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Nadkarni’s Theorem asserts that for a countable Borel equivalence relation (CBER) exactly one
of the following holds: (1) It has an invariant Borel probability measure or (2) it admits a Borel
compression, i.e., a Borel injection that maps each equivalence class to a proper subset of it. An
effective version of Nadkarni’s Theorem was included in Ditzen’s unpublished PhD thesis, where
it is shown that if a CBER is effectively Borel, then either alternative (1) above holds or else it
admits an effectively Borel compression. In his thesis, Ditzen also proves an effective version
of the Ergodic Decomposition Theorem. These notes contain an exposition of these results. We
include Ditzen’s proof of the Effective Nadkarni’s Theorem, and use this construction to provide
a different proof of the Effective Ergodic Decomposition Theorem. In addition, we construct a
counterexample to show that alternative (1) above does not admit an effective version.

1.1 Introduction

In effective descriptive set theory one often considers the following type of question:
Suppose we are given a (lightface) Δ1

1 structure 𝑅 on the Baire space N (like, e.g., an
equivalence relation, graph, etc.) and a problem about 𝑅 that admits a (classical) 𝚫1

1
(i.e., Borel) solution. Is there an effective, i.e., Δ1

1, solution?
For example, consider the case where 𝑅 = 𝐸 is a Δ1

1 equivalence relations which is
smooth, i.e., admits a Borel function 𝑓 : N → N such that 𝑥𝐸𝑦 ⇐⇒ 𝑓 (𝑥) = 𝑓 (𝑦).
Then it turns out that one can find such a function which is actually Δ1

1.
One often derives such results via an effective version of a dichotomy theorem,

For instance, for the example of smoothness above we have the following classical
version of the so-called General Glimm-Effros Dichotomy proved in [6]. Below 𝐸0 is
the equivalence relation on the Cantor space C given by 𝑥𝐸0𝑦 ⇐⇒ ∃𝑚∀𝑛 ≥ 𝑚(𝑥(𝑛) =
𝑦(𝑛)).

Theorem 1.1.1 (General Glimm-Effros Dichotomy, see [6]). Let 𝐸 be a Borel equiv-
alence relation on the Baire space N . Then exactly one of the following holds:
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(i) 𝐸 is smooth, i.e., admits a Borel function 𝑓 : N → N such that 𝑥𝐸𝑦 ⇐⇒
𝑓 (𝑥) = 𝑓 (𝑦),

(ii) There is a Borel injective function 𝑔 : C→N such that 𝑥𝐸0𝑦 ⇐⇒ 𝑔(𝑥)𝐸𝑔(𝑦).

Now it turns out that the proof of this result in [6] actually gives the following
effective version:

Theorem 1.1.2 (Effective General Glimm-Effros Dichotomy, see [6]). Let 𝐸 be a Δ1
1

equivalence relation on the Baire space N . Then exactly one of the following holds:
(i) 𝐸 admits a Δ1

1 function 𝑓 : N → N such that 𝑥𝐸𝑦 ⇐⇒ 𝑓 (𝑥) = 𝑓 (𝑦).
(ii) There is a Borel injective function 𝑔 : C→N such that 𝑥𝐸0𝑦 ⇐⇒ 𝑔(𝑥)𝐸𝑔(𝑦).

From this it is immediate that the smoothness of 𝐸 is witnessed effectively as
mentioned earlier. For more examples of such effectivity results see also the recent
paper [11].

In Ditzen’s unpublished PhD thesis [2], it is shown that the notion of compressibil-
ity of a countable Borel equivalence relation (CBER) is effective, i.e., if a Δ1

1 CBER
on the Baire space N is compressible, then it admits a Δ1

1 compression. This follows
from an effective version of Nadkarni’s Theorem that we state below.

First recall the following standard concepts. A CBER 𝐸 on a standard Borel space
𝑋 is a Borel equivalence relation all of whose classes are countable. A compression
of 𝐸 is an injective map 𝑓 : 𝑋 → 𝑋 such that for each 𝐸-class 𝐶 we have 𝑓 (𝐶) ⫋
𝐶. We say that 𝐸 is compressible if it admits a Borel compression. Finally a Borel
probability measure 𝜇 on 𝑋 is invariant for 𝐸 if for any Borel bĳection 𝑓 : 𝑋 → 𝑋

with 𝑓 (𝑥)𝐸𝑥,∀𝑥, we have that 𝑓∗𝜇 = 𝜇.
We now have:

Theorem 1.1.3 (Nadkarni’s Theorem, see [9] and [1]). Let 𝐸 be a CBER on the Baire
space N . Then exactly one of the following holds:

(i) 𝐸 is compressible, i.e., admits a Borel compression;
(ii) 𝐸 admits an invariant probability Borel measure.

We include below Ditzen’s proof of the following effective version of Nadkarni’s
Theorem:

Theorem 1.1.4 (Effective Nadkarni’s Theorem [2]). Let 𝐸 be a (lightface) Δ1
1 CBER

on the Baire space N . Then exactly one of the following holds:
(i) 𝐸 admits a Δ1

1 compression;
(ii) 𝐸 admits an invariant probability Borel measure.

As a consequence of the proof of the Effective Nadkarni Theorem we also obtain a
proof of an effective version of the classical Ergodic Decomposition Theorem (see [3]
and [12]). This provides a different proof, for the restricted case of invariant measures,
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of Ditzen’s Effective Ergodic Decomposition Theorem for quasi-invariant measures
[2].

First we recall the classical Ergodic Decomposition Theorem. For a CBER 𝐸 on a
standard Borel space 𝑋 , we let INV𝐸 denote the space of 𝐸-invariant probability Borel
measures on 𝑋 . We say 𝜇 ∈ INV𝐸 is ergodic for 𝐸 if 𝜇(𝐴) ∈ {0, 1} for all 𝐸-invariant
Borel sets 𝐴 ⊆ 𝑋 , and we let EINV𝐸 ⊆ INV𝐸 denote the space of 𝐸-ergodic invariant
probability Borel measures on 𝑋 .

Theorem 1.1.5 (Ergodic Decomposition Theorem, see [3] and [12]). Let 𝐸 be a CBER
on the Baire space N and suppose that INV𝐸 ≠ ∅. Then EINV𝐸 ≠ ∅ and there is a
Borel surjection 𝜋 : N → EINV𝐸 such that:

(i) 𝜋 is 𝐸-invariant;
(ii) if 𝑆𝑒 = {𝑥 : 𝜋(𝑥) = 𝑒}, for 𝑒 ∈ EINV𝐸 , then 𝑒(𝑆𝑒) = 1 and 𝑒 is the unique

𝐸-ergodic invariant probability Borel measure on 𝐸 |𝑆𝑒;
(iii) for any 𝜇 ∈ INV𝐸 , 𝜇 =

∫
𝜋(𝑥)𝑑𝜇(𝑥).

Nadkarni in [9] noted that his proof of Theorem 1.1.3 can be also used to give
a proof of Theorem 1.1.5. We will show below that this argument can also be effec-
tivized.

Let 𝑃(N) denote the space of probability Borel measures on N . One can identify
a probability Borel measure 𝜇 on N with the map 𝜑𝜇 : N<N→ [0, 1], 𝜑𝜇 (𝑠) = 𝜇(𝑁𝑠),
where 𝑁𝑠 = {𝑥 ∈ N : 𝑠 ⊆ 𝑥} (cf. [7, 17.7]). In this way, one may view 𝑃(N) as the
Π0

2 subset of [0, 1]N<N consisting of all 𝜑 satisfying 𝜑(∅) = 1 and 𝜑(𝑠) = ∑
𝑛 𝜑(𝑠⌢𝑛)

for all 𝑠 ∈ N<N. Via this identification, we will prove the following effective version
of the Ergodic Decomposition Theorem:

Theorem 1.1.6 (Effective Ergodic Decomposition Theorem, see [2]). Let 𝐸 be a
(lightface)Δ1

1 CBER on the Baire spaceN and suppose that INV𝐸 ≠ ∅. Then EINV𝐸 ≠

∅, and there is a Δ1
1 𝐸-invariant set 𝑍 ⊆ N and a Δ1

1 map 𝜋 : 𝑍 → [0, 1]N<N such that:
(i) 𝐸 | (N \ 𝑍) admits aΔ1

1 compression, i.e. there is aΔ1
1 injective map 𝑓 :N \ 𝑍→

N \ 𝑍 such that 𝑓 (𝐶) ⫋ 𝐶 for every 𝐸-class 𝐶 ⊆ N \ 𝑍;
(ii) 𝜋 maps 𝑍 onto EINV𝐸;
(iii) 𝜋 is 𝐸-invariant;
(iv) if 𝑆𝑒 = {𝑥 ∈ 𝑍 : 𝜋(𝑥) = 𝑒}, for 𝑒 ∈ EINV𝐸 , then 𝑒(𝑆𝑒) = 1 and 𝑒 is the unique

𝐸-ergodic invariant probability Borel measure on 𝐸 |𝑆𝑒;
(v) for any 𝜇 ∈ INV𝐸 , 𝜇 =

∫
𝜋(𝑥)𝑑𝜇(𝑥).

In Section 1.4, we will show that there is a Δ1
1 CBER 𝐸 on N that admits an invari-

ant probability Borel measure but does not admit aΔ1
1 invariant probability measure. It

follows that we cannot, in general, make the map 𝜋 from Theorem 1.1.6 total, because
if we could then 𝐸 would admit a Δ1

1 invariant probability measure.
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1.2 A representation of 𝚫1
1 equivalence relations

In this section we will prove a representation of Δ1
1 CBER that is needed for the proof

of Theorem 1.1.4. It can be viewed as a strengthening and effective refinement of the
Feldman-Moore Theorem, which asserts that every CBER is obtained from a Borel
action of a countable group. Below we use the following terminology:

Definition 1.2.1. A sequence (𝐴𝑛) of Δ1
1 subsets of N is uniformly Δ1

1 if the relation
𝐴 ⊆ N × N given by

𝐴(𝑛.𝑥) ⇐⇒ 𝑥 ∈ 𝐴𝑛,

is Δ1
1. Similarly a sequence ( 𝑓𝑛) of partial Δ1

1 functions 𝑓𝑛 : N → N (i.e., functions
with Δ1

1 graph) is uniformly Δ1
1 if the partial function 𝑓 : N × N → N given by

𝑓 (𝑛, 𝑥) = 𝑓𝑛 (𝑥),

is Δ1
1.
We also say that a countable collection of subsets of N is uniformly Δ1

1 if it admits
a uniformly Δ1

1 enumeration. Similarly for a countable set of partial functions.

Theorem 1.2.2 ([2, Section 2.2.1]). Let 𝐸 be a Δ1
1 CBER on the Baire space N . Then

(1) 𝐸 is induced by a uniformly Δ1
1 sequence of (total) involutions, i.e., there is a

such a sequence ( 𝑓𝑛) with 𝑥𝐸𝑦 ⇐⇒ ∃𝑛( 𝑓𝑛 (𝑥) = 𝑦).
(2) There is a Polish 0-dimensional topology 𝜏 onN , extending the standard topol-

ogy, and a uniformly Δ1
1 countable Boolean algebra U of clopen sets in 𝜏, which is a

basis for 𝜏 and is closed under the group Γ generated by ( 𝑓𝑛).
(3) There is a complete compatible metric 𝑑 for 𝜏 such that for every 𝑈 ∈ U and

𝑘 > 0, there is a uniformly Δ1
1, pairwise disjoint, sequence (𝑈𝑘

𝑛 ) with 𝑈𝑘
𝑛 ∈ U, 𝑈 =⋃

𝑛𝑈
𝑘
𝑛 and 𝑑𝑖𝑎𝑚𝑑 (𝑈𝑘

𝑛 ) < 1
𝑘
, and such that moreover the sequence (𝑈𝑘

𝑛 ) is uniformly
Δ1

1 in𝑈, 𝑘, 𝑛.

Proof. For (1): This follows immediately from the usual proof of the Feldman-Moore
Theorem (see [4] or [10, Section 1.2]). So fix below such a sequence ( 𝑓𝑛) and consider
the corresponding Δ1

1 action of the group Γ.
For (2), (3): We will first find a topology 𝜏 as in (2), which has a uniformly Δ1

1
countable basis B of clopen sets closed under the Γ-action, because we can then take
U to be the Boolean algebra generated by B.

For (3) we will find a complete compatible Δ1
1 metric 𝑑 for 𝜏 (i.e., 𝑑 : N2 → R is

Δ1
1). Then if (U𝑛) is a uniformly Δ1

1 enumeration of U, we have that

𝐴(𝑘, 𝑛) ⇐⇒ 𝑑𝑖𝑎𝑚𝑑 (U𝑛) <
1

𝑘 + 1

is Π1
1 and

∀𝑥 ∈ N∀𝑘∃𝑛(𝑛 ∈ 𝐴𝑘 & 𝑥 ∈ U𝑛),
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where 𝐴𝑘 = {𝑛 : (𝑘, 𝑛) ∈ 𝐴}.
So, by the Number Uniformization Theorem for Π1

1 , there is a Δ1
1 function 𝑓 : N ×

N→ N such that

∀𝑥 ∈ N∀𝑘 ( 𝑓 (𝑥, 𝑘) ∈ 𝐴𝑘 & 𝑥 ∈ U 𝑓 (𝑥,𝑘 ) ).

Since 𝐴′ (𝑘, 𝑛) ⇐⇒ ∃𝑥 ∈ N (𝑛 = 𝑓 (𝑥, 𝑘)) is a Σ1
1 subset of 𝐴, let 𝐴′′ be Δ1

1 such that
𝐴′ ⊆ 𝐴′′ ⊆ 𝐴. Since

N × N =
⋃

(𝑘,𝑛) ∈𝐴′′

U𝑛 × {𝑘},

we can find a uniformly Δ1
1 sequence (𝑋 𝑘

𝑛 ) of sets in U, such that for all 𝑘 > 0 the
sequence (𝑋 𝑘

𝑛 )𝑛 is a partition of N of sets with 𝑑-diameter less than 1
𝑘
. Finally given

any𝑈 ∈ U, let𝑈𝑘
𝑛 = 𝑋 𝑘

𝑛 ∩𝑈.
It thus remains to find 𝜏, 𝑑 with these properties. We will need first a couple of

lemmas.

Lemma 1.2.3. Let 𝐴 ⊆ N be Δ1
1. Then there is a Polish 0-dimensional topology 𝜏𝐴 on

N , which extends the standard topology, has a uniformlyΔ1
1 countable basis consisting

of clopen sets containing 𝐴, and has a complete compatible Δ1
1 metric 𝑑𝐴.

Proof. Let 𝑓 : N → N be computable and let 𝐵 ⊆ N be Π0
1 and such that 𝑓 |𝐵 is

injective and 𝑓 (𝐵) = 𝐴. Use 𝑓 to move the (relative) topology of 𝐵 to 𝐴 and the
standard metric of 𝐵 to 𝐴. Do the same for N \ 𝐴 and then take the direct sum of these
topologies and metrics on 𝐴,N \ 𝐴 to find 𝜏𝐴, 𝑑𝐴.

Lemma 1.2.4. Let A = (𝐴𝑛) be a uniformly Δ1
1 sequence of subsets of N . Then there

is a Polish 0-dimensional topology 𝜏A onN , which extends the standard topology, has
a uniformly Δ1

1 countable basis BA containing all the sets in A, and has a complete
compatible Δ1

1 metric 𝑑A .

Proof. Consider 𝜏A𝑛
, 𝑑A𝑛

as in Lemma 1.2.3. Then put

𝜏A = the topology generated by
⋃
𝑛

𝜏A𝑛
.

Then by [7, Lemma 13.3], 𝜏A is Polish (and contains the standard topology). A basis
for 𝜏A consists of all sets of the form

𝑈1 ∩𝑈2 ∩ · · · ∩𝑈𝑛,

where𝑈𝑖 ∈ B𝐴 𝑗𝑖
, 1 ≤ 𝐼 ≤ 𝑛, and so it is 0-dimensional with a uniformly Δ1

1 basis BA
containing all the sets in A.
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Finally, as in the proof of [7, Lemma 13.3] again, a complete compatible metric
for 𝜏A is

𝑑A (𝑥, 𝑦) =
∑︁
𝑛

2−𝑛−1 ·
𝑑𝐴𝑛

(𝑥, 𝑦)
1 + 𝑑𝐴𝑛

(𝑥, 𝑦) .

Because of the uniformity in 𝐴 of the proof of Lemma 1.2.3 this metric is also Δ1
1.

We finally find 𝜏, 𝑑. To do this we recursively define a sequence of Polish 0-
dimensional topologies 𝜏0, 𝜏1, . . . on N , extending the standard topology, and uni-
formly Δ1

1 countable bases B𝑛 for 𝜏𝑛 and complete compatible Δ1
1 metrics 𝑑𝑛 for 𝜏𝑛,

all uniformly in 𝑛 as well, and such that Γ · B𝑛 ⊆ B𝑛+1.
For 𝑛 = 0, let 𝜏0, 𝑑0,B0 be the standard topology, metric and basis for N .
Given 𝜏𝑛, 𝑑𝑛, B𝑛, consider Γ · B𝑛 and use Lemma 1.2.4 to define 𝜏𝑛+1, B𝑛+1 ⊇

Γ · B𝑛, 𝑑𝑛+1. The uniformity in 𝑛 is clear from the construction.
Finally let 𝜏 be the topology generated by

⋃
𝑛 𝜏𝑛. It is 0-dimensional, Polish, with

basis the sets of the form
𝑈1 ∩𝑈2 ∩ · · · ∩𝑈𝑛,

with 𝑈𝑖 ∈ B 𝑗𝑖 , 1 ≤ 𝑖 ≤ 𝑛, so this is a uniformly Δ1
1 countable basis B consisting of

clopen sets. Also clearly for any 𝛾 ∈ Γ,

𝛾 · (𝑈1 ∩𝑈2 ∩ · · · ∩𝑈𝑛) = 𝛾 ·𝑈1 ∩ 𝛾 ·𝑈2 ∩ · · · ∩ 𝛾 ·𝑈𝑛,

where 𝛾 ·𝑈𝑖 ∈ B 𝑗𝑖+1, thus 𝛾 · (𝑈1 ∩𝑈2 ∩ · · · ∩𝑈𝑛) ∈ B as well. Finally, as before, a
complete compatible Δ1

1 metric for 𝜏 is

𝑑 (𝑥, 𝑦) =
∑︁
𝑛

2−𝑛−1 · 𝑑𝑛 (𝑥, 𝑦)
1 + 𝑑𝑛 (𝑥, 𝑦)

and the proof is complete.

1.3 Proof of Effective Nadkarni

In this section we show, using the representation of Δ1
1 CBER constructed in Sec-

tion 1.2, that we can effectivize the proof of Nadkarni’s Theorem. Our proof follows
the exposition in [2, Section 2.2.3]; see also the presentations of the classical proof in
[1] or [10].

The classical proof of Nadkarni’s Theorem proceeds as follows. Fix a CBER 𝐸 on
N . We first define a way to compare the “size” of sets. For Borel sets 𝐴, 𝐵 ⊆N we write
𝐴 ∼𝐵 𝐵 if there is a Borel bĳection 𝑔 : 𝐴→ 𝐵 with 𝑥𝐸𝑔(𝑥),∀𝑥 ∈ 𝐴. We write 𝐴 ≺𝐵 𝐵

if there is some 𝐵′ ⊆ 𝐵 with 𝐴 ∼𝐵 𝐵
′ and [𝐵]𝐸 = [𝐵 \ 𝐵′]𝐸 , and 𝐴 ≈𝐵 𝑛𝐵 if we can

partition 𝐴 into pieces 𝐴0, . . . , 𝐴𝑛 so that 𝐴𝑖 ∼𝐵 𝐵 for 𝑖 < 𝑛 and 𝐴𝑛 ≺𝐵 𝐵. One thinks
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of 𝐴 ≈𝐵 𝑛𝐵 to mean that 𝐴 is about 𝑛 times the size of 𝐵. In particular, if 𝐴 ≈𝐵 𝑛𝐵 and
𝜇 is an 𝐸-invariant probability Borel measure, then 𝑛𝜇(𝐵) ≤ 𝜇(𝐴) ≤ (𝑛 + 1)𝜇(𝐵).

Note that 𝐸 is compressible iff N ≺𝐵 N . More generally, we say that 𝐴 ⊆ N is
compressible if 𝐴 ≺𝐵 𝐴, i.e., if the equivalence relation 𝐸 |𝐴 is compressible.

Next we construct a fundamental sequence for 𝐸 , i.e., a decreasing sequence (𝐹𝑛)
of Borel sets such that 𝐹0 = N and 𝐹𝑛+1 ∼𝐵 𝐹𝑛 \ 𝐹𝑛+1. Each 𝐹𝑛 is a complete section
for 𝐸 , and is a piece of N of “size” 2−𝑛, in the sense that N ≈𝐵 2𝑛𝐹𝑛 and 𝜇(𝐹𝑛) = 2−𝑛

for all 𝐸-invariant probability Borel measures 𝜇. It follows that if 𝐴 ≈𝐵 𝑘𝐹𝑛 then
𝑘2−𝑛 ≤ 𝜇(𝐴) ≤ (𝑘 + 1)2−𝑛 for any 𝐸-invariant probability Borel measure 𝜇.

We then use the relative size of 𝐴 with respect to the 𝐹𝑛 to approximate what
the measure of 𝐴 would be with respect to some 𝐸-invariant probability Borel mea-
sure. To do this, we construct, for all 𝑚, a partition [𝐴]𝐸 =

⊔
𝑛≤∞ 𝑄

𝐴,𝑚
𝑛 of [𝐴]𝐸

into 𝐸-invariant Borel pieces such that 𝑄𝐴,𝑚
∞ admits a Borel compression and 𝐴 ∩

𝑄
𝐴,𝑚
𝑛 ≈𝐵 𝑛(𝐹𝑚 ∩ 𝑄𝐴,𝑚

𝑛 ) for 𝑛 < ∞. We define the fraction function [𝐴/𝐹𝑚] by set-
ting [𝐴/𝐹𝑚] (𝑥) = 𝑛 if 𝑥 ∈ 𝑄𝐴,𝑚

𝑛 or if 𝑛 = 0 & 𝑥 ∉ [𝐴]𝐸 , and let the local measure
function 𝑚(𝐴, 𝑥) = lim𝑚→∞

[𝐴/𝐹𝑚 ] (𝑥 )
[N/𝐹𝑚 ] (𝑥 ) . We show that 𝑚(𝐴, 𝑥) is well-defined modulo

an 𝐸-invariant compressible set, meaning there is an 𝐸-invariant set𝐶 ⊆ N admitting
a Borel compression and such that 𝑚(𝐴, 𝑥) is well-defined when 𝑥 ∉ 𝐶. We also show
that for any partition 𝐴 =

⊔
𝑛 𝐴𝑛 into Borel pieces we have 𝑚(𝐴, 𝑥) = ∑

𝑛 𝑚(𝐴𝑛, 𝑥)
modulo an 𝐸-invariant compressible set, and if 𝐴 ∼ 𝐵 then𝑚(𝐴, 𝑥) = 𝑚(𝐵, 𝑥) modulo
an 𝐸-invariant compressible set.

Finally, we show that the local measure function 𝑚(·, 𝑥) defines an 𝐸-invariant
probability Borel measure, for all 𝑥 ∈ N \ 𝐶, where 𝐶 ⊆ N is some 𝐸-invariant
compressible set. To see this, we fix a Borel action Γ ↷ N of a countable group
Γ inducing 𝐸 , a zero-dimensional Polish topology 𝜏 on N extending the usual one
in which the action Γ↷ N is continuous, a complete compatible metric 𝑑 for 𝜏 and
a countable Boolean algebra of clopen-in-𝜏 sets closed under the Γ action forming
a basis for 𝜏, and satisfying additionally that for every 𝑈 ∈ U and 𝑘 > 0 there is a
pairwise disjoint sequence (𝑈𝑘

𝑛 ) of sets in U with 𝑈 =
⋃

𝑛𝑈
𝑘
𝑛 and 𝑑𝑖𝑎𝑚𝑑 (𝑈𝑘

𝑛 ) < 1
𝑘
.

For each 𝑈 ∈ U, 𝑘 > 0 we fix such a sequence. Since the countable union of Borel
𝐸-invariant compressible sets is itself a Borel 𝐸-invariant compressible set, it fol-
lows that there is an 𝐸-invariant compressible set 𝐶 ⊆ N such that for 𝑥 ∉ 𝐶 we
have 𝑚(𝑈, 𝑥) = ∑

𝑛 𝑚(𝑈𝑘
𝑛 , 𝑥) for 𝑈 ∈ U, 𝑘 > 0, 𝑚(𝑈 ∪ 𝑉, 𝑥) = 𝑚(𝑈, 𝑥) + 𝑚(𝑉, 𝑥)

for𝑈,𝑉 ∈ U disjoint, and𝑚(𝑈, 𝑥) = 𝑚(𝛾𝑈, 𝑥) for𝑈 ∈ U, 𝛾 ∈ Γ. Using this, we show
that for 𝑥 ∉𝐶 there is an 𝐸-invariant probability Borel measure 𝜇with 𝜇(𝑈) =𝑚(𝑈, 𝑥)
for𝑈 ∈ U. It follows that either 𝐶 = N , in which case 𝐸 is compressible, or 𝐸 admits
an invariant probability Borel measure.

In order to prove the effective version of Nadkarni’s Theorem, we will show that
the classical proof outlined above can be effectivized using the representation in Sec-
tion 1.2.
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For the remainder of this section, we fix a Δ1
1 CBER 𝐸 on N and a uniformly Δ1

1
sequence of (total) involutions (𝛾𝑛) inducing 𝐸 , as in Theorem 1.2.2(1). Moreover, we
assume, without loss of generality, that 𝐸 is aperiodic, meaning that every 𝐸-class is
infinite, because if 𝐶 ⊆ N were a finite 𝐸-class then the uniform measure on 𝐶 would
be an 𝐸-invariant probability Borel measure.

(A) Comparing the “size” of sets.

We begin by defining a way to compare the “size” of Δ1
1 sets. The notation we

use is the same as the notation typically used for the equivalent classical notions (cf.
[10, Definition 2.2.4, Section 2.3]), which we denoted with the subscript 𝐵 above. In
this paper, these notions will always refer to the effective definitions below.

Definition 1.3.1. Let 𝐴, 𝐵 ⊆ N be Δ1
1.

(1) We write 𝐴 ∼ 𝐵 if there is a Δ1
1 bĳection 𝑓 : 𝐴→ 𝐵 and such that 𝑥𝐸 𝑓 (𝑥),∀𝑥 ∈

𝐴. If 𝑓 is such a function we write 𝑓 : 𝐴 ∼ 𝐵.
(2) We write 𝐴 ⪯ 𝐵 if 𝐴 ∼ 𝐵′ for some Δ1

1 subset 𝐵′ ⊆ 𝐵. If 𝑓 is such a function
we write 𝑓 : 𝐴 ⪯ 𝐵.

(3) We write 𝐴 ≺ 𝐵 if there is some 𝑓 : 𝐴 ⪯ 𝐵 such that [𝐵 \ 𝑓 (𝐴)]𝐸 = [𝐵]𝐸 . If
𝑓 is such a function we write 𝑓 : 𝐴 ≺ 𝐵.

(4) We say 𝐴 admits a Δ1
1 compression if 𝐴 ≺ 𝐴, and if 𝑓 : 𝐴 ≺ 𝐴 then we call 𝑓

a Δ1
1 compression of 𝐴.
(5) We write 𝐴 ⪯ 𝑛𝐵 if there areΔ1

1 sets 𝐴𝑖 , 𝑖 < 𝑛 such that 𝐴 =
⋃

𝑖<𝑛 𝐴𝑖 and 𝐴𝑖 ⪯ 𝐵
for 𝑖 < 𝑛. Note that 𝐴 ⪯ 1𝐵 ⇐⇒ 𝐴 ⪯ 𝐵.

(6) We write 𝐴 ≺ 𝑛𝐵 if in the previous definition there is some 𝑖 < 𝑛 for which
𝐴𝑖 ≺ 𝐵. Note that 𝐴 ≺ 1𝐵 ⇐⇒ 𝐴 ≺ 𝐵.

(7) We write 𝐴 ⪰ 𝑛𝐵 if there are pairwise disjoint Δ1
1 sets 𝐵𝑖 ⊆ 𝐴, 𝑖 < 𝑛 such that

𝐵𝑖 ∼ 𝐵.
(8) We write 𝐴 ≈ 𝑛𝐵 if there is a partition 𝐴 =

⊔
𝑖<𝑛 𝐵𝑖 ⊔ 𝑅 into Δ1

1 pieces such
that 𝐵𝑖 ∼ 𝐵 and 𝑅 ≺ 𝐵. In particular, 𝐴 ≈ 0𝐵 ⇐⇒ 𝐴 ≺ 𝐵. Note that 𝐴 ≈ 𝑛𝐵 implies
that 𝐴 ⪰ 𝑛𝐵 and 𝐴 ≺ (𝑛 + 1)𝐵.

We also let H denote the set of all 𝐸-invariant Δ1
1 subsets 𝐶 ⊆ N that admit a Δ1

1
compression.

Lemma 1.3.2. (1) Let 𝐴 ⊆ N be Δ1
1. If 𝐴 ≺ 𝐴 then [𝐴]𝐸 ≺ [𝐴]𝐸 .

(2) Let (𝐴𝑛), (𝐵𝑛) be uniformly Δ1
1 families of 𝐸-invariant sets and let ( 𝑓𝑛) be a

uniformly Δ1
1 sequence of maps satisfying 𝑓𝑛 : 𝐴𝑛 ≺ 𝐵𝑛. Then

⋃
𝑛 𝐴𝑛 ≺ ⋃

𝑛 𝐵𝑛. The
same holds when ≺ is replaced by ⪯ or∼, or if these are sequences of pairwise disjoint
but not necessarily 𝐸-invariant sets.

(3) Let 𝐴, 𝐵, 𝐶 ⊆ N be Δ1
1. If 𝐴 ⪰ 𝑛𝐵 and 𝐶 ⪯ 𝑚𝐵 for some 𝑚 ≤ 𝑛, then 𝐶 ⪯ 𝐴.

If additionally 𝐶 ≺ 𝑚𝐵 then 𝐶 ≺ 𝐴.
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Proof. (1) Let 𝑓 : 𝐴 ≺ 𝐴 and let 𝑔(𝑥) = 𝑓 (𝑥) for 𝑥 ∈ 𝐴, 𝑔(𝑥) = 𝑥 for 𝑥 ∈ [𝐴]𝐸 \ 𝐴.
Then 𝑔 : [𝐴]𝐸 ≺ [𝐴]𝐸 .

(2) For 𝑥 ∈ ⋃
𝑛 𝐴𝑛 set 𝑓 (𝑥) = 𝑓𝑛 (𝑥) where 𝑛 is least with 𝑥 ∈ 𝐴𝑛. Then 𝑓 :

⋃
𝑛 𝐴𝑛 ≺⋃

𝑛 𝐵𝑛.
(3) Let 𝐴𝑖 , 𝑖 < 𝑛 be pairwise disjointΔ1

1 subsets of 𝐴, 𝑓𝑖 : 𝐴𝑖 ∼ 𝐵 for 𝑖 < 𝑛,𝐶 𝑗 , 𝑗 < 𝑚

be Δ1
1 sets covering 𝐶 and 𝑔 𝑗 : 𝐶 𝑗 ⪯ 𝐵 for 𝑗 < 𝑚. Define

ℎ(𝑥) = 𝑓 −1
𝑗 ◦ 𝑔 𝑗 (𝑥) for 𝑗 least with 𝑥 ∈ 𝐶 𝑗 .

Then ℎ : 𝐶 ⪯ 𝐴, and if 𝑔 𝑗 : 𝐶 𝑗 ≺ 𝐵 then, letting 𝐶′ = 𝐶 𝑗 \
⋃

𝑘< 𝑗 𝐶𝑘 , we have

[𝐴 \ ℎ(𝐶)]𝐸 ⊇ ([𝐴]𝐸 \ [𝐵]𝐸) ∪ [𝐵 \ 𝑔 𝑗 (𝐶′)]𝐸 = ( [𝐴]𝐸 \ [𝐵]𝐸) ∪ [𝐵]𝐸 = [𝐴]𝐸 ,

so 𝑓 : 𝐶 ≺ 𝐴.

(B) Fundamental sequences.

Definition 1.3.3. A uniformly Δ1
1 fundamental sequence for 𝐸 is a uniformly Δ1

1
decreasing sequence (𝐹𝑛) of sets and a uniformly Δ1

1 sequence ( 𝑓𝑛) of maps such that
𝐹0 = N and 𝑓𝑛 : 𝐹𝑛+1 ∼ 𝐹𝑛 \ 𝐹𝑛+1 for all 𝑛.

Lemma 1.3.4. Let 𝑋 ⊆ N be a Δ1
1 set on which 𝐸 |𝑋 is aperiodic. Then there is a

partition 𝑋 = 𝐴 ⊔ 𝐵 of 𝑋 into Δ1
1 pieces such that 𝐴 ∼ 𝐵. In particular, 𝐸 |𝐴, 𝐸 |𝐵 are

also aperiodic.

Proof. Let < be a Δ1
1 linear order on N (for example the lexicographic order) and let

𝑥 ∈ 𝐴𝑛 ⇐⇒ 𝑥 < 𝛾𝑛𝑥. Define recursively the sets

�̃�𝑛 = {𝑥 ∈ 𝑋 ∩ 𝐴𝑛 : 𝑥, 𝛾𝑛𝑥 ∈ 𝑋 \
⋃
𝑖<𝑛

( �̃�𝑖 ∪ 𝛾𝑖 �̃�𝑖)}.

Let 𝐴 =
⊔

𝑛 �̃�𝑛 and define 𝑓 =
⋃

𝑛 𝛾𝑛 | �̃�𝑛 : 𝐴→ 𝑋 . Because of the uniformity of this
construction, 𝐴, 𝑓 are Δ1

1. It is easy to see that 𝑓 is injective and that 𝑓 (𝐴) ∩ 𝐴 = ∅,
so in particular that 𝑓 : 𝐴 ∼ 𝑓 (𝐴).

We claim that 𝐴 ∪ 𝑓 (𝐴) omits at most one point from each 𝐸 |𝑋-class. To see this,
let 𝑥 < 𝑦 ∈ 𝑋 and suppose that 𝑥𝐸𝑦. Let 𝛾𝑛𝑥 = 𝑦. If 𝑥, 𝑦 ∉

⋃
𝑖<𝑛 ( �̃�𝑖 ∪ 𝛾𝑖 �̃�𝑖), then by

definition we have 𝑥, 𝑦 ∈ �̃�𝑛 ∪ 𝛾𝑛 �̃�𝑛 ⊆ 𝐴 ∪ 𝑓 (𝐴).
Now let 𝑇 = 𝑋 \ (𝐴 ∪ 𝑓 (𝐴)), 𝑌 = 𝑋 ∩ [𝑇]𝐸 , 𝑍 = 𝑋 \ [𝑇]𝐸 . Then 𝑇 is a traversal

of 𝐸 |𝑌 and 𝑓 | (𝐴 ∩ 𝑍) : 𝐴 ∩ 𝑍 ∼ 𝑓 (𝐴) ∩ 𝑍 . Thus it remains to prove the lemma for
𝐸 |𝑌 . In this case, using 𝑇 and the sequence (𝛾𝑛), one can enumerate each 𝐸 |𝑌 -class,
and since these are infinite we can take 𝐴 (resp. 𝐵) to be the even (resp. odd) elements
of this enumeration.

Proposition 1.3.5. There exists a uniformly Δ1
1 fundamental sequence for 𝐸 .
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Proof. We construct the sequences recursively. Let 𝐹0 = N and recursively apply
Lemma 1.3.4 to get 𝐹𝑛+1 and 𝑓𝑛 : 𝐹𝑛+1 ∼ 𝐹𝑛 \ 𝐹𝑛+1. Uniformity of these sequences
follows from the uniformity in the proof of Lemma 1.3.4.

For the remainder of this section, we fix a uniformly Δ1
1 fundamental sequence

(𝐹𝑛) for 𝐸 .

(C) Decompositions of Δ1
1 sets.

Lemma 1.3.6. Let 𝐴, 𝐵 ⊆ N be Δ1
1 and let 𝑍 = [𝐴]𝐸 ∩ [𝐵]𝐸 . There is a partition

𝑍 = 𝑃 ⊔ 𝑄 of 𝑍 into 𝐸-invariant uniformly Δ1
1 sets such that 𝐴 ∩ 𝑃 ≺ 𝐵 ∩ 𝑃 and

𝐵 ∩𝑄 ⪯ 𝐴 ∩𝑄.

Proof. Define recursively the sets

𝐴𝑛 = {𝑥 ∈ 𝐴 \
⋃
𝑖<𝑛

𝐴𝑖 : 𝛾𝑛𝑥 ∈ 𝐵 \
⋃
𝑖<𝑛

𝐵𝑖}, 𝐵𝑛 = 𝛾𝑛𝐴𝑛.

Let �̃� =
⋃

𝑛 𝐴𝑛, �̃� =
⋃

𝑛 𝐵𝑛 and 𝑓 =
⋃

𝑛 𝛾𝑛 |𝐴𝑛. By the uniformity of this construction,
�̃�, �̃�, 𝑓 are all Δ1

1, so that 𝑓 : �̃� ∼ �̃�. If we set 𝑃 = 𝑍 ∩ [𝐵 \ �̃�]𝐸 , 𝑄 = 𝑍 \ 𝑃 then it is
easy to see that 𝐴 ∩ 𝑃 ⊆ �̃�, 𝐵 ∩𝑄 ⊆ �̃� and hence that 𝑓 | (𝐴 ∩ 𝑃) : 𝐴 ∩ 𝑃 ≺ 𝐵 ∩ 𝑃 and
𝑓 −1 | (𝐵 ∩𝑄) : 𝐵 ∩𝑄 ⪯ 𝐴 ∩𝑄.

Proposition 1.3.7. Let 𝐴, 𝐵 ⊆ N be Δ1
1 and let 𝑍 = [𝐴]𝐸 ∩ [𝐵]𝐸 . There exists a

partition 𝑍 =
⊔

𝑛≤∞𝑄𝑛 of 𝑍 into 𝐸-invariantΔ1
1 pieces such that 𝐴 ∩𝑄𝑛 ≈ 𝑛(𝐵 ∩𝑄𝑛)

for 𝑛 < ∞ and 𝑄∞ ∈ H .

Proof. We recursively construct sequences of sets

𝐴𝑛, 𝐵𝑛, �̃�𝑛, �̃�𝑛, 𝑓𝑛, 𝑔𝑛, �̃�𝑛, 𝑄𝑛, 𝑅𝑛, 𝐵
𝑖
𝑛, 𝑓

𝑖
𝑛

for 𝑖 < 𝑛 such that 𝐴 ∩𝑄𝑛 =
⊔

𝑖<𝑛 𝐵
𝑖
𝑛 ⊔ 𝑅 for 𝑛 < ∞, 𝑓 𝑖𝑛 : 𝐵𝑖

𝑛 ∼ 𝐵 ∩𝑄𝑛 for 𝑖 < 𝑛 < ∞,
and 𝑓𝑛 : 𝑅𝑛 ≺ 𝐵 ∩𝑄𝑛 for 𝑛 < ∞.

First we let 𝐴0 = 𝐴, 𝐵0 = 𝐵. We apply Lemma 1.3.6 to these sets to get �̃�0, �̃�0, 𝑓0, 𝑔0
and �̃�0 satisfying

𝑓0 : 𝐴0 ∩ �̃�0 ≺ 𝐵0 ∩ �̃�0, 𝑔0 : 𝐵0 ∩ �̃�0 ⪯ 𝐴0 ∩ �̃�0, �̃�0 = Im(𝑔0).

Define 𝑄0 = �̃�0, 𝑅0 = 𝐴0 ∩𝑄0.
Now let 𝑛 > 0 and suppose we have already constructed

𝐴𝑘 , 𝐵𝑘 , �̃�𝑘 , �̃�𝑘 , 𝑓𝑘 , 𝑔𝑘 , �̃�𝑘 , 𝑄𝑘 , 𝑅𝑘 , 𝐵
𝑖
𝑘 , 𝑓

𝑖
𝑘

for all 𝑖 < 𝑘 < 𝑛. Let 𝐴𝑛 = (𝐴𝑛−1 ∩ �̃�𝑛−1) \ �̃�𝑛−1, 𝐵𝑛 = 𝐵 ∩ �̃�𝑛−1. Apply Lemma 1.3.6
to 𝐴𝑛, 𝐵𝑛 to get �̃�𝑛, �̃�𝑛, 𝑓𝑛, 𝑔𝑛, �̃�𝑛 such that

𝑓𝑛 : 𝐴𝑛 ∩ �̃�𝑛 ≺ 𝐵𝑛 ∩ �̃�𝑛, 𝑔𝑛 : 𝐵𝑛 ∩ �̃�𝑛 ⪯ 𝐴𝑛 ∩ �̃�𝑛, �̃�𝑛 = Im(𝑔𝑛).
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Define 𝑄𝑛 = �̃�𝑛−1 \ �̃�𝑛, 𝑅𝑛 = 𝐴𝑛 ∩𝑄𝑛, 𝐵
𝑖
𝑛 = �̃�𝑖 ∩𝑄𝑛, 𝑓

𝑖
𝑛 = (𝑔𝑖)−1 |𝐵𝑖

𝑛.
By uniformity of this construction it is clear that these sequences are uniformly

Δ1
1. Additionally, 𝐴 ∩𝑄𝑛 ≈ 𝑛(𝐵 ∩𝑄𝑛) for 𝑛 < ∞.

Now let𝑄∞ = 𝑍 \⋃
𝑛𝑄𝑛 =

⋂
𝑛 �̃�𝑛. The sets �̃�𝑛 are pairwise disjoint and 𝑔𝑛 : 𝐵 ∩

�̃�𝑛 ∼ �̃�𝑛 for all 𝑛. Therefore, if we define 𝐵𝑛
∞ = �̃�𝑛 ∩𝑄∞, 𝑔𝑛∞ = 𝑔𝑛 | (𝐵∩𝑄∞) and 𝑔𝑛,𝑚∞ =

𝑔𝑚∞ ◦ (𝑔𝑛∞)−1, we have that the 𝐵𝑛
∞ are pairwise disjoint and 𝑔𝑛,𝑚∞ : 𝐵𝑛

∞ ∼ 𝐵𝑚
∞. Let 𝐵∞ =⋃

𝑛 𝐵
𝑛
∞ and 𝑔∞ =

⋃
𝑛 𝑔

𝑛,𝑛+1
∞ . Then 𝐵∞, 𝑔∞ are Δ1

1 and 𝑔∞ : 𝐵∞ ≺ 𝐵∞. Since [𝐵∞]𝐸 =

[𝐵0
∞]𝐸 = [𝐵 ∩𝑄∞]𝐸 = 𝑄∞, 𝑄∞ admits a Δ1

1 compression by Lemma 1.3.2(1).

Notation 1.3.8. For Δ1
1 sets 𝐴, 𝐵 ⊆ N , we let 𝑄𝐴,𝐵

𝑛 , 𝑛 ≤ ∞ be the decomposition of
[𝐴]𝐸 ∩ [𝐵]𝐸 constructed in Proposition 1.3.7.

(D) The fraction functions.

Definition 1.3.9. We associate to all Δ1
1 sets 𝐴, 𝐵 ⊆ N a fraction function [𝐴/𝐵] :

N → N defined by [
𝐴

𝐵

]
(𝑥) =

{
𝑛 if 𝑥 ∈ 𝑄𝐴,𝐵

𝑛 for some 𝑛 ≤ ∞,
0 otherwise.

Lemma 1.3.10. Let 𝐴, 𝐴0, 𝐴1, 𝐴2, 𝐵, 𝑆 ⊆ N be Δ1
1.

(1) If 𝑥𝐸𝑦 then [𝐴/𝐵] (𝑥) = [𝐴/𝐵] (𝑦).
(2) If 𝐴0 ⪯ 𝐴1 then there is some 𝐶 ∈ H such that [𝐴0/𝐵] (𝑥) ≤ [𝐴1/𝐵] (𝑥) for

𝑥 ∉ 𝐶.
(3) If 𝐴0 ∼ 𝐴1 then there is some 𝐶 ∈ H such that [𝐴0/𝐵] (𝑥) = [𝐴1/𝐵] (𝑥) for

𝑥 ∉ 𝐶.
(4) If 𝑆 is 𝐸-invariant then there is some 𝐶 ∈ H such that for 𝑥 ∈ 𝑆 \ 𝐶 we have

[𝐴/𝐵] (𝑥) = [(𝐴 ∩ 𝑆)/𝐵] (𝑥).
(5) If 𝐴0, 𝐴1 are disjoint then there is some 𝐶 ∈ H such that for 𝑥 ∉ 𝐶,

[𝐴0/𝐵] + [𝐴1/𝐵] ≤ [(𝐴0 ∪ 𝐴1)/𝐵] ≤ [𝐴0/𝐵] + 1 + [𝐴1/𝐵] + 1.

(6) If 𝐴1 is an 𝐸-complete section then there is some 𝐶 ∈ H such that for 𝑥 ∉ 𝐶,

[𝐴0/𝐴1] [𝐴1/𝐴2] ≤ [𝐴0/𝐴2] < ( [𝐴0/𝐴1] + 1) ( [𝐴1/𝐴2] + 1).

(7) There is some𝐶 ∈ H such that [𝐹𝑛/𝐹𝑛+𝑚] = 2𝑚 holds for all 𝑚, 𝑛 ∈ N, 𝑥 ∉ 𝐶.
(8) There is some𝐶 ∈ H such that for all 𝑥 ∈ [𝐴]𝐸 \𝐶 we have [𝐴/𝐹𝑛] (𝑥) →∞.
(9) The set𝑌 = {𝑥 : [𝐴0/𝐵] (𝑥) < [𝐴1/𝐵] (𝑥)} is Δ1

1 and 𝐸-invariant and 𝐴0 ∩𝑌 ⪯
𝐴1 ∩ 𝑌 .

Proof. (1) This is clear, as the sets 𝑄𝐴,𝐵
𝑛 are 𝐸-invariant.

(2) Let 𝐶𝑛,𝑚 = 𝑄
𝐴0 ,𝐵
𝑛 ∩ 𝑄𝐴1 ,𝐵

𝑚 for 𝑚 < 𝑛. Then 𝐴0 ∩ 𝐶𝑛,𝑚 ≈ 𝑛(𝐵 ∩ 𝐶𝑛,𝑚) and
𝐴1 ∩ 𝐶𝑛,𝑚 ≈ 𝑚(𝐵 ∩ 𝐶𝑛,𝑚) so by Lemma 1.3.2(3) and our assumption we have 𝐴0 ∩
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𝐶𝑛,𝑚 ⪯ 𝐴1 ∩𝐶𝑛,𝑚 ≺ 𝐴0 ∩𝐶𝑛,𝑚. By Lemma 1.3.2(2) and the uniformity of the proofs
of Proposition 1.3.7 and Lemma 1.3.2(3), 𝐶 =

⋃
𝑚<𝑛 𝐶𝑛,𝑚 ∈ H , and [𝐴0/𝐵] (𝑥) ≤

[𝐴1/𝐵] (𝑥) for 𝑥 ∉ 𝐶.
(3) This follows from (2).
(4) As in the proof of (2), it suffices to show that 𝐶 = 𝑆 ∩𝑄𝐴,𝐵

𝑘
∩𝑄𝐴∩𝑆,𝐵

𝑙
admits

a Δ1
1 compression (in a uniform way) for 𝑘 ≠ 𝑙. But

𝐴 ∩ 𝐶 ≈ 𝑘 (𝐵 ∩ 𝐶) and 𝐴 ∩ 𝐶 ≈ 𝑙 (𝐵 ∩ 𝐶)

by 𝐸-invariance of 𝐶, so by Lemma 1.3.2(1),(3) 𝐶 admits a Δ1
1 compression.

(5) Let 𝐶 = 𝐶𝑖, 𝑗 ,𝑘 = 𝑄
𝐴0 ,𝐵
𝑖

∩𝑄𝐴1 ,𝐵
𝑗

∩𝑄𝐴2 ,𝐵
𝑘

. Then (5) fails to hold exactly when
𝑥 ∈ 𝐶𝑖, 𝑗 ,𝑘 for 𝑘 < 𝑖 + 𝑗 or 𝑘 > 𝑖 + 1 + 𝑗 + 1. Therefore, as in the proof of (2), it suffices
to show that 𝐶𝑖, 𝑗 ,𝑘 admits a Δ1

1 compression (in a uniform way) for such 𝑖, 𝑗 , 𝑘 .
Now we know that 𝐴0 ∩ 𝐶 ≈ 𝑖(𝐵 ∩ 𝐶), 𝐴1 ∩ 𝐶 ≈ 𝑗 (𝐵 ∩ 𝐶), 𝐴2 ∩ 𝐶 ≈ 𝑘 (𝐵 ∩

𝐶) by 𝐸-invariance of 𝐶. If 𝑘 < 𝑖 + 𝑗 then (𝐴0 ∪ 𝐴1) ∩ 𝐶 ≺ (𝑖 + 𝑗) (𝐵 ∩ 𝐶) and
(since 𝐴0, 𝐴1 are disjoint) we have (𝐴0 ∩ 𝐶) ∪ (𝐴1 ∩ 𝐶) ⪰ (𝑖 + 𝑗) (𝐵 ∩ 𝐶). Thus by
Lemma 1.3.2(1),(3) 𝐶 = [(𝐴0 ∪ 𝐴1) ∩ 𝐶]𝐸 admits a Δ1

1 compression. On the other
hand, if 𝑘 > 𝑖 + 1 + 𝑗 + 1 then (𝐴0 ∩ 𝐶) ∪ (𝐴1 ∩ 𝐶) ≺ (𝑖 + 1 + 𝑗 + 1) (𝐵 ∩ 𝐶) and
(𝐴0 ∪ 𝐴1) ∩ 𝐶 ⪰ 𝑘 (𝐵 ∩ 𝐶), so again 𝐶 admits a Δ1

1 compression.
(6) If 𝑥 ∉ [𝐴0]𝐸 ∪ [𝐴2]𝐸 then this clearly holds. Thus if 𝐶 = 𝐶𝑘,𝑙,𝑚 = 𝑄

𝐴0 ,𝐴1
𝑘

∩
𝑄

𝐴1 ,𝐴2
𝑙

∩ 𝑄𝐴0 ,𝐴2
𝑚 then (6) fails to hold exactly when 𝑥 ∈ 𝐶𝑘,𝑙,𝑚 for 𝑚 < 𝑘𝑙 or 𝑚 ≥

(𝑘 + 1) (𝑙 + 1). Therefore, as in the proof of (2), it suffices to show that these sets admit
a Δ1

1 compression (in a uniform way).
Since 𝐴0 ∩𝐶 ≈ 𝑘 (𝐴1 ∩𝐶) and 𝐴1 ∩𝐶 ≈ 𝑙 (𝐴2 ∩𝐶) we have that 𝐴0 ∩𝐶 ⪰ 𝑘𝑙 (𝐴2 ∩

𝐶). Also, 𝐴0 ∩𝐶 ≈ 𝑚(𝐴2 ∩𝐶), so if 𝑘𝑙 > 𝑚 then by Lemma 1.3.2(1),(3) we are done.
On the other hand, if 𝑚 ≥ (𝑘 + 1) (𝑙 + 1) then 𝐴0 ∩ 𝐶 ⪰ (𝑘 + 1) (𝑙 + 1) (𝐴2 ∩ 𝐶), and
since 𝐴1 ∩ 𝐶 ≈ 𝑙 (𝐴2 ∩ 𝐶) one easily sees that 𝐴0 ∩ 𝐶 ⪰ (𝑘 + 1) (𝐴1 ∩ 𝐶). Thus by
Lemma 1.3.2(1),(3) we are done.

(7) Again it suffices to show that 𝑄𝐹𝑛 ,𝐹𝑛+𝑚
𝑘

admits a Δ1
1 compression in a uniform

way for 𝑘 ≠ 2𝑚. When 𝑘 = ∞ this is clear. Otherwise, one easily sees by defini-
tion of the fundamental sequence that 𝐹𝑛 ≈ 2𝑚𝐹𝑛+𝑚, and moreover there is a uni-
formly Δ1

1 sequence of witnesses to this. It follows that 𝐹𝑛 ∩ 𝑄𝐹𝑛 ,𝐹𝑛+𝑚
𝑘

≈ 2𝑚(𝐹𝑛+𝑚 ∩
𝑄

𝐹𝑛 ,𝐹𝑛+𝑚
𝑘

) and 𝐹𝑛 ∩ 𝑄𝐹𝑛 ,𝐹𝑛+𝑚
𝑘

≈ 𝑘 (𝐹𝑛+𝑚 ∩ 𝑄𝐹𝑛 ,𝐹𝑛+𝑚
𝑘

), so when 𝑘 ≠ 2𝑚 this follows
from Lemma 1.3.2(1),(3).

(8) Let 𝐶0 be the set constructed in (7), 𝐶 (𝐴0, 𝐴1, 𝐴2) be the set constructed in
(6), 𝐶1 =

⋂
𝑛𝑄

𝐴,𝐹𝑛

0 and

𝐶2 =
⋃
𝑛,𝑚

𝐶 (𝐴, 𝐹𝑛, 𝐹𝑛+𝑚) ∪
⋃
𝑛

𝐶 (𝐹0, 𝐹𝑛, 𝐴).
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Let 𝐶 = 𝐶0 ∪𝐶1 ∪𝐶2. If 𝑥 ∈ [𝐴]𝐸 \𝐶 then there is some 𝑛 for which [𝐴/𝐹𝑛] (𝑥) ≠ 0,
so for all 𝑚 we have

[𝐴/𝐹𝑛+𝑚] (𝑥) ≥ [𝐴/𝐹𝑛] (𝑥) [𝐹𝑛/𝐹𝑛+𝑚] (𝑥) ≥ 2𝑚,

and therefore [𝐴/𝐹𝑛] (𝑥) → ∞. By the uniformity of the proofs of (6), (7) and Propo-
sition 1.3.7, 𝐶 is Δ1

1, so it remains to show that it admits a Δ1
1 compression. By the

uniformity of the proofs of (6), (7) and Lemma 1.3.2(2), it suffices to show that 𝐶1 \
(𝐶0 ∪ 𝐶2) admits a Δ1

1 compression.
First we show that 𝐶1 ∩

⋃
𝑛 𝑄

𝐹𝑛 ,𝐴

0 admits a Δ1
1 compression. For this it suffices

to show that 𝐶1 ∩ 𝑄𝐹𝑛 ,𝐴

0 admits a Δ1
1 compression for all 𝑛 (in a uniform way), by

Lemma 1.3.2(2). But by definition and 𝐸-invariance we have

𝐹𝑛 ∩ 𝐶1 ∩𝑄𝐹𝑛 ,𝐴

0 ≺ 𝐴 ∩ 𝐶1 ∩𝑄𝐹𝑛 ,𝐴

0 ≺ 𝐹𝑛 ∩ 𝐶1 ∩𝑄𝐹𝑛 ,𝐴

0 ,

so 𝐹𝑛 ∩ 𝐶1 ∩𝑄𝐹𝑛 ,𝐴

0 admits a Δ1
1 compression, and since 𝐹𝑛 is a complete section we

are done by Lemma 1.3.2(1).
Next we consider𝐶′ = 𝐶1 \ (𝐶0 ∪𝐶2 ∪

⋃
𝑛𝑄

𝐹𝑛 ,𝐴

0 ). For any 𝑥 ∈ 𝐶′, 𝑛 ∈ N, we have

[𝐹0/𝐴] (𝑥) ≥ [𝐹0/𝐹𝑛] (𝑥) [𝐹𝑛/𝐴] (𝑥) ≥ 2𝑛,

so [𝐹0/𝐴] (𝑥) = ∞ and 𝑥 ∈ 𝑄𝐹0 ,𝐴
∞ . Thus 𝐶′ ⊆ 𝑄𝐹0 ,𝐴

∞ admits a Δ1
1 compression.

(9) This set is clearly Δ1
1 and it is 𝐸-invariant by (1). Next note that 𝑌 ⊆ [𝐵]𝐸 \

𝑄
𝐴0 ,𝐵
∞ so we can decompose 𝑌 into 𝑌0 = 𝑌 \ [𝐴0]𝐸 and 𝑌1 = 𝑌 ∩ [𝐴0]𝐸 =

⋃
𝑛 (𝑌 ∩

𝑄
𝐴0 ,𝐵
𝑛 ). Since 𝑌0 ∩ 𝐴0 = ∅ we clearly have 𝑌0 ∩ 𝐴0 ⪯ 𝑌0 ∩ 𝐴1, so it remains to show

that 𝑌1 ∩ 𝐴0 ⪯ 𝑌1 ∩ 𝐴1. But by Lemma 1.3.2(3) we have that 𝐴0 ∩𝑄𝐴0 ,𝐵
𝑚 ∩𝑄𝐴1 ,𝐵

𝑛 ⪯
𝐴1 ∩𝑄𝐴0 ,𝐵

𝑚 ∩𝑄𝐴1 ,𝐵
𝑛 for 𝑚 < 𝑛, so by Lemma 1.3.2(2) we are done.

(E) Local measures.

Proposition 1.3.11. Let 𝐴 ⊆ N be Δ1
1. Then there is some 𝐶 ∈ H such that

lim
𝑛

[𝐴/𝐹𝑛] (𝑥)
[N/𝐹𝑛] (𝑥)

exists for 𝑥 ∉ 𝐶, and the limit is zero for 𝑥 ∉ [𝐴]𝐸 ∪ 𝐶 and is non-zero and finite for
𝑥 ∈ [𝐴]𝐸 \ 𝐶.

Proof. Let 𝐶0(𝐴0, 𝐴1, 𝐴2), 𝐶1, 𝐶2(𝐴) be the sets we have constructed in the proofs
of Lemma 1.3.10(6)(7)(8), respectively, and take 𝐶 =

⋃
𝑛,𝑚 𝐶0(𝐴, 𝐹𝑛, 𝐹𝑛+𝑚) ∪ 𝐶1 ∪

𝐶2(𝐴) ∪
⋃

𝑛𝑄
𝐴,𝐹𝑛
∞ . By Lemma 1.3.2(2) and the uniformity of Lemma 1.3.10,𝐶 ∈ H .

If 𝑥 ∉ [𝐴]𝐸 ∪𝐶 then [𝐴/𝐹𝑛] (𝑥) = 0 and [N/𝐹𝑛] (𝑥) = 2𝑛 for all 𝑛, so the limit exists
and is zero.
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Now suppose that 𝑥 ∈ [𝐴]𝐸 \ 𝐶. Then [𝐹𝑛/𝐹𝑛+𝑚] (𝑥) = 2𝑚 for all 𝑚, 𝑛 ∈ N, and

[𝐴/𝐹𝑛+𝑚] (𝑥) ≤ ([𝐴/𝐹𝑛] (𝑥) + 1) ( [𝐹𝑛/𝐹𝑛+𝑚] (𝑥) + 1),

so
lim sup
𝑚→∞

[𝐴/𝐹𝑛+𝑚] (𝑥)
[N/𝐹𝑛+𝑚] (𝑥)

≤ [𝐴/𝐹𝑛] (𝑥) + 1
[N/𝐹𝑛] (𝑥)

.

Thus the limit exists and is finite at 𝑥. To see that the limit is non-zero at 𝑥, note that
[𝐴/𝐹𝑛+𝑚] (𝑥) ≥ [𝐴/𝐹𝑛] (𝑥) [𝐹𝑛/𝐹𝑛+𝑚] (𝑥) for all 𝑚, 𝑛 ∈ N, so

lim inf
𝑚→∞

[𝐴/𝐹𝑛+𝑚] (𝑥)
[N/𝐹𝑛+𝑚] (𝑥)

≥ [𝐴/𝐹𝑛] (𝑥)
[N/𝐹𝑛] (𝑥)

for all 𝑛, and since [𝐴/𝐹𝑛] (𝑥) →∞ this lower bound must be non-zero for some 𝑛.

Definition 1.3.12. Let 𝐴 ⊆N beΔ1
1 and let𝐶𝐴 ∈H be the set constructed in the proof

of Proposition 1.3.11. We associate to 𝐴 the local measure function 𝑚(𝐴, ·) : N \
𝐶𝐴 → R defined by

𝑚(𝐴, 𝑥) = lim
𝑛

[𝐴/𝐹𝑛] (𝑥)
[N/𝐹𝑛] (𝑥)

.

Note that the local measure function is Δ1
1, uniformly in 𝐴.

Lemma 1.3.13. Let 𝐴, 𝐵, 𝑆 ⊆ N be Δ1
1.

(1) If 𝑥𝐸𝑦 then 𝑚(𝐴, 𝑥) = 𝑚(𝐴, 𝑦) for 𝑥, 𝑦 ∉ 𝐶𝐴.
(2) Let 𝑌 = {𝑥 ∈ N \ (𝐶𝐴 ∪𝐶𝐵) : 𝑚(𝐴, 𝑥) < 𝑚(𝐵, 𝑥)}. Then 𝑌 is Δ1

1, 𝐸-invariant
and 𝐴 ∩ 𝑌 ⪯ 𝐵 ∩ 𝑌 .

(3) Suppose 𝑆 is 𝐸-invariant. Then there is some 𝐶 ∈ H such that for 𝑥 ∉ 𝐶,

𝑚(𝑆, 𝑥) =
{

1 𝑥 ∈ 𝑆,
0 𝑥 ∉ 𝑆.

(4) If 𝑆 is 𝐸-invariant, then there is some 𝐶 ∈ H such that for 𝑥 ∈ 𝑆 \ 𝐶 we have
𝑚(𝐴, 𝑥) = 𝑚(𝐴 ∩ 𝑆, 𝑥).

Proof. (1) This follows from Lemma 1.3.10(1).
(2) This set is 𝐸-invariant by (1) and is Δ1

1 because the local measure functions are
Δ1

1. Now let
𝑌𝑛 = {𝑥 ∈ 𝑌 : [𝐴/𝐹𝑛] (𝑥) < [𝐵/𝐹𝑛] (𝑥)}.

The sets𝑌𝑛 are𝐸-invariant,Δ1
1 and cover𝑌 , so by Lemma 1.3.10(9) and Lemma 1.3.2(2)

we have 𝐴 ∩ 𝑌 ⪯ 𝐵 ∩ 𝑌 .
(3) If 𝑥 ∉ 𝑆 then [𝑆/𝐹𝑛] (𝑥) = 0 for all 𝑛, so𝑚(𝑆, 𝑥) = 0. On the other hand, if 𝑥 ∈ 𝑆

then [𝑆/𝐹𝑛] (𝑥) = 𝑘 ⇐⇒ 𝑥 ∈ 𝑄𝑆,𝐹𝑛

𝑘
, so it suffices to show that

⋃
𝑘≠2𝑛 𝑄

𝑆,𝐹𝑛

𝑘
∈ H .

This is done exactly as in the proof of Lemma 1.3.10(7).
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(4) Let 𝐶0(𝐴, 𝐵, 𝑆) be the set constructed in the proof of Lemma 1.3.10(4) and
take𝐶 =

⋃
𝑛𝐶0(𝐴, 𝐹𝑛, 𝑆) ∪𝐶𝐴 ∪𝐶𝐴∩𝑆 . Then𝐶 ∈ H by Lemma 1.3.2(2) and clearly

𝐶 works.

Proposition 1.3.14. Let 𝐴, 𝐵, 𝑆 ⊆ N be Δ1
1 and let (𝐴𝑛) be a uniformly Δ1

1 sequence
of subsets of N .

(1) If 𝐴 ⪯ 𝐵 then there is some 𝐶 ∈ H such that 𝑚(𝐴, 𝑥) ≤ 𝑚(𝐵, 𝑥) for 𝑥 ∉ 𝐶.
(2) If 𝐴 ∼ 𝐵 then there is some 𝐶 ∈ H such that 𝑚(𝐴, 𝑥) = 𝑚(𝐵, 𝑥) for 𝑥 ∉ 𝐶.
(3) If 𝐴, 𝐵 are disjoint then there is some 𝐶 ∈ H such that 𝑚(𝐴, 𝑥) + 𝑚(𝐵, 𝑥) =

𝑚(𝐴 ⊔ 𝐵, 𝑥) for 𝑥 ∉ 𝐶.
(4) Suppose the (𝐴𝑛) are pairwise disjoint, 𝑆 is 𝐸-invariant and the partial maps

𝑚(𝐴, ·), 𝑚(𝐴𝑛, ·) are defined on 𝑆. Suppose additionally that 𝑚(𝐴, 𝑥) > ∑
𝑛 𝑚(𝐴𝑛, 𝑥)

for 𝑥 ∈ 𝑆. Then there is some 𝐶 ∈ H satisfying (⊔𝑛 𝐴𝑛) ∩ (𝑆 \ 𝐶) ⪯ 𝐴 ∩ (𝑆 \ 𝐶).
(5) If 𝐴 =

⊔
𝑛 𝐴𝑛 then there is some 𝐶 ∈ H such that 𝑚(𝐴, 𝑥) = ∑

𝑛 𝑚(𝐴𝑛, 𝑥) for
𝑥 ∉ 𝐶.

Proof. (1) Let 𝐶 =
⋃

𝑛𝐶0(𝐴, 𝐵, 𝐹𝑛) ∪𝐶𝐴 ∪𝐶𝐵, where 𝐶0(𝐴0, 𝐴1, 𝐵) denotes the set
constructed in the proof of Lemma 1.3.10(2).

(2) This follows from (1).
(3) Let 𝐶0(𝐴0, 𝐴1, 𝐵) and 𝐶1 be the sets we have constructed in the proofs of

Lemma 1.3.10(5) and (7), respectively, and take𝐶 =
⋃

𝑛𝐶0(𝐴, 𝐵, 𝐹𝑛) ∪𝐶𝐴 ∪𝐶𝐵 ∪𝐶1.
(4) We construct recursively a sequence ofΔ1

1 sets and functions �̃�𝑛, 𝐵𝑛,𝐶𝑛, 𝑆𝑛, 𝑓𝑛,
𝑔𝑛 such that �̃�𝑛+1 = �̃�𝑛 \ 𝐵𝑛, 𝑆𝑛+1 = 𝑆𝑛 \ 𝐶𝑛, 𝑓𝑛 : 𝐴𝑛 ∩ 𝑆𝑛 ∼ 𝐵𝑛 ∩ 𝑆𝑛, 𝑔𝑛 : 𝐶𝑛 ≺ 𝐶𝑛,
and 𝑚( �̃�𝑛, 𝑥) >

∑
𝑘≥𝑛 𝑚(𝐴𝑘 , 𝑥) for 𝑥 ∈ 𝑆𝑛. To do this, we first set �̃�0 = 𝐴, 𝑆0 = 𝑆.

Now suppose we have �̃�𝑛, 𝑆𝑛 satisfying 𝑚( �̃�𝑛, 𝑥) >
∑

𝑘≥𝑛 𝑚(𝐴𝑘 , 𝑥) for 𝑥 ∈ 𝑆𝑛. Then
𝑚( �̃�𝑛, 𝑥) > 𝑚(𝐴𝑛, 𝑥) for 𝑥 ∈ 𝑆𝑛, so by Lemma 1.3.13(2) we can find 𝐵𝑛 ⊆ �̃�𝑛 and
𝑓𝑛 : 𝐴𝑛 ∩ 𝑆𝑛 ∼ 𝐵𝑛 ∩ 𝑆𝑛. By (2), (3) and Lemma 1.3.13(4) there are 𝑔𝑛 : 𝐶𝑛 ≺ 𝐶𝑛 such
that for 𝑥 ∈ 𝑆𝑛 \𝐶𝑛 we have 𝑚(𝐴𝑛, 𝑥) = 𝑚(𝐵𝑛, 𝑥) and 𝑚( �̃�𝑛, 𝑥) = 𝑚(𝐵𝑛, 𝑥) +𝑚( �̃�𝑛 \
𝐵𝑛, 𝑥). We then define �̃�𝑛+1 = �̃�𝑛 \ 𝐵𝑛, 𝑆𝑛+1 = 𝑆𝑛 \ 𝐶𝑛.

By the uniformity of the proofs of (2), (3) and Lemma 1.3.13, these sequences
are uniformly Δ1

1. Let 𝐶 =
⋃

𝑛 𝐶𝑛, and note that 𝑆 \ 𝐶 =
⋂

𝑛 𝑆𝑛, so 𝐴𝑛 ∩ (𝑆 \ 𝐶) ∼
𝐵𝑛 ∩ (𝑆 \ 𝐶) for all 𝑛. Thus by Lemma 1.3.2(2) we have 𝐶 ∈ H and

(
⊔
𝑛

𝐴𝑛) ∩ (𝑆 \ 𝐶) ∼ (
⊔
𝑛

𝐵𝑛) ∩ (𝑆 \ 𝐶) ⊆ 𝐴 ∩ (𝑆 \ 𝐶).

(5) Let 𝐶0(𝐴, 𝐵), 𝐶1(𝐴, 𝐵) be the sets constructed in the proofs of (1) and (3),
respectively, and let

�̃� = 𝐶𝐴 ∪
⋃
𝑛

[𝐶𝐴𝑛
∪ 𝐶0(𝐴0 ∪ · · · ∪ 𝐴𝑛, 𝐴) ∪ 𝐶1(𝐴0 ∪ · · · ∪ 𝐴𝑛, 𝐴𝑛+1)] .
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Then for 𝑥 ∉ �̃� and 𝑛 ∈ N we have∑︁
𝑘<𝑛

𝑚(𝐴𝑘 , 𝑥) = 𝑚(
⋃
𝑘<𝑛

𝐴𝑘 , 𝑥) ≤ 𝑚(𝐴, 𝑥),

and therefore
∑

𝑛 𝑚(𝐴𝑛, 𝑥) ≤ 𝑚(𝐴, 𝑥) for 𝑥 ∉ �̃�.
Now let 𝐶2 be the set constructed in the proof of Lemma 1.3.10(7) and define

𝐶 = �̃� ∪ 𝐶2 ∪ 𝐶N\𝐴 ∪ 𝐶1(𝐴,N \ 𝐴) ∪
⋃
𝑛

[𝐶𝐹𝑛
∪ 𝐶N\𝐹𝑛

∪ 𝐶1(𝐹𝑛,N \ 𝐹𝑛)] .

Then for 𝑥 ∉ 𝐶 we have
•

∑
𝑛 𝑚(𝐴𝑛, 𝑥) ≤ 𝑚(𝐴, 𝑥),

• 𝑚(𝐴, 𝑥) + 𝑚(N \ 𝐴, 𝑥) = 𝑚(N , 𝑥),
• ∀𝑛(𝑚(𝐹𝑛, 𝑥) = 2−𝑛), and
• ∀𝑛(𝑚(𝐹𝑛, 𝑥) + 𝑚(N \ 𝐹𝑛, 𝑥) = 𝑚(N , 𝑥)).

Let 𝑆𝑘 = {𝑥 ∉𝐶 :𝑚(𝐴,𝑥) >∑
𝑛𝑚(𝐴𝑛, 𝑥) + 2−𝑘}. These sets areΔ1

1 and 𝐸-invariant,
and if 𝑥 ∉𝐶 ∪⋃

𝑘 𝑆𝑘 then𝑚(𝐴,𝑥) =∑
𝑛𝑚(𝐴𝑛, 𝑥). By the uniformity of the construction

of 𝐶, 𝑆𝑘 and Lemma 1.3.2(2), it remains to show that each 𝑆𝑘 ∈ H .
For 𝑥 ∈ 𝑆𝑘 we have

𝑚(N \ 𝐹𝑘 , 𝑥) = 𝑚(𝐴, 𝑥) + 𝑚(N \ 𝐴, 𝑥) − 𝑚(𝐹𝑘 , 𝑥) > 𝑚(N \ 𝐴, 𝑥) +
∑︁
𝑛

𝑚(𝐴𝑛, 𝑥).

By (4) there is some 𝐶𝑘 ∈ H for which

𝑆𝑘 \ 𝐶𝑘 =

(⋃
𝑛

𝐴𝑛 ∪ (N \ 𝐴)
)
∩ (𝑆𝑘 \ 𝐶𝑘) ⪯ (N \ 𝐹𝑘) ∩ (𝑆𝑘 \ 𝐶𝑘).

Since 𝐹𝑘 is an 𝐸-complete section, this means that 𝑆𝑘 \ 𝐶𝑘 ∈ H , and hence that
𝑆𝑘 ∈ H , as desired.

(F) Proof of the Effective Nadkarni’s Theorem.

Recall that we have fixed some sequence of maps (𝛾𝑛) satisfying (1) of Theo-
rem 1.2.2. Fix now some 𝜏,U, 𝑑, (𝑈𝑘

𝑛 ) satisfying (2), (3) of Theorem 1.2.2. Let𝐶𝐴 be
the set defined in Definition 1.3.12, and let 𝐶0(𝐴, 𝐵), 𝐶1(𝐴, 𝐵), 𝐶2(𝐴, (𝐴𝑛)) be the
sets constructed in the proofs of Proposition 1.3.14(2), (3) and (5), respectively. Now
define

𝐶 =
⋃

{𝐶𝑈 : 𝑈 ∈ U}

∪
⋃

{𝐶0(𝑈, 𝛾𝑛𝑈) : 𝑈 ∈ U, 𝑛 ∈ N}

∪
⋃

{𝐶1(𝑈,𝑉 \𝑈) : 𝑈,𝑉 ∈ U}

∪
⋃

{𝐶2(𝑈, (𝑈𝑘
𝑛 )𝑛) : 𝑈 ∈ U, 𝑘 > 0}.
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By the uniformity of the constructions of the 𝐶𝐴, 𝐶0, 𝐶1, 𝐶2, along with the fact that
U, (𝑈𝑘

𝑛 ) are uniformlyΔ1
1, there is a uniformlyΔ1

1 enumeration of the sets in this union,
so 𝐶 is Δ1

1. By this uniformity and Lemma 1.3.2(2), 𝐶 admits a Δ1
1 compression.

If N = 𝐶, then 𝐸 admits a Δ1
1 compression. So suppose N ≠ 𝐶 and fix some

𝑥 ∈ N \ 𝐶. By construction, the following hold for 𝑥:
• 𝑚(∅, 𝑥) = 0 and 𝑚(N , 𝑥) = 1;
• for all 𝑈 ∈ U, 𝑚(𝑈, 𝑥) exists, is zero for 𝑥 ∉ [𝑈]𝐸 , and is non-zero and finite for

𝑥 ∈ [𝑈]𝐸 ;
• 𝑚(𝑈, 𝑥) = 𝑚(𝛾𝑛𝑈, 𝑥) for all𝑈 ∈ U, 𝑛 ∈ N;
• 𝑚(𝑈 ⊔𝑉, 𝑥) = 𝑚(𝑈, 𝑥) + 𝑚(𝑉, 𝑥) for all disjoint𝑈,𝑉 ∈ U; and
• for all𝑈 ∈ U and 𝑘 > 0, 𝑚(𝑈, 𝑥) = ∑

𝑛 𝑚(𝑈𝑘
𝑛 , 𝑥).

Now define

𝜇∗𝑥 (𝐴) = inf{
∑︁
𝑛

𝑚(𝑈𝑛, 𝑥) : 𝑈𝑛 ∈ U & 𝐴 ⊆
⋃
𝑛

𝑈𝑛}.

As in the classical proof of Nadkarni’s Theorem (cf. [1, p. 51-52] or [10, Theo-
rem 2.8.1]), 𝜇∗𝑥 is a metric outer measure whose restriction 𝜇𝑥 to the Borel sets is
an 𝐸-invariant probability Borel measure satisfying 𝜇𝑥 (𝑈) = 𝑚(𝑈, 𝑥), for 𝑈 ∈ U.
Thus, 𝐸 admits an invariant probability Borel measure.

1.4 A counterexample

Let 𝐸 be a Δ1
1 CBER on N . Nadkarni’s Theorem says that either 𝐸 is compressible or

𝐸 admits an invariant probability Borel measure. We have seen in Theorem 1.1.4 that
if 𝐸 is compressible, then actually there is a Δ1

1 witness of this. On the other hand, if
𝐸 is non-compressible, one may ask if there is an effective witness of this, i.e., if 𝐸
admits a Δ1

1 invariant probability measure. It turns out that this is true if, for example,
𝐸 is induced by a continuous, Δ1

1 action of a countable group on the Cantor space, but
it is not true in general.

Let 𝑃(C) denote the space of probability Borel measures on C. As with 𝑃(N),
we identify 𝑃(C) with the Π0

1 set of all 𝜑 ∈ [0, 1]2<N satisfying 𝜑(∅) = 1 and 𝜑(𝑠) =
𝜑(𝑠⌢0) + 𝜑(𝑠⌢1) for 𝑠 ∈ 2<N. We then have the following:

Proposition 1.4.1. Let 𝐸 be a CBER on the Cantor space C. Suppose there is a uni-
formlyΔ1

1 sequence ( 𝑓𝑛) of homeomorphisms ofC inducing 𝐸 , i.e., such that 𝑥𝐸𝑦 ⇐⇒
∃𝑛( 𝑓𝑛 (𝑥) = 𝑦). Then if 𝐸 is non-compressible, 𝐸 admits a Δ1

1 invariant probability
measure.

Proof. Let INV𝐸 ⊆ 𝑃(C) be the set of all 𝐸-invariant probability Borel measures on
C. If 𝐸 is non-compressible, then INV𝐸 is compact, Δ1

1 and non-empty. By the basis
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theorem [8, 4F.11], INV𝐸 contains a Δ1
1 point, which is a Δ1

1 𝐸-invariant probability
measure on C.

Let 𝐸, 𝐹 be CBERs on the standard Borel spaces 𝑋,𝑌 respectively. We say that 𝐸
is Borel invariantly embeddable to 𝐹, denoted 𝐸 ⊑𝑖

𝐵
𝐹, if there is an injective Borel

map 𝑓 : 𝑋 → 𝑌 such that 𝑥𝐸𝑦 ⇐⇒ 𝑓 (𝑥)𝐹 𝑓 (𝑦), and such that additionally 𝑓 (𝑋) ⊆ 𝑌
is 𝐹-invariant. We say 𝐹 is invariantly universal if 𝐸 ⊑𝑖

𝐵
𝐹 for any CBER 𝐸 . Clearly,

all invariantly universal CBERs admit invariant probability Borel measures.

Proposition 1.4.2. There exists an invariantly universal Δ1
1 CBER on N that does not

admit a Δ1
1 invariant probability measure.

Proof. Let F∞ be the free group on a countably infinite set of generators, and take
𝐹0 to be the shift equivalence relation on NF∞ � N . Note that 𝐹0 is an invariantly
universal Δ1

1 CBER. Let 𝐹1 be a compressible Δ1
1 CBER on N . Let 𝑇 be an ill-founded

computable tree onNwith no Δ1
1 branches (cf. [8, 4D.10]), and define the equivalence

relation 𝐸 on N ×N by

(𝑤, 𝑥)𝐸 (𝑦, 𝑧) ⇐⇒ 𝑤 = 𝑦 & [(𝑤 ∈ [𝑇] & 𝑥𝐹0𝑧) or (𝑤 ∉ [𝑇] & 𝑥𝐹1𝑧)] .

Then 𝐸 is a non-compressible invariantly universalΔ1
1 CBER onN ×N �N , because

𝑇 is ill-founded and 𝐹0 is non-compressible and invariantly universal.
Now suppose for the sake of contradiction that 𝐸 admits a Δ1

1 invariant probability
measure 𝜇. For 𝑠 ∈ N<N, let 𝑁𝑠 = {𝑥 ∈ N : 𝑠 ⊆ 𝑥}, and define 𝑆 = {𝑠 ∈ N<N : 𝜇(𝑁𝑠 ×
N) > 0}. Then 𝑆 is a non-empty prunedΔ1

1 subtree of𝑇 , because if 𝑠 ∉ 𝑇 then 𝐸 | (𝑁𝑠 ×
N) is compressible, so 𝜇(𝑁𝑠 × N) = 0. But then 𝑆, and hence 𝑇 , has a Δ1

1 branch, a
contradiction.

Remark 1.4.3. Let 𝐸 be the equivalence relation induced by the shift action of F∞ on
CF∞ , and let 𝐹𝑟 (CF∞) ⊆ CF∞ be the free part of CF∞ , i.e., the set of points 𝑥 such that
𝛾𝑥 ≠ 𝑥,∀𝛾 ∈ F∞, 𝛾 ≠ 1. Then 𝐸 |𝐹𝑟 (CF∞) is invariantly universal for CBERs that can
be induced by a free Borel action of F∞.

Using the representation of Δ1
1 CBERs constructed in Section 1.2, and [8, 4F.14],

one sees that the proof of [5, Theorem 3.3.1] is effective. In particular, there is a Δ1
1,

compact, 𝐸-invariant set 𝐾 ⊆ CF∞ admitting a Δ1
1 isomorphism 𝐸 |𝐾 � 𝐸 |𝐹𝑟 (CF∞).

Now consider the equivalence relation 𝐹 on N × CF∞ given by

(𝑤, 𝑥)𝐹 (𝑦, 𝑧) ⇐⇒ 𝑤 = 𝑦 & 𝑥𝐸𝑧.

Let 𝑇 be the tree from the proof of Proposition 1.4.2 and let 𝑋 = [𝑇] × 𝐹𝑟 (CF∞). Then
𝐹 |𝑋 is invariantly universal for CBERs that can be induced by a free action of F∞,
so there is a Borel isomorphism 𝐹 |𝑋 � 𝐸 |𝐹𝑟 (CF∞), and 𝐹 |𝑋 does not admit a Δ1

1
invariant probability Borel measure.
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It follows that 𝐹 |𝑋 is Borel isomorphic to a Δ1
1 compact subshift of CF∞ . However,

by the proof of Proposition 1.4.1, every such subshift admits a Δ1
1 invariant probability

Borel measure, so there is noΔ1
1 isomorphism between 𝐹 |𝑋 and aΔ1

1 compact subshift
of CF∞ . In particular, 𝐹 |𝑋 is a concrete witness to [5, Proposition 3.8.15].

1.5 Proof of Effective Ergodic Decomposition

As noted in [9], the proof of Nadkarni’s Theorem can be used to provide a proof
of the Ergodic Decomposition Theorem (see also [10, Section 2.9]). We will now
show that this argument can also be effectivized, providing a proof of the Effective
Ergodic Decomposition Theorem for invariant measures from the proof of the Effec-
tive Nadkarni’s Theorem. This provides a different proof of a special case of Ditzen’s
Effective Ergodic Decomposition Theorem [2], which is proved more generally for
quasi-invariant measures.

Let 𝐸 be a non-compressible CBER on the Baire space N , in order to prove the
Ergodic Decomposition Theorem for 𝐸 . We may partition N = 𝑋 ⊔ 𝑌 into Δ1

1 𝐸-
invariant pieces so that 𝐸 |𝑋 is aperiodic and every 𝐸 |𝑌 -class 𝐶 ⊆ 𝑌 is finite. It is easy
to see that the Ergodic Decomposition Theorem holds for 𝐸 |𝑌 , so we may assume that
𝐸 is aperiodic.

Fix ( 𝑓𝑛), 𝜏,U, 𝑑, (𝑈𝑘
𝑛 ) satisfying Theorem 1.2.2 for 𝐸 . By the proof of the Effective

Nadkarni’s Theorem, there is a Δ1
1 𝐸-invariant set𝐶 ⊆ N and a local measure function

𝑚, such that that𝐶 admits a Δ1
1 compression and for each 𝑥 ∈ N \𝐶 there is a (unique)

𝐸-invariant probability Borel measure 𝜇𝑥 on 𝑋 satisfying 𝜇𝑥 (𝑈) = 𝑚(𝑈, 𝑥) for all
𝑈 ∈ U.

ForΔ1
1 sets 𝐴, 𝐵 ⊆N , let𝑄𝐴,𝐵

𝑛 be the associated decomposition (cf. Notation 1.3.8).
Let 𝐹𝑛 be the uniformly Δ1

1 fundamental sequence for 𝐸 used in the proof of the Effec-
tive Nadkarni’s Theorem, and for 𝑠 ∈N<N, let 𝑁𝑠 = {𝑥 ∈ N : 𝑠 ⊆ 𝑥}. For 𝑠 ∈N<N, 𝑛, 𝑘 ∈
N define

𝑆𝑠,𝑛,𝑘 =

{
(N \ [𝑁𝑠]𝐸) ∪𝑄𝑁𝑠 ,𝐹𝑛

0 𝑘 = 0,
𝑄

𝑁𝑠 ,𝐹𝑛

𝑘
otherwise.

By the proof of Theorem 1.2.2, we may assume that 𝑆𝑠,𝑛,𝑘 ∈ U for all 𝑠, 𝑛, 𝑘 .
Now let 𝑍 =N \ (𝐶 ∪⋃

𝑠,𝑛,𝑘𝐶0(𝑆𝑠,𝑛,𝑘)), where𝐶0(𝑆) is the set constructed in the
proof of Lemma 1.3.13(3). By the uniformity of this construction and Lemma 1.3.2(2),
N \ 𝑍 isΔ1

1 and admits aΔ1
1 compression. By invariance of the local measure function,

the assignment 𝑥 ↦→ 𝜇𝑥 is 𝐸-invariant. Additionally, as noted in the introduction, we
may identify 𝑃(N) with the subspace of 𝜑 ∈ [0, 1]N<N satisfying 𝜑(∅) = 1 and 𝜑(𝑠) =∑

𝑛 𝜑(𝑠⌢𝑛), for 𝑠 ∈ N<N. Then, by uniformity in 𝐴 of the local measure function
𝑚(𝐴, 𝑥), the assignment 𝑥 ↦→ 𝜇𝑥 defines a Δ1

1 map 𝑍 → INV𝐸 ⊆ [0, 1]N<N .
For 𝑥 ∈ 𝑍 , let 𝑆𝑥 = {𝑦 ∈ 𝑍 : 𝜇𝑦 = 𝜇𝑥}.
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Lemma 1.5.1. For any 𝑥 ∈ 𝑍 , 𝜇𝑥 (𝑆𝑥) = 1.

Proof. If 𝑥 ∈ 𝑆𝑠,𝑛,𝑘 , then by definition of 𝑍 , 𝐸-invariance of 𝑆𝑠,𝑛,𝑘 and the fact that
𝑆𝑠,𝑛,𝑘 ∈ U, we have 𝜇𝑥 (𝑆𝑠,𝑛,𝑘) = 𝑚(𝑆𝑠,𝑛,𝑘 , 𝑥) = 1.

Now define 𝑆𝑥 = 𝑍 ∩⋂{𝑆𝑠,𝑛,𝑘 : 𝑥 ∈ 𝑆𝑠,𝑛,𝑘}. SinceN \ 𝑍 is compressible, 𝜇𝑥 (𝑍) =
1, and so 𝜇𝑥 (𝑆𝑥) = 1. If 𝑦 ∈ 𝑆𝑥 , then [𝑁𝑠/𝐹𝑛] (𝑥) = [𝑁𝑠/𝐹𝑛] (𝑦) for all 𝑠, 𝑛, so 𝜇𝑦 (𝑁𝑠) =
𝑚(𝑁𝑠, 𝑦) = 𝑚(𝑁𝑠, 𝑥) = 𝜇𝑥 for all 𝑠 ∈ N<N, and hence 𝜇𝑦 = 𝜇𝑥 . Therefore 𝑆𝑥 ⊆ 𝑆𝑥 ,
and 𝜇𝑥 (𝑆𝑥) = 1.

Lemma 1.5.2. Let 𝑆 ⊆ N be 𝐸-invariant and Borel. Then there is an 𝐸-invariant
compressible Borel set 𝐶 ⊆ N such that for 𝑥 ∉ 𝐶 we have

𝜇𝑥 (𝑆) = 𝑚(𝑆, 𝑥) =
{

1 𝑥 ∈ 𝑆,
0 𝑥 ∉ 𝑆.

Proof. By relativizing, we may assume 𝑆 is Δ1
1. Repeat the proofs of this section,

assuming this time that 𝑆 ∈ U, to get a Δ1
1 set 𝑍 ′ ⊆ N and a Δ1

1 assignment 𝑍 ′ ∋ 𝑥 ↦→
𝜇′𝑥 ∈ INV𝐸 induced by a local measure function 𝑚′. Note that 𝑚 = 𝑚′ by uniformity
of the construction of the local measure function, and hence 𝜇𝑥 = 𝜇′𝑥 for 𝑥 ∈ 𝑍 ∩ 𝑍 ′.

Let 𝐶 = (N \ 𝑍 ∩ 𝑍 ′) ∪𝐶0(𝑆), where 𝐶0(𝑆) is the set constructed in the proof of
Lemma 1.3.13(3). Then 𝐶 admits a Δ1

1 compression, and if 𝑥 ∉ 𝐶 then

𝜇𝑥 (𝑆) = 𝜇′𝑥 (𝑆) = 𝑚′ (𝑆, 𝑥) =
{

1 𝑥 ∈ 𝑆,
0 𝑥 ∉ 𝑆.

Proposition 1.5.3. For any 𝑥 ∈ 𝑍 , 𝜇𝑥 is the unique 𝐸-ergodic invariant probability
Borel measure on 𝐸 |𝑆𝑥 . Moreover, every 𝐸-ergodic invariant probability Borel mea-
sure is equal to 𝜇𝑥 , for some 𝑥 ∈ 𝑍 .

Proof. Fix 𝑥 ∈ 𝑍 . Note that 𝑆𝑥 is 𝐸-invariant, Borel and non-compressible (as it sup-
ports the 𝐸-invariant measure 𝜇𝑥). Now let 𝑌 ⊆ N be 𝐸-invariant and Borel. By
Lemma 1.5.2 there is an 𝐸-invariant compressible Borel set𝐶 ⊆ N such that for 𝑦 ∉𝐶,
𝜇𝑦 (𝑌 ) ∈ {0, 1}. Since 𝑆𝑥 is 𝐸-invariant and non-compressible, there must be some
𝑦 ∈ 𝑆𝑥 \ 𝐶. Then 𝜇𝑥 (𝑌 ) = 𝜇𝑦 (𝑌 ) ∈ {0, 1}. Since 𝑌 was arbitrary, 𝜇𝑥 is 𝐸-ergodic.

Now let 𝜈 be any 𝐸-ergodic invariant probability Borel measure. For every 𝑠 ∈
N<N, 𝑛 ∈ N, there is a unique 𝑘 (𝑠, 𝑛) ∈ N such that 𝜈(𝑆𝑠,𝑛,𝑘 (𝑠,𝑛) ) = 1. Define 𝑆 =⋂

𝑠,𝑛 𝑆𝑠,𝑛,𝑘 (𝑠,𝑛) . Then 𝜈(𝑆) = 1, so in particular 𝑆 is non-compressible, and hence
𝑆 ∩ 𝑍 ≠ ∅. Let 𝑥 ∈ 𝑆 ∩ 𝑍 .

We claim that 𝜇𝑥 = 𝜈. To see this, fix some 𝑠 ∈ N<N, in order to show that 𝜇𝑥 (𝑁𝑠) =
𝜈(𝑁𝑠). Note that [𝑁𝑠/𝐹𝑛] (𝑥) = 𝑘 (𝑠, 𝑛), for all 𝑠, 𝑛, so that 𝜇𝑥 (𝑁𝑠) = lim𝑛

𝑘 (𝑠,𝑛)
2𝑛 (cf.

Definition 1.3.9 and Definition 1.3.12). We now consider two cases. If 𝜈( [𝑁𝑠]𝐸) = 0,
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then 𝑘 (𝑠, 𝑛) = 0 for all 𝑛, so 𝜇𝑥 (𝑁𝑠) = 0 = 𝜈(𝑁𝑠). Now suppose 𝜈( [𝑁𝑠]𝐸) = 1. For all 𝑛,
we have 𝑁𝑠 ∩𝑄𝑁𝑠 ,𝐹𝑛

𝑘 (𝑠,𝑛) ≈ 𝑘 (𝑠, 𝑛) (𝐹𝑛 ∩𝑄
𝑁𝑠 ,𝐹𝑛

𝑘 (𝑠,𝑛) ), so, as noted at the start of Section 1.3,
𝜈(𝑁𝑠) ∈ [𝑘 (𝑠, 𝑛)2−𝑛, (𝑘 (𝑠, 𝑛) + 1)2−𝑛] for all 𝑛. Thus

𝜈(𝑁𝑠) = lim
𝑛

𝑘 (𝑠, 𝑛)
2𝑛

= 𝜇𝑥 (𝑁𝑠).

Finally, it remains to show that 𝜇𝑥 is the unique 𝐸-ergodic invariant probability
Borel measure on 𝐸 |𝑆𝑥 . To see this, let 𝜈 be any other such measure and write 𝜈 = 𝜇𝑦
for some 𝑦 ∈ 𝑍 . Then 𝜈(𝑆𝑦) = 𝜇𝑦 (𝑆𝑦) = 1, so 𝜈(𝑆𝑥 ∩ 𝑆𝑦) = 1. Thus 𝑆𝑥 ∩ 𝑆𝑦 ≠ ∅, and
so 𝜇𝑥 = 𝜇𝑦 = 𝜈.

Proposition 1.5.4. Let 𝜇, 𝜈 ∈ INV𝐸 . If 𝜇(𝑆) = 𝜈(𝑆) for all 𝐸-invariant Borel sets
𝑆 ⊆ N , then 𝜇 = 𝜈.

Proof. Let 𝐴 ⊆ N be Δ1
1. As in the proof of Proposition 1.5.3, we have

𝜇(𝐴 ∩𝑄𝐴,𝐹𝑛

𝑘
) ∈ [𝑘2−𝑛𝜇(𝑄𝐴,𝐹𝑛

𝑘
), (𝑘 + 1)2−𝑛𝜇(𝑄𝐴,𝐹𝑛

𝑘
)] .

Similarly,

𝜈(𝐴 ∩𝑄𝐴,𝐹𝑛

𝑘
) ∈ [𝑘2−𝑛𝜈(𝑄𝐴,𝐹𝑛

𝑘
), (𝑘 + 1)2−𝑛𝜈(𝑄𝐴,𝐹𝑛

𝑘
)] .

Since the sets 𝑄𝐴,𝐹𝑛

𝑘
are 𝐸-invariant, we have 𝜇(𝑄𝐴,𝐹𝑛

𝑘
) = 𝜈(𝑄𝐴,𝐹𝑛

𝑘
), and therefore

|𝜇(𝐴 ∩𝑄𝐴,𝐹𝑛

𝑘
) − 𝜈(𝐴 ∩𝑄𝐴,𝐹𝑛

𝑘
) | ≤ 2−𝑛𝜇(𝑄𝐴,𝐹𝑛

𝑘
).

It follows that

|𝜇(𝐴) − 𝜈(𝐴) | ≤
∑︁
𝑘

|𝜇(𝐴 ∩𝑄𝐴,𝐹𝑛

𝑘
) − 𝜈(𝐴 ∩𝑄𝐴,𝐹𝑛

𝑘
) | ≤ 2−𝑛

∑︁
𝑘

𝜇(𝑄𝐴,𝐹𝑛

𝑘
) ≤ 2−𝑛.

Since 𝑛 was arbitrary, 𝜇(𝐴) = 𝜈(𝐴).

Proposition 1.5.5. For any 𝜈 ∈ INV𝐸 , 𝜈 =
∫
𝜇𝑥𝑑𝜈(𝑥).

Proof. Let 𝐴 ⊆ N be 𝐸-invariant. Then
∫
𝜇𝑥 (𝐴)𝑑𝜈(𝑥) = 𝜈(𝐴 ∩ 𝑍) = 𝜈(𝐴). Thus, by

Proposition 1.5.4, 𝜈 =
∫
𝜇𝑥𝑑𝜈(𝑥).

Acknowledgments. We would like to thank B. Miller, F. Shinko and Z. Vidnyánszky
for many helpful discussions on this subject.

Funding. This work was partially supported by NSF Grant DMS-1950475.



22 A. S. Kechris and M. Wolman

References

[1] H. Becker and A.S. Kechris, The descriptive set theory of Polish group actions. Cambridge
Univ. Press, 1996.

[2] A. Ditzen, Definable Equivalence Relations on Polish Spaces. Ph.D. thesis, Caltech, 1992.

[3] R.H. Farrell, Representation of invariant measures. Ill. J. Math., 6 (1962), 447–467.

[4] J. Feldman and C.C. Moore, Ergodic equivalence relations and von Neumann algebras, I.
Trans. Amer. Math. Soc., 234 (1977), 289–324.

[5] J. Frisch, A.S. Kechris, F. Shinko and Z. Vidnyánszky, Realizations of countable Borel
equivalence relations. 2023, arXiv:2109.12486.

[6] L.A. Harrington, A.S. Kechris and A. Louveau, A Glimm-Effros dichotomy for Borel
equivalence relations. J. Amer. Math. Soc., 3(4) (1990), 903–928.

[7] A.S. Kechris, Classical Descriptive Set Theory. Springer-Verlag, 1995.

[8] Y.N. Moschovakis, Descriptive Set Theory, 2nd ed. American Mathematical Society, 2009.

[9] M.G. Nadkarni, On the existence of a finite invariant measure. Proc. Indian Acad. Sci.,
Math. Sci., 100(3) (1990), 203–220.

[10] K. Slutsky, Countable Borel equivalence relations. https://kslutsky.com/lecture-notes/cber.
pdf.

[11] R. Thornton, Δ1
1 Effectivization in Borel Combinatorics, 2021, arXiv:2105.04063.

[12] V.S. Varadarajan, Groups of automorphisms of Borel spaces. Trans. Amer. Math. Soc., 109
(1963), 191–220.

http://arxiv.org/abs/2109.12486
https://kslutsky.com/lecture-notes/cber.pdf
https://kslutsky.com/lecture-notes/cber.pdf
https://arxiv.org/abs/2105.04063

	1 Ditzen's effective version of Nadkarni's Theorem
	1.1 Introduction
	1.2 A representation of Δ11 equivalence relations
	1.3 Proof of Effective Nadkarni
	1.4 A counterexample
	1.5 Proof of Effective Ergodic Decomposition
	References


