Chapter 1
Ditzen’s effective version of Nadkarni’s Theorem

Alexander S. Kechris and Michael Wolman
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Nadkarni’s Theorem asserts that for a countable Borel equivalence relation (CBER) exactly one
of the following holds: (1) It has an invariant Borel probability measure or (2) it admits a Borel
compression, i.e., a Borel injection that maps each equivalence class to a proper subset of it. An
effective version of Nadkarni’s Theorem was included in Ditzen’s unpublished PhD thesis, where
it is shown that if a CBER is effectively Borel, then either alternative (1) above holds or else it
admits an effectively Borel compression. In his thesis, Ditzen also proves an effective version
of the Ergodic Decomposition Theorem. These notes contain an exposition of these results. We
include Ditzen’s proof of the Effective Nadkarni’s Theorem, and use this construction to provide
a different proof of the Effective Ergodic Decomposition Theorem. In addition, we construct a
counterexample to show that alternative (1) above does not admit an effective version.

1.1 Introduction

In effective descriptive set theory one often considers the following type of question:
Suppose we are given a (lightface) A} structure R on the Baire space N (like, e.g., an
equivalence relation, graph, etc.) and a problem about R that admits a (classical) A}
(i.e., Borel) solution. Is there an effective, i.e., Al, solution?

For example, consider the case where R = E is a A} equivalence relations which is
smooth, i.e., admits a Borel function f: N — N suchthat xEy — f(x) = f(y).
Then it turns out that one can find such a function which is actually A}.

One often derives such results via an effective version of a dichotomy theorem,
For instance, for the example of smoothness above we have the following classical
version of the so-called General Glimm-Effros Dichotomy proved in [6]. Below Ej is
the equivalence relation on the Cantor space C givenby xEgy <= 3ImVn = m(x(n) =

y(n)).

Theorem 1.1.1 (General Glimm-Effros Dichotomy, see [6]). Let E be a Borel equiv-
alence relation on the Baire space N. Then exactly one of the following holds:
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(i) E is smooth, i.e., admits a Borel function f: N — N such that xEy

f&x) =1,
(ii) There is a Borel injective function g: C — N suchthatxEgy <= g(x)Eg(y).

Now it turns out that the proof of this result in [6] actually gives the following
effective version:

Theorem 1.1.2 (Effective General Glimm-Effros Dichotomy, see [6]). Let E be a A}
equivalence relation on the Baire space N. Then exactly one of the following holds:
(i) E admits a A}function f: N = Nsuchthat xEy — f(x) = f(y).
(ii) There is a Borel injective function g: C — N suchthatxEyy < g(x)Eg(y).

From this it is immediate that the smoothness of E is witnessed effectively as
mentioned earlier. For more examples of such effectivity results see also the recent
paper [11].

In Ditzen’s unpublished PhD thesis [2], it is shown that the notion of compressibil-
ity of a countable Borel equivalence relation (CBER) is effective, i.e., if a A{ CBER
on the Baire space N is compressible, then it admits a A} compression. This follows
from an effective version of Nadkarni’s Theorem that we state below.

First recall the following standard concepts. A CBER E on a standard Borel space
X is a Borel equivalence relation all of whose classes are countable. A compression
of E is an injective map f : X — X such that for each E-class C we have f(C) &
C. We say that E is compressible if it admits a Borel compression. Finally a Borel
probability measure u on X is invariant for E if for any Borel bijection f: X — X
with f(x)Ex, Vx, we have that f.u = u.

We now have:

Theorem 1.1.3 (Nadkarni’s Theorem, see [9] and [1]). Let E be a CBER on the Baire
space N. Then exactly one of the following holds:

(i) E is compressible, i.e., admits a Borel compression;

(ii) E admits an invariant probability Borel measure.

We include below Ditzen’s proof of the following effective version of Nadkarni’s
Theorem:

Theorem 1.1.4 (Effective Nadkarni’s Theorem [2]). Let E be a (lightface) A{ CBER
on the Baire space N. Then exactly one of the following holds:

(i) E admits a A% compression;

(ii) E admits an invariant probability Borel measure.

As a consequence of the proof of the Effective Nadkarni Theorem we also obtain a
proof of an effective version of the classical Ergodic Decomposition Theorem (see [3]
and [12]). This provides a different proof, for the restricted case of invariant measures,
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of Ditzen’s Effective Ergodic Decomposition Theorem for quasi-invariant measures
[2].

First we recall the classical Ergodic Decomposition Theorem. For a CBER E on a
standard Borel space X, we let INV g denote the space of E-invariant probability Borel
measures on X. We say u € INV is ergodic for E if u(A) € {0, 1} for all E-invariant
Borel sets A C X, and we let EINVE C INVE denote the space of E-ergodic invariant
probability Borel measures on X.

Theorem 1.1.5 (Ergodic Decomposition Theorem, see [3] and [12]). Let E be a CBER
on the Baire space N and suppose that INVE # 0. Then EINVE # 0 and there is a
Borel surjection m : N — EINVg such that:

(i) m is E-invariant;

(ii) if Se = {x: n(x) = e}, for e € EINVE, then ¢(S.) = 1 and e is the unique
E-ergodic invariant probability Borel measure on E|S,;

(iii) for any u € INVg, u = frr(x)d,u(x).

Nadkarni in [9] noted that his proof of Theorem 1.1.3 can be also used to give
a proof of Theorem 1.1.5. We will show below that this argument can also be effec-
tivized.

Let P(NN) denote the space of probability Borel measures on V. One can identify
a probability Borel measure y on N with the map ¢,,: N<N — [0, 1], ¢, (s) = u(Ny),
where Ny = {x € N: s C x} (cf. [7, 17.7]). In this way, one may view P(N) as the
Hg subset of [0, l]N<N consisting of all ¢ satisfying ¢(0) = 1 and ¢(s) = X, ¢(s"n)
for all s € N<N_ Via this identification, we will prove the following effective version
of the Ergodic Decomposition Theorem:

Theorem 1.1.6 (Effective Ergodic Decomposition Theorem, see [2]). Let E be a
(lightface) A{ CBER on the Baire space N and suppose that INVE # (0. Then EINVE #
0, and there is a Ai E-invariant set Z C N and a A% map n:Z — [0, 1]N<N such that:

(i) E|(N\ Z) admits a A} compression, i.e. there is a A} injectivemap f : N\ Z —
N\ Z such that f(C) & C for every E-class C C N\ Z;

(ii) m maps Z onto EINVEg;

(iii) m is E-invariant;

(iv)if Se ={x € Z: n(x) = e}, for e € EINVE, then e(S.) = 1 and e is the unique
E-ergodic invariant probability Borel measure on E|S,;

(v) forany pu € INVg, u = f}r(x)d,u(x).

In Section 1.4, we will show that there is a Ai CBER E on N that admits an invari-
ant probability Borel measure but does not admit a A} invariant probability measure. It
follows that we cannot, in general, make the map m from Theorem 1.1.6 total, because
if we could then £ would admit a A} invariant probability measure.
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1.2 A representation of A} equivalence relations

In this section we will prove a representation of A} CBER that is needed for the proof
of Theorem 1.1.4. It can be viewed as a strengthening and effective refinement of the
Feldman-Moore Theorem, which asserts that every CBER is obtained from a Borel
action of a countable group. Below we use the following terminology:

Definition 1.2.1. A sequence (A,,) of A} subsets of N is uniformly A} if the relation
A C N x N given by
Anx) < xeA,,

is A}. Similarly a sequence (f;,) of partial A% functions f,,: N — N (i.e., functions
with A% graph) is uniformly A} if the partial function f: N X N'— N given by

f(n,x) = fu(x),

is Al

1

We also say that a countable collection of subsets of A is uniformly A% if it admits
a uniformly A} enumeration. Similarly for a countable set of partial functions.

Theorem 1.2.2 ([2, Section 2.2.1]). Let E be a A% CBER on the Baire space N. Then

(1) E is induced by a uniformly Ai sequence of (total) involutions, i.e., there is a
such a sequence (f,) with xEy < dn(f,(x) =y).

(2) There is a Polish O-dimensional topology T on N, extending the standard topol-
ogy, and a uniformly A% countable Boolean algebra U of clopen sets in T, which is a
basis for T and is closed under the group T generated by ( f,,).

(3) There is a complete compatible metric d for T such that for every U € U and
k > 0, there is a uniformly A}, pairwise disjoint, sequence (UX) with U* € U, U =
Un U,’f and diamd(U,’f) < %, and such that moreover the sequence (U,’f) is uniformly
A} inU, k,n.

Proof. For (1): This follows immediately from the usual proof of the Feldman-Moore
Theorem (see [4] or [10, Section 1.2]). So fix below such a sequence ( f;,) and consider
the corresponding A} action of the group I'.

For (2), (3): We will first find a topology 7 as in (2), which has a uniformly A%
countable basis B of clopen sets closed under the I'-action, because we can then take
U to be the Boolean algebra generated by 5.

For (3) we will find a complete compatible A} metric d for 7 (i.e., d: N> = Ris
A}). Then if (U,,) is a uniformly A} enumeration of U, we have that

1
A j ' —_—
(k,n) = diamy(U,) < e

is T} and
Vx € NVk3In(n € Ay & x € U,),
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where Ay = {n: (k,n) € A}.
So, by the Number Uniformization Theorem for Hll, there is a A% function f: N X
N — N such that

Vx € NVk(f(x, k) ceAr&x e (L{f(x,k))'

Since A’(k,n) & 3x € N(n= f(x,k))isaX] subset of A, let A” be A{ such that
A’ C A” C A. Since
NxN= | ] Ux{k},
(k,n)eA”

we can find a uniformly A} sequence (XX) of sets in U, such that for all k > 0 the
sequence (X,’f),, is a partition of NV of sets with d-diameter less than % Finally given
any U € U, let U* = Xk nU.

It thus remains to find 7, d with these properties. We will need first a couple of
lemmas.

Lemma 1.2.3. Let A C N be A%. Then there is a Polish 0-dimensional topology T4 on
N, which extends the standard topology, has a uniformly A} countable basis consisting
of clopen sets containing A, and has a complete compatible A} metric d .

Proof. Let f: N — N be computable and let B € N be H? and such that f|B is
injective and f(B) = A. Use f to move the (relative) topology of B to A and the
standard metric of B to A. Do the same for NV \ A and then take the direct sum of these
topologies and metrics on A, N'\ A to find 74, d4. ]

Lemma 1.2.4. Let A = (A,) be a uniformly A} sequence of subsets of N. Then there
is a Polish O-dimensional topology T2 on N, which extends the standard topology, has
a uniformly A} countable basis B 4 containing all the sets in A, and has a complete
compatible A% metric d #.

Proof. Consider 74,,,d#, asin Lemma 1.2.3. Then put

T4 = the topology generated by U Ta,-
n

Then by [7, Lemma 13.3], 74 is Polish (and contains the standard topology). A basis
for 74 consists of all sets of the form

untU,n---nU,,

where U; € BAJ,-’ 1 < I £ n, and so it is O-dimensional with a uniformly A{ basis B4
containing all the sets in A.
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Finally, as in the proof of [7, Lemma 13.3] again, a complete compatible metric
for 74 is
dAn (X, y)

d , — 2—}1—1 An S
(%) Z L+da,(x.y)

Because of the uniformity in A of the proof of Lemma 1.2.3 this metric is also A}. |

We finally find 7, d. To do this we recursively define a sequence of Polish O-
dimensional topologies 79, 71, ... on N, extending the standard topology, and uni-
formly A} countable bases 8B, for 7, and complete compatible A} metrics d,, for 7,
all uniformly in n as well, and such that I" - B, C B,,4,.

For n = 0, let 19, do, By be the standard topology, metric and basis for N.

Given 1, d,, B,, consider I" - B,, and use Lemma 1.2.4 to define 7,41, Byl 2
I'- B, d+1. The uniformity in #n is clear from the construction.

Finally let 7 be the topology generated by |J,, 7. It is O-dimensional, Polish, with
basis the sets of the form

unt,n---nu,,

with U; € B;,,1 <7 < n, so this is a uniformly A{ countable basis B consisting of
clopen sets. Also clearly for any y € T,

y-(UinUzn---nUp)=y-UyNy-UyN---Ny-Up,

where y - U; € Bj,41, thusy - (U NUxN---NU,) € B as well. Finally, as before, a
complete compatible A% metric for 7 is

dy(x,y)

— 2—}1—1 LN
d(x.) Zn] 1+d,(x,y)

and the proof is complete. |

1.3 Proof of Effective Nadkarni

In this section we show, using the representation of A{ CBER constructed in Sec-
tion 1.2, that we can effectivize the proof of Nadkarni’s Theorem. Our proof follows
the exposition in [2, Section 2.2.3]; see also the presentations of the classical proof in
[1] or [10].

The classical proof of Nadkarni’s Theorem proceeds as follows. Fix a CBER E on
N. We first define a way to compare the “size” of sets. For Borel sets A, B C N we write
A ~p Bifthere is a Borel bijection g: A — B withxEg(x),Vx € A. We write A <g B
if there is some B’ C Bwith A ~g B’ and [B]g = [B\ B’]E, and A ~g nB if we can
partition A into pieces Ag, ..., A, sothat A; ~p Bfori < nand A, <g B. One thinks
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of A =p nB to mean that A is about n times the size of B. In particular, if A ~p nB and
4 is an E-invariant probability Borel measure, then nu(B) < u(A) < (n+ 1)u(B).

Note that E is compressible iff N' <g N. More generally, we say that A C N is
compressible if A <p A, i.e., if the equivalence relation E|A is compressible.

Next we construct a fundamental sequence for E, i.e., a decreasing sequence (F};)
of Borel sets such that Fy = N and F,+1 ~p Fy, \ Fu+1. Each Fy, is a complete section
for E, and is a piece of N of “size” 27", in the sense that N ~g 2" F,, and u(F,) =27"
for all E-invariant probability Borel measures u. It follows that if A ~p kF}, then
k27" < u(A) < (k+1)27" for any E-invariant probability Borel measure p.

We then use the relative size of A with respect to the F), to approximate what
the measure of A would be with respect to some E-invariant probability Borel mea-
sure. To do this, we construct, for all m, a partition [A]g = | |,<c Qﬁ’m of [Alg
into E-invariant Borel pieces such that Qfo’m admits a Borel compression and A N
O4™ g n(Foy N Q™) for n < oo. We define the fraction function [A]Fp) by set-
ting [A/Fu](x) =nifx e Qﬁ’m orifn=0 & x ¢ [A]Eg, and let the local measure
Sunction m(A, x) = lim,,;, %. We show that m (A, x) is well-defined modulo
an E-invariant compressible set, meaning there is an E-invariant set C C N admitting
a Borel compression and such that m (A, x) is well-defined when x ¢ C. We also show
that for any partition A = | |,, A, into Borel pieces we have m(A, x) = 3, m(Ap, x)
modulo an E-invariant compressible set, and if A ~ B then m(A, x) = m(B, x) modulo
an E-invariant compressible set.

Finally, we show that the local measure function m (-, x) defines an E-invariant
probability Borel measure, for all x € N\ C, where C C N is some E-invariant
compressible set. To see this, we fix a Borel action I' ~ N of a countable group
I' inducing E, a zero-dimensional Polish topology 7 on N extending the usual one
in which the action I' ~ N is continuous, a complete compatible metric d for T and
a countable Boolean algebra of clopen-in-7 sets closed under the I" action forming
a basis for 7, and satisfying additionally that for every U € U and k > O there is a
pairwise disjoint sequence (U¥) of sets in U with U = | J,, U and diam4(U¥) < %
For each U € U, k > 0 we fix such a sequence. Since the countable union of Borel
E-invariant compressible sets is itself a Borel E-invariant compressible set, it fol-
lows that there is an E-invariant compressible set C € N such that for x ¢ C we
have m(U, x) = 3, m(UX,x) for U € U,k >0, m(U U V,x) = m(U,x) + m(V, x)
for U,V € U disjoint, and m(U,x) = m(yU,x) for U € U,y € I'. Using this, we show
that for x ¢ C there is an E-invariant probability Borel measure p with u(U) =m (U, x)
for U € U. It follows that either C = N, in which case E is compressible, or £ admits
an invariant probability Borel measure.

In order to prove the effective version of Nadkarni’s Theorem, we will show that
the classical proof outlined above can be effectivized using the representation in Sec-
tion 1.2.
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For the remainder of this section, we fix a Ai CBER E on N and a uniformly A}
sequence of (total) involutions (7;,) inducing E, as in Theorem 1.2.2(1). Moreover, we
assume, without loss of generality, that E is aperiodic, meaning that every E-class is
infinite, because if C € N were a finite E-class then the uniform measure on C would
be an E-invariant probability Borel measure.

(A) Comparing the “‘size” of sets.

We begin by defining a way to compare the “size” of Ai sets. The notation we
use is the same as the notation typically used for the equivalent classical notions (cf.
[10, Definition 2.2.4, Section 2.3]), which we denoted with the subscript B above. In
this paper, these notions will always refer to the effective definitions below.

Definition 1.3.1. Let A, B C N be A].

(1) We write A ~ B if there is a A| bijection f: A — B and such that xE f (x), Vx €
A.If f is such a function we write f: A ~ B.

(2) We write A < B if A ~ B’ for some A% subset B’ C B. If f is such a function
we write f: A < B.

(3) We write A < B if there is some f: A < Bsuchthat [B\ f(A)]g = [Ble. If
f is such a function we write f: A < B.

(4) We say A admits a A} compression if A < A, and if f: A < A then we call f
a A} compression of A.

(5) We write A < nB if there are A% sets A;,i <nsuchthat A=J;.,,A;and A; < B
fori < n.Notethat A < 1B <= A < B.

(6) We write A < nB if in the previous definition there is some i < n for which
A; < B.Notethat A < 1B < A < B.

(7) We write A > nB if there are pairwise disjoint A} sets B; € A,i < n such that
B; ~ B.

(8) We write A ~ nB if there is a partition A = | |;_,, B; LI R into Ai pieces such
that B; ~ B and R < B. In particular, A ~ 0B <= A < B. Note that A ~ nB implies
that A > nBand A < (n+1)B.

We also let .77 denote the set of all E-invariant A% subsets C € N that admit a A%
compression.

Lemma 1.3.2. (1) Let A C N be Al If A < A then [A]g < [Alg.

(2) Let (A,), (B,) be uniformly A} families of E-invariant sets and let (f,) be a
uniformly A% sequence of maps satisfying f,: A, < By. Then \J,, A, < U, By The
same holds when < is replaced by < or ~, or if these are sequences of pairwise disjoint
but not necessarily E-invariant sets.

(3)Let A,B,C C NbeA}. If A > nB and C < mB for some m < n, then C < A.
If additionally C < mB then C < A.
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Proof. (1) Let f: A < A and let g(x) = f(x) forx € A, g(x) =x forx € [A]g \ A.
Then g: [A]lg < [A]E.

(2)Forx € l,, Ay set f(x) = f,(x) where nisleast withx € A,,. Then f: |, A, <
U, Ba-

(3) Let A;,i < nbe pairwise disjointA} subsetsof A, fi: A; ~Bfori<n,C;,j<m
be A{ sets covering C and gj: C; < B for j < m. Define

h(x) = f; o g;(x) for j least with x € C;.
Then h: C < A, and if g;: C; < B then, letting C’ = C; \ Uy, Cx, we have
[A\A(O)]e 2 ([Ale \ [Ble) U [B\ g;(C)]e = ([Ale \ [Ble) U [BlE = [AlE,
s0 f: C < A. n

(B) Fundamental sequences.

Definition 1.3.3. A uniformly A} fundamental sequence for E is a uniformly A]
decreasing sequence (F},) of sets and a uniformly A} sequence ( f;,) of maps such that
Fo=N and f;,: Fpy1 ~ Fy \ Fpy1 forall n.

Lemma 1.34. Let X C N be a A} set on which E|X is aperiodic. Then there is a
partition X = AU B of X into A{ pieces such that A ~ B. In particular, E|A, E|B are
also aperiodic.

Proof. Let <bea Ai linear order on N (for example the lexicographic order) and let
x € A, & x < yux. Define recursively the sets

Ap={xeXNA,: x,y.x € X\U(Ai UyiA}.

i<n

Let A=|], A, and define f = |J,, yu|An: A — X. Because of the uniformity of this
construction, A, f are A}. It is easy to see that f is injective and that f(A) N A =0,
so in particular that f: A ~ f(A).

We claim that A U f(A) omits at most one point from each E|X-class. To see this,
let x < y € X and suppose that xEy. Let y,x = y. If x, y ¢ ;_,,(A; U ¥;A;), then by
definition we have x,y € A, Uy,A, C AU f(A).

NowletT =X\ (AU f(A),Y =XN[T]g,Z =X\ [T]g. Then T is a traversal
of E|Y and f|[(ANZ): ANZ ~ f(A) N Z. Thus it remains to prove the lemma for
E|Y. In this case, using T and the sequence (7y;), one can enumerate each E|Y-class,
and since these are infinite we can take A (resp. B) to be the even (resp. odd) elements
of this enumeration. ]

Proposition 1.3.5. There exists a uniformly Ai fundamental sequence for E.
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Proof. We construct the sequences recursively. Let Fp = N and recursively apply
Lemma 1.3.4 to get Fy+1 and fy,: Fyue1 ~ Fy \ Fune1. Uniformity of these sequences
follows from the uniformity in the proof of Lemma 1.3.4. |

For the remainder of this section, we fix a uniformly A% fundamental sequence
(F,) for E.

(C) Decompositions of A} sets.

Lemma 1.3.6. Let A, B C N be A} and let Z = [A]lg N [B]g. There is a partition
Z = P UQ of Z into E-invariant uniformly A} sets such that AN P < BN P and
BN <ANnQ.

Proof. Define recursively the sets
An={x e A\ JAiz yux € B\[ ) Bi). By = vads.
i<n i<n
Let A=, A,,B=,B,and f =, yu|A,. By the uniformity of this construction,
A,B, fareall Al sothat f: A~ B.IfwesetP=ZN[B\B]g,Q=Z)\ P thenitis
easy to see that AN P C A,BN Q C B and hence that f[(ANP): ANP < BN Pand
fUBNQ):BNQ <ANQ. [

Proposition 1.3.7. Let A, B C N be A{ and let Z = [A]lg N [B]g. There exists a
partition Z = | |, <., On of Z into E-invariant Ai pieces suchthat AN Q,, ~n(BNQ,)
Jorn < o and Qs € .

Proof. We recursively construct sequences of sets

An,Bna ﬁn, Q~n’ fn, gna En’ QnsRn, B:zp frlL

fori <nsuchthat ANQ, =|;.,, Bl URforn < oo, fi: Bi ~BNQ, fori <n< oo,
and f,,: R, < BN Q, forn < oco.

Firstwelet Ag = A, Bo = B. We apply Lemma 1.3.6 to these sets to get Py, 0o, Jo, 80
and By satisfying

fo: AoN Py < Bon Py, go: Bon Qo < AgNQo, By =1Im(go).

Define Q¢ = ﬁo, Ry = A9 N Q.
Now let n > 0 and suppose we have already constructed

Ak, Br, Pr, Ok, fis 8k Bi Ok Ric, By, f}

foralli <k <n.LetA, = (Ay—1 N Qn_1)\ Bu_1,Bn=BNQ,_1. Apply Lemma 1.3.6
to A,, B, to get P, 0, fn»>&n» B,, such that

fan: A,NP,<B,NP,, 8n: BnﬂQn 5AnﬁQn, B, =Im(gn).
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Define Q,, = Qn—l \ Qns Ry =Au N0, Bil = gi NQn, f;; = (gi)_1|B£l-

By uniformity of this construction it is clear that these sequences are uniformly
A. Additionally, AN Q,, ~ n(BN Qn) for n < co.

Nowlet Qoo =Z\ U,, On =), On- The sets B, are pairwise disjoint and g,,: BN
0, ~ B, for all n. Therefore, if we define B”, = B, N Q o, 8% = gn| (BN Qo) and g7%™
g" o (g")~!, we have that the B”, are pairwise disjoint and g’5"*: B”, ~ B™. Let B,
U,, B", and geo = U, g%"*". Then Be, goo are A} and geo: Boo < Beo. Since [BoolE
[BU]E = [BN QwlE = Qoo Qoo admits a Ai compression by Lemma 1.3.2(1). ]

Notation 1.3.8. For A% sets A, B C N, we let Qﬁ’B, n < oo be the decomposition of
[A]g N [B] g constructed in Proposition 1.3.7.

(D) The fraction functions.

Definition 1.3.9. We associate to all Ai sets A, B C N a fraction function [A/B] :
N — N defined by

[A}( ) n ifxe Q8 for some n < oo,
—|(x) =
B 0 otherwise.

Lemma 1.3.10. Let A, Ao, A1, A2, B,S C N be Aj.

(1) If xEy then [A/B](x) = [A/B](y).

(2) If Ay < Ay then there is some C € F such that [Ag/B](x) < [A1/B](x) for
x ¢C.

(3) If Ag ~ Ay then there is some C € F€ such that [Ay/B](x) = [A1/B](x) for
x¢C.

(4) If S is E-invariant then there is some C € J such that for x € S\ C we have
[A/B](x) = [(ANS)/B](x).

(5) If Ay, Ay are disjoint then there is some C € 7 such that for x ¢ C,

[Ao/B] + [A1/B] < [(AgU A1)/B] < [Ao/B] +1+[A1/B] +1.
(6) If Ay is an E-complete section then there is some C € F€ such that for x ¢ C,
[Ao/A1][A1/A2] < [Ao/A2] < ([Ao/A1] + 1)([A1/A2] +1).

(7) There is some C € F such that | F,, | Fyum] = 2™ holds for allm,n € N,x ¢ C.
(8) There is some C € € such that for all x € [A]g \ C we have [A]F,] (x) — oo.
(9) The setY = {x: [Ag/B](x) < [A1/B](x)}is Ai and E-invariant and Ag NY <
ArNY.
Proof. (1) This is clear, as the sets Qf’B are E-invariant.
(2) Let Cpm = 0298 0 0218 for m < n. Then Ag N Cpym ~ n(B N Cpp) and
A NCym =m(BNCy,y,) soby Lemma 1.3.2(3) and our assumption we have Ap N
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Com A1 NCpm <ApNCh . By Lemma 1.3.2(2) and the uniformity of the proofs
of Proposition 1.3.7 and Lemma 1.3.2(3), C = U,ycpy Cnom € F€, and [Ag/B](x) <
[A1/B](x) forx ¢ C.

(3) This follows from (2).

(4) As in the proof of (2), it suffices to show that C = S N Q?’B N Q;\OS’B admits
a Ai compression (in a uniform way) for k # /. But

ANC=k(BNC)andANC ~I(BNC)

by E-invariance of C, so by Lemma 1.3.2(1),(3) C admits a A} compression.

(5)Let C = Ciji = Q1% N Q4P 1 07 Then (5) fails to hold exactly when
x€Cjrfork <i+jork>i+1+ j+1.Therefore, as in the proof of (2), it suffices
to show that C; ; i admits a A} compression (in a uniform way) for such i, j, k.

Now we know that AN C =i(BNC),AiNC=j(BNC),A2NC =k(Bn
C) by E-invariance of C. If k < i+ j then (AgUA;) NC < (i+j)(BNC) and
(since Ag, A are disjoint) we have (Ag N C) U (A1 NC) = (i + j)(B N C). Thus by
Lemma 1.3.2(1),(3) C = [(Ag U A}) N C]g admits a Ai compression. On the other
hand, if k >i+1+j+1then (AgNC)U(A;NC) < (i+1+j+1)(BNC) and
(ApUA)NC > k(BN C), so again C admits a A{ compression.

(6) If x ¢ [Ag] £ U [A2] g then this clearly holds. Thus if C = Cy 1, = 024" N
Qf"Az N Qf,‘[”A2 then (6) fails to hold exactly when x € Cy j,, for m < kl or m >
(k + 1)(1 + 1). Therefore, as in the proof of (2), it suffices to show that these sets admit
a A% compression (in a uniform way).

Since AgNC~k(AiNC)and A; NC ~ (A, N C) wehavethat Ag N C > kI(Ay N
C). Also, AgNC =m(A; N C), soif kI > m then by Lemma 1.3.2(1),(3) we are done.
On the other hand, if m > (k+1)(I +1) then AgNC > (k+1)(I +1)(A, N C), and
since A] N C = [(A; N C) one easily sees that AgNC > (k+1)(A; N C). Thus by
Lemma 1.3.2(1),(3) we are done.

(7) Again it suffices to show that Qi"’F’”’" admits a A} compression in a uniform
way for k # 2. When k = oo this is clear. Otherwise, one easily sees by defini-
tion of the fundamental sequence that F,, ~ 2" F,,,,,, and moreover there is a uni-
formly A} sequence of witnesses to this. It follows that F,, N Q';"’F o QM (Frym N
o Fremy and Fy 0 QP % k(Fpm 0 Q™). so when k # 2™ this follows
from Lemma 1.3.2(1),(3).

(8) Let Cy be the set constructed in (7), C(Ag, Ay, Ay) be the set constructed in
6), C1 =, 0" and

Ca =) C(A, Fo, Fim) U C(Fo, Fy, A).
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Let C=CyUCiUC,. If x € [A] g \ C then there is some n for which [A/F,,](x) # 0,
so for all m we have

[A/Fpem](x) 2 [A]Fu](x) [Fn/ Fram] (x) 2 2",

and therefore [A/F,](x) — oo. By the uniformity of the proofs of (6), (7) and Propo-
sition 1.3.7, C is A}, so it remains to show that it admits a A} compression. By the
uniformity of the proofs of (6), (7) and Lemma 1.3.2(2), it suffices to show that C; \
(Co U C;) admits a A} compression.

First we show that C; N |, Qg"’A admits a A} compression. For this it suffices
to show that C; N Qg"’A admits a A% compression for all 7 (in a uniform way), by
Lemma 1.3.2(2). But by definition and E-invariance we have

F,nCinQfm? <Ancingfm* <F,ncinofm,

soF,NCi N QOF A admits a A} compression, and since F), is a complete section we
are done by Lemma 1.3.2(1).
Next we consider C' = C; \ (Co U CL U |, Qg"’A). For any x € C’,n € N, we have

[Fo/Al(x) = [Fo/Fal(x)[Fu/Al(x) = 27,

so [Fy/A](x) =coand x € QQ’A. Thus C” C QQ’A admits a A% compression.

(9) This set is clearly A} and it is E-invariant by (1). Next note that Y C [B]g \
OAOO’B so we can decompose Y into Yy =Y \ [Ap]lg and Y1 =Y N [Apleg = U,,(¥Y N
ﬁ"’B). Since Yy N Ag = 0 we clearly have Yy N Ag < Yy N Ay, so it remains to show

that Y1 N Ag < Y1 N Ay. But by Lemma 1.3.2(3) we have that Ay N QQO’B N Qﬁl’B <

AN Q,‘;‘,"’B N Qﬁ"B for m < n, so by Lemma 1.3.2(2) we are done. [

(E) Local measures.

Proposition 1.3.11. Let A C N be Ai. Then there is some C € J such that

i [A/F] ()
RVTATE)

exists for x ¢ C, and the limit is zero for x ¢ [A]g U C and is non-zero and finite for
x e [Alg\C.

Proof. Let Cy(Ag, A1, Az), C1, C2(A) be the sets we have constructed in the proofs
of Lemma 1.3.10(6)(7)(8), respectively, and take C = (U, ,,, Co(A, Fy, Fym) U C1 U
G (A) VU, QA Fn, By Lemma 1.3.2(2) and the uniformity of Lemma 1.3.10, C € JZ.
Ifx ¢ [A]g UC then [A/F,](x) =0and [N/F,](x) = 2" for all n, so the limit exists
and is zero.
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Now suppose that x € [A]g \ C. Then [F,,/Fp4m](x) = 2™ for all m,n € N, and
[A/Fuim] (x) < ([A/Fu](x) + D) ([Fn/Fpam] (x) + 1),

” b oo [ Fun] (@) [A/F, () + 1
1m sup <

m—oo [N/Fn+m] (X) - [N/Fn] (X)
Thus the limit exists and is finite at x. To see that the limit is non-zero at x, note that
[A/Fusm](x) = [A/Fu](X)[Fn/Futm](x) for all m,n € N, so

liminf [A)Fyim] (x) > [A/F,](x)
m=oo [N[Fpum](x) — [N/Fu](x)

for all n, and since [A/F},] (x) — oo this lower bound must be non-zero for some n. =

Definition 1.3.12. Let A € N be A{ and let C 4 € 7 be the set constructed in the proof
of Proposition 1.3.11. We associate to A the local measure function m(A,-): N\
C4 — R defined by

AJEI®)
A2 = T TR o)

Note that the local measure function is A%, uniformly in A.

Lemma 1.3.13. Let A, B,S € N be Al.

(1) IfxEy then m(A,x) = m(A,y) forx,y ¢ Ca.

(2)LetY ={x e N\ (C4UCpg): m(A,x) <m(B,x)}. ThenY is A}, E-invariant
and ANY <BNY.

(3) Suppose S is E-invariant. Then there is some C € ¢ such that for x ¢ C,

1 xe€S§,

m(S,x) = {0 x¢S

(4) If S is E-invariant, then there is some C € ¢ such that for x € S \ C we have
m(A,x) =m(ANS, x).

Proof. (1) This follows from Lemma 1.3.10(1).
(2) This set is E-invariant by (1) and is A} because the local measure functions are
A}. Now let
Yo ={x€Y: [A/Fu](x) < [B/Fa](x)}.

The sets Y, are E-invariant, A} and coverY, soby Lemma 1.3.10(9) and Lemma 1.3.2(2)
wehave ANY < BNY.

(3)Ifx ¢ Sthen [S/F,](x) =0 forall n,som(S,x) =0. Onthe other hand, if x € §
then [S/F,](x) =k & x ¢ Q‘IE’F", so it suffices to show that (Jzon Qi’F” e .
This is done exactly as in the proof of Lemma 1.3.10(7).
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(4) Let Cy(A, B, S) be the set constructed in the proof of Lemma 1.3.10(4) and
take C = J,, Co(A, F,,, S) U Ca U Cans. Then C € F by Lemma 1.3.2(2) and clearly
C works. ]

Proposition 1.3.14. Let A,B,S € N be A% and let (A,) be a uniformly A{ sequence
of subsets of N.

(1) If A < B then there is some C € J€ such that m(A,x) < m(B,x) forx ¢ C.

(2) If A ~ B then there is some C € 7 such that m(A,x) = m(B, x) forx ¢ C.

(3) If A, B are disjoint then there is some C € F€ such that m(A, x) + m(B,x) =
m(A U B,x) forx ¢ C.

(4) Suppose the (A,) are pairwise disjoint, S is E-invariant and the partial maps
m(A,-),m(A,,-) are defined on S. Suppose additionally that m(A,x) > Y, m(A,, x)
for x € 8. Then there is some C € J satisfying (L1, An) N (S\C) < An(S\CO).

(5)If A = ||, Ay, then there is some C € F€ such that m(A,x) = Y, m(A,,x) for
x¢C.

Proof. (1) LetC =J,, Co(A, B, F,)) UCa U Cpg, where Cy(Ayg, A1, B) denotes the set
constructed in the proof of Lemma 1.3.10(2).

(2) This follows from (1).

(3) Let Cy(Ap, Ay, B) and C; be the sets we have constructed in the proofs of
Lemma 1.3.10(5) and (7), respectively, and take C = J,, Co(A, B, F,) UC4 U Cp U C}.

(4) We construct recursively a sequence of A} sets and functions An, B, Cy, Su, fu,
8n SUChEhat An+l = An \ B, Sns1 =Su \ Cs fu: Ay NSy ~ By N Sn: gn: Cp < Cy,
and m(A,, x) > Y s, m(Ag, x) for x € S,,. To do this, we first set Ag = A, Sp = S.
Now suppose we have A, S,, satisfying m(A,,x) > 2ksnM(Ag, x) for x € S,,. Then
m(An,, x) > m(An, x) for x € S, so by Lemma 1.3.13(2) we can find B,, C A, and
fa: An NSy~ B, NS,.By(2),(3) and Lemma 1.3.13(4) there are g,,: C,, < C,, such
that for x € S,, \ C,, we have m(A,,x) = m(B,,x) and m(A,,x) = m(B,,x) + m(A, \
B,.,x). We then define A,,.,1 = A, \ By, Sps1 = Su \ Ch.

By the uniformity of the proofs of (2), (3) and Lemma 1.3.13, these sequences
are uniformly A}. Let C = J,, Cy, and note that S\ C =, Sy, s0 A, N (S\ C) ~
B, N (S\ C) for all n. Thus by Lemma 1.3.2(2) we have C € ¢ and

(| Jannsvoy ~( |Bans\o)ycan(s\o.

(5) Let Cy(A, B), C1(A, B) be the sets constructed in the proofs of (1) and (3),
respectively, and let

C‘:CAUU[CAn UCo(AgU -+ U Ay, A)UCI(AgU---U Ay, Anst)].
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Then for x ¢ C and n € N we have

Z m(Ag,x) = m(U Ap,x) <m(A,x),

k<n k<n

and therefore Y, m(A,,x) < m(A,x) forx ¢ C.
Now let C; be the set constructed in the proof of Lemma 1.3.10(7) and define

C=CUGUCMAUCI(AN\A) U| JICE, UCnE, UCI(Fa N\ Fy)l.
n

Then for x ¢ C we have

o Xam(An,x) <m(A,x),

e m(A,x)+m(N\A,x)=m(N,x),

e Vn(m(F,,x)=2""), and

e Vn(m(F,,x)+m(N \ F,,x) =m(N,x)).

LetSy={x¢C:m(A,x) >3, m(A,,x)+2 K} These sets are A} and E-invariant,
andifx ¢ CUJ; Sk thenm(A,x) =3, m(A,,x). By the uniformity of the construction
of C, Sy and Lemma 1.3.2(2), it remains to show that each S, € 7.

For x € S we have

MmN\ Fr,x) =m(A,x) +m(N\ A,x) —m(Fr,x) > m(N\ A, x) + Z m(Ay, x).
By (4) there is some Cy € S for which

Sk \ Ck = (UAnuuv\A)) N (Sk\ Co) < N\ F) 0 (Sk \ C).
Since Fy is an E-complete section, this means that Si \ Cr € ¢, and hence that
Sy € H, as desired. n

(F) Proof of the Effective Nadkarni’s Theorem.

Recall that we have fixed some sequence of maps (y,) satisfying (1) of Theo-
rem 1.2.2. Fix now some 7, U, d, (Uﬁ) satisfying (2), (3) of Theorem 1.2.2. Let C4 be
the set defined in Definition 1.3.12, and let Cy(A, B), C;(A, B), C»(A, (A,)) be the
sets constructed in the proofs of Proposition 1.3.14(2), (3) and (5), respectively. Now
define

C= U{CU ‘U e U}
U U{CO(U, yoU) : U € U,n € N}
UU{CI(U,V\U) LUV e U
U U{Cz(U, (UM, : U e U,k > 0}.
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By the uniformity of the constructions of the Cy4, Cy, C1, C;, along with the fact that
U, (U ,’f) are uniformly A{ , there is a uniformly A% enumeration of the sets in this union,
so C is A%. By this uniformity and Lemma 1.3.2(2), C admits a Ai compression.

If N =C, then E admits a A% compression. So suppose N # C and fix some
x € N'\ C. By construction, the following hold for x:

e m(0,x) =0and m(N,x) =1;

o forallU € U, m(U, x) exists, is zero for x ¢ [U] g, and is non-zero and finite for
x € [U]E;

e m(U,x) =m(y,U,x) forallU € U,n € N;

e m(UuV,x)=m(U,x)+m(V,x) for all disjoint U,V € U; and

o forallU e Uand k >0,m(U,x) =Y, m(Uk x).

Now define

Wi (A) =inf()" m(Un,x) : Up e U & AC| JUL}.

As in the classical proof of Nadkarni’s Theorem (cf. [1, p. 51-52] or [10, Theo-
rem 2.8.1]), 1% is a metric outer measure whose restriction u, to the Borel sets is
an E-invariant probability Borel measure satisfying u,(U) = m(U, x), for U € U.
Thus, £ admits an invariant probability Borel measure.

1.4 A counterexample

Let £ be a A% CBER on N. Nadkarni’s Theorem says that either E is compressible or
E admits an invariant probability Borel measure. We have seen in Theorem 1.1.4 that
if E is compressible, then actually there is a A{ witness of this. On the other hand, if
E is non-compressible, one may ask if there is an effective witness of this, i.e., if £
admits a A} invariant probability measure. It turns out that this is true if, for example,
E is induced by a continuous, A} action of a countable group on the Cantor space, but
it is not true in general.

Let P(C) denote the space of probability Borel measures on C. As with P(N),
we identify P(C) with the IT! set of all ¢ € [0, 1127 satisfying ¢(0) = 1 and ¢(s) =
©(s70) + @(s71) for s € 2<%, We then have the following:

Proposition 1.4.1. Let E be a CBER on the Cantor space C. Suppose there is a uni-
formly A} sequence ( f,) of homeomorphisms of C inducing E, i.e., suchthat xEy
An(f(x) = y). Then if E is non-compressible, E admits a A} invariant probability
measure.

Proof. Let INVE C P(C) be the set of all E-invariant probability Borel measures on
C. If E is non-compressible, then INVg is compact, A} and non-empty. By the basis



18 A. S. Kechris and M. Wolman

theorem [8, 4F.11], INVE contains a A{ point, which is a A} E-invariant probability
measure on C. ]

Let E, F be CBERs on the standard Borel spaces X, Y respectively. We say that E
is Borel invariantly embeddable to F, denoted £ ;g F, if there is an injective Borel
map f : X — Y suchthatxEy < f(x)F f(y), and such that additionally f(X) C Y
is F-invariant. We say F is invariantly universal if £ ;59 F for any CBER E. Clearly,
all invariantly universal CBERs admit invariant probability Borel measures.

Proposition 1.4.2. There exists an invariantly universal A% CBER on N that does not
admit a Ai invariant probability measure.

Proof. Let Fy, be the free group on a countably infinite set of generators, and take
Fy to be the shift equivalence relation on N¥~ = N. Note that Fy is an invariantly
universal A} CBER. Let F| be a compressible A} CBER on N. Let T be an ill-founded
computable tree on N with no A} branches (cf. [8, 4D.10]), and define the equivalence
relation £ on N X N by

(w,x)E(y,z) &= w=y & [(we[T] & xFyz)or (w¢ [T] & xF2)].

Then E is a non-compressible invariantly universal A{ CBERon N X N = N, because
T is ill-founded and Fj is non-compressible and invariantly universal.

Now suppose for the sake of contradiction that £ admits a A} invariant probability
measure . For s € N<V let Ny = {x € N': s C x}, and define S = {s € N<": p(Ny x
N) > 0}. Then S is a non-empty pruned A{ subtree of T, because if s ¢ T then E|(Ny X
N) is compressible, so u(Ny; X N) = 0. But then S, and hence T, has a A} branch, a
contradiction. ]

Remark 1.4.3. Let E be the equivalence relation induced by the shift action of F., on
CF~, and let Fr(CF~) C CF~ be the free part of CF=_i.e., the set of points x such that
yx # x,Vy € Fo,y # 1. Then E|Fr(C"~) is invariantly universal for CBERs that can
be induced by a free Borel action of F.

Using the representation of Ai CBERs constructed in Section 1.2, and [8, 4F.14],
one sees that the proof of [5, Theorem 3.3.1] is effective. In particular, there is a AL
compact, E-invariant set K C C™~ admitting a A{ isomorphism E|K = E|Fr(C™>).

Now consider the equivalence relation F on N x CF~ given by

(w,x)F(y,z) & w=y & xEz.

Let T be the tree from the proof of Proposition 1.4.2 and let X = [T] x Fr(C~). Then
F|X is invariantly universal for CBERs that can be induced by a free action of Fo,
so there is a Borel isomorphism F|X = E|Fr(C), and F|X does not admit a A%
invariant probability Borel measure.
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It follows that F'| X is Borel isomorphic to a Ai compact subshift of C™~. However,
by the proof of Proposition 1.4.1, every such subshift admits a A% invariant probability
Borel measure, so there is no Ai isomorphism between F|X and a A} compact subshift
of CF~_ In particular, F|X is a concrete witness to [5, Proposition 3.8.15].

1.5 Proof of Effective Ergodic Decomposition

As noted in [9], the proof of Nadkarni’s Theorem can be used to provide a proof
of the Ergodic Decomposition Theorem (see also [10, Section 2.9]). We will now
show that this argument can also be effectivized, providing a proof of the Effective
Ergodic Decomposition Theorem for invariant measures from the proof of the Effec-
tive Nadkarni’s Theorem. This provides a different proof of a special case of Ditzen’s
Effective Ergodic Decomposition Theorem [2], which is proved more generally for
quasi-invariant measures.

Let E be a non-compressible CBER on the Baire space N, in order to prove the
Ergodic Decomposition Theorem for E. We may partition N = X U Y into A% E-
invariant pieces so that E|X is aperiodic and every E|Y-class C C Y is finite. It is easy
to see that the Ergodic Decomposition Theorem holds for E|Y, so we may assume that
E is aperiodic.

Fix (f,),7,U, d, (U¥) satisfying Theorem 1.2.2 for E. By the proof of the Effective
Nadkarni’s Theorem, there is a A} E-invariant set C C N and a local measure function
m, such that that C admits a A} compression and for each x € N\ C there is a (unique)
E-invariant probability Borel measure u, on X satisfying u,(U) = m(U, x) for all
Uel.

For A{ sets A, BC N, let Q,‘? *B be the associated decomposition (cf. Notation 1.3.8).
Let F), be the uniformly A} fundamental sequence for E used in the proof of the Effec-
tive Nadkarni’s Theorem, and for s e N<N let Ny = {x e N: s Cx}.Fors e NN . k €
N define

_ {(N\ [Nsle) U QY™™ k=0,
Ss,n,k = N..F .
o, otherwise.

By the proof of Theorem 1.2.2, we may assume that S, x € U for all s, n, k.

Nowlet Z=N\ (CU Uy .k Co(Ss,n,k)), Where Cy(S) is the set constructed in the
proof of Lemma 1.3.13(3). By the uniformity of this construction and Lemma 1.3.2(2),
N\Zis A% and admits a A{ compression. By invariance of the local measure function,
the assignment x — pu, is E-invariant. Additionally, as noted in the introduction, we
may identify P(/N') with the subspace of ¢ € [0, 1]N<N satistying ¢(0) = 1 and ¢(s) =
>, ¢(s7n), for s € N<N. Then, by uniformity in A of the local measure function
m(A, x), the assignment x — u, defines a A} map Z — INVg C [0, 1]N<N.

Forx e Z,let Sy ={y € Z: 1y = uy}.



20 A. S. Kechris and M. Wolman

Lemma 1.5.1. Foranyx € Z, ux(Sy) = 1.

Proof. If x € S .k, then by definition of Z, E-invariance of S, x and the fact that
Ss.n,k € U, we have :ux(Ss,n,k) =m(Ss,n.k x) = 1.

Now define S, =Z N ({Ss.n.k: X €Ss.nk}.Since N'\ Z is compressible, 1, (Z) =
1,andso ux(Sy) =1.1fy € Sy, then [Ny /F,](x) = [Ns/F,](y) forall s, n, so Hy(Ng) =
m(Ny,y) = m(Ny,x) = uy for all s € N<¥, and hence My = py. Therefore Sy C Sy,
and u,(Sy) = 1. [

Lemma 1.5.2. Let S C N be E-invariant and Borel. Then there is an E-invariant
compressible Borel set C € N such that for x ¢ C we have

1 xe8,

x(S) =m(S,x) {0 £ ES.
Proof. By relativizing, we may assume S is A}. Repeat the proofs of this section,
assuming this time that § € U, to geta A{ setZ’ € Nand a A{ assignment Z’ 3 x
1. € INVg induced by a local measure function m’. Note that m = m’ by uniformity
of the construction of the local measure function, and hence u, = y’ forx e ZnZ’.

LetC=(N\ZNZ)UCy(S), where Cy(S) is the set constructed in the proof of
Lemma 1.3.13(3). Then C admits a A} compression, and if x ¢ C then

1 xe€es§,

px(S) = p(S) =m’(8,x) = {0 £ gS.

Proposition 1.5.3. For any x € Z, uy is the unique E-ergodic invariant probability
Borel measure on E|Sx. Moreover, every E-ergodic invariant probability Borel mea-
sure is equal to iy, for some x € Z.

Proof. Fix x € Z. Note that S is E-invariant, Borel and non-compressible (as it sup-
ports the E-invariant measure u,). Now let Y € N be E-invariant and Borel. By
Lemma 1.5.2 there is an E-invariant compressible Borel set C € N such thatfory ¢ C,
uy(Y) € {0, 1}. Since S, is E-invariant and non-compressible, there must be some
vy €8, \ C. Then u(Y) = pu,(Y) € {0, 1}. Since Y was arbitrary, p is E-ergodic.

Now let v be any E-ergodic invariant probability Borel measure. For every s €
N<N_7n € N, there is a unique k(s, n) € N such that V(Ss.nk(s,n)) = 1. Define S =
(Ms.n Ss,n.k(s,n)- Then v(S) =1, so in particular S is non-compressible, and hence
SNZ+0.LetxeSNZ.

We claim that . = v. To see this, fix some s € N< in order to show that s, (Ny) =
v(Ny). Note that [Ng/F,](x) = k(s,n), for all s, n, so that u,(Ng) = lim,, k(zs;,") (cf.
Definition 1.3.9 and Definition 1.3.12). We now consider two cases. If v([N;]g) =0,
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then k (s,n) =0 forall n, so u, (Ng) =0=v(Ny). Now suppose v([Ng]g) = 1. Forall n,
we have Ny N QQ’(‘SI:L’; ~k(s,n)(F,N QkN(‘"S’I;")), S0, as noted at the start of Section 1.3,
v(Ns) € [k(s,n)27", (k(s,n) + 1)27"] for all n. Thus

k(s,n)

v(N;) = h}gn o Hx(Ns).

Finally, it remains to show that u, is the unique E-ergodic invariant probability
Borel measure on E|S . To see this, let v be any other such measure and write v = u,,
for some y € Z. Then v(Sy) = uy(Sy) =1,50v(SxNSy) =1.Thus S, NS, # 0, and
SO fix = fly = V. ]

Proposition 1.5.4. Let u,v € INVEg. If u(S) = v(S) for all E-invariant Borel sets
SCN, thenu=v.

Proof. Let A € N be A}. As in the proof of Proposition 1.5.3, we have
p(AN QY ™y € [k27"u(QF ™). (k+ D27 u(Q ™).
Similarly,
v(AN QP e [k27v(QP™), (k + 1)27"v (0" ™)].
Since the sets Q?’F " are E-invariant, we have ,u(Q?’F ") = v(Q?’F "), and therefore
(AN Q™) = v(AN Q™M) < 27" (@),

It follows that

1(A) =v(A) < D (AN Q) —v(An QP <27 ) p(opt) <27,
k k

Since n was arbitrary, u(A) = v(A). [
Proposition 1.5.5. Forany v € INVg, v = f,uxdv(x).

Proof. Let A C N be E-invariant. Then /,ux (A)dv(x) =v(ANZ)=v(A). Thus, by
Proposition 1.5.4, v = fuxdv(x). ]
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