there is no µ ∈ M(T), µ 6= 0, with µ̂(n) → 0 which
is supported by K. By using a bit of additional measure theory we can see that in this
characterization we can restrict ourselves to probability Borel measures, i.e., µ ∈ P (T). To
see this, it is enough to check that if µ 6= 0, µ ∈M(T), µ̂(n) → 0 and µ is supported by K,
then there is µ ∈ P (T) with µ̂(n) → 0 also supported by K.

For this let |µ| be the so-called total variation of µ. This is the finite positive Borel
measure defined by

|µ|(A) = sup
∞∑

i=1

|µ(Ei)|,

where the sup varies over all Borel partitions of A. Thus

||µ||M = |µ|(T).

Moreover, by the Radon-Nikodym Theorem, there is a Borel function h : T → C with
|h| = 1 such that

µ(E) =

∫
hd|µ|,

and so ∫
fdµ =

∫
fhd|µ|

for any bounded Borel f . Thus, in particular,

∫
fh−1dµ =

∫
fd|µ|.

Note also that

∣∣∣∣
∫
fdµ

∣∣∣∣ ≤
∫
|f |d|µ|.

It follows that |µ| is supported by K. It is thus enough to show that |̂µ|(n) → 0.
(Although |µ| might not be a probability measure, ν = |µ|/|µ|(T) will be, it will have the
same support as |µ|, and ν̂(n) → 0 as well.)
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Fix ǫ > 0. As h−1 ∈ L1(|µ|) (since
∫
|h−1|d|µ| =

∫
d|µ| = |µ|(T) < ∞), there is a

trigonometric polynomial P (x) =
N∑

k=−N

cne
ikx with

||h−1 − P ||L1(|µ|) =

∫ ∣∣∣∣h
−1 − P

∣∣∣∣d|µ| < ǫ.

Then ∫
e−inxd|µ|(x) =

∫
e−inxh−1dµ(x)

=

∫
e−inxP (x)dµ(x)−

∫
e−inx(P (x) − h−1(x))dµ(x)

=

N∑

k=−N

ckµ̂(n − k)−

∫
e−inx(P (x) − h−1(x))dµ(x).

But ∣∣∣∣
∫
e−inx(P (x) − h−1(x))dµ(x)

∣∣∣∣ ≤
∫ ∣∣∣∣h

−1 − P

∣∣∣∣d|µ| < ǫ

and, since µ̂(n) → 0 as |n| → ∞, it follows that there is Nǫ such that for |n| ≥ Nǫ,

∣∣∣∣
N∑

k=−N

cnµ̂(n − k)

∣∣∣∣ < ǫ,

so for |n| ≥ Nǫ,

∣∣∣∣
∫
einxd|µ|(x)

∣∣∣∣ < 2ǫ and thus |̂µ|(n) → 0 as |n| → ∞.

Thus we have (recalling that R = {µ ∈ P (T) : µ̂(n) → 0}):
25.1. Proposition. For any K ∈ K(T),

K ∈ U0 ⇔ ∀µ ∈ P (T)(K supports µ⇒ µ /∈ R).

For µ ∈ P (T) let
R(µ) = lim|µ̂(n)|.
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Thus 0 ≤ R(µ) ≤ 1 and
µ ∈ R⇔ R(µ) = 0.

Put
U ′

0 = {K ∈ K(T) : ∃ǫ > 0∀µ ∈ P (T)(K supports µ⇒ R(µ) ≥ ǫ).

Thus clearly U ′
0 ⊆ U0. (Note that U0 = {K ∈ K(T) : ∀µ ∈ P (T) (K supports µ⇒ R(µ) >

0)}.)
For example, it turns out that the Cantor set E1/3 is in U ′

0. In fact we have:

25.2. Proposition. Every closed H-set is in U ′
0.

Proof. Let E be a closed H-set and let 0 < n0 < n1 < · · · be a sequence and I an open
interval with nix /∈ I for any x ∈ E. Let ϕ ∈ A be a function supported by some closed
interval contained in I and ϕ̂(0) = 1. Put fk(x) = ϕ(nkx). Then fk(x) = 0 if x ∈ E, so for

any µ ∈ P (E),
∫
fkdµ = 〈fk, µ〉 =

∑
f̂k(n)µ̂(−n) = 0. Note that f̂k(0) = 0 and f̂k(n) → 0

as k → ∞, for any n 6= 0.

Take ǫ > 0 such that ǫ · ||ϕ||A < 1. We claim that if µ ∈ P (E), then R(µ) ≥ ǫ.
Otherwise let µ ∈ P (E) be such that R(µ) < ǫ. Then fix N ∈ N so that |µ̂(n)| < ǫ for any
|n| > N . We have

0 =
∑

f̂k(n)µ̂(−n)

= 1 +

N∑

n 6=0
n=−N

f̂k(n)µ̂(−n) +
∑

|n|>N

f̂k(n)µ̂(−n),

thus

1 ≤
∣∣∣∣

N∑

n 6=0
n=−N

f̂k(n)

∣∣∣∣ +
∑

|n|>N

|f̂k(n)| · ǫ.

The first summand can be made arbitrarily small by letting k → ∞ and the second is
bounded by ||ϕ||A · ǫ < 1, so we have a contradiction. ⊣
25.3. Proposition. U ′

0 is Borel and hereditary.

Proof. We have for K ∈ K(T)

K /∈ U ′
0 ⇔ ∀ǫ∃µ ∈ P (T)(K supports µ & R(µ) < ǫ)

⇔ ∀ǫ∃µ ∈ P (T)(K supports µ & ∃n∀m(|m| > n⇒ |µ̂(m)| ≤ ǫ)).

Now P = {(K,µ) : K supports µ & ∃n∀m(|m| > n⇒ |µ̂(m)| ≤ ǫ)} is Fσ in K(T) × P (T),
so K(T) \ U ′

0 is Π0
3, and thus U ′

0 is Σ0
3.
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That U ′
0 in hereditary is obvious. ⊣

25.4. Theorem (Kechris-Louveau). U ′
0 is a basis for U0, so U0 admits a Borel basis.

Proof. Let E ∈ K(T), E /∈ (U ′
0)σ . We will show that E /∈ U0. Since K /∈ (U ′

0)σ, by 23.1,
there is ∅ 6= F ⊆ E,F ∈ K(T) which is U ′

0-perfect, i.e., for any open V .

F ∩ V 6= ∅ ⇒ F ∩ V /∈ U ′
0,

i.e., F ∩ V 6= ∅ ⇒ ∀ǫ∃µ ∈ P (T) (F ∩ V supports µ and R(µ) < ǫ). We will find µ ∈ R
supported by F , so F /∈ U0 and thus E /∈ U0.

Consider first P (F ), the set of probability measures supported by F . This is a closed
subset of P (T) (always equipped with the weak∗-topology).

Let
Rǫ = {µ ∈ P (T) : R(µ) < ǫ}

and
Rǫ(F ) = P (F ) ∩Rǫ.

We claim that Rǫ(F ) is dense in P (F ). Since Rǫ(F ) is convex, it suffices (by 10.14) to
show that every Dirac measure δx, x ∈ F , is in the closure of Rǫ(F ). Let (by 10.4) Vn be a
sequence of nbhds of x with diam(Vn) → 0. Then Vn ∩ F /∈ U ′

0, so there is µn ∈ P (Vn ∩ F )
with µn ∈ Rǫ(F ). But µn −→w∗

δx (see §11) and so we are done.

We will now construct, by induction on n, a sequence µn ∈ P (F ), and 0 < N0 < N1 <
N2 < · · · < Nn < · · · such that for each n:

(∗) i ≤ n,Ni ≤ |k| < Ni+1 ⇒ |µ̂n(k)| < 2−i−1.

Then, by the compactness of P (F ), let µ be a w∗-limit of a subsequence {µnj} of {µn}.
We clearly have (as µ̂nj (k) → µ̂(k) for every k) that |µ̂(k)| ≤ 2−i−1 if |k| ≥ Ni, so µ ∈ R
and µ ∈ P (F ), thus we are done.

To construct {µn}, {Nn} we will actually choose µn to satisfy (∗) for i ≤ n− 1 and

(∗∗) ∀|k| ≥ Nn(|µ̂n(k)| < 2−n−2).

(Then (∗) will be satisfied for i = n no matter what Nn+1 is).

n = 0 . Find µ0 ∈ P (F ) so that µ0 ∈ R2−2(F ) and then choose N0 so that |µ̂0(k)| < 2−2

for |k| ≥ N0.

n → n + 1 . Suppose µ0, · · ·µn, N0, · · · , Nn have been defined satisfying (∗) for i ≤ n− 1
and (∗∗). Let m ≥ Nn. Then there is µm ∈ P (F ) and ϕ(m) > m such that

(i) µm satisfies (∗) for i ≤ n− 1,

(ii) |µm(k)| < 2−n−2 for Nn ≤ |k| < m,

(iii) |µm(k)| < 2−n−3 for |k| ≥ ϕ(m).
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This is because µn satisfies (i), (ii) and so, by the density of R2−n−3(F ), there is µm ∈
R2−n−3(F ) satisfying (i), (ii). Then choose ϕ(m) to make (iii) true.

Now define a sequence νj ∈ P (F ) and mj by

ν0 = µNn ,m0 = ϕ(Nn),

νj+1 = µmj ,mj+1 = ϕ(mj).

Let for each k

θk =
1

k + 1

k∑

j=0

νj .

Then θk satisfies (∗) for i ≤ n− 1 and |θ̂k(m)| < 2−n−3 for |m| ≥ mk. If

Nn ≤ |m| < mk,

there is at most one j, namely the one such that mj ≤ |m| < mj+1 for which |νj(m)| ≥
2−n−2. So (as always |ν̂j(p)| ≤ 1),

|θ̂k(m)| ≤ k · 2−n−2 + 1

k + 1
.

Choose then k large enough so that k·2−n−2+1
k+1

< 2−n−1. Put µn+1 = θk, Nn+1 = mk.
Then clearly µn+1 satisfies (∗) for i ≤ n − 1 (as each νj does). Also for Nn ≤ |k| <
Nn+1, |µ̂n+1(k)| < 2−n−1, so µn+1 satisfies (∗) for i ≤ n, and finally it clearly satisfies
(∗∗), i.e., ∀|k| ≥ Nn+1(|µ̂n+1(k)| < 2−n−3). ⊣

We are now in a position to apply 23.3. It is clear that U0 is calibrated. Kaufman
had showed that for every L ∈ M0, there is K ⊆ L,K ∈ U0 \ U ′

0 (see also §27 below). So
by 23.3 we have:

25.5. Theorem (Debs-Saint Raymond). For each Σ1
1 set A ⊆ T, if A ∈ U0 there is a

sequence Kn ∈ U0 with A ⊆ ⋃
n Kn. In particular, A is of the first category.

Proof. Recall that by definition

A ∈ U0 ⇔ ∀µ ∈M(T)(
∑

µ̂(n)einx = 0 off E ⇒ µ̂(n) = 0,∀n ∈ Z).

Then we must have for every Rajchman measure µ ∈ R,µ(A) = 0. (Otherwise, µ(A) > 0,
since every Σ1

1 set is µ-measurable (see Kechris [1995, 29.7]. Then there is F ∈ K(T) with
µ(F ) > 0. Let ν = (µ|F )/µ(F ). Then by 9.3, ν̂(n) → 0 and so, by 7.6,

∑
ν̂(n)einx =

0,∀x /∈ F , and so ∀x /∈ A, a contradiction.) So by 23.3 there areKn ∈ U0, with A ⊆ ⋃
n Kn.

⊣
25.6. Corollary. Let A ⊆ T have the BP and be in U0. Then A is of the first category.
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Proof. If A is not of the first category, then A is comeager in some open set U , so A
contains a Gδ set G which is dense in U . Then G is obviously Σ1

1 and in U0 but not of the
first category, a contradiction. ⊣

This was the original solution of the Category Problem 9.1 (which in fact established
the stronger version about sets of extended uniqueness with the BP being of the first
category). In §11 we gave a different proof based on Baire Category methods. Such a
technique can be also used to give a proof of 25.5 as well.

In conclusion we can summarize as follows the key structural and definability proper-
ties of U,U0:

For I either U or U0 we have

(i) I is a calibrated σ-ideal,

(ii) I is Π1
1, but for any F ∈ K(T), F /∈ I, I ∩K(F ) is not Borel.

These are properties that both U and U0 share. However they differ in one important
respect.

(iii) U0 has a Borel basis, but U does not have a Borel basis.

It should be noted that the three properties (i)–(iii) encapsulate a large part of the the-
ory of sets of uniqueness (and extended uniqueness). For example, they imply Menshov’s
Theorem (existence of null closed sets of multiplicity); the Debs-Saint Raymond Theorem
(sets of extended uniqueness with the BP are of the first category), which in turn has
several consequences, like Lyons’ theorem that there are Rajchman measures supported
by the non-normal numbers; Piatetski-Shapiro’s Theorem that U 6= U0, etc.

§26. Co-analytic ranks.

The last topic in these lectures will bring us back full circle to the first method
we introduced here, ordinals and transfinite induction. Ordinals play a crucial role in
classical as well as modern descriptive set theory, through various concepts of rank. For
our purposes here, the crucial concept is that of a co-analytic or Π1

1-rank. A general
reference for descriptive set theoretic results used in this section is Kechris [1995].

A rank on a set A is simply a function ϕ : A → Ordinals, assigning to each element
of A an ordinal number. It is a fundamental property of all co-analytic sets that they
admit ranks ϕ : A → ω1 (= the set of all countable ordinals) with very nice definability
properties. Roughly speaking, such ϕ exist for which the initial segments

{x ∈ A : ϕ(x) ≤ ϕ(y)},

for y ∈ A, are “uniformly” ∆1
1. Let me be more precise.

Definition. Let X be a Polish space and A ⊆ X a Π1
1-set. A Π1

1-rank on A is a map
ϕ : A→ ω1 which has the following property:
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There are P, S ⊆ X2, in Π1
1,Σ

1
1, resp., such that

y ∈ A⇒ [x ∈ A & ϕ(x) ≤ ϕ(y) ⇔ (x, y) ∈ P ⇔ (x, y) ∈ S].

Thus for y ∈ A,
{x ∈ A : ϕ(x) ≤ ϕ(y)} = P y = Sy

(where Ry = {x : (x, y) ∈ R}), so that the initial segment determined by y is both Σ1
1 and

Π1
1, i.e., ∆1

1, but in fact in a uniform way.

It is a basic fact of the theory of Π1
1 sets that they admit Π1

1-ranks.

26.1. Theorem. Every Π1
1 set A admits a Π1

1-rank.

Note that if ϕ : A→ ω1 is a Π1
1-rank on the Π1

1 set A, and for each countable ordinal
ξ we let

Aξ = {x ∈ A : ϕ(x) ≤ ξ},
then Aξ is Borel. (Proof. Recall that ∆1

1 = Borel. This is now easily proved by induction
on ξ. If ξ = 0, then either A0 = ∅, or else if y ∈ A0, clearly A0 = {x ∈ A : ϕ(x) ≤ ϕ(y)} is
Borel. Assume it holds for all ξ < η, and consider Aη . If there is no y ∈ A with ϕ(y) = η,
clearly Aη =

⋃
ξ<η Aξ is Borel, as this is a countable union of Borel sets. If on the other

hand there is y ∈ A with ϕ(y) = η, then clearly Aη = {x ∈ A : ϕ(x) ≤ ϕ(y)}, so A is again
Borel.)

Since
A =

⋃

ξ<ω1

Aξ,

this gives a decomposition of A as a union of ω1 many Borel sets. So, although A may not
be Borel, it can be “approximated” by Borel sets, in some sense.

An important application of the concept of Π1
1-rank is the following:

26.2 Boundedness Theorem. Let A be a Π1
1 set and ϕ : A → ω1 a Π1

1-rank. If B ⊆ A
is Σ1

1, then there is a countable ordinal ξ such that

ϕ(x) ≤ ξ

for all x ∈ B.

This result suggests the following technique for establishing the non-Borelness of a
given Π1

1 set, called the rank method: Given a Π1
1 set A, for which we want to show that it

is not Borel (equivalently: not analytic), find a Π1
1-rank ϕ : A → ω1 which is unbounded,

i.e., for each countable ordinal ξ there is some x ∈ A with ϕ(x) > ξ.

For example, one can use this method to give another proof that the set Kω(X) of
countable closed subsets of an uncountable compact metric space X is not Borel (see 22.4).
One lets ϕ(K) = the Cantor-Bendixson rank of K. Then it turns out that ϕ is a Π1

1-rank.
Since, as in 5.6, one can see that ϕ is unbounded, this shows that Kω(X) is not Borel.
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For this and other reasons it is important, when studying the descriptive properties
of a given Π1

1 set, like U or U0, to find canonical Π1
1-ranks that reflect the structural

properties of the sets (and don’t just come from applying the abstract Theorem 26.1).
There is indeed such a canonical Π1

1-rank for U , called the Piatetski-Shapiro rank (see
Kechris-Louveau [1989]), but I will not discuss this here. There is also a canonical rank
for U0, which I will now discuss, since it has a particularly simple description using the
basis U ′

0 for U0 and the generalized Cantor-Bendixson procedure described in 23.1.

Let X be a compact metric space, and B ⊆ K(X) a hereditary Borel set. Let I = Bσ

be the σ-ideal generated by B. By 23.1, I is Π1
1. Define, as in 23.1 again, the following

rank on I:
ϕ(K) = rkB(K).

Let us call this the B-rank of I. The following can be then proved.

26.3. Theorem. For any hereditary Borel B ⊆ K(X), the B-rank on I = Bσ is a
Π1

1-rank.

This is of course a generalization of the corresponding fact for the Cantor-Bendixson
rank, which we used in the example above. It also shows that the U ′

0-rank on U0 is a
Π1

1-rank on U0.

One then can use the rank method to establish that I = Bσ is not Borel: It is enough
for that to show that for each countable ordinal ξ there is K ∈ Bσ with rkB(K) > ξ.

For the following exercise note that if B is an ideal (i.e., it is also closed under finite
unions), then rkB(K) ≤ 1 ⇔ K ∈ B.

26.4. Exercise. Assume B ⊆ K(X) is a Borel ideal consisting of nowhere dense sets and
J ⊆ Bσ is a σ-ideal such that for every open non-∅ V ⊆ X there is K ∈ J \ B,K ⊆ V .
Show that for every countable ordinal ξ, there is a K ∈ J with rkB(K) > ξ. Conclude that
J is not analytic. [Hint. Show by transfinite induction that for every countable ordinal ξ,
and for every open non-∅ set V ⊆ X, there is K ∈ J,K ⊆ V with rkB(K) > ξ + 1.)

We will apply this method to show that U0 is not Borel. In fact, by applying appro-
priately 26.4 we will see a much stronger property of U0. In a sense, U0 is “hereditarily”
non Borel.

§27. A hereditary property of U0.

I will prove here the following:

27.1. Theorem (Kechris). There is no simple (i.e., Borel, or, equivalently, Gδ) σ-ideal
I such that

Kω(T) ⊆ I ⊆ U0.

Before giving the proof, I want to make some comments.

(i) Since Kω(T) ⊆ U ⊆ U0, this shows that U,U0 (as well as Kω(T)) are not Borel, so
it gives another proof of these results.
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(ii) The proof also shows that the hypothesis can be relaxed to the following: For any
E ∈ K(T) which is U0-perfect, there is no Borel ideal with Kω(E) ⊆ I ⊆ U0. In particular,
this implies that for any E ∈ K(T), E /∈ U0, U0 ∩K(E) is not Borel (which was one of the
ingredients needed to apply 23.4 to U0).

(iii) This result has also implications concerning characterizations of subclasses of
closed uniqueness sets. For example, A. Olevskii proposed, in a private conversation, a
specific explicit characterization of the following class of uniqueness sets:

Udiff = {E ∈ U : for every diffeomorphism h of T h[E] ∈ U}.

Since clearly Udiff is a σ-ideal and

Kω(T) ⊆ Udiff ⊆ U0,

it follows that Udiff cannot be Borel. However, Olevskii’s proposed characterization would
easily lead to a Borel definition of Udiff , which shows that this proposed characterization
does not work.

(iv) Kechris-Louveau-Woodin have shown that any Σ1
1 σ-ideal of closed sets is actually

simple (i.e., Borel). So 27.1 also implies that there is no Σ1
1 ideal between Kω(T) and U0.

Proof of 27.1. We will apply 26.4 to X = T, B = U ′
0, J = I. First we will verify that U ′

0

is an ideal, i.e., is closed under finite unions. This is due to Lyons and Host-Parreau. We
need a couple of lemmas first.

Lemma 1. Let µ, ν be finite, positive Borel measures on T so that ν(T) ≤ 1 and ν ≤ µ
(i.e., ν(A) ≤ µ(A) for all Borel A or, equivalently,

∫
fdν ≤ fdµ for all Borel f ≥ 0). Let

n1, · · · , nk ∈ Z and let wj ∈ C be such that |ν̂(nj)| = wjν̂(nj) (we agree that wj = 1, if
ν̂(nj) = 0). Then

(
1

k

k∑

j=1

|ν̂(nj)|
)2

≤ µ̂(0)

k
+

2

k2

∑

1≤a<b≤k

Re wb w̄a µ̂(nb − na).

Proof. We have
(

1

k

∑

j

|ν̂(nj)|
)2

=
1

k2

( ∑

j

wj

∫
e−injxdν

)2

≤ 1

k2

( ∫ ∣∣∣∣
∑

j

wae
−injx

∣∣∣∣dν
)2

.

Letting f(x) =
∑
j

wae
−injx we have, by the Cauchy-Schwartz inequality, that

( ∫
|f |dν

)2

≤
( ∫

|f |2dν
)
·
( ∫

1dν

)
≤

∫
|f |2dν,
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as ν(T) ≤ 1. So, since ν ≤ µ,

(
1

k

∑

j

|ν̂(nj)|
)2

≤ 1

k2

∫ ( ∑

a

wae
−inax

)(∑

b

wbe−inbx

)
dµ

=
µ̂(0)

k
+

2

k2

∑

a<b

Re wbw̄aµ̂(nb − na).

⊣
Lemma 2. If ν, µ are as in Lemma 1, then R(ν) ≤ R(µ)1/2 .

Proof. Suppose that for some 0 < n1 < n2 < · · · we have |ν̂(nj)| ≥ t. (Similarly we can
deal with the case 0 > n1 > n2 · · ·.) Using the preceding lemma for n1, · · · , nk we get

2

k2

∑

1≤a<b≤k

|µ̂(nb − na)| ≥ t2 − µ̂(0)

k
,

so

R(µ) ≥ lim
k

(
2

k2

∑

1≤a<b≤k

|µ̂(nb − na)|
)

≥ t2.

⊣
So let us assume that E,F ∈ U ′

0, in order to show that E ∪ F ∈ U ′
0. Pick ǫ such that

1 > ǫ > 0 and R(µ) ≥ ǫ for any µ ∈ P (E) ∪ P (F ). Now consider any µ ∈ P (E ∪ F ).

If µ(E) = 0 it follows that µ ∈ P (F ), thus R(µ) ≥ ǫ. So we can assume that
µ(E) > 0, µ(F ) > 0. Let µ1 = µ|E,µ2 = µ|F , so that µi ≤ µ and µi(T) ≤ 1. By Lemma
2,

R(µ)1/2 ≥ R(µ1) ≥ ǫ · µ(E)

R(µ)1/2 ≥ R(µ2) ≥ ǫ · µ(F ).

By adding, we get that
R(µ)1/2 ≥ ǫ/2,

so R(µ) ≥ ǫ2/4. Thus, in any case, R(µ) ≥ ǫ2/4 for any µ ∈ P (E ∪ F ) and we are done.⊣
It is clear that U ′

0 consists of nowhere dense sets, so the final (and main) claim,
required to prove the theorem, is to verify that for every open non-∅ V ⊆ T, there is
K ⊆ V,K ∈ I \ U ′

0.

The main lemma is the following, where for any probability Borel measure µ, supp(µ)
is the smallest closed set supporting µ, i.e., supp(µ) = T \ ⋃{V : V open and µ(V ) = 0}.
Lemma 3. Let E = [a, b] be a closed interval, a < b and let µ = (λ|E)/λ(E) (so that
µ ∈ R and supp(µ) = E). Let J ⊆ K(E) be Gδ, hereditary and assume it contains all finite
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subsets of E. Then for any N > 0, ǫ > 0 there is ν ∈ P (E) with supp(ν) = E0∪· · ·∪EN−1,
where En ∈ J , and

sup
j∈Z

|µ̂(j) − ν̂(j)| ≤ (1 + ǫ)

N
.

Granting this, the proof of the above claim can be completed as follows:

Fix an open non-∅ interval V ⊆ T and let E = V . Let µ = (λ|E)/λ(E). Let, in
Lemma 3, J = K(E) ∩ I. This is Gδ, hereditary in K(E), and contains all finite subsets
of K(E). So, by Lemma 3, since µ̂(n) → 0, there is, for any given ǫ,N, ν ∈ P (E) with

supp(ν) ∈ I ∩K(E) and R(ν) ≤ (1+ǫ)
N

.

Thus for any open non-empty V ⊆ T if we choose x ∈ V we can find for each n ∈ N a
closed set Kn ∈ I such that dist(x,En) < 1/n and a probability measure νn ∈ P (Kn) with
R(νn) ≤ 1

n . Let K = {x} ∪⋃
n Kn. Then K ∈ I and clearly inf{R(µ) : µ ∈ P (K)} = 0, so

K ∈ I \ U ′
0.

So it only remains to give the

Proof of Lemma 3. The proof uses methods of Körner and Kaufman.

First, let J =
⋂

n Gn, with Gn decreasing and open in K(E). Let

G∗
n = {K ∈ K(E) : ∀L ⊆ K(L ∈ Gn)} ⊆ Gn.

Clearly G∗
n is hereditary and J =

⋂
n G

∗
n. It is also easy to see that G∗

n is open too. (We
prove that K(E) \ G∗

n is closed. Let Kp ∈ K(E) \ G∗
n and Kp → K. Then there exists

Lp ⊆ Kp with Lp /∈ Gn. By compactness, there is a converging subsequence Lpi → L. As
Lpi → L,Kpi → K and Lpi ⊆ Kpi , we have L ⊆ K. But Lpi /∈ Gn, so as Gn is open,
L /∈ Gn, i.e., K /∈ G∗

n.) So, to avoid complicated notation, we assume that each Gn is open
hereditary to start with.

Now notice that if G is open hereditary in K(E) and K ∈ G, then there is open V in
E with K ⊆ V , so that K(V ) ⊆ G. (Otherwise for any such V , there is LV ∈ K(V ) with
LV /∈ G. Letting Vn be such that Vn+1 ⊆ Vn and K =

⋂
n Vn and Ln = LVn , we can find

a convergent subsequence Lni → L. Then for any n,L ⊆ Vn, so L ⊆ K and L /∈ G, as G
is open, a contradiction.)

Before we proceed to the construction of ν we will need a nice observation of Körner.

Lemma 4. Let ∆ = [a, b + ℓ] be a closed interval and let ρ, σ be probability measures
with ρ(∆) = σ(∆). Then

∣∣∣∣
∫

∆

e−inxdρ−
∫

∆

e−inxdσ

∣∣∣∣ ≤ 2ρ(∆) sup
x∈∆

∣∣∣∣e
−inx − e−ina

∣∣∣∣.

Proof. Notice that if ρ∆ = ρ|∆, σ∆ = σ|∆, then

∫
d|ρ∆ − σ∆| = ||ρ∆ − σ∆||M ≤ ||ρ∆||M + ||σ∆||M = ρ∆(T) + σ∆(T) = 2ρ(∆).
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Now, since
∫
d(ρ∆ − σ∆) = ρ∆(T) − σ∆(T) = ρ(∆) − σ(∆) = 0, we have

∣∣∣∣
∫

∆

e−inxdρ−
∫

∆

e−inxdσ

∣∣∣∣

=

∣∣∣∣
∫
e−inxdρ∆ −

∫
e−inxdσ∆

∣∣∣∣

=

∣∣∣∣
∫

(e−inx − eina)d(ρ∆ − σ∆)

∣∣∣∣

≤ sup
x∈∆

|einx − e−ina| ·
∫
d|ρ∆ − σ∆|

≤2ρ(∆) · sup
x∈∆

|e−inx − eina|.

⊣
We are now ready to start the construction: We will define probability measures

µk ∈ R and numbers pk ∈ N such that

(i) 0 < p0 = p1 < · · · < pN−1 < pN < pN+1 < · · ·;
(ii) µ0 = µ1 = · · · = µN−1 = µ;

(iii) (|j| ≤ pk+N−1 or |j| ≥ pk+N) ⇒ |µ̂k+N(j) − µ̂k(j)| ≤ 1
2 ǫ · 2−k−1;

(iv) pk ≤ |j| ⇒ |µ̂k(j)| < ǫ/2;

(v) supp(µk+N) ⊆ supp(µk);

(vi) supp(µn+ℓ·N) ∈ Gℓ, ℓ = 1, 2, · · · ;n = 0, · · · , N − 1;

(vii) supp(µk) is a finite union of disjoint closed intervals contained in E, and on each
one of these intervals µk is a multiple of Lebesgue measure on that interval.

Assume this can be done. For n = 0, 1, · · · , N − 1 let

µn = lim
ℓ

w∗

µn+ℓ·N ∈ P (E).

(To see that this limit exists, it is enough to show that limℓ µ̂n+ℓ·N(j) exists for each
j ∈ Z. But, by (iii), given j, if ℓ is so large that |j| ≤ pn+ℓ·N−1, then we have |µ̂n+ℓ·N(j)−
µ̂n+(ℓ−1)N(j)| ≤ 1

2 ǫ · 2−n−(ℓ−1)N−1, so that {µ̂n+ℓ·N(j)}ℓ is a Cauchy sequence.)

By (v), supp(µn) ⊆ supp(µn+ℓN) for any ℓ, so supp(µn) ∈ ⋂
ℓGℓ = J . Let ν =

1
N (µ0 + · · · µN−1). Then supp(ν) ⊆ ⋃N−1

n=0 supp(µn), so, as J is hereditary, supp(ν) =
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E0∪· · ·∪EN−1 with En ∈ J . Finally, fix j ∈ Z, in order to show that |µ̂(j)− ν̂(j)| ≤ (1+ǫ)
N .

We have
|µ̂(j) − ν̂(j)|

=

∣∣∣∣
1

N

( N−1∑

n=0

(µ̂n(j) − lim
ℓ
µ̂n+ℓN(j))

)∣∣∣∣

= lim
ℓ

∣∣∣∣
1

N

N−1∑

n=0

(µ̂n(j) − µ̂n+ℓN(j))

∣∣∣∣

≤ 1

N

∞∑

k=0

|µ̂k+N(j) − µ̂k(j)|.

Now if |j| ≤ pk+N−1 or |j| ≥ pk+N , we have

|µ̂k+N(j) − µ̂k(j)| ≤ ǫ

2
· 2−k−1,

and if pk+N−1 < |j| < pk+N , then |µ̂k+N(j) − µ̂k(j)| ≤ 1 + ǫ/2, since |µ̂k(j)| < ǫ/2 for
|j| ≥ pk and nk+N−1 > nk. So

|µ̂(j) − ν̂(j)| ≤ 1

N
(1 + ǫ/2 +

∞∑

k=0

ǫ/2 · 2−k−1)

=
(1 + ǫ)

N
.

To construct µn, pn satisfying (i) – (vii) we start with µ0 = µ1 = · · ·µN−1 = µ and
0 < p0 = p1 = · · · = pN−1, so that |j| ≥ p0 ⇒ |µ̂(j)| < ǫ/2 (which can be found as
µ̂(j) → 0.)

Now we assume the construction has been done up to k + N − 1 (k = 0, 1, 2, · · ·),
and we will construct µk+N , pk+N . Let supp(µk) = ∆1 ∪ · · · ∪ ∆rk ,∆m pairwise disjoint
closed intervals contained in E. Let also k = n + ℓN (0 ≤ n ≤ N − 1, ℓ ≥ 0), so that
k +N = n+ (ℓ+ 1)N .

Using Lemma 4, split each ∆m into finitely many small enough closed subintervals,
∆m,q, with only endpoints in common, so that the oscillation of e−ijx for |j| ≤ nk+N−1

in each one of them is ≤ 1
4
ǫ · 2−k−1. Then by Lemma 4, if ρ, σ are continuous (i.e.,

ρ({x}) = σ({x}) = 0) probability Borel measures supported by
⋃

m ∆m =
⋃

m,q ∆m,q and
ρ(∆m,q) = σ(∆m,q) for every m, q, then we have

|j| ≤ pk+N−1 ⇒ |ρ̂(j) − σ̂(j)| ≤ 1

2
ǫ · 2−k−1.
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Choose one point xm,q in the interior of each ∆m,q and denote the resulting finite set by
K = {xm,q}. Then K ∈ Gℓ+1, so, as Gℓ+1 is open hereditary, we can find a small closed
interval Γm,q contained in the interior of ∆m,q with xm,q ∈ Γm,q , so that all closed subsets
of

⋃
m,q Γm,q are contained in Gℓ+1. We can of course assume that the Γm,q are pairwise

disjoint.

Define then the probability Borel measureµk+N as follows: µk+N has support
⋃

m,q Γm,q

and

µk+N |Γm,q = µk|Γm,q ·
µk(∆m,q)

µk(Γm,q)
.

It is clear that (v)–(vii) are true. Now

µk+N (∆m,q) = µk(Γm,q) ·
µk(∆m,q)

µk(Γm,q)

= µk(∆m,q),

so (iii) holds for |j| ≤ pk+N−1. Finally, choose pk+N > pk+N−1 large enough so that
|j| ≥ pk+N ⇒ |µ̂k+N(j)| < ǫ/2( which can be done since µ̂k+N(j) → 0, as |j| → ∞),
and also |j| ≥ pk+N ⇒ |µ̂k+N (j) − µ̂k(j)| ≤ 1

2 ǫ · 2−k−1 (which again can be done since
µ̂k(j) → 0 as |j| → ∞).

This completes the construction, the proof and these lectures. ⊣
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W. Rudin

[1973] Functional Analysis, McGraw-Hill, New York.

[1987] Real and Complex Analysis, 3rd Edition, McGraw-Hill, New York.

A. Zygmund

[1979] Trigonometric Series, 2nd Ed., Cambridge University Press, Cambridge.

77


