Chapter 1

Ditzen's effective version of Nadkarni's Theorem

Alexander S. Kechris and Michael Wolman

Dedicated to Katrin Tent

Nadkarni's Theorem asserts that for a countable Borel equivalence relation (CBER) exactly one of the following holds: (1) It has an invariant Borel probability measure or (2) it admits a Borel compression, i.e., a Borel injection that maps each equivalence class to a proper subset of it. An effective version of Nadkarni's Theorem was included in Ditzen's unpublished PhD thesis, where it is shown that if a CBER is effectively Borel, then either alternative (1) above holds or else it admits an effectively Borel compression. In his thesis, Ditzen also proves an effective version of the Ergodic Decomposition Theorem. These notes contain an exposition of these results. We include Ditzen's proof of the Effective Nadkarni's Theorem, and use this construction to provide a different proof of the Effective Ergodic Decomposition Theorem. In addition, we construct a counterexample to show that alternative (1) above does not admit an effective version.

1.1 Introduction

In effective descriptive set theory one often considers the following type of question: Suppose we are given a (lightface) Δ_{1}^{1} structure R on the Baire space \mathcal{N} (like, e.g., an equivalence relation, graph, etc.) and a problem about R that admits a (classical) Δ_{1}^{1} (i.e., Borel) solution. Is there an effective, i.e., Δ_{1}^{1}, solution?

For example, consider the case where $R=E$ is a Δ_{1}^{1} equivalence relations which is smooth, i.e., admits a Borel function $f: \mathcal{N} \rightarrow \mathcal{N}$ such that $x E y \Longleftrightarrow f(x)=f(y)$. Then it turns out that one can find such a function which is actually Δ_{1}^{1}.

One often derives such results via an effective version of a dichotomy theorem, For instance, for the example of smoothness above we have the following classical version of the so-called General Glimm-Effros Dichotomy proved in [6]. Below E_{0} is the equivalence relation on the Cantor space C given by $x E_{0} y \Longleftrightarrow \exists m \forall n \geq m(x(n)=$ $y(n)$).

Theorem 1.1.1 (General Glimm-Effros Dichotomy, see [6]). Let E be a Borel equivalence relation on the Baire space \mathcal{N}. Then exactly one of the following holds:

2020 Mathematics Subject Classification. Primary 03E15, 28A05; Secondary 28D05, 37A05. Keywords. Countable Borel equivalence relation, compressible, invariant measure, ergodic decomposition.
(i) E is smooth, i.e., admits a Borel function $f: \mathcal{N} \rightarrow \mathcal{N}$ such that $x E y \Longleftrightarrow$ $f(x)=f(y)$,
(ii) There is a Borel injective function $g: C \rightarrow \mathcal{N}$ such that $x E_{0} y \Longleftrightarrow g(x) E g(y)$.

Now it turns out that the proof of this result in [6] actually gives the following effective version:

Theorem 1.1.2 (Effective General Glimm-Effros Dichotomy, see [6]). Let E be a Δ_{1}^{1} equivalence relation on the Baire space \mathcal{N}. Then exactly one of the following holds:
(i) E admits a Δ_{1}^{1} function $f: \mathcal{N} \rightarrow \mathcal{N}$ such that $x E y \Longleftrightarrow f(x)=f(y)$.
(ii) There is a Borel injective function $g: C \rightarrow \mathcal{N}$ such that $x E_{0} y \Longleftrightarrow g(x) E g(y)$.

From this it is immediate that the smoothness of E is witnessed effectively as mentioned earlier. For more examples of such effectivity results see also the recent paper [11].

In Ditzen's unpublished PhD thesis [2], it is shown that the notion of compressibility of a countable Borel equivalence relation (CBER) is effective, i.e., if a Δ_{1}^{1} CBER on the Baire space \mathcal{N} is compressible, then it admits a Δ_{1}^{1} compression. This follows from an effective version of Nadkarni's Theorem that we state below.

First recall the following standard concepts. A CBER E on a standard Borel space X is a Borel equivalence relation all of whose classes are countable. A compression of E is an injective map $f: X \rightarrow X$ such that for each E-class C we have $f(C) \varsubsetneqq$ C. We say that E is compressible if it admits a Borel compression. Finally a Borel probability measure μ on X is invariant for E if for any Borel bijection $f: X \rightarrow X$ with $f(x) E x, \forall x$, we have that $f_{*} \mu=\mu$.

We now have:
Theorem 1.1.3 (Nadkarni's Theorem, see [9] and [1]). Let E be a CBER on the Baire space \mathcal{N}. Then exactly one of the following holds:
(i) E is compressible, i.e., admits a Borel compression;
(ii) E admits an invariant probability Borel measure.

We include below Ditzen's proof of the following effective version of Nadkarni's Theorem:

Theorem 1.1.4 (Effective Nadkarni's Theorem [2]). Let E be a (lightface) $\Delta_{1}^{1} C B E R$ on the Baire space \mathcal{N}. Then exactly one of the following holds:
(i) E admits a Δ_{1}^{1} compression;
(ii) E admits an invariant probability Borel measure.

As a consequence of the proof of the Effective Nadkarni Theorem we also obtain a proof of an effective version of the classical Ergodic Decomposition Theorem (see [3] and [12]). This provides a different proof, for the restricted case of invariant measures,
of Ditzen's Effective Ergodic Decomposition Theorem for quasi-invariant measures [2].

First we recall the classical Ergodic Decomposition Theorem. For a CBER E on a standard Borel space X, we let INV_{E} denote the space of E-invariant probability Borel measures on X. We say $\mu \in \operatorname{INV}_{E}$ is ergodic for E if $\mu(A) \in\{0,1\}$ for all E-invariant Borel sets $A \subseteq X$, and we let $E I N V_{E} \subseteq \mathrm{INV}_{E}$ denote the space of E-ergodic invariant probability Borel measures on X.

Theorem 1.1.5 (Ergodic Decomposition Theorem, see [3] and [12]). Let E be a CBER on the Baire space \mathcal{N} and suppose that $\operatorname{INV}_{E} \neq \emptyset$. Then $\operatorname{EINV}_{E} \neq \emptyset$ and there is a Borel surjection $\pi: \mathcal{N} \rightarrow \mathrm{EINV}_{E}$ such that:
(i) π is E-invariant;
(ii) if $S_{e}=\{x: \pi(x)=e\}$, for $e \in \operatorname{EINV}_{E}$, then $e\left(S_{e}\right)=1$ and e is the unique E-ergodic invariant probability Borel measure on $E \mid S_{e}$;
(iii) for any $\mu \in \operatorname{INV}_{E}, \mu=\int \pi(x) d \mu(x)$.

Nadkarni in [9] noted that his proof of Theorem 1.1.3 can be also used to give a proof of Theorem 1.1.5. We will show below that this argument can also be effectivized.

Let $P(\mathcal{N})$ denote the space of probability Borel measures on \mathcal{N}. One can identify a probability Borel measure μ on \mathcal{N} with the map $\varphi_{\mu}: \mathbb{N}^{<\mathbb{N}} \rightarrow[0,1], \varphi_{\mu}(s)=\mu\left(N_{s}\right)$, where $N_{s}=\{x \in \mathcal{N}: s \subseteq x\}$ (cf. [7,17.7]). In this way, one may view $P(\mathcal{N})$ as the Π_{2}^{0} subset of $[0,1]^{\mathbb{N}^{<\mathbb{N}}}$ consisting of all φ satisfying $\varphi(\emptyset)=1$ and $\varphi(s)=\sum_{n} \varphi\left(s^{\sim} n\right)$ for all $s \in \mathbb{N}^{<\mathbb{N}}$. Via this identification, we will prove the following effective version of the Ergodic Decomposition Theorem:

Theorem 1.1.6 (Effective Ergodic Decomposition Theorem, see [2]). Let E be a (lightface) Δ_{1}^{1} CBER on the Baire space \mathcal{N} and suppose that $\mathrm{INV}_{E} \neq \emptyset$. Then $\operatorname{EINV}_{E} \neq$ \emptyset, and there is a $\Delta_{1}^{1} E$-invariant set $Z \subseteq \mathcal{N}$ and a Δ_{1}^{1} map $\pi: Z \rightarrow[0,1]^{\mathbb{N}^{<N}}$ such that:
(i) $E \mid(\mathcal{N} \backslash Z)$ admits a Δ_{1}^{1} compression, i.e. there is a Δ_{1}^{1} injective map $f: \mathcal{N} \backslash Z \rightarrow$ $\mathcal{N} \backslash Z$ such that $f(C) \varsubsetneqq C$ for every E-class $C \subseteq \mathcal{N} \backslash Z$;
(ii) π maps Z onto EINV_{E};
(iii) π is E-invariant;
(iv) if $S_{e}=\{x \in Z: \pi(x)=e\}$, for $e \in \operatorname{EINV}_{E}$, then $e\left(S_{e}\right)=1$ and e is the unique E-ergodic invariant probability Borel measure on $E \mid S_{e}$;
(v) for any $\mu \in \operatorname{INV}_{E}, \mu=\int \pi(x) d \mu(x)$.

In Section 1.4, we will show that there is a $\Delta_{1}^{1} \operatorname{CBER} E$ on \mathcal{N} that admits an invariant probability Borel measure but does not admit a Δ_{1}^{1} invariant probability measure. It follows that we cannot, in general, make the map π from Theorem 1.1.6 total, because if we could then E would admit a Δ_{1}^{1} invariant probability measure.

1.2 A representation of Δ_{1}^{1} equivalence relations

In this section we will prove a representation of Δ_{1}^{1} CBER that is needed for the proof of Theorem 1.1.4. It can be viewed as a strengthening and effective refinement of the Feldman-Moore Theorem, which asserts that every CBER is obtained from a Borel action of a countable group. Below we use the following terminology:

Definition 1.2.1. A sequence $\left(A_{n}\right)$ of Δ_{1}^{1} subsets of \mathcal{N} is uniformly Δ_{1}^{1} if the relation $A \subseteq \mathbb{N} \times \mathcal{N}$ given by

$$
A(n \cdot x) \Longleftrightarrow x \in A_{n},
$$

is Δ_{1}^{1}. Similarly a sequence $\left(f_{n}\right)$ of partial Δ_{1}^{1} functions $f_{n}: \mathcal{N} \rightarrow \mathcal{N}$ (i.e., functions with Δ_{1}^{1} graph) is uniformly Δ_{1}^{1} if the partial function $f: \mathbb{N} \times \mathcal{N} \rightarrow \mathcal{N}$ given by

$$
f(n, x)=f_{n}(x)
$$

is Δ_{1}^{1}.
We also say that a countable collection of subsets of \mathcal{N} is uniformly Δ_{1}^{1} if it admits a uniformly Δ_{1}^{1} enumeration. Similarly for a countable set of partial functions.
Theorem 1.2.2 ([2, Section 2.2.1]). Let E be a Δ_{1}^{1} CBER on the Baire space N. Then
(1) E is induced by a uniformly Δ_{1}^{1} sequence of (total) involutions, i.e., there is a such a sequence $\left(f_{n}\right)$ with $x E y \Longleftrightarrow \exists n\left(f_{n}(x)=y\right)$.
(2) There is a Polish 0-dimensional topology τ on \mathcal{N}, extending the standard topology, and a uniformly Δ_{1}^{1} countable Boolean algebra \mathcal{U} of clopen sets in τ, which is a basis for τ and is closed under the group Γ generated by $\left(f_{n}\right)$.
(3) There is a complete compatible metric d for τ such that for every $U \in \mathcal{U}$ and $k>0$, there is a uniformly Δ_{1}^{1}, pairwise disjoint, sequence $\left(U_{n}^{k}\right)$ with $U_{n}^{k} \in \mathcal{U}, U=$ $\cup_{n} U_{n}^{k}$ and $\operatorname{diam}_{d}\left(U_{n}^{k}\right)<\frac{1}{k}$, and such that moreover the sequence $\left(U_{n}^{k}\right)$ is uniformly Δ_{1}^{1} in U, k, n.

Proof. For (1): This follows immediately from the usual proof of the Feldman-Moore Theorem (see [4] or [10, Section 1.2]). So fix below such a sequence $\left(f_{n}\right)$ and consider the corresponding Δ_{1}^{1} action of the group Γ.

For (2), (3): We will first find a topology τ as in (2), which has a uniformly Δ_{1}^{1} countable basis \mathcal{B} of clopen sets closed under the Γ-action, because we can then take \mathcal{U} to be the Boolean algebra generated by \mathcal{B}.

For (3) we will find a complete compatible Δ_{1}^{1} metric d for τ (i.e., $d: \mathcal{N}^{2} \rightarrow \mathbb{R}$ is $\left.\Delta_{1}^{1}\right)$. Then if $\left(\mathcal{U}_{n}\right)$ is a uniformly Δ_{1}^{1} enumeration of \mathcal{U}, we have that

$$
A(k, n) \Longleftrightarrow \operatorname{diam}_{d}\left(\mathcal{U}_{n}\right)<\frac{1}{k+1}
$$

is Π_{1}^{1} and

$$
\forall x \in \mathcal{N} \forall k \exists n\left(n \in A_{k} \& x \in \mathcal{U}_{n}\right)
$$

where $A_{k}=\{n:(k, n) \in A\}$.
So, by the Number Uniformization Theorem for Π_{1}^{1}, there is a Δ_{1}^{1} function $f: \mathcal{N} \times$ $\mathbb{N} \rightarrow \mathbb{N}$ such that

$$
\forall x \in \mathcal{N} \forall k\left(f(x, k) \in A_{k} \& x \in \mathcal{U}_{f(x, k)}\right) .
$$

Since $A^{\prime}(k, n) \Longleftrightarrow \exists x \in \mathcal{N}(n=f(x, k))$ is a Σ_{1}^{1} subset of A, let $A^{\prime \prime}$ be Δ_{1}^{1} such that $A^{\prime} \subseteq A^{\prime \prime} \subseteq A$. Since

$$
\mathcal{N} \times \mathbb{N}=\bigcup_{(k, n) \in A^{\prime \prime}} \mathcal{U}_{n} \times\{k\}
$$

we can find a uniformly Δ_{1}^{1} sequence $\left(X_{n}^{k}\right)$ of sets in \mathcal{U}, such that for all $k>0$ the sequence $\left(X_{n}^{k}\right)_{n}$ is a partition of \mathcal{N} of sets with d-diameter less than $\frac{1}{k}$. Finally given any $U \in \mathcal{U}$, let $U_{n}^{k}=X_{n}^{k} \cap U$.

It thus remains to find τ, d with these properties. We will need first a couple of lemmas.

Lemma 1.2.3. Let $A \subseteq \mathcal{N}$ be Δ_{1}^{1}. Then there is a Polish 0 -dimensional topology τ_{A} on \mathcal{N}, which extends the standard topology, has a uniformly Δ_{1}^{1} countable basis consisting of clopen sets containing A, and has a complete compatible Δ_{1}^{1} metric d_{A}.

Proof. Let $f: \mathcal{N} \rightarrow \mathcal{N}$ be computable and let $B \subseteq \mathcal{N}$ be Π_{1}^{0} and such that $f \mid B$ is injective and $f(B)=A$. Use f to move the (relative) topology of B to A and the standard metric of B to A. Do the same for $\mathcal{N} \backslash A$ and then take the direct sum of these topologies and metrics on $A, \mathcal{N} \backslash A$ to find τ_{A}, d_{A}.

Lemma 1.2.4. Let $\mathcal{A}=\left(A_{n}\right)$ be a uniformly Δ_{1}^{1} sequence of subsets of \mathcal{N}. Then there is a Polish 0 -dimensional topology $\tau_{\mathcal{A}}$ on \mathcal{N}, which extends the standard topology, has a uniformly Δ_{1}^{1} countable basis $\mathcal{B}_{\mathcal{A}}$ containing all the sets in \mathcal{A}, and has a complete compatible Δ_{1}^{1} metric $d_{\mathcal{A}}$.

Proof. Consider $\tau_{\mathcal{A}_{n}}, d_{\mathcal{A}_{n}}$ as in Lemma 1.2.3. Then put

$$
\tau_{\mathcal{A}}=\text { the topology generated by } \bigcup_{n} \tau_{\mathcal{A}_{n}}
$$

Then by [7, Lemma 13.3], $\tau_{\mathcal{A}}$ is Polish (and contains the standard topology). A basis for $\tau_{\mathcal{A}}$ consists of all sets of the form

$$
U_{1} \cap U_{2} \cap \cdots \cap U_{n}
$$

where $U_{i} \in \mathcal{B}_{A_{j_{i}}}, 1 \leq I \leq n$, and so it is 0 -dimensional with a uniformly Δ_{1}^{1} basis $\mathcal{B}_{\mathcal{A}}$ containing all the sets in \mathcal{A}.

Finally, as in the proof of [7, Lemma 13.3] again, a complete compatible metric for $\tau_{\mathcal{A}}$ is

$$
d_{\mathcal{A}}(x, y)=\sum_{n} 2^{-n-1} \cdot \frac{d_{A_{n}}(x, y)}{1+d_{A_{n}}(x, y)}
$$

Because of the uniformity in A of the proof of Lemma 1.2.3 this metric is also Δ_{1}^{1}.
We finally find τ, d. To do this we recursively define a sequence of Polish 0 dimensional topologies $\tau_{0}, \tau_{1}, \ldots$ on \mathcal{N}, extending the standard topology, and uniformly Δ_{1}^{1} countable bases \mathcal{B}_{n} for τ_{n} and complete compatible Δ_{1}^{1} metrics d_{n} for τ_{n}, all uniformly in n as well, and such that $\Gamma \cdot \mathcal{B}_{n} \subseteq \mathcal{B}_{n+1}$.

For $n=0$, let $\tau_{0}, d_{0}, \mathcal{B}_{0}$ be the standard topology, metric and basis for \mathcal{N}.
Given $\tau_{n}, d_{n}, \mathcal{B}_{n}$, consider $\Gamma \cdot \mathcal{B}_{n}$ and use Lemma 1.2.4 to define $\tau_{n+1}, \mathcal{B}_{n+1} \supseteq$ $\Gamma \cdot \mathcal{B}_{n}, d_{n+1}$. The uniformity in n is clear from the construction.

Finally let τ be the topology generated by $\bigcup_{n} \tau_{n}$. It is 0 -dimensional, Polish, with basis the sets of the form

$$
U_{1} \cap U_{2} \cap \cdots \cap U_{n}
$$

with $U_{i} \in \mathcal{B}_{j_{i}}, 1 \leq i \leq n$, so this is a uniformly Δ_{1}^{1} countable basis \mathcal{B} consisting of clopen sets. Also clearly for any $\gamma \in \Gamma$,

$$
\gamma \cdot\left(U_{1} \cap U_{2} \cap \cdots \cap U_{n}\right)=\gamma \cdot U_{1} \cap \gamma \cdot U_{2} \cap \cdots \cap \gamma \cdot U_{n}
$$

where $\gamma \cdot U_{i} \in \mathcal{B}_{j_{i}+1}$, thus $\gamma \cdot\left(U_{1} \cap U_{2} \cap \cdots \cap U_{n}\right) \in \mathcal{B}$ as well. Finally, as before, a complete compatible Δ_{1}^{1} metric for τ is

$$
d(x, y)=\sum_{n} 2^{-n-1} \cdot \frac{d_{n}(x, y)}{1+d_{n}(x, y)}
$$

and the proof is complete.

1.3 Proof of Effective Nadkarni

In this section we show, using the representation of Δ_{1}^{1} CBER constructed in Section 1.2, that we can effectivize the proof of Nadkarni's Theorem. Our proof follows the exposition in [2, Section 2.2.3]; see also the presentations of the classical proof in [1] or [10].

The classical proof of Nadkarni's Theorem proceeds as follows. Fix a CBER E on \mathcal{N}. We first define a way to compare the "size" of sets. For Borel sets $A, B \subseteq \mathcal{N}$ we write $A \sim_{B} B$ if there is a Borel bijection $g: A \rightarrow B$ with $x E g(x), \forall x \in A$. We write $A<_{B} B$ if there is some $B^{\prime} \subseteq B$ with $A \sim_{B} B^{\prime}$ and $[B]_{E}=\left[B \backslash B^{\prime}\right]_{E}$, and $A \approx_{B} n B$ if we can partition A into pieces A_{0}, \ldots, A_{n} so that $A_{i} \sim_{B} B$ for $i<n$ and $A_{n}<_{B} B$. One thinks
of $A \approx_{B} n B$ to mean that A is about n times the size of B. In particular, if $A \approx_{B} n B$ and μ is an E-invariant probability Borel measure, then $n \mu(B) \leq \mu(A) \leq(n+1) \mu(B)$.

Note that E is compressible iff $\mathcal{N}<_{B} \mathcal{N}$. More generally, we say that $A \subseteq \mathcal{N}$ is compressible if $A<_{B} A$, i.e., if the equivalence relation $E \mid A$ is compressible.

Next we construct a fundamental sequence for E, i.e., a decreasing sequence $\left(F_{n}\right)$ of Borel sets such that $F_{0}=\mathcal{N}$ and $F_{n+1} \sim_{B} F_{n} \backslash F_{n+1}$. Each F_{n} is a complete section for E, and is a piece of \mathcal{N} of "size" 2^{-n}, in the sense that $\mathcal{N} \approx_{B} 2^{n} F_{n}$ and $\mu\left(F_{n}\right)=2^{-n}$ for all E-invariant probability Borel measures μ. It follows that if $A \approx_{B} k F_{n}$ then $k 2^{-n} \leq \mu(A) \leq(k+1) 2^{-n}$ for any E-invariant probability Borel measure μ.

We then use the relative size of A with respect to the F_{n} to approximate what the measure of A would be with respect to some E-invariant probability Borel measure. To do this, we construct, for all m, a partition $[A]_{E}=\bigsqcup_{n \leq \infty} Q_{n}^{A, m}$ of $[A]_{E}$ into E-invariant Borel pieces such that $Q_{\infty}^{A, m}$ admits a Borel compression and $A \cap$ $Q_{n}^{A, m} \approx_{B} n\left(F_{m} \cap Q_{n}^{A, m}\right)$ for $n<\infty$. We define the fraction function $\left[A / F_{m}\right]$ by setting $\left[A / F_{m}\right](x)=n$ if $x \in Q_{n}^{A, m}$ or if $n=0 \& x \notin[A]_{E}$, and let the local measure function $m(A, x)=\lim _{m \rightarrow \infty} \frac{\left[A / F_{m}\right](x)}{\left[\mathcal{N} / F_{m}\right](x)}$. We show that $m(A, x)$ is well-defined modulo an E-invariant compressible set, meaning there is an E-invariant set $C \subseteq \mathcal{N}$ admitting a Borel compression and such that $m(A, x)$ is well-defined when $x \notin C$. We also show that for any partition $A=\bigsqcup_{n} A_{n}$ into Borel pieces we have $m(A, x)=\sum_{n} m\left(A_{n}, x\right)$ modulo an E-invariant compressible set, and if $A \sim B$ then $m(A, x)=m(B, x)$ modulo an E-invariant compressible set.

Finally, we show that the local measure function $m(\cdot, x)$ defines an E-invariant probability Borel measure, for all $x \in \mathcal{N} \backslash C$, where $C \subseteq \mathcal{N}$ is some E-invariant compressible set. To see this, we fix a Borel action $\Gamma \curvearrowright \mathcal{N}$ of a countable group Γ inducing E, a zero-dimensional Polish topology τ on \mathcal{N} extending the usual one in which the action $\Gamma \curvearrowright \mathcal{N}$ is continuous, a complete compatible metric d for τ and a countable Boolean algebra of clopen-in τ sets closed under the Γ action forming a basis for τ, and satisfying additionally that for every $U \in \mathcal{U}$ and $k>0$ there is a pairwise disjoint sequence $\left(U_{n}^{k}\right)$ of sets in \mathcal{U} with $U=\bigcup_{n} U_{n}^{k}$ and $\operatorname{diam}_{d}\left(U_{n}^{k}\right)<\frac{1}{k}$. For each $U \in \mathcal{U}, k>0$ we fix such a sequence. Since the countable union of Borel E-invariant compressible sets is itself a Borel E-invariant compressible set, it follows that there is an E-invariant compressible set $C \subseteq \mathcal{N}$ such that for $x \notin C$ we have $m(U, x)=\sum_{n} m\left(U_{n}^{k}, x\right)$ for $U \in \mathcal{U}, k>0, m(U \cup V, x)=m(U, x)+m(V, x)$ for $U, V \in \mathcal{U}$ disjoint, and $m(U, x)=m(\gamma U, x)$ for $U \in \mathcal{U}, \gamma \in \Gamma$. Using this, we show that for $x \notin C$ there is an E-invariant probability Borel measure μ with $\mu(U)=m(U, x)$ for $U \in \mathcal{U}$. It follows that either $C=\mathcal{N}$, in which case E is compressible, or E admits an invariant probability Borel measure.

In order to prove the effective version of Nadkarni's Theorem, we will show that the classical proof outlined above can be effectivized using the representation in Section 1.2.

For the remainder of this section, we fix a Δ_{1}^{1} CBER E on \mathcal{N} and a uniformly Δ_{1}^{1} sequence of (total) involutions (γ_{n}) inducing E, as in Theorem 1.2.2(1). Moreover, we assume, without loss of generality, that E is aperiodic, meaning that every E-class is infinite, because if $C \subseteq \mathcal{N}$ were a finite E-class then the uniform measure on C would be an E-invariant probability Borel measure.

(A) Comparing the "size" of sets.

We begin by defining a way to compare the "size" of Δ_{1}^{1} sets. The notation we use is the same as the notation typically used for the equivalent classical notions (cf. [10, Definition 2.2.4, Section 2.3]), which we denoted with the subscript B above. In this paper, these notions will always refer to the effective definitions below.

Definition 1.3.1. Let $A, B \subseteq \mathcal{N}$ be Δ_{1}^{1}.
(1) We write $A \sim B$ if there is a Δ_{1}^{1} bijection $f: A \rightarrow B$ and such that $x E f(x), \forall x \in$ A. If f is such a function we write $f: A \sim B$.
(2) We write $A \leq B$ if $A \sim B^{\prime}$ for some Δ_{1}^{1} subset $B^{\prime} \subseteq B$. If f is such a function we write $f: A \leq B$.
(3) We write $A<B$ if there is some $f: A \leq B$ such that $[B \backslash f(A)]_{E}=[B]_{E}$. If f is such a function we write $f: A<B$.
(4) We say A admits a Δ_{1}^{1} compression if $A<A$, and if $f: A<A$ then we call f a Δ_{1}^{1} compression of A.
(5) We write $A \leq n B$ if there are Δ_{1}^{1} sets $A_{i}, i<n$ such that $A=\bigcup_{i<n} A_{i}$ and $A_{i} \leq B$ for $i<n$. Note that $A \leq 1 B \Longleftrightarrow A \leq B$.
(6) We write $A<n B$ if in the previous definition there is some $i<n$ for which $A_{i}<B$. Note that $A<1 B \Longleftrightarrow A<B$.
(7) We write $A \geq n B$ if there are pairwise disjoint Δ_{1}^{1} sets $B_{i} \subseteq A, i<n$ such that $B_{i} \sim B$.
(8) We write $A \approx n B$ if there is a partition $A=\bigsqcup_{i<n} B_{i} \sqcup R$ into Δ_{1}^{1} pieces such that $B_{i} \sim B$ and $R<B$. In particular, $A \approx 0 B \Longleftrightarrow A<B$. Note that $A \approx n B$ implies that $A \geq n B$ and $A<(n+1) B$.

We also let \mathscr{H} denote the set of all E-invariant Δ_{1}^{1} subsets $C \subseteq \mathcal{N}$ that admit a Δ_{1}^{1} compression.

Lemma 1.3.2. (1) Let $A \subseteq \mathcal{N}$ be Δ_{1}^{1}. If $A<A$ then $[A]_{E}<[A]_{E}$.
(2) Let $\left(A_{n}\right),\left(B_{n}\right)$ be uniformly Δ_{1}^{1} families of E-invariant sets and let $\left(f_{n}\right)$ be a uniformly Δ_{1}^{1} sequence of maps satisfying $f_{n}: A_{n} \prec B_{n}$. Then $\bigcup_{n} A_{n} \prec \bigcup_{n} B_{n}$. The same holds when $<$ is replaced by \leq or \sim, or if these are sequences of pairwise disjoint but not necessarily E-invariant sets.
(3) Let $A, B, C \subseteq \mathcal{N}$ be Δ_{1}^{1}. If $A \succeq n B$ and $C \leq m B$ for some $m \leq n$, then $C \leq A$. If additionally $C<m B$ then $C<A$.

Proof. (1) Let $f: A<A$ and let $g(x)=f(x)$ for $x \in A, g(x)=x$ for $x \in[A]_{E} \backslash A$. Then $g:[A]_{E}<[A]_{E}$.
(2) For $x \in \bigcup_{n} A_{n}$ set $f(x)=f_{n}(x)$ where n is least with $x \in A_{n}$. Then $f: \bigcup_{n} A_{n}<$ $\cup_{n} B_{n}$.
(3) Let $A_{i}, i<n$ be pairwise disjoint Δ_{1}^{1} subsets of $A, f_{i}: A_{i} \sim B$ for $i<n, C_{j}, j<m$ be Δ_{1}^{1} sets covering C and $g_{j}: C_{j} \leq B$ for $j<m$. Define

$$
h(x)=f_{j}^{-1} \circ g_{j}(x) \text { for } j \text { least with } x \in C_{j} .
$$

Then $h: C \leq A$, and if $g_{j}: C_{j}<B$ then, letting $C^{\prime}=C_{j} \backslash \bigcup_{k<j} C_{k}$, we have

$$
[A \backslash h(C)]_{E} \supseteq\left([A]_{E} \backslash[B]_{E}\right) \cup\left[B \backslash g_{j}\left(C^{\prime}\right)\right]_{E}=\left([A]_{E} \backslash[B]_{E}\right) \cup[B]_{E}=[A]_{E},
$$

so $f: C<A$.

(B) Fundamental sequences.

Definition 1.3.3. A uniformly Δ_{1}^{1} fundamental sequence for E is a uniformly Δ_{1}^{1} decreasing sequence $\left(F_{n}\right)$ of sets and a uniformly Δ_{1}^{1} sequence $\left(f_{n}\right)$ of maps such that $F_{0}=\mathcal{N}$ and $f_{n}: F_{n+1} \sim F_{n} \backslash F_{n+1}$ for all n.

Lemma 1.3.4. Let $X \subseteq \mathcal{N}$ be a Δ_{1}^{1} set on which $E \mid X$ is aperiodic. Then there is a partition $X=A \sqcup B$ of X into Δ_{1}^{1} pieces such that $A \sim B$. In particular, $E|A, E| B$ are also aperiodic.

Proof. Let < be a Δ_{1}^{1} linear order on \mathcal{N} (for example the lexicographic order) and let $x \in A_{n} \Longleftrightarrow x<\gamma_{n} x$. Define recursively the sets

$$
\tilde{A}_{n}=\left\{x \in X \cap A_{n}: x, \gamma_{n} x \in X \backslash \bigcup_{i<n}\left(\tilde{A}_{i} \cup \gamma_{i} \tilde{A}_{i}\right)\right\} .
$$

Let $A=\bigsqcup_{n} \tilde{A}_{n}$ and define $f=\bigcup_{n} \gamma_{n} \mid \tilde{A}_{n}: A \rightarrow X$. Because of the uniformity of this construction, A, f are Δ_{1}^{1}. It is easy to see that f is injective and that $f(A) \cap A=\emptyset$, so in particular that $f: A \sim f(A)$.

We claim that $A \cup f(A)$ omits at most one point from each $E \mid X$-class. To see this, let $x<y \in X$ and suppose that $x E y$. Let $\gamma_{n} x=y$. If $x, y \notin \bigcup_{i<n}\left(\tilde{A}_{i} \cup \gamma_{i} \tilde{A}_{i}\right)$, then by definition we have $x, y \in \tilde{A}_{n} \cup \gamma_{n} \tilde{A}_{n} \subseteq A \cup f(A)$.

Now let $T=X \backslash(A \cup f(A)), Y=X \cap[T]_{E}, Z=X \backslash[T]_{E}$. Then T is a traversal of $E \mid Y$ and $f \mid(A \cap Z): A \cap Z \sim f(A) \cap Z$. Thus it remains to prove the lemma for $E \mid Y$. In this case, using T and the sequence $\left(\gamma_{n}\right)$, one can enumerate each $E \mid Y$-class, and since these are infinite we can take A (resp. B) to be the even (resp. odd) elements of this enumeration.

Proposition 1.3.5. There exists a uniformly Δ_{1}^{1} fundamental sequence for E.

Proof. We construct the sequences recursively. Let $F_{0}=\mathcal{N}$ and recursively apply Lemma 1.3.4 to get F_{n+1} and $f_{n}: F_{n+1} \sim F_{n} \backslash F_{n+1}$. Uniformity of these sequences follows from the uniformity in the proof of Lemma 1.3.4.

For the remainder of this section, we fix a uniformly Δ_{1}^{1} fundamental sequence $\left(F_{n}\right)$ for E.

(C) Decompositions of Δ_{1}^{1} sets.

Lemma 1.3.6. Let $A, B \subseteq \mathcal{N}$ be Δ_{1}^{1} and let $Z=[A]_{E} \cap[B]_{E}$. There is a partition $Z=P \sqcup Q$ of Z into E-invariant uniformly Δ_{1}^{1} sets such that $A \cap P<B \cap P$ and $B \cap Q \leq A \cap Q$.

Proof. Define recursively the sets

$$
A_{n}=\left\{x \in A \backslash \bigcup_{i<n} A_{i}: \gamma_{n} x \in B \backslash \bigcup_{i<n} B_{i}\right\}, B_{n}=\gamma_{n} A_{n} .
$$

Let $\tilde{A}=\bigcup_{n} A_{n}, \tilde{B}=\bigcup_{n} B_{n}$ and $f=\bigcup_{n} \gamma_{n} \mid A_{n}$. By the uniformity of this construction, \tilde{A}, \tilde{B}, f are all Δ_{1}^{1}, so that $f: \tilde{A} \sim \tilde{B}$. If we set $P=Z \cap[B \backslash \tilde{B}]_{E}, Q=Z \backslash P$ then it is easy to see that $A \cap P \subseteq \tilde{A}, B \cap Q \subseteq \tilde{B}$ and hence that $f \mid(A \cap P): A \cap P<B \cap P$ and $f^{-1} \mid(B \cap Q): B \cap Q \leq A \cap Q$.

Proposition 1.3.7. Let $A, B \subseteq \mathcal{N}$ be Δ_{1}^{1} and let $Z=[A]_{E} \cap[B]_{E}$. There exists a partition $Z=\bigsqcup_{n \leq \infty} Q_{n}$ of Z into E-invariant Δ_{1}^{1} pieces such that $A \cap Q_{n} \approx n\left(B \cap Q_{n}\right)$ for $n<\infty$ and $Q_{\infty} \in \mathscr{H}$.

Proof. We recursively construct sequences of sets

$$
A_{n}, B_{n}, \tilde{P}_{n}, \tilde{Q}_{n}, f_{n}, g_{n}, \tilde{B}_{n}, Q_{n}, R_{n}, B_{n}^{i}, f_{n}^{i}
$$

for $i<n$ such that $A \cap Q_{n}=\bigsqcup_{i<n} B_{n}^{i} \sqcup R$ for $n<\infty, f_{n}^{i}: B_{n}^{i} \sim B \cap Q_{n}$ for $i<n<\infty$, and $f_{n}: R_{n}<B \cap Q_{n}$ for $n<\infty$.

First we let $A_{0}=A, B_{0}=B$. We apply Lemma 1.3.6 to these sets to get $\tilde{P}_{0}, \tilde{Q}_{0}, f_{0}, g_{0}$ and \tilde{B}_{0} satisfying

$$
f_{0}: A_{0} \cap \tilde{P}_{0} \prec B_{0} \cap \tilde{P}_{0}, \quad g_{0}: B_{0} \cap \tilde{Q}_{0} \leq A_{0} \cap \tilde{Q}_{0}, \quad \tilde{B}_{0}=\operatorname{Im}\left(g_{0}\right)
$$

Define $Q_{0}=\tilde{P}_{0}, R_{0}=A_{0} \cap Q_{0}$.
Now let $n>0$ and suppose we have already constructed

$$
A_{k}, B_{k}, \tilde{P}_{k}, \tilde{Q}_{k}, f_{k}, g_{k}, \tilde{B}_{k}, Q_{k}, R_{k}, B_{k}^{i}, f_{k}^{i}
$$

for all $i<k<n$. Let $A_{n}=\left(A_{n-1} \cap \tilde{Q}_{n-1}\right) \backslash \tilde{B}_{n-1}, B_{n}=B \cap \tilde{Q}_{n-1}$. Apply Lemma 1.3.6 to A_{n}, B_{n} to get $\tilde{P}_{n}, \tilde{Q}_{n}, f_{n}, g_{n}, \tilde{B}_{n}$ such that

$$
f_{n}: A_{n} \cap \tilde{P}_{n}<B_{n} \cap \tilde{P}_{n}, \quad g_{n}: B_{n} \cap \tilde{Q}_{n} \leq A_{n} \cap \tilde{Q}_{n}, \quad \tilde{B}_{n}=\operatorname{Im}\left(g_{n}\right) .
$$

Define $Q_{n}=\tilde{Q}_{n-1} \backslash \tilde{Q}_{n}, R_{n}=A_{n} \cap Q_{n}, B_{n}^{i}=\tilde{B}_{i} \cap Q_{n}, f_{n}^{i}=\left(g_{i}\right)^{-1} \mid B_{n}^{i}$.
By uniformity of this construction it is clear that these sequences are uniformly Δ_{1}^{1}. Additionally, $A \cap Q_{n} \approx n\left(B \cap Q_{n}\right)$ for $n<\infty$.

Now let $Q_{\infty}=Z \backslash \bigcup_{n} Q_{n}=\bigcap_{n} \tilde{Q}_{n}$. The sets \tilde{B}_{n} are pairwise disjoint and $g_{n}: B \cap$ $\tilde{Q}_{n} \sim \tilde{B}_{n}$ for all n. Therefore, if we define $B_{\infty}^{n}=\tilde{B}_{n} \cap Q_{\infty}, g_{\infty}^{n}=g_{n} \mid\left(B \cap Q_{\infty}\right)$ and $g_{\infty}^{n, m}=$ $g_{\infty}^{m} \circ\left(g_{\infty}^{n}\right)^{-1}$, we have that the B_{∞}^{n} are pairwise disjoint and $g_{\infty}^{n, m}: B_{\infty}^{n} \sim B_{\infty}^{m}$. Let $B_{\infty}=$ $\cup_{n} B_{\infty}^{n}$ and $g_{\infty}=\bigcup_{n} g_{\infty}^{n, n+1}$. Then B_{∞}, g_{∞} are Δ_{1}^{1} and $g_{\infty}: B_{\infty} \prec B_{\infty}$. Since $\left[B_{\infty}\right]_{E}=$ $\left[B_{\infty}^{0}\right]_{E}=\left[B \cap Q_{\infty}\right]_{E}=Q_{\infty}, Q_{\infty}$ admits a Δ_{1}^{1} compression by Lemma 1.3.2(1).

Notation 1.3.8. For Δ_{1}^{1} sets $A, B \subseteq \mathcal{N}$, we let $Q_{n}^{A, B}, n \leq \infty$ be the decomposition of $[A]_{E} \cap[B]_{E}$ constructed in Proposition 1.3.7.

(D) The fraction functions.

Definition 1.3.9. We associate to all Δ_{1}^{1} sets $A, B \subseteq \mathcal{N}$ a fraction function $[A / B]$: $\mathcal{N} \rightarrow \mathbb{N}$ defined by

$$
\left[\frac{A}{B}\right](x)= \begin{cases}n & \text { if } x \in Q_{n}^{A, B} \text { for some } n \leq \infty \\ 0 & \text { otherwise }\end{cases}
$$

Lemma 1.3.10. Let $A, A_{0}, A_{1}, A_{2}, B, S \subseteq \mathcal{N}$ be Δ_{1}^{1}.
(1) If $x E y$ then $[A / B](x)=[A / B](y)$.
(2) If $A_{0} \leq A_{1}$ then there is some $C \in \mathscr{H}$ such that $\left[A_{0} / B\right](x) \leq\left[A_{1} / B\right](x)$ for $x \notin C$.
(3) If $A_{0} \sim A_{1}$ then there is some $C \in \mathscr{H}$ such that $\left[A_{0} / B\right](x)=\left[A_{1} / B\right](x)$ for $x \notin C$.
(4) If S is E-invariant then there is some $C \in \mathscr{H}$ such that for $x \in S \backslash C$ we have $[A / B](x)=[(A \cap S) / B](x)$.
(5) If A_{0}, A_{1} are disjoint then there is some $C \in \mathscr{H}$ such that for $x \notin C$,

$$
\left[A_{0} / B\right]+\left[A_{1} / B\right] \leq\left[\left(A_{0} \cup A_{1}\right) / B\right] \leq\left[A_{0} / B\right]+1+\left[A_{1} / B\right]+1
$$

(6) If A_{1} is an E-complete section then there is some $C \in \mathscr{H}$ such that for $x \notin C$,

$$
\left[A_{0} / A_{1}\right]\left[A_{1} / A_{2}\right] \leq\left[A_{0} / A_{2}\right]<\left(\left[A_{0} / A_{1}\right]+1\right)\left(\left[A_{1} / A_{2}\right]+1\right)
$$

(7) There is some $C \in \mathscr{H}$ such that $\left[F_{n} / F_{n+m}\right]=2^{m}$ holds for all $m, n \in \mathbb{N}, x \notin C$.
(8) There is some $C \in \mathscr{H}$ such that for all $x \in[A]_{E} \backslash C$ we have $\left[A / F_{n}\right](x) \rightarrow \infty$.
(9) The set $Y=\left\{x:\left[A_{0} / B\right](x)<\left[A_{1} / B\right](x)\right\}$ is Δ_{1}^{1} and E-invariant and $A_{0} \cap Y \leq$ $A_{1} \cap Y$.

Proof. (1) This is clear, as the sets $Q_{n}^{A, B}$ are E-invariant.
(2) Let $C_{n, m}=Q_{n}^{A_{0}, B} \cap Q_{m}^{A_{1}, B}$ for $m<n$. Then $A_{0} \cap C_{n, m} \approx n\left(B \cap C_{n, m}\right)$ and $A_{1} \cap C_{n, m} \approx m\left(B \cap C_{n, m}\right)$ so by Lemma 1.3.2(3) and our assumption we have $A_{0} \cap$
$C_{n, m} \leq A_{1} \cap C_{n, m}<A_{0} \cap C_{n, m}$. By Lemma 1.3.2(2) and the uniformity of the proofs of Proposition 1.3.7 and Lemma 1.3.2(3), $C=\bigcup_{m<n} C_{n, m} \in \mathscr{H}$, and $\left[A_{0} / B\right](x) \leq$ $\left[A_{1} / B\right](x)$ for $x \notin C$.
(3) This follows from (2).
(4) As in the proof of (2), it suffices to show that $C=S \cap Q_{k}^{A, B} \cap Q_{l}^{A \cap S, B}$ admits a Δ_{1}^{1} compression (in a uniform way) for $k \neq l$. But

$$
A \cap C \approx k(B \cap C) \text { and } A \cap C \approx l(B \cap C)
$$

by E-invariance of C, so by Lemma 1.3.2(1),(3) C admits a Δ_{1}^{1} compression.
(5) Let $C=C_{i, j, k}=Q_{i}^{A_{0}, B} \cap Q_{j}^{A_{1}, B} \cap Q_{k}^{A_{2}, B}$. Then (5) fails to hold exactly when $x \in C_{i, j, k}$ for $k<i+j$ or $k>i+1+j+1$. Therefore, as in the proof of (2), it suffices to show that $C_{i, j, k}$ admits a Δ_{1}^{1} compression (in a uniform way) for such i, j, k.

Now we know that $A_{0} \cap C \approx i(B \cap C), A_{1} \cap C \approx j(B \cap C), A_{2} \cap C \approx k(B \cap$ $C)$ by E-invariance of C. If $k<i+j$ then $\left(A_{0} \cup A_{1}\right) \cap C<(i+j)(B \cap C)$ and (since A_{0}, A_{1} are disjoint) we have $\left(A_{0} \cap C\right) \cup\left(A_{1} \cap C\right) \geq(i+j)(B \cap C)$. Thus by Lemma 1.3.2(1),(3) $C=\left[\left(A_{0} \cup A_{1}\right) \cap C\right]_{E}$ admits a Δ_{1}^{1} compression. On the other hand, if $k>i+1+j+1$ then $\left(A_{0} \cap C\right) \cup\left(A_{1} \cap C\right)<(i+1+j+1)(B \cap C)$ and $\left(A_{0} \cup A_{1}\right) \cap C \geq k(B \cap C)$, so again C admits a Δ_{1}^{1} compression.
(6) If $x \notin\left[A_{0}\right]_{E} \cup\left[A_{2}\right]_{E}$ then this clearly holds. Thus if $C=C_{k, l, m}=Q_{k}^{A_{0}, A_{1}} \cap$ $Q_{l}^{A_{1}, A_{2}} \cap Q_{m}^{A_{0}, A_{2}}$ then (6) fails to hold exactly when $x \in C_{k, l, m}$ for $m<k l$ or $m \geq$ $(k+1)(l+1)$. Therefore, as in the proof of (2), it suffices to show that these sets admit a Δ_{1}^{1} compression (in a uniform way).

Since $A_{0} \cap C \approx k\left(A_{1} \cap C\right)$ and $A_{1} \cap C \approx l\left(A_{2} \cap C\right)$ we have that $A_{0} \cap C \geq k l\left(A_{2} \cap\right.$ $C)$. Also, $A_{0} \cap C \approx m\left(A_{2} \cap C\right)$, so if $k l>m$ then by Lemma 1.3.2(1),(3) we are done. On the other hand, if $m \geq(k+1)(l+1)$ then $A_{0} \cap C \geq(k+1)(l+1)\left(A_{2} \cap C\right)$, and since $A_{1} \cap C \approx l\left(A_{2} \cap C\right)$ one easily sees that $A_{0} \cap C \geq(k+1)\left(A_{1} \cap C\right)$. Thus by Lemma 1.3.2(1),(3) we are done.
(7) Again it suffices to show that $Q_{k}^{F_{n}, F_{n+m}}$ admits a Δ_{1}^{1} compression in a uniform way for $k \neq 2^{m}$. When $k=\infty$ this is clear. Otherwise, one easily sees by definition of the fundamental sequence that $F_{n} \approx 2^{m} F_{n+m}$, and moreover there is a uniformly Δ_{1}^{1} sequence of witnesses to this. It follows that $F_{n} \cap Q_{k}^{F_{n}, F_{n+m}} \approx 2^{m}\left(F_{n+m} \cap\right.$ $Q_{k}^{F_{n}, F_{n+m}}$) and $F_{n} \cap Q_{k}^{F_{n}, F_{n+m}} \approx k\left(F_{n+m} \cap Q_{k}^{F_{n}, F_{n+m}}\right)$, so when $k \neq 2^{m}$ this follows from Lemma 1.3.2(1),(3).
(8) Let C_{0} be the set constructed in (7), $C\left(A_{0}, A_{1}, A_{2}\right)$ be the set constructed in (6), $C_{1}=\bigcap_{n} Q_{0}^{A, F_{n}}$ and

$$
C_{2}=\bigcup_{n, m} C\left(A, F_{n}, F_{n+m}\right) \cup \bigcup_{n} C\left(F_{0}, F_{n}, A\right) .
$$

Let $C=C_{0} \cup C_{1} \cup C_{2}$. If $x \in[A]_{E} \backslash C$ then there is some n for which $\left[A / F_{n}\right](x) \neq 0$, so for all m we have

$$
\left[A / F_{n+m}\right](x) \geq\left[A / F_{n}\right](x)\left[F_{n} / F_{n+m}\right](x) \geq 2^{m}
$$

and therefore $\left[A / F_{n}\right](x) \rightarrow \infty$. By the uniformity of the proofs of (6), (7) and Proposition 1.3.7, C is Δ_{1}^{1}, so it remains to show that it admits a Δ_{1}^{1} compression. By the uniformity of the proofs of (6), (7) and Lemma 1.3.2(2), it suffices to show that $C_{1} \backslash$ $\left(C_{0} \cup C_{2}\right)$ admits a Δ_{1}^{1} compression.

First we show that $C_{1} \cap \bigcup_{n} Q_{0}^{F_{n}, A}$ admits a Δ_{1}^{1} compression. For this it suffices to show that $C_{1} \cap Q_{0}^{F_{n}, A}$ admits a Δ_{1}^{1} compression for all n (in a uniform way), by Lemma 1.3.2(2). But by definition and E-invariance we have

$$
F_{n} \cap C_{1} \cap Q_{0}^{F_{n}, A}<A \cap C_{1} \cap Q_{0}^{F_{n}, A}<F_{n} \cap C_{1} \cap Q_{0}^{F_{n}, A}
$$

so $F_{n} \cap C_{1} \cap Q_{0}^{F_{n}, A}$ admits a Δ_{1}^{1} compression, and since F_{n} is a complete section we are done by Lemma 1.3.2(1).

Next we consider $C^{\prime}=C_{1} \backslash\left(C_{0} \cup C_{2} \cup \bigcup_{n} Q_{0}^{F_{n}, A}\right)$. For any $x \in C^{\prime}, n \in \mathbb{N}$, we have

$$
\left[F_{0} / A\right](x) \geq\left[F_{0} / F_{n}\right](x)\left[F_{n} / A\right](x) \geq 2^{n},
$$

so $\left[F_{0} / A\right](x)=\infty$ and $x \in Q_{\infty}^{F_{0}, A}$. Thus $C^{\prime} \subseteq Q_{\infty}^{F_{0}, A}$ admits a Δ_{1}^{1} compression.
(9) This set is clearly Δ_{1}^{1} and it is E-invariant by (1). Next note that $Y \subseteq[B]_{E} \backslash$ $Q_{\infty}^{A_{0}, B}$ so we can decompose Y into $Y_{0}=Y \backslash\left[A_{0}\right]_{E}$ and $Y_{1}=Y \cap\left[A_{0}\right]_{E}=\cup_{n}(Y \cap$ $\left.Q_{n}^{A_{0}, B}\right)$. Since $Y_{0} \cap A_{0}=\emptyset$ we clearly have $Y_{0} \cap A_{0} \leq Y_{0} \cap A_{1}$, so it remains to show that $Y_{1} \cap A_{0} \leq Y_{1} \cap A_{1}$. But by Lemma 1.3.2(3) we have that $A_{0} \cap Q_{m}^{A_{0}, B} \cap Q_{n}^{A_{1}, B} \leq$ $A_{1} \cap Q_{m}^{A_{0}, B} \cap Q_{n}^{A_{1}, B}$ for $m<n$, so by Lemma 1.3.2(2) we are done.

(E) Local measures.

Proposition 1.3.11. Let $A \subseteq \mathcal{N}$ be Δ_{1}^{1}. Then there is some $C \in \mathscr{H}$ such that

$$
\lim _{n} \frac{\left[A / F_{n}\right](x)}{\left[\mathcal{N} / F_{n}\right](x)}
$$

exists for $x \notin C$, and the limit is zero for $x \notin[A]_{E} \cup C$ and is non-zero and finite for $x \in[A]_{E} \backslash C$.

Proof. Let $C_{0}\left(A_{0}, A_{1}, A_{2}\right), C_{1}, C_{2}(A)$ be the sets we have constructed in the proofs of Lemma 1.3.10(6)(7)(8), respectively, and take $C=\bigcup_{n, m} C_{0}\left(A, F_{n}, F_{n+m}\right) \cup C_{1} \cup$ $C_{2}(A) \cup \bigcup_{n} Q_{\infty}^{A, F_{n}}$. By Lemma 1.3.2(2) and the uniformity of Lemma 1.3.10, $C \in \mathscr{H}$. If $x \notin[A]_{E} \cup C$ then $\left[A / F_{n}\right](x)=0$ and $\left[\mathcal{N} / F_{n}\right](x)=2^{n}$ for all n, so the limit exists and is zero.

Now suppose that $x \in[A]_{E} \backslash C$. Then $\left[F_{n} / F_{n+m}\right](x)=2^{m}$ for all $m, n \in \mathbb{N}$, and

$$
\left[A / F_{n+m}\right](x) \leq\left(\left[A / F_{n}\right](x)+1\right)\left(\left[F_{n} / F_{n+m}\right](x)+1\right),
$$

so

$$
\limsup _{m \rightarrow \infty} \frac{\left[A / F_{n+m}\right](x)}{\left[\mathcal{N} / F_{n+m}\right](x)} \leq \frac{\left[A / F_{n}\right](x)+1}{\left[\mathcal{N} / F_{n}\right](x)} .
$$

Thus the limit exists and is finite at x. To see that the limit is non-zero at x, note that $\left[A / F_{n+m}\right](x) \geq\left[A / F_{n}\right](x)\left[F_{n} / F_{n+m}\right](x)$ for all $m, n \in \mathbb{N}$, so

$$
\liminf _{m \rightarrow \infty} \frac{\left[A / F_{n+m}\right](x)}{\left[\mathcal{N} / F_{n+m}\right](x)} \geq \frac{\left[A / F_{n}\right](x)}{\left[\mathcal{N} / F_{n}\right](x)}
$$

for all n, and since $\left[A / F_{n}\right](x) \rightarrow \infty$ this lower bound must be non-zero for some n.
Definition 1.3.12. Let $A \subseteq \mathcal{N}$ be Δ_{1}^{1} and let $C_{A} \in \mathscr{H}$ be the set constructed in the proof of Proposition 1.3.11. We associate to A the local measure function $m(A, \cdot): \mathcal{N} \backslash$ $C_{A} \rightarrow \mathbb{R}$ defined by

$$
m(A, x)=\lim _{n} \frac{\left[A / F_{n}\right](x)}{\left[\mathcal{N} / F_{n}\right](x)} .
$$

Note that the local measure function is Δ_{1}^{1}, uniformly in A.
Lemma 1.3.13. Let $A, B, S \subseteq \mathcal{N}$ be Δ_{1}^{1}.
(1) If $x E y$ then $m(A, x)=m(A, y)$ for $x, y \notin C_{A}$.
(2) Let $Y=\left\{x \in \mathcal{N} \backslash\left(C_{A} \cup C_{B}\right): m(A, x)<m(B, x)\right\}$. Then Y is Δ_{1}^{1}, E-invariant and $A \cap Y \leq B \cap Y$.
(3) Suppose S is E-invariant. Then there is some $C \in \mathscr{H}$ such that for $x \notin C$,

$$
m(S, x)= \begin{cases}1 & x \in S \\ 0 & x \notin S\end{cases}
$$

(4) If S is E-invariant, then there is some $C \in \mathscr{H}$ such that for $x \in S \backslash C$ we have $m(A, x)=m(A \cap S, x)$.

Proof. (1) This follows from Lemma 1.3.10(1).
(2) This set is E-invariant by (1) and is Δ_{1}^{1} because the local measure functions are Δ_{1}^{1}. Now let

$$
Y_{n}=\left\{x \in Y:\left[A / F_{n}\right](x)<\left[B / F_{n}\right](x)\right\} .
$$

The sets Y_{n} are E-invariant, Δ_{1}^{1} and cover Y, so by Lemma 1.3.10(9) and Lemma 1.3.2(2) we have $A \cap Y \leq B \cap Y$.
(3) If $x \notin S$ then $\left[S / F_{n}\right](x)=0$ for all n, so $m(S, x)=0$. On the other hand, if $x \in S$ then $\left[S / F_{n}\right](x)=k \Longleftrightarrow x \in Q_{k}^{S, F_{n}}$, so it suffices to show that $\bigcup_{k \neq 2^{n}} Q_{k}^{S, F_{n}} \in \mathscr{H}$. This is done exactly as in the proof of Lemma 1.3.10(7).
(4) Let $C_{0}(A, B, S)$ be the set constructed in the proof of Lemma 1.3.10(4) and take $C=\bigcup_{n} C_{0}\left(A, F_{n}, S\right) \cup C_{A} \cup C_{A \cap S}$. Then $C \in \mathscr{H}$ by Lemma 1.3.2(2) and clearly C works.

Proposition 1.3.14. Let $A, B, S \subseteq \mathcal{N}$ be Δ_{1}^{1} and let $\left(A_{n}\right)$ be a uniformly Δ_{1}^{1} sequence of subsets of \mathcal{N}.
(1) If $A \leq B$ then there is some $C \in \mathscr{H}$ such that $m(A, x) \leq m(B, x)$ for $x \notin C$.
(2) If $A \sim B$ then there is some $C \in \mathscr{H}$ such that $m(A, x)=m(B, x)$ for $x \notin C$.
(3) If A, B are disjoint then there is some $C \in \mathscr{H}$ such that $m(A, x)+m(B, x)=$ $m(A \sqcup B, x)$ for $x \notin C$.
(4) Suppose the $\left(A_{n}\right)$ are pairwise disjoint, S is E-invariant and the partial maps $m(A, \cdot), m\left(A_{n}, \cdot\right)$ are defined on S. Suppose additionally that $m(A, x)>\sum_{n} m\left(A_{n}, x\right)$ for $x \in S$. Then there is some $C \in \mathscr{H}$ satisfying $\left(\bigsqcup_{n} A_{n}\right) \cap(S \backslash C) \leq A \cap(S \backslash C)$.
(5) If $A=\bigsqcup_{n} A_{n}$ then there is some $C \in \mathscr{H}$ such that $m(A, x)=\sum_{n} m\left(A_{n}, x\right)$ for $x \notin C$.

Proof. (1) Let $C=\cup_{n} C_{0}\left(A, B, F_{n}\right) \cup C_{A} \cup C_{B}$, where $C_{0}\left(A_{0}, A_{1}, B\right)$ denotes the set constructed in the proof of Lemma 1.3.10(2).
(2) This follows from (1).
(3) Let $C_{0}\left(A_{0}, A_{1}, B\right)$ and C_{1} be the sets we have constructed in the proofs of Lemma 1.3.10(5) and (7), respectively, and take $C=\bigcup_{n} C_{0}\left(A, B, F_{n}\right) \cup C_{A} \cup C_{B} \cup C_{1}$.
(4) We construct recursively a sequence of Δ_{1}^{1} sets and functions $\tilde{A}_{n}, B_{n}, C_{n}, S_{n}, f_{n}$, g_{n} such that $\tilde{A}_{n+1}=\tilde{A}_{n} \backslash B_{n}, S_{n+1}=S_{n} \backslash C_{n}, f_{n}: A_{n} \cap S_{n} \sim B_{n} \cap S_{n}, g_{n}: C_{n}<C_{n}$, and $m\left(\tilde{A}_{n}, x\right)>\sum_{k \geq n} m\left(A_{k}, x\right)$ for $x \in S_{n}$. To do this, we first set $\tilde{A}_{0}=A, S_{0}=S$. Now suppose we have \tilde{A}_{n}, S_{n} satisfying $m\left(\tilde{A}_{n}, x\right)>\sum_{k \geq n} m\left(A_{k}, x\right)$ for $x \in S_{n}$. Then $m\left(\tilde{A}_{n}, x\right)>m\left(A_{n}, x\right)$ for $x \in S_{n}$, so by Lemma 1.3.13(2) we can find $B_{n} \subseteq \tilde{A}_{n}$ and $f_{n}: A_{n} \cap S_{n} \sim B_{n} \cap S_{n}$. By (2), (3) and Lemma 1.3.13(4) there are $g_{n}: C_{n}<C_{n}$ such that for $x \in S_{n} \backslash C_{n}$ we have $m\left(A_{n}, x\right)=m\left(B_{n}, x\right)$ and $m\left(\tilde{A}_{n}, x\right)=m\left(B_{n}, x\right)+m\left(\tilde{A}_{n} \backslash\right.$ $\left.B_{n}, x\right)$. We then define $\tilde{A}_{n+1}=\tilde{A}_{n} \backslash B_{n}, S_{n+1}=S_{n} \backslash C_{n}$.

By the uniformity of the proofs of (2), (3) and Lemma 1.3.13, these sequences are uniformly Δ_{1}^{1}. Let $C=\bigcup_{n} C_{n}$, and note that $S \backslash C=\bigcap_{n} S_{n}$, so $A_{n} \cap(S \backslash C) \sim$ $B_{n} \cap(S \backslash C)$ for all n. Thus by Lemma 1.3.2(2) we have $C \in \mathscr{H}$ and

$$
\left(\bigsqcup_{n} A_{n}\right) \cap(S \backslash C) \sim\left(\bigsqcup_{n} B_{n}\right) \cap(S \backslash C) \subseteq A \cap(S \backslash C) .
$$

(5) Let $C_{0}(A, B), C_{1}(A, B)$ be the sets constructed in the proofs of (1) and (3), respectively, and let

$$
\tilde{C}=C_{A} \cup \bigcup_{n}\left[C_{A_{n}} \cup C_{0}\left(A_{0} \cup \cdots \cup A_{n}, A\right) \cup C_{1}\left(A_{0} \cup \cdots \cup A_{n}, A_{n+1}\right)\right] .
$$

Then for $x \notin \tilde{C}$ and $n \in \mathbb{N}$ we have

$$
\sum_{k<n} m\left(A_{k}, x\right)=m\left(\bigcup_{k<n} A_{k}, x\right) \leq m(A, x)
$$

and therefore $\sum_{n} m\left(A_{n}, x\right) \leq m(A, x)$ for $x \notin \tilde{C}$.
Now let C_{2} be the set constructed in the proof of Lemma 1.3.10(7) and define

$$
C=\tilde{C} \cup C_{2} \cup C_{\mathcal{N} \backslash A} \cup C_{1}(A, \mathcal{N} \backslash A) \cup \bigcup_{n}\left[C_{F_{n}} \cup C_{\mathcal{N} \backslash F_{n}} \cup C_{1}\left(F_{n}, \mathcal{N} \backslash F_{n}\right)\right]
$$

Then for $x \notin C$ we have

- $\sum_{n} m\left(A_{n}, x\right) \leq m(A, x)$,
- $m(A, x)+m(\mathcal{N} \backslash A, x)=m(\mathcal{N}, x)$,
- $\forall n\left(m\left(F_{n}, x\right)=2^{-n}\right)$, and
- $\forall n\left(m\left(F_{n}, x\right)+m\left(\mathcal{N} \backslash F_{n}, x\right)=m(\mathcal{N}, x)\right)$.

Let $S_{k}=\left\{x \notin C: m(A, x)>\sum_{n} m\left(A_{n}, x\right)+2^{-k}\right\}$. These sets are Δ_{1}^{1} and E-invariant, and if $x \notin C \cup \bigcup_{k} S_{k}$ then $m(A, x)=\sum_{n} m\left(A_{n}, x\right)$. By the uniformity of the construction of C, S_{k} and Lemma 1.3.2(2), it remains to show that each $S_{k} \in \mathscr{H}$.

For $x \in S_{k}$ we have

$$
m\left(\mathcal{N} \backslash F_{k}, x\right)=m(A, x)+m(\mathcal{N} \backslash A, x)-m\left(F_{k}, x\right)>m(\mathcal{N} \backslash A, x)+\sum_{n} m\left(A_{n}, x\right)
$$

By (4) there is some $C_{k} \in \mathscr{H}$ for which

$$
S_{k} \backslash C_{k}=\left(\bigcup_{n} A_{n} \cup(\mathcal{N} \backslash A)\right) \cap\left(S_{k} \backslash C_{k}\right) \leq\left(\mathcal{N} \backslash F_{k}\right) \cap\left(S_{k} \backslash C_{k}\right)
$$

Since F_{k} is an E-complete section, this means that $S_{k} \backslash C_{k} \in \mathscr{H}$, and hence that $S_{k} \in \mathscr{H}$, as desired.

(F) Proof of the Effective Nadkarni's Theorem.

Recall that we have fixed some sequence of maps $\left(\gamma_{n}\right)$ satisfying (1) of Theorem 1.2.2. Fix now some $\tau, \mathcal{U}, d,\left(U_{n}^{k}\right)$ satisfying (2), (3) of Theorem 1.2.2. Let C_{A} be the set defined in Definition 1.3.12, and let $C_{0}(A, B), C_{1}(A, B), C_{2}\left(A,\left(A_{n}\right)\right)$ be the sets constructed in the proofs of Proposition 1.3.14(2), (3) and (5), respectively. Now define

$$
\begin{aligned}
C & =\bigcup\left\{C_{U}: U \in \mathcal{U}\right\} \\
& \cup \bigcup\left\{C_{0}\left(U, \gamma_{n} U\right): U \in \mathcal{U}, n \in \mathbb{N}\right\} \\
& \cup \bigcup\left\{C_{1}(U, V \backslash U): U, V \in \mathcal{U}\right\} \\
& \cup \bigcup\left\{C_{2}\left(U,\left(U_{n}^{k}\right)_{n}\right): U \in \mathcal{U}, k>0\right\}
\end{aligned}
$$

By the uniformity of the constructions of the $C_{A}, C_{0}, C_{1}, C_{2}$, along with the fact that $\mathcal{U},\left(U_{n}^{k}\right)$ are uniformly Δ_{1}^{1}, there is a uniformly Δ_{1}^{1} enumeration of the sets in this union, so C is Δ_{1}^{1}. By this uniformity and Lemma 1.3.2(2), C admits a Δ_{1}^{1} compression.

If $\mathcal{N}=C$, then E admits a Δ_{1}^{1} compression. So suppose $\mathcal{N} \neq C$ and fix some $x \in \mathcal{N} \backslash C$. By construction, the following hold for x :

- $m(\emptyset, x)=0$ and $m(\mathcal{N}, x)=1$;
- for all $U \in \mathcal{U}, m(U, x)$ exists, is zero for $x \notin[U]_{E}$, and is non-zero and finite for $x \in[U]_{E} ;$
- $m(U, x)=m\left(\gamma_{n} U, x\right)$ for all $U \in \mathcal{U}, n \in \mathbb{N}$;
- $m(U \sqcup V, x)=m(U, x)+m(V, x)$ for all disjoint $U, V \in \mathcal{U}$; and
- for all $U \in \mathcal{U}$ and $k>0, m(U, x)=\sum_{n} m\left(U_{n}^{k}, x\right)$.

Now define

$$
\mu_{x}^{*}(A)=\inf \left\{\sum_{n} m\left(U_{n}, x\right): U_{n} \in \mathcal{U} \& A \subseteq \bigcup_{n} U_{n}\right\}
$$

As in the classical proof of Nadkarni's Theorem (cf. [1, p. 51-52] or [10, Theorem 2.8.1]), μ_{x}^{*} is a metric outer measure whose restriction μ_{x} to the Borel sets is an E-invariant probability Borel measure satisfying $\mu_{x}(U)=m(U, x)$, for $U \in \mathcal{U}$. Thus, E admits an invariant probability Borel measure.

1.4 A counterexample

Let E be a Δ_{1}^{1} CBER on \mathcal{N}. Nadkarni's Theorem says that either E is compressible or E admits an invariant probability Borel measure. We have seen in Theorem 1.1.4 that if E is compressible, then actually there is a Δ_{1}^{1} witness of this. On the other hand, if E is non-compressible, one may ask if there is an effective witness of this, i.e., if E admits a Δ_{1}^{1} invariant probability measure. It turns out that this is true if, for example, E is induced by a continuous, Δ_{1}^{1} action of a countable group on the Cantor space, but it is not true in general.

Let $P(C)$ denote the space of probability Borel measures on C. As with $P(\mathcal{N})$, we identify $P(C)$ with the Π_{1}^{0} set of all $\varphi \in[0,1]^{2<\mathbb{N}}$ satisfying $\varphi(\emptyset)=1$ and $\varphi(s)=$ $\varphi\left(s^{\frown} 0\right)+\varphi\left(s^{\sim} 1\right)$ for $s \in 2^{<\mathbb{N}}$. We then have the following:

Proposition 1.4.1. Let E be a CBER on the Cantor space C. Suppose there is a uniformly Δ_{1}^{1} sequence $\left(f_{n}\right)$ of homeomorphisms of C inducing E, i.e., such that $x E y \Longleftrightarrow$ $\exists n\left(f_{n}(x)=y\right)$. Then if E is non-compressible, E admits a Δ_{1}^{1} invariant probability measure.

Proof. Let $\mathrm{INV}_{E} \subseteq P(C)$ be the set of all E-invariant probability Borel measures on C. If E is non-compressible, then INV_{E} is compact, Δ_{1}^{1} and non-empty. By the basis
theorem [8, 4F.11], INV_{E} contains a Δ_{1}^{1} point, which is a $\Delta_{1}^{1} E$-invariant probability measure on C.

Let E, F be CBERs on the standard Borel spaces X, Y respectively. We say that E is Borel invariantly embeddable to F, denoted $E \sqsubseteq_{B}^{i} F$, if there is an injective Borel map $f: X \rightarrow Y$ such that $x E y \Longleftrightarrow f(x) F f(y)$, and such that additionally $f(X) \subseteq Y$ is F-invariant. We say F is invariantly universal if $E \sqsubseteq_{B}^{i} F$ for any CBER E. Clearly, all invariantly universal CBERs admit invariant probability Borel measures.

Proposition 1.4.2. There exists an invariantly universal $\Delta_{1}^{1} C B E R$ on \mathcal{N} that does not admit a Δ_{1}^{1} invariant probability measure.

Proof. Let \mathbb{F}_{∞} be the free group on a countably infinite set of generators, and take F_{0} to be the shift equivalence relation on $\mathcal{N}^{\mathbb{F}_{\infty}} \cong \mathcal{N}$. Note that F_{0} is an invariantly universal Δ_{1}^{1} CBER. Let F_{1} be a compressible Δ_{1}^{1} CBER on \mathcal{N}. Let T be an ill-founded computable tree on \mathbb{N} with no Δ_{1}^{1} branches (cf. [8, 4D.10]), and define the equivalence relation E on $\mathcal{N} \times \mathcal{N}$ by

$$
(w, x) E(y, z) \Longleftrightarrow w=y \&\left[\left(w \in[T] \& x F_{0} z\right) \text { or }\left(w \notin[T] \& x F_{1} z\right)\right] .
$$

Then E is a non-compressible invariantly universal $\Delta_{1}^{1} \operatorname{CBER}$ on $\mathcal{N} \times \mathcal{N} \cong \mathcal{N}$, because T is ill-founded and F_{0} is non-compressible and invariantly universal.

Now suppose for the sake of contradiction that E admits a Δ_{1}^{1} invariant probability measure μ. For $s \in \mathbb{N}^{<\mathbb{N}}$, let $N_{s}=\{x \in \mathcal{N}: s \subseteq x\}$, and define $S=\left\{s \in \mathbb{N}^{<\mathbb{N}}: \mu\left(N_{s} \times\right.\right.$ $\mathcal{N})>0\}$. Then S is a non-empty pruned Δ_{1}^{1} subtree of T, because if $s \notin T$ then $E \mid\left(N_{s} \times\right.$ $\mathcal{N})$ is compressible, so $\mu\left(N_{s} \times \mathcal{N}\right)=0$. But then S, and hence T, has a Δ_{1}^{1} branch, a contradiction.

Remark 1.4.3. Let E be the equivalence relation induced by the shift action of \mathbb{F}_{∞} on $C^{\mathbb{F}_{\infty}}$, and let $\operatorname{Fr}\left(C^{\mathbb{F}_{\infty}}\right) \subseteq C^{\mathbb{F}_{\infty}}$ be the free part of $C^{\mathbb{F}_{\infty}}$, i.e., the set of points x such that $\gamma x \neq x, \forall \gamma \in \mathbb{F}_{\infty}, \gamma \neq 1$. Then $E \mid F r\left(C^{\mathbb{F}_{\infty}}\right)$ is invariantly universal for CBERs that can be induced by a free Borel action of \mathbb{F}_{∞}.

Using the representation of Δ_{1}^{1} CBERs constructed in Section 1.2, and [8, 4F.14], one sees that the proof of [5, Theorem 3.3.1] is effective. In particular, there is a Δ_{1}^{1}, compact, E-invariant set $K \subseteq C^{\mathbb{F}_{\infty}}$ admitting a Δ_{1}^{1} isomorphism $E|K \cong E| F r\left(C^{\mathbb{F}_{\infty}}\right)$.

Now consider the equivalence relation F on $\mathcal{N} \times C^{\mathbb{F}_{\infty}}$ given by

$$
(w, x) F(y, z) \Longleftrightarrow w=y \& x E z .
$$

Let T be the tree from the proof of Proposition 1.4.2 and let $X=[T] \times \operatorname{Fr}\left(C^{\mathbb{F}_{\infty}}\right)$. Then $F \mid X$ is invariantly universal for CBERs that can be induced by a free action of \mathbb{F}_{∞}, so there is a Borel isomorphism $F|X \cong E| F r\left(C^{\mathbb{F}_{\infty}}\right)$, and $F \mid X$ does not admit a Δ_{1}^{1} invariant probability Borel measure.

It follows that $F \mid X$ is Borel isomorphic to a Δ_{1}^{1} compact subshift of $C^{\mathbb{F}_{\infty}}$. However, by the proof of Proposition 1.4.1, every such subshift admits a Δ_{1}^{1} invariant probability Borel measure, so there is no Δ_{1}^{1} isomorphism between $F \mid X$ and a Δ_{1}^{1} compact subshift of $C^{\mathbb{F}_{\infty}}$. In particular, $F \mid X$ is a concrete witness to [5, Proposition 3.8.15].

1.5 Proof of Effective Ergodic Decomposition

As noted in [9], the proof of Nadkarni's Theorem can be used to provide a proof of the Ergodic Decomposition Theorem (see also [10, Section 2.9]). We will now show that this argument can also be effectivized, providing a proof of the Effective Ergodic Decomposition Theorem for invariant measures from the proof of the Effective Nadkarni's Theorem. This provides a different proof of a special case of Ditzen's Effective Ergodic Decomposition Theorem [2], which is proved more generally for quasi-invariant measures.

Let E be a non-compressible CBER on the Baire space \mathcal{N}, in order to prove the Ergodic Decomposition Theorem for E. We may partition $\mathcal{N}=X \sqcup Y$ into $\Delta_{1}^{1} E$ invariant pieces so that $E \mid X$ is aperiodic and every $E \mid Y$-class $C \subseteq Y$ is finite. It is easy to see that the Ergodic Decomposition Theorem holds for $E \mid Y$, so we may assume that E is aperiodic.

Fix $\left(f_{n}\right), \tau, \mathcal{U}, d,\left(U_{n}^{k}\right)$ satisfying Theorem 1.2.2 for E. By the proof of the Effective Nadkarni's Theorem, there is a $\Delta_{1}^{1} E$-invariant set $C \subseteq \mathcal{N}$ and a local measure function m, such that that C admits a Δ_{1}^{1} compression and for each $x \in \mathcal{N} \backslash C$ there is a (unique) E-invariant probability Borel measure μ_{x} on X satisfying $\mu_{x}(U)=m(U, x)$ for all $U \in \mathcal{U}$.

For Δ_{1}^{1} sets $A, B \subseteq \mathcal{N}$, let $Q_{n}^{A, B}$ be the associated decomposition (cf. Notation 1.3.8). Let F_{n} be the uniformly Δ_{1}^{1} fundamental sequence for E used in the proof of the Effective Nadkarni's Theorem, and for $s \in \mathbb{N}^{<\mathbb{N}}$, let $N_{s}=\{x \in \mathcal{N}: s \subseteq x\}$. For $s \in \mathbb{N}^{<\mathbb{N}}, n, k \in$ \mathbb{N} define

$$
S_{s, n, k}= \begin{cases}\left(\mathcal{N} \backslash\left[N_{s}\right]_{E}\right) \cup Q_{0}^{N_{s}, F_{n}} & k=0 \\ Q_{k}^{N_{s}, F_{n}} & \text { otherwise }\end{cases}
$$

By the proof of Theorem 1.2.2, we may assume that $S_{s, n, k} \in \mathcal{U}$ for all s, n, k.
Now let $Z=\mathcal{N} \backslash\left(C \cup \bigcup_{s, n, k} C_{0}\left(S_{s, n, k}\right)\right)$, where $C_{0}(S)$ is the set constructed in the proof of Lemma 1.3.13(3). By the uniformity of this construction and Lemma 1.3.2(2), $\mathcal{N} \backslash Z$ is Δ_{1}^{1} and admits a Δ_{1}^{1} compression. By invariance of the local measure function, the assignment $x \mapsto \mu_{x}$ is E-invariant. Additionally, as noted in the introduction, we may identify $P(\mathcal{N})$ with the subspace of $\varphi \in[0,1]^{\mathbb{N}^{<} \mathbb{N}}$ satisfying $\varphi(\emptyset)=1$ and $\varphi(s)=$ $\sum_{n} \varphi\left(s^{\complement} n\right)$, for $s \in \mathbb{N}^{<\mathbb{N}}$. Then, by uniformity in A of the local measure function $m(A, x)$, the assignment $x \mapsto \mu_{x}$ defines a Δ_{1}^{1} map $Z \rightarrow \operatorname{INV}_{E} \subseteq[0,1]^{\mathbb{N}^{<\mathbb{N}}}$.

For $x \in Z$, let $S_{x}=\left\{y \in Z: \mu_{y}=\mu_{x}\right\}$.

Lemma 1.5.1. For any $x \in Z, \mu_{x}\left(S_{x}\right)=1$.
Proof. If $x \in S_{s, n, k}$, then by definition of Z, E-invariance of $S_{S, n, k}$ and the fact that $S_{s, n, k} \in \mathcal{U}$, we have $\mu_{x}\left(S_{s, n, k}\right)=m\left(S_{s, n, k}, x\right)=1$.

Now define $\tilde{S}_{x}=Z \cap \bigcap\left\{S_{s, n, k}: x \in S_{s, n, k}\right\}$. Since $\mathcal{N} \backslash Z$ is compressible, $\mu_{x}(Z)=$ 1 , and so $\mu_{x}\left(\tilde{S}_{x}\right)=1$. If $y \in \tilde{S}_{x}$, then $\left[N_{s} / F_{n}\right](x)=\left[N_{s} / F_{n}\right](y)$ for all s, n, so $\mu_{y}\left(N_{s}\right)=$ $m\left(N_{s}, y\right)=m\left(N_{s}, x\right)=\mu_{x}$ for all $s \in \mathbb{N}^{<\mathbb{N}}$, and hence $\mu_{y}=\mu_{x}$. Therefore $\tilde{S}_{x} \subseteq S_{x}$, and $\mu_{x}\left(S_{x}\right)=1$.

Lemma 1.5.2. Let $S \subseteq \mathcal{N}$ be E-invariant and Borel. Then there is an E-invariant compressible Borel set $C \subseteq \mathcal{N}$ such that for $x \notin C$ we have

$$
\mu_{x}(S)=m(S, x)= \begin{cases}1 & x \in S, \\ 0 & x \notin S\end{cases}
$$

Proof. By relativizing, we may assume S is Δ_{1}^{1}. Repeat the proofs of this section, assuming this time that $S \in \mathcal{U}$, to get a Δ_{1}^{1} set $Z^{\prime} \subseteq \mathcal{N}$ and a Δ_{1}^{1} assignment $Z^{\prime} \ni x \mapsto$ $\mu_{x}^{\prime} \in \mathrm{INV}_{E}$ induced by a local measure function m^{\prime}. Note that $m=m^{\prime}$ by uniformity of the construction of the local measure function, and hence $\mu_{x}=\mu_{x}^{\prime}$ for $x \in Z \cap Z^{\prime}$.

Let $C=\left(\mathcal{N} \backslash Z \cap Z^{\prime}\right) \cup C_{0}(S)$, where $C_{0}(S)$ is the set constructed in the proof of Lemma 1.3.13(3). Then C admits a Δ_{1}^{1} compression, and if $x \notin C$ then

$$
\mu_{x}(S)=\mu_{x}^{\prime}(S)=m^{\prime}(S, x)= \begin{cases}1 & x \in S \\ 0 & x \notin S\end{cases}
$$

Proposition 1.5.3. For any $x \in Z, \mu_{x}$ is the unique E-ergodic invariant probability Borel measure on $E \mid S_{x}$. Moreover, every E-ergodic invariant probability Borel measure is equal to μ_{x}, for some $x \in Z$.

Proof. Fix $x \in Z$. Note that S_{x} is E-invariant, Borel and non-compressible (as it supports the E-invariant measure μ_{x}). Now let $Y \subseteq \mathcal{N}$ be E-invariant and Borel. By Lemma 1.5.2 there is an E-invariant compressible Borel set $C \subseteq \mathcal{N}$ such that for $y \notin C$, $\mu_{y}(Y) \in\{0,1\}$. Since S_{x} is E-invariant and non-compressible, there must be some $y \in S_{x} \backslash C$. Then $\mu_{x}(Y)=\mu_{y}(Y) \in\{0,1\}$. Since Y was arbitrary, μ_{x} is E-ergodic.

Now let v be any E-ergodic invariant probability Borel measure. For every $s \in$ $\mathbb{N}^{<\mathbb{N}}, n \in \mathbb{N}$, there is a unique $k(s, n) \in \mathbb{N}$ such that $v\left(S_{s, n, k(s, n)}\right)=1$. Define $S=$ $\cap_{s, n} S_{S, n, k(s, n)}$. Then $v(S)=1$, so in particular S is non-compressible, and hence $S \cap Z \neq \emptyset$. Let $x \in S \cap Z$.

We claim that $\mu_{x}=v$. To see this, fix some $s \in \mathbb{N}^{<\mathbb{N}}$, in order to show that $\mu_{x}\left(N_{s}\right)=$ $v\left(N_{s}\right)$. Note that $\left[N_{s} / F_{n}\right](x)=k(s, n)$, for all s, n, so that $\mu_{x}\left(N_{s}\right)=\lim _{n} \frac{k(s, n)}{2^{n}}$ (cf. Definition 1.3.9 and Definition 1.3.12). We now consider two cases. If $v\left(\left[N_{s}\right]_{E}\right)=0$,
then $k(s, n)=0$ for all n, so $\mu_{x}\left(N_{s}\right)=0=v\left(N_{s}\right)$. Now suppose $v\left(\left[N_{s}\right]_{E}\right)=1$. For all n, we have $N_{s} \cap Q_{k(s, n)}^{N_{s}, F_{n}} \approx k(s, n)\left(F_{n} \cap Q_{k(s, n)}^{N_{s}, F_{n}}\right)$, so, as noted at the start of Section 1.3, $v\left(N_{s}\right) \in\left[k(s, n) 2^{-n},(k(s, n)+1) 2^{-n}\right]$ for all n. Thus

$$
v\left(N_{s}\right)=\lim _{n} \frac{k(s, n)}{2^{n}}=\mu_{x}\left(N_{s}\right) .
$$

Finally, it remains to show that μ_{x} is the unique E-ergodic invariant probability Borel measure on $E \mid S_{x}$. To see this, let v be any other such measure and write $v=\mu_{y}$ for some $y \in Z$. Then $v\left(S_{y}\right)=\mu_{y}\left(S_{y}\right)=1$, so $v\left(S_{x} \cap S_{y}\right)=1$. Thus $S_{x} \cap S_{y} \neq \emptyset$, and so $\mu_{x}=\mu_{y}=v$.

Proposition 1.5.4. Let $\mu, v \in \mathrm{INV}_{E}$. If $\mu(S)=v(S)$ for all E-invariant Borel sets $S \subseteq \mathcal{N}$, then $\mu=v$.

Proof. Let $A \subseteq \mathcal{N}$ be Δ_{1}^{1}. As in the proof of Proposition 1.5.3, we have

$$
\mu\left(A \cap Q_{k}^{A, F_{n}}\right) \in\left[k 2^{-n} \mu\left(Q_{k}^{A, F_{n}}\right),(k+1) 2^{-n} \mu\left(Q_{k}^{A, F_{n}}\right)\right]
$$

Similarly,

$$
v\left(A \cap Q_{k}^{A, F_{n}}\right) \in\left[k 2^{-n} v\left(Q_{k}^{A, F_{n}}\right),(k+1) 2^{-n} v\left(Q_{k}^{A, F_{n}}\right)\right]
$$

Since the sets $Q_{k}^{A, F_{n}}$ are E-invariant, we have $\mu\left(Q_{k}^{A, F_{n}}\right)=v\left(Q_{k}^{A, F_{n}}\right)$, and therefore

$$
\left|\mu\left(A \cap Q_{k}^{A, F_{n}}\right)-v\left(A \cap Q_{k}^{A, F_{n}}\right)\right| \leq 2^{-n} \mu\left(Q_{k}^{A, F_{n}}\right)
$$

It follows that

$$
|\mu(A)-v(A)| \leq \sum_{k}\left|\mu\left(A \cap Q_{k}^{A, F_{n}}\right)-v\left(A \cap Q_{k}^{A, F_{n}}\right)\right| \leq 2^{-n} \sum_{k} \mu\left(Q_{k}^{A, F_{n}}\right) \leq 2^{-n}
$$

Since n was arbitrary, $\mu(A)=v(A)$.
Proposition 1.5.5. For any $v \in \operatorname{INV}_{E}, v=\int \mu_{x} d v(x)$.
Proof. Let $A \subseteq \mathcal{N}$ be E-invariant. Then $\int \mu_{x}(A) d v(x)=v(A \cap Z)=v(A)$. Thus, by Proposition 1.5.4, $v=\int \mu_{x} d v(x)$.

Acknowledgments. We would like to thank B. Miller, F. Shinko and Z. Vidnyánszky for many helpful discussions on this subject.

Funding. This work was partially supported by NSF Grant DMS-1950475.

References

[1] H. Becker and A.S. Kechris, The descriptive set theory of Polish group actions. Cambridge Univ. Press, 1996.
[2] A. Ditzen, Definable Equivalence Relations on Polish Spaces. Ph.D. thesis, Caltech, 1992.
[3] R.H. Farrell, Representation of invariant measures. Ill. J. Math., 6 (1962), 447-467.
[4] J. Feldman and C.C. Moore, Ergodic equivalence relations and von Neumann algebras, I. Trans. Amer. Math. Soc., 234 (1977), 289-324.
[5] J. Frisch, A.S. Kechris, F. Shinko and Z. Vidnyánszky, Realizations of countable Borel equivalence relations. 2023, arXiv:2109.12486.
[6] L.A. Harrington, A.S. Kechris and A. Louveau, A Glimm-Effros dichotomy for Borel equivalence relations. J. Amer. Math. Soc., 3(4) (1990), 903-928.
[7] A.S. Kechris, Classical Descriptive Set Theory. Springer-Verlag, 1995.
[8] Y.N. Moschovakis, Descriptive Set Theory, 2nd ed. American Mathematical Society, 2009.
[9] M.G. Nadkarni, On the existence of a finite invariant measure. Proc. Indian Acad. Sci., Math. Sci., 100(3) (1990), 203-220.
[10] K. Slutsky, Countable Borel equivalence relations. https://kslutsky.com/lecture-notes/cber. pdf.
[11] R. Thornton, Δ_{1}^{1} Effectivization in Borel Combinatorics, 2021, arXiv:2105.04063.
[12] V.S. Varadarajan, Groups of automorphisms of Borel spaces. Trans. Amer. Math. Soc., 109 (1963), 191-220.

