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1. Introduction

The theory of definable equivalence relations has been a very active area of
research in descriptive set theory during the last three decades. It serves as
a foundation of a theory of complexity of classification problems in math-
ematics. Such problems can be often represented by a definable (usually
Borel or analytic) equivalence relation on a standard Borel space. To com-
pare the difficulty of a classification problem with respect to another, one
introduces a basic order among equivalence relations, Borel reducibility,
which is defined as follows. An equivalence relation E on a standard Borel
space X is Borel reducible to an equivalence relation F on a standard Borel
space Y , in symbols E ≤B F , if there is a Borel map f : X → Y such that
xEy ⇐⇒ f(x)Ff(y). In this case one views E as less complex than F .
The study of this hierarchical order and the discovery of various canonical
benchmarks in this hierarchy occupies a major part of this theory.

Another source of motivation for the theory of definable equivalence re-
lations comes from the study of group actions, in a descriptive, topological
or measure theoretic context, where one naturally studies the structure of
the equivalence relation whose classes are the orbits of the action and the
associated orbit space.

An important part of this theory is concerned with the structure of
countable Borel equivalence relations, i.e., those Borel equivalence rela-
tions all of whose classes are countable. It turns out that these are exactly
the equivalence relations generated by Borel actions of countable discrete
groups (Feldman-Moore) and this brings into this subject important con-
nections with group theory, dynamical systems and operator algebras.

Our goal here is to provide a survey of the state of the art in the the-
ory of countable Borel equivalence relations. Although this subject has a
long history in the context of ergodic theory and operator algebras, the sys-
tematic study of countable Borel equivalence relations in the purely Borel
context dates back to the mid-1990’s and originates in the papers [DJK] and
[JKL]. Since that time there has been extensive work in this area leading to
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10 1. Introduction

major progress on many of the fundamental problems.
This survey is organized as follows. Chapter 2 reviews some basic gen-

eral concepts concerning equivalence relations and morphisms between
them. In Chapter 3 we introduce countable Borel equivalence relations, dis-
cuss some of their properties and mention several examples. The scope of
the theory of countable Borel equivalence relations is actually much wider
as it encompasses a great variety of other equivalence relations up to Borel
bireducibility. Chapter 4 deals with such equivalence relations, called es-
sentially countable. In Chapter 5, we consider invariant as well as quasi-
invariant measures for equivalence relations.

In Chapter 6, we start studying the hierarchical order of Borel reducibil-
ity, introducing the important benchmarks of the simplest (non-trivial) and
the most complex countable Borel equivalence relations. The next Chap-
ter 7, demonstrates the complexity and richness of the structure of this hi-
erarchical order and discusses the role of rigidity phenomena in both the
set theoretic and ergodic theoretic contexts. We next consider various im-
portant classes of countable Borel equivalence relations such as hyperfinite
(Chapter 8), amenable (Section 9), treeable (Chapter 10), freely generated
(Chapter 11) and finally universal ones (Chapter 12). The next four chap-
ters deal with the algebraic structure of the Borel reducibility order (Chap-
ter 13), the concept of structurability of countable Borel equivalence rela-
tions (Chapter 14), topological realizations of countable Borel equivalence
relations (Chapter 15) and a universal space for actions and equivalence
relations (Chapter 16). The last chapter (Chapter 17) collects many of the
main open problems discussed earlier.

With a few minor exceptions, this survey contains no proofs but it in-
cludes detailed references to the literature where these can be found. The
emphasis here is primarily on the descriptive aspects of the theory of count-
able Borel equivalence relations and ergodic theoretic aspects are brought
in when relevant. It is not our intention though to survey the research in
ergodic theory related to this subject, including in particular the theory of
orbit equivalence and its relations with operator algebras. These can be
found, for example, in [Z2], [AP], and [I3], which also contains a detailed
bibliography of the extensive work in this area over the last two decades.
Exposition of other related subjects, like the Levitt-Gaboriau theory of cost,
can be found in [KM1]. Finally there are important connections with de-
scriptive aspects of graph combinatorics, for which we refer the reader to
[KM] and [Pi].

Acknowledgments. The author was partially supported by NSF Grants
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2. Equivalence relations and
reductions

2.1 Generalities on equivalence relations

LetE be an equivalence relation on a setX . IfA ⊆ X , we letE � A = E∩A2

be its restriction to A. We also let [A]E = {x ∈ X : ∃y ∈ A(xEy)} be its E-
saturation. The set A is E-invariant if A = [A]E . In particular, for each
x ∈ X , [x]E is the equivalence class, orE-class, of x. A function f : X → Y
is E-invariant if xEy =⇒ f(x) = f(y). Finally X/E = {[x]E : x ∈ X} is
the quotient space of X modulo E.

Suppose E,F are equivalence relations on sets X,Y , respectively, and
f : (X/E)n → Y/F , n ≥ 1, is a function. A lifting of f is a function f̃ : Xn →
Y such that f(([xi]E)i<n) = [f̃((xi)i<n)]F ,∀x ∈ X . Similarly ifR ⊆ (X/E)n,
its lifting is R̃ ⊆ Xn, where (xi)i<n ∈ R̃ ⇐⇒ ([xi]E)i<n ∈ R.

If Ei, i ∈ I , is a family of equivalence relations, with Ei living on Xi,
we define the direct sum

⊕
iEi to be the equivalence relation on

⊕
iXi =

{(x, i) : x ∈ Xi} defined by

(x, j)
⊕
i

Ei (y, k) ⇐⇒ j = k & xEjy.

In particular, we let for n ≥ 1, nE =
⊕

i<nE. Also let NE =
⊕

i∈NE.
We define the direct product

∏
iEi to be the equivalence relation on the

space
∏
iXi defined by

(xj)
∏
i

Ei (yj) ⇐⇒ ∀j(xjEjyj).

In particular, we let for n ≥ 1, En =
∏
i<nE. Also let EN =

∏
i∈NE.

If E,F are equivalence relations on X , then E ⊆ F means that E is a
subset of F , when these are viewed as subsets ofX2, i.e.,E is finer than F or

13



14 2. Equivalence relations and reductions

equivalently F is coarser thanE. The index of F overE, in symbols [F : E],
is the supremum of the cardinalities of the sets of E-classes contained in
an F -class. Thus [F : E] ≤ ℵ0 means that every F -class contains only
countably many E-classes.

We denote by ∆X = {(x, y) : x = y} the equality relation on a set X and
we also let IX = X2 . Note that ifEy = E, y ∈ Y , whereE is an equivalence
relation on a set X , then

⊕
y Ey = E ×∆Y .

If Ei, i ∈ I , are equivalence relations on X , we denote by
∧
iEi =

⋂
iEi

the largest (under inclusion) equivalence relation contained in allEi and by∨
iEi the smallest (under inclusion) equivalence relation containing each

Ei. We call
∧
iEi the meet and

∨
iEi the join of (Ei).

If E is an equivalence relation on X , a set S ⊆ X is a complete section
of E if S intersects every E-class. If moreover S intersects every E-class in
exactly one point, then S is a transversal of E.

Consider now an action a : G×X → X of a groupG on a setX . We often
write g ·x = a(g, x), if there is no danger of confusion. LetG ·x = {g ·x : g ∈
G} be the orbit of x ∈ X . The action a induces an equivalence relation Ea
on X whose classes are the orbits, i.e., xEay ⇐⇒ ∃g(g · x = y). When a is
understood, sometimes the equivalence relation Ea is also denoted by EXG .
The action a is free if g · x 6= x for every x ∈ X, g ∈ G, g 6= 1G.

2.2 Morphisms

Let E,F be equivalence relations on spaces X,Y , resp. A map f : X → Y
is a homomorphism from E to F if xEy =⇒ f(x)Ff(y). In this case we
write f : (X,E) → (Y, F ) or just f : E → F , if there is no danger of confu-
sion. A homomorphism f is a reduction if moreover xEy ⇐⇒ f(x)Ff(y).
We denote this by f : (X,E) ≤ (Y, F ) or just f : E ≤ F . Note that a homo-
morphism as above induces a map form X/E to Y/F , which is an injec-
tion if f is a reduction. In other words, a homomorphism is a lifting of a
map from X/E to Y/F and a reduction is a lifting of an injection of X/E
into Y/F . An embedding is an injective reduction. This is denoted by
f : (X,E) v (Y, F ) or just f : E v F . An invariant embedding is an injec-
tive reduction whose range is an F -invariant subset of Y . This is denoted
by f : (X,E) vi (Y, F ) or just f : E vi F . Finally an isomorphism is a sur-
jective embedding. This is denoted by f : (X,E) ∼= (Y, F ) or just f : E ∼= F .

If a, b are actions of a group G on spaces X,Y , resp., a homomorphism
from a to b is a map f : X → Y such that f(g · x) = g · f(x),∀g ∈ G, x ∈ X .
If f is injective, we call it an embedding of a to b.
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2.3 The Borel category

We are interested here in studying (classes of) Borel equivalence relations
on standard Borel spaces (i.e., Polish spaces with the associated Borel struc-
ture). If X is a standard Borel space space and E is an equivalence relation
on X , then E is Borel if E is a Borel subset of X2.

Given a class of functions Φ between standard Borel spaces, we can
restrict the above notions of morphism to functions in Φ in which case we
use the subscript Φ in the above notation (e.g., f : E →Φ F , f : E ≤Φ F ,
etc.). In particular if Φ is the class of Borel functions, we write f : E →B

F, f : E ≤B F, f : E vB F, f : E viB F, f : E ∼=B F to denote that f is a
Borel morphism of the appropriate type. Similarly when we consider the
underlying topology, we use the subscript c in the case Φ is the class of
continuous functions between Polish spaces and write f : E →c F, f : E ≤c
F, f : E vc F, f : E vic F, f : E ∼=c F in this case.

We say that E is Borel reducible to F if there is a Borel reduction from
E to F . In this case we write E ≤B F . If E ≤B F and F ≤B E, then
E,F are Borel bireducible, in symbols E ∼B F . Finally we let E <B F if
E ≤B F but F �B E. Similarly we define the notions of E being Borel em-
beddable to F and E being Borel invariantly embeddable to F , for which
we use the notations E vB F and E viB F . Also we use E 'B F,E 'iB F
for the corresponding notions of being Borel biembeddable and Borel in-
variantly biembeddable and E <B F and E <i

B F for the correspond-
ing strict notions. More generally, if Φ is as above, we analogously define
E ≤Φ F,E vΦ F , etc.

Finally E,F are Borel isomorphic, in symbols E ∼=B F , if there is a
Borel isomorphism from E to F . Note that by the usual (Borel) Schröder-
Bernstein argument,E,F are Borel isomorphic iff they are Borel invariantly
biembeddable, i.e., 'iB = ∼=B .
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3. Countable Borel
equivalence relations

Definition 3.1. An equivalence relationE is countable if everyE-class is count-
able. It is finite if every E-class is finite.

3.1 Some examples

We discuss first some examples of countable Borel equivalence relations.

Examples 3.2. 1) Let X = 2N. Then the eventual equality relation

xE0y ⇐⇒ ∃m∀n ≥ m(xn = yn)

and the tail equivalence relation

xEty ⇐⇒ ∃m∃k∀n(xm+n = yk+n)

are countable Borel.
More generally, let (S,×, 1) be a monoid. We usually write st for s × t.

An action a of S on a set X is a map a : S × X → X such that, letting as
usual, s ·x = a(s, x), we have 1 ·x = x, s · (t ·x) = st ·x. If now S is abelian,
this action gives rise to two equivalence relations E0,a, Et,a on X , defined
by xE0,ay ⇐⇒ ∃s(s · x = s · y), xEt,ay ⇐⇒ ∃s∃t(s · x = t · y). If we take
S = (N,+, 0), X = 2N, 1 · (xn) = (xn+1) (the shift map), we obtain E0, Et. If
S is countable (discrete), abelian, and a is a Borel action such that for each
s ∈ S the map x 7→ s ·x is countable-to 1, thenE0,a, Et,a are countable Borel.

2) Take again X = 2N and consider ≡T and ≡A, the Turing and arith-
metical equivalence relations, resp. These are countable Borel.

3) Let now X = R. Then the Vitali equivalence relation defined by
xEvy ⇐⇒ x− y ∈ Q is countable Borel.

17



18 3. Countable Borel equivalence relations

4) Let X = R+. The commensurability relation is given by xEcy ⇐⇒
x
y ∈ Q. This is countable Borel (and one of the earliest equivalence relations
in the history of mathematics).

5) Let k ≥ 2 and let X be the space of subshifts of kZ, where a sub-
shift is a non-empty closed subset of kZ invariant under the shift map
S(x)i = xi−1. This is a compact subspace of the hyperspace of all compact
subsets of kZ, thus compact, metrizable. Let E be the equivalence relation
of isomorphism of subshifts, where two subshifts are isomorphic if there is
a homeomorphism between the closed sets that commutes with the shift.
Then E is a countable Borel equivalence relation, see [Cl2].

6) Let now a be Borel action of a countable (discrete) group G on a stan-
dard Borel space X . Then Ea is a countable Borel equivalence relation.

3.2 The Feldman-Moore Theorem

It turns out that Example 6) in the list of Examples 3.2 includes all countable
Borel equivalence relations.

Theorem 3.3 ([FM]). If E is a countable Borel equivalence relation on a standard
Borel space X , then there is a countable group G and a Borel action a of G on X
such that E = Ea.

This is an immediate consequence of the following result that can be
proved using the classical Lusin-Novikov Theorem in descriptive set the-
ory, see [Ke6, 18.10]

Theorem 3.4 ([FM]). If E is a countable Borel equivalence relation on a standard
Borel space X , then there is a sequence of Borel involutions (Tn) on X such that
xEy ⇐⇒ ∃n(Tn(x) = y).

Remark 3.5. In Theorem 3.4 one can also find (Tn) as in that theorem such
that moreover for any x 6= y, xEy, there is a unique n such that Tn(x) = y.
This is equivalent to saying that the Borel graphE\∆X has countable Borel
edge chromatic number and follows from the general result [KST, 4.10] (see
also [Ke11, 3.7]).

Although Theorem 3.3 always guarantees the existence of a Borel action
of a countable group that generates a given countable Borel equivalence re-
lation, it is not always clear how to find a “natural” such action that gen-
erates a specific equivalence relation of interest. Considering the examples
in the list of Examples 3.2, E0 is generated by an action as follows. Identify
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2N with the compact product group (Z/2Z)N and consider the translation
action of its countable dense subgroup (Z/2Z)<N. The induced equivalence
relation is clearly E0. It follows from a general result of [GPS, 3.9] that E0

is generated by a continuous Z-action, i.e., is generated by a single home-
omorphism. A more direct construction is given in [Cl1]. (The action of Z
on 2N induced by the odometer map, i.e., addition of 1 modulo 2 with right
carry, generates an equivalence relation in which one class consists of the
eventually constant sequences and the others coincide with theE0-classes.)
Joshua Frisch pointed out that if T : 2N → 2N is the homeomorphism given
by 01x → 10x, 00x → 0x, 1x → 11x, for x ∈ 2N, and U is the homeo-
morphism given by 0x → 1x, 1x → 0x, for x ∈ 2N, then the group 〈T,U〉
generates Et. On the other hand, as opposed to E0, Et cannot be generated
by a single homeomorphism, as such would have an invariant probability
Borel measure (by the amenability of Z) but it can be shown that any Borel
action of a countable group that generates Et cannot have such an invari-
ant measure (see the paragraph preceding Corollary 5.7). We will see in
Section 8.7, 1) that Et can be generated by a single Borel automorphism.

The Vitali equivalence relation and the commensurability relation are
clearly generated by actions of (Q,+) and (Q+, ·), resp. On the other hand
it is not clear how to explicitly find actions that generate E0,a, Et,a,≡T ,≡A
and isomorphism of subshifts.

Definition 3.6. A finite equivalence relation E is of type n if every E-class has
cardinality ≤ n.

The following is an immediately corollary of Theorem 3.4:

Corollary 3.7. If E is a countable Borel equivalence relation, then there is a se-
quence (En) of Borel equivalence relations of type 2 such that E =

∨
nEn =⋃

nEn.

It is natural to ask whether in Corollary 3.7 one can find finitely many
finite Borel equivalence relations (En)n<N with E =

∨
n<N En. This is how-

ever ruled out by the theory of cost, see [Ga1]. On the other hand the fol-
lowing is shown in [JKL]:

Theorem 3.8 ([JKL, 1.21]). For every countable Borel equivalence relation E,
there is a countable Borel equivalence relation F such that E ∼B F and F is of the
form F = G ∨ H , where G,H are Borel equivalence relations of types 2,3, resp.
Moreover this fails if we require that such F,G,H can be found, where G,H are
of type 2. However one can write such an F as F = G ∨H ∨K, with G,H,K of
type 2.
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In fact it is shown in [JKL, 1.21] that the equivalence relations of the
formG∨H , withG,H of type 2, are exactly the hyperfinite ones, see Chap-
ter 8. Here a countable Borel equivalence relation E is hyperfinite if it can
be written asE =

⋃
nEn, where (En) is an increasing sequence (En ⊆ En+1,

for each n) of finite Borel equivalence relations.

3.3 Induced actions

There is a very useful construction, called the inducing construction, due
to Mackey, that allows for a pair of groups G ≤ H , to extend an action of a
group G to an action of H .

Theorem 3.9 (see [BK, 2.3.5]). Let H be a Polish group and G ≤ H a closed
subgroup.

(a) (Mackey) Let a be a Borel action of G on a standard Borel space X . Then
there is a standard Borel space Y , such that X ⊆ Y and X is a Borel subset of Y ,
and a Borel action b of H on Y , with the following properties:

(i) For x ∈ X and g ∈ G, a(g, x) = b(g, x);
(ii) Every orbit of H on Y contains exactly one orbit of G on X ;
(iii) Ea vB Eb and Eb ≤B Ea, therefore Ea ∼B Eb;
(iv) If a is a free action, so is b.
(b) (Hjorth) If a as above is a continuous action of G on a Polish space X , then

Y can be taken to be also Polish and the action b continuous and moreover X a
closed subspace of Y .

The action b is called the induced action of a and is denoted by INDH
G (a).

3.4 Closure properties

We record below some simple closure properties of the class of countable
Borel equivalence relations.

Proposition 3.10. (i) If E is a countable Borel equivalence relation on X and
A ⊆ X is Borel, then E � A is also countable Borel.

(ii) If F is a countable Borel equivalence relation and E vB F , then E is also
countable Borel.

(iii) If E ⊆ F are Borel equivalence relations and F is countable, so is E. If E
is countable and [F : E] ≤ ℵ0, then F is countable.

(iv) If E,F are countable Borel equivalence relations, then so is E × F .
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(v) If each En, n ∈ N, is a countable Borel equivalence relation, then so is⊕
nEn. More generally, If Y is a standard Borel space and (Ey)y∈Y is a family

of countable Borel equivalence relations on a standard Borel space X such that
{(x, u, y) ∈ X2 × Y : (x, u) ∈ Ey} is Borel, then

⊕
y Ey is countable Borel.

(vi) If each En, n ∈ N, is a countable Borel equivalence relation, then so is∨
nEn.

For a standard Borel space and a Borel map T : X → X , let ET be the
smallest equivalence relation containing the graph of T . If T is countable-
to-1, then ET is countable Borel (being equal to Et,a, where a is the Borel
action of (N,+, 0) generated by T , i.e., 1 · x = T (x); see Examples 3.2, 1).
More generally, let Tn be a sequence of countable-to-1 Borel maps fromX to
X and let E(Tn) be the smallest equivalence relation containing the graphs
of all Tn. Then E(Tn) =

∨
nETn is countable Borel.

3.5 Complete sections and vanishing
sequences of markers

If E is a countable Borel equivalence relation on a standard Borel space X
and A is a Borel complete section for A, then we view A ∩ [x]E as putting
a set of markers on the E-class of x in a uniform Borel way, so sometimes
we call such an A a marker set. Finding appropriate marker sets plays an
important role in the study of countable Borel equivalence relations.

The simplest situation is when a Borel transversal can be found.

Definition 3.11. A Borel equivalence relation E on a standard Borel space X is
called smooth if there is a Borel function f : X → Y , Y a standard Borel space,
such that xEy ⇐⇒ f(x) = f(y), i.e., E ≤B ∆Y .

For example any finite Borel equivalence relation is smooth. We now
have the following basic fact:

Proposition 3.12. The following are equivalent for a countable Borel equivalence
relation E:

(i) E is smooth;
(ii) E admits a Borel transversal;
(iii) The spaceX/E with the quotient Borel structure ΣE (i.e.,A ⊆ X/E ∈

ΣE ⇐⇒ Ã =
⋃
A ⊆ X is Borel) is standard.

For example, the equivalence relations in Examples 3.2, 1)–5), except
possibly for E0,a, Et,a, for some a, are not smooth.
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We will next discuss a very different characterization of smoothness.
A mean on a countable set S is a positive linear functional ϕ : `∞(S)→

C, which assigns the value 1 to the constant 1 function. LetE be a countable
Borel equivalence relation on a standard Borel space X . An assignment of
means is a map which associates to each equivalence class [x]E a meanϕ[x]E

on [x]E . Finally an assignment of means [x]E 7→ ϕ[x]E is Borel (in the weak
sense) if for each bounded Borel map f : E → C, the function x 7→ ϕ[x]E (fx)
is Borel, where fx(y) = f(x, y).

Theorem 3.13 ([KM2]). Let E be a countable Borel equivalence relation. Then
the following are equivalent:

(i) E is smooth;
(ii) E admits a Borel assignment of means.

Remark 3.14. An analog of Theorem 3.13 in the Baire category context is
also proved in [KM2]. On the other hand, we will see in Section 9.4 that in
the measure theoretic context the situation is quite different, since smooth-
ness is replaced in this case by hyperfiniteness.

The next, very useful, result guarantees the existence of appropriate
markers even in the non-smooth situation. An equivalence relation E is
called aperiodic if every E-class is infinite.

Theorem 3.15 (The Marker Lemma, [SlSt]). Let E be an aperiodic countable
Borel equivalence relation on a standard Borel spaceX . ThenE admits a vanishing
sequence of Borel markers, i.e., there is a sequence of complete Borel sections (An),
with A0 ⊇ A1 ⊇ A2 . . . and

⋂
nAn = ∅.

From this we also have the following:

Corollary 3.16. Let E be an aperiodic countable Borel equivalence relation on
a standard Borel space X . Then E admits a pairwise disjoint sequence of Borel
markers, i.e., there is a sequence of complete Borel sections (Bn), with Bn ∩Bm =
∅, if m 6= n.

For a proof, see, e.g., [CM1, 1.2.6]. A generalization of Theorem 3.15
to transitive Borel binary relations with countably infinite vertical sections
can be found in [Mi3].

It is also clear that for any finite set of aperiodic countable Borel equiva-
lence relations there is a common vanishing sequence of Borel markers. On
the other hand, concerning common vanishing sequences of Borel markers
for infinite sets of aperiodic countable Borel equivalence relations, we have
the following results:
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Proposition 3.17. (i) (Miller) There is a sequence of aperiodic countable Borel
equivalence relations (Fn) in a Polish space X , such that if A ⊆ X is a Borel
complete section for all Fn, thenA is comeager. Thus for any sequence of Borel sets
(Am) such that each Am is a complete section for all Fn,

⋂
mAm is comeager. In

particular the sequence (Fn) has no common vanishing sequence of Borel markers.
(ii) (Marks) Let (Fn) be a sequence of aperiodic countable Borel equivalence

relations on a standard Borel space X and let µ be a probability Borel measure on
X . Then there is a decreasing sequence of Borel sets (Am) such that each Am is a
complete section for every Fn and µ(

⋂
nAn) = 0.

Proof. (i) Let Fn be the subequivalence relation of E0 defined by xFny ⇐⇒
xE0y & (xi)i<n = (yi)i<n. Then if a Borel set A ⊆ X is a complete section
for Fn, A is nonmeager in every basic nbhd Ns = {x ∈ 2N : (xi)i<n = s},
where s ∈ 2n. Thus if a Borel set A is a complete section for all Fn, A must
be comeager.

(ii) Let (An,m) be a vanishing sequence of Borel markers for En such
that µ(An,m) ≤ 1

2n+m . Put Am =
⋃
nAn,m.

An important “dual” question (especially because of its connection to
Borel combinatorics, see [M1]) is whether two countable Borel equivalence
relations can have disjoint complete sections. Here we have the following
results:

Theorem 3.18 ([M1, Section 4]). (i) There are aperiodic countable Borel equiv-
alence relations E,F on a standard Borel space X such that there is no Borel set
A ⊆ X with A a complete section for E and X \A a complete section for F .

(ii) For any two countable Borel equivalence relationsE,F on a standard Borel
space X such that all E-classes have cardinality at least 3 and all F -classes have
cardinality at least 2, and for every probability Borel measure µ on X , there is
Borel A ⊆ X such that A meets µ-almost every E class (i.e., µ([A]E) = 1) and
X \A meets µ-almost every F class.

(iii) For any two countable Borel equivalence relations E,F on a Polish space
X such that all E-classes have cardinality at least 3 and all F -classes have cardi-
nality at least 2, there is BorelA ⊆ X such thatAmeets comeager manyE-classes
(i.e., [A]E is comeager) and X \A meets comeager many F -classes.

Finally for certain countable Borel equivalence relations, and especially
those generated by shift actions of groups (see Section 6.3), there are sev-
eral interesting results concerning the topological structure of vanishing se-
quences of markers and the local structure of complete sections, see [GJS1],
[GJKS], [M3] and [CMa].
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3.6 Maximal finite partial subequivalence relations

Another useful tool in studying countable Borel equivalence relations is the
existence of appropriate finite partial subequivalence relations. Here by a
partial subequivalence relation of an equivalence relation E on a space X ,
we mean an equivalence relation F on a subset A ⊆ X such that F ⊆ E. A
finite partial subequivalence relation is abbreviated as fsr.

Let nowX be a standard Borel space and denote by [X]<∞ the standard
Borel space of finite subsets of X . If E is an equivalence relation on X ,
we denote by [E]<∞ the subset of [X]<∞ consisting of all finite sets that
are contained in a single E-class. If E is Borel, so is [E]<∞. For each set
Φ ⊆ [E]<∞, an fsr F of E defined on the set A ⊆ X is Φ-maximal, if every
F -class is in Φ and every finite set S disjoint from A is not in Φ. We now
have the following that is proved using a result from Borel combinatorics.

Theorem 3.19 ([KM1, 7.3]). If E is a countable Borel equivalence relation and
Φ ⊆ [E]∞ is Borel, then there is a Borel Φ-maximal fsr of E.

The following is a typical application of this result.

Corollary 3.20. Let (Mn) be a sequence of positive integers ≥ 2. Then for each
aperiodic countable Borel equivalence relationE, there is an increasing sequence of
finite Borel subequivalence relations (En) ofE, such that eachEn-class has exactly
M0M1 · · ·Mn elements.

Proof. It is shown in [KM1, 7.4] (using Theorem 3.19) that given a positive
integer M , every aperiodic countable Borel equivalence contains a finite
subequivalence relation all of whose classes have cardinality M . One can
then define En inductively as follows: Given En, letXn be a Borel transver-
sal for En. Apply this fact to E � Xn to find a finite subequivalence relation
Fn ⊆ E � Xn, each of whose classes has cardinality Mn+1 and then take
En+1 = En ∨ Fn.

If in Corollary 3.20 we let F =
⋃
nEn, then F is an aperiodic hyperfinite

Borel subequivalence relation of E.

3.7 Compressibility

Recall that a setC is called Dedekind infinite if there is an injection f : C →
C such that f(C) $ C, i.e., C can be compressed into a proper subset of
itself. The following is an analog of this concept in the context of countable
Borel equivalence relations.
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Definition 3.21. Let E be a countable Borel equivalence relation on a standard
Borel space X . We say that E is compressible if there is an injective Borel map
f : X → X such that for each E-class C, f(C) $ C. Such a map is called a (Borel)
compression. A Borel set A ⊆ X is compressible if E � A is compressible.

For any countable Borel equivalence relation E on a standard Borel
space X and Borel sets A,B ⊆ X , we let

A ∼E B ⇐⇒ ∃f : A→ B(f is a Borel bijection and ∀x ∈ A(f(x)Ex)).

In particular, A ∼E B =⇒ E � A ∼=B E � B. We also put

A �E B ⇐⇒ ∃ Borel C ⊆ B(A ∼E C)

and

A ≺E B ⇐⇒ ∃ Borel C ⊆ B(A ∼E C,B \C a complete section of E|[B]E).

The standard Borel Schröder-Bernstein argument shows that

A ∼E B ⇐⇒ A �E B & B �E A

Note also that a Borel set A is compressible iff A ≺E A.
We also have the following, which is part of the proof of Theorem 5.6

below; see also [BK, 4.5.1]:

Proposition 3.22. Let E be a countable Borel equivalence relation on a standard
Borel space X . Let A,B be two complete Borel sections for E. Then there is a
partition X = P tQ into E-invariant Borel sets such that A∩P ≺E B ∩P and
B ∩Q �E A ∩Q.

A Borel set A ⊆ X is called E-paradoxical if there are disjoint Borel
subsets B,C ⊆ A such that A ∼E B,A ∼E C.

The following result, for which we refer to [DJK, Section 2] and refer-
ences therein to [CN1], [CN2], [N1], [N2], gives a number of equivalent
formulations of compressibility.

Proposition 3.23. Let E be a countable Borel equivalence relation on a standard
Borel space X . Then the following are equivalent:

(i) E is compressible;
(ii) There is a sequence of pairwise disjoint complete Borel sections (An) of E

such that Ai ∼E Aj for each i, j;
(iii) There is an infinite partition X = A0 t A1 t · · · into complete Borel

sections such that Ai ∼E Aj for each i, j;
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(iv) The space X is E-paradoxical;
(v) E ∼=B E × IN;
(vi) There is a smooth aperiodic Borel subequivalence relation F ⊆ E.

We call E × IN the amplification of E. Thus the compressible equiva-
lence relations are those that are Borel isomorphic to their amplifications.
Note that for any countable Borel equivalence relation E, E ∼B E × IN.

Remark 3.24. In contrast to Proposition 3.23 (iii), from [KM1, 7.4] (see also
Corollary 3.20) it follows that for any aperiodic countable Borel equivalence
relation E on a standard Borel space X and for any n ≥ 1, there is a finite
partition X = A0 t A1 t · · · t An−1 into complete Borel sections such that
Ai ∼E Aj for each i, j < n. See also [Sl5, 1.8.5].

Another characterization of compressibility is the following, where for
a countable Borel equivalence relation E on a standard Borel space X , a
Borel set A ⊆ X is called E-syndetic if for some n > 0 there are Borel sets
Ai, i < n, such that A ∼E Ai,∀i < n, and X =

⋃
i<nAi.

Proposition 3.25 ([Sl2, Proposition 10.2]). Let E be an aperiodic countable
Borel equivalence relation on a standard Borel space X . Then the following are
equivalent:

(i) E is compressible;
(ii) For any two Borel syndetic sets A,B ⊆ X , A ∼E B.

In Chapter 5 we will also see Nadkarni’s characterization of compress-
ibility in terms of lack of invariant measures.

It is easy to see that Et, Ev, Ec,≡T ,≡A are compressible and so is the
eventual equality relation E0(N) on NN (i.e., xE0(N)y ⇐⇒ ∃m∀n ≥
m(xn = yn). On the other hand, E0 is not compressible (see Section 5.3).

The following is also a basic fact concerning compressible sets, see [N1,
5.7] or [DJK, 2.2]..

Proposition 3.26. Let E be a countable Borel equivalence relation on a standard
Borel spaceX . If a Borel setA ⊆ X is compressible, then we have thatA ∼E [A]E .
Thus [A]E is also compressible.

The next result deals with embeddability for compressible relations.

Proposition 3.27. Let E,F be countable Borel equivalence relations.
(i) If E is compressible, then E vB F ⇐⇒ E viB F .
(ii) If bothE,F are compressible, thenE ≤B F ⇐⇒ E viB F . In particular,

if both E,F are compressible, then E ∼B F ⇐⇒ E 'B F ⇐⇒ E ∼=B F .
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Part (i) of Proposition 3.27 follows from Proposition 3.26. For part (ii),
see [CK, 5.23].

The following gives another connection between reducibility and em-
beddability.

Proposition 3.28. Let E,F be countable Borel equivalence relations on standard
Borel spaces X,Y , resp. Then

E ≤B F ⇐⇒ E vB F × IN.

Proof. If E vB F × IN, then clearly E ≤B F , since F × IN ≤B F . If now
E ≤B F , let f : X → Y be a Borel reduction of E to F . Then f(X) = A is a
Borel subset of Y and there is sequence of Borel maps gn : A→ X such that
(gn(y)) enumerates f−1(y) for each y ∈ A. Let g : X → Y ×N be defined by
g(x) = (f(x), i), where i is least such that gi(f(x)) = x. This witnesses that
E vB F × IN.

Finally it turns out that generically every aperiodic countable Borel equiv-
alence relation is compressible.

Theorem 3.29 ([KM1, 13.3]). Let E be an aperiodic countable Borel equivalence
relation on a Polish spaceX . Then there is an invariant comeager Borel set C ⊆ X
such that E � C is compressible.

For a stronger result involving graphings of equivalence relations, see
[CKM, Section 4]. Also for related results about semigroup actions, see
[Mi7].

Remark 3.30. We say that an infinite countable group G is dynamically
compressible if every aperiodic E generated by a Borel action of G can be
Borel reduced to a compressible aperiodic F induced by a Borel action of
G. It is shown in [FKSV] that every infinite countable amenable group is
dynamically compressible and the same is true for any countable group
that contains a non-abelian free group. However there are infinite count-
able groups that fail to satisfy these two conditions but they are still dy-
namically compressible (see again [FKSV]). It is not known if every infinite
countable group is dynamically compressible.

Remark 3.31. For a connection between compressibility and cardinal alge-
bras (discussed in Chapter 13) see Remark 13.5.



28 3. Countable Borel equivalence relations

3.8 Borel cardinalities and a Schröder-Bernstein type
theorem

If E,F are countable Borel equivalence relations on standard Borel spaces
X,Y , resp., then E ≤B F means that there is an injective map

f : X/E → Y/F

which has a Borel lifting. We can interpret this as meaning that the Borel
cardinality of X/E is at most that of Y/F , in symbols

|X/E|B ≤ |Y/F |B.

We also let

|X/E|B = |Y/F |B ⇐⇒ |X/E|B ≤ |Y/F |B & |Y/F |B ≤ |X/E|B,

so that |X/E|B = |Y/F |B ⇐⇒ E ∼B F , and

|X/E|B < |Y/F |B ⇐⇒ |X/E|B ≤ |Y/F |B & |Y/F |B � |X/E|B,

so that |X/E|B < |Y/F |B ⇐⇒ E <B F .
The next result provides analogs of the classical Schröder-Bernstein the-

orem that in particular show thatX/E, Y/F have the same Borel cardinality
(i.e., |X/E|B = |Y/F |B) iff there is a bijection between X/E and Y/F with
Borel lifting.

Theorem 3.32. Let E,F be countable Borel equivalence relations on standard
Borel spaces X,Y , resp. Then the following are equivalent:

(i) E ∼B F ;
(ii) There are Borel sets A ⊆ X,B ⊆ Y which are complete sections of E,F ,

resp., such that E � A ∼=B F � B;
(iii) E × IN ∼=B F × IN;
(iv) There is a bijection f : X/E → Y/F with Borel lifting (in which case f−1

has also a Borel lifting);
(v) There are decompositions X = X1 tX2, Y = Y1 t Y2 into invariant Borel

sets and Borel complete sections A2 ⊆ X2, B1 ⊆ Y1 of E � X2, F � Y1, resp., such
that E � X1

∼=B F � B1 and F � Y2
∼=B E � A2.

For the proof of the equivalence of parts (i)–(iv) see [DJK, 2.6] and for
(v) see [Mi1]. Alternatively, as pointed out by Ronnie Chen, one can see
that (iv) implies (v) as follows: Let Z be the disjoint union of the spaces
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X,Y and define the Borel equivalence relation R on Z by gluing together
any E-class C with the F -class f(C), where f is as in (iv). Then X,Y are
complete Borel sections for R and an application of Proposition 3.22 gives
(v).

It was asked in [DJK, page 201] whether Borel bireducibility, for aperi-
odic countable Borel equivalence relations, is also equivalent to Borel biem-
beddability. This is equivalent to asking whether E× IN vB E holds for all
aperiodic countable Borel equivalence relations E. This was disproved by
Simon Thomas, using methods of ergodic theory.

Theorem 3.33 ([T2]). There is an aperiodic countable Borel equivalence relation
E such that it is not the case that E × I2 vB E.

Other proofs of this theorem can be found in [HK4, 3.9] and [CM1, The-
orem H].

For a countable Borel equivalence relation E on a standard Borel space
X , recall that the quotient Borel structure on X/E, ΣE , is the σ-algebra on
X/E defined by: A ∈ ΣE ⇐⇒ Ã =

⋃
A(⊆ X) is Borel. We say that

two countable Borel equivalence relations E,F on X,Y , resp., are quotient
Borel isomorphic if there is a bijection of X/E to F/Y that takes ΣE to ΣF .
Denote this by E ∼=q

B F . It is easy to see that E ∼B F =⇒ E ∼=q
B F .

Problem 3.34. Is it true that E ∼B F ⇐⇒ E ∼=q
B F?

Finally we note the following result about liftings.

Proposition 3.35 ([Mi5, Proposition 6.1]). Let E,F be countable Borel equiv-
alence relations on standard Borel spaces X,Y , resp., and assume that F is ape-
riodic. Let f : X/E → Y/F be a countable-to-1 function. Then if f has a Borel
lifting, it has a finite-to-1 Borel lifting.

3.9 Weak Borel reductions

We now consider a weaker notion of Borel reduction.

Definition 3.36. Let E,F be countable Borel equivalence relations. A weak
Borel reduction of E to F is a countable-to-1 Borel homomorphism f from E to
F . We denote this by f : E ≤wB F . If such an f exists, we say that E is weakly
Borel reducible to F , in symbols E ≤wB F .

Clearly when E ⊆ F , the identity map is a weak Borel reduction of E
to F . Of course a Borel reduction is also a weak Borel reduction. It turns
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out that weak reducibility is just the combination of inclusion and reduc-
tion. More precisely we have the following result, attributed to Kechris and
Miller in [T12].

Theorem 3.37 (see [T12, Section 4]). Let E,F be countable Borel equivalence
relations on uncountable standard Borel spaces X,Y , resp. Then the following are
equivalent:

(i) E ≤wB F ;
(ii) There is a countable Borel equivalence relation E′ ⊇ E with E′ ≤B F ;
(iii) There is a Borel subequivalence relation F ′ ⊆ F such that E ≤B F ′.

The notion of weak reduction is in general weaker than reduction. In
fact we have the following stronger result, proved by using methods of
ergodic theory.

Theorem 3.38 ([A6]). There exist countable Borel equivalence relations E,F
such that E ⊆ F but E �B F and F �B E.

Other proofs of this result were given in [HK4, 3.8], [T12, Section 5],
[H12] (see also [Mi11, 6.1]) and [CM1, Theorem G].

3.10 The full group and the automorphism group

To each countable Borel equivalence relation E one can assign a group of
Borel automorphisms of the underlying space that actually determines it
up to Borel isomorphism, at least in the aperiodic case.

Definition 3.39. Let E be a countable Borel equivalence relation on a standard
Borel space X . The full group of E, in symbols [E]B , is the group of all Borel
automorphisms T of X such that T (x)Ex,∀x.

Sometimes the full group is called the inner automorphism group of E
and denoted by InnB(E).

We then have the following “Borel” analog of the classical theorem
of Dye on (measure theoretic) full groups of ergodic, measure preserving
countable Borel equivalence relations; see, e.g., [Ke10, 4.1].

Theorem 3.40 ([MR1]). Let E,F be aperiodic countable Borel equivalence rela-
tions. Then the following are equivalent:

(i) E ∼=B F ;
(ii) [E]B, [F ]B are isomorphic (as abstract groups).
Moreover for any (algebraic) isomorphism ϕ : [E]B → [F ]B , there is a Borel

isomorphism f : E ∼=B F such that for T ∈ [E], we have ϕ(T ) = f ◦ T ◦ f−1.
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In fact in [MR1] it is shown that Theorem 3.40 holds for more general,
than countable Borel, equivalence relations.

A further study of full groups can be found in [Me], [Mi5, Chapter
1], [Mi2] and [Mi16]. In particular one can characterize compressibility in
terms of the algebraic properties of the full group.

Let G be a group. Then G has the Bergman property if for any increas-
ing sequence A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ G with

⋃
nAn = G, there exist n, k

such that G = (An)k. It has the strong Bergman property if there is k such
that for any increasing sequence A0 ⊆ A1 ⊆ A2 ⊆ · · · ⊆ G with

⋃
nAn = G,

there is n such that G = (An)k.
We now have:

Theorem 3.41 ([Mi5, Theofrem 8.18], [Mi16, Theorems 7,9]). LetE be an ape-
riodic countable Borel equivalence relation. Then [E]B has the Bergman property
and the following are equivalent:

(i) E is compressible;
(ii) [E]B has the strong Bergman property.

More recently Miller has obtained a very interesting first-order char-
acterization of non-compressibility. Below for a group G and g ∈ G, we
denote by Cl(g) the conjugacy class of g.

Theorem 3.42 ([Mi18, Theorem 2]). Let E be an aperiodic countable Borel
equivalence relation and let n ≥ 5. Then the following are equivalent:

(i) E is not compressible,
(ii) There is T ∈ [E]B such that n is least such that [E]B = Cl(T )n.

Moreover in [Mi18, Theorem 13] it is shown that the condition n ≥ 5 is
optimal.

Finally Rosendal has shown that the full group of any aperiodic count-
able Borel equivalence relation on an uncountable standard Borel space
(in fact any countable Borel equivalence relation with uncountably many
classes of cardinality at least 3) admits no second countable Hausdorff topol-
ogy in which it becomes a topological group. The proof is similar to that of
[Ro, Theorem 1].

The normalizer of [E]B in the group of all Borel automorphisms of X
is denoted by NB[E]. It consists exactly of all Borel automorphisms of E,
i.e., all Borel automorphisms T of X such that xEy ⇐⇒ T (x)ET (y),
for all x, y ∈ X . For that reason sometimes NB[E] is called the automor-
phism group of E and denoted by AutB(E). Moreover by Theorem 3.40,
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for aperiodic E, the group NB[E] can be identified with the group of auto-
morphisms of the group [E]B . The quotient groupNB[E]/[E]B is called the
outer automorphism group of E, in symbols OutB(E).

Consider now a Borel action a of a countable groupG onX by automor-
phisms of E, i.e., for each g ∈ G, x 7→ g · x is in NB[E]. We abbreviate this
by writing a : GyB (X,E). Then we can define the following equivalence
relation on X , denoted by E(a):

xE(a)y ⇐⇒ ∃g ∈ G(g · xEy).

Clearly E(a) = E ∨ Ea. We call Ea the expansion of E by the action a. The
following is due to J. Frisch and F. Shinko:

Proposition 3.43. Every countable Borel equivalence relation is Borel bireducible
to an expansion of a smooth countable Borel equivalence relation.

Proof. Let E be a countable Borel equivalence relation on X and let a be a
Borel action of a countable groupG onX withE = Ea. Consider the action
b of G on X × G given by: g · (x, h) = (g · x, gh). Let also F on X × G be
defined by : (x, g)F (y, h) ⇐⇒ x = y, so that F is smooth and clearly G
acts by automorphisms of F . Then note that (x, g)F (b)(y, h) ⇐⇒ xEy, so
that E ∼B F (b).

IfE ⊆ F are countable Borel equivalence relation onX , we say thatE is
normal in F (or F is normal over E) if F is an expansion of E, i.e., there is
a : GyB (X,E) with F = E(a). Thus up to bireducibility every countable
Borel equivalence relation is normal over a smooth one.

3.11 Actions on quotient spaces

Let E,F be countable Borel equivalence relations on X,Y , resp. We call a
map f : X/E → Y/F Borel if it has a Borel lifting f̃ : X → Y . We denote
by SymB(X/E) the Borel symmetric group of X/E, i.e., the group of Borel
permutations of X/E. Let G be a countable group. A Borel action of G on
X/E, in symbols G yB X/E, is an action of G on X/E by Borel permu-
tations. For such an action, we let E∨G be the countable Borel equivalence
relation given by

xE∨Gy ⇐⇒ ∃g ∈ G(g · [x]E = [y]E).

Note that an action a : G yB (X,E) gives canonically a Borel action of G
onX/E given by g · [x]E = [g ·x]E . Then it is easy to check thatE∨G = E(a).
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1) Given countable Borel equivalence relationsE ⊆ F onX , we say that
F/E is generated by a Borel action if there is G yB X/E such that F =
E∨G, i.e., if there is an analog of the Feldman-Moore Theorem forX/F over
X/E. In [dRM1, proof of Theorem 5] it is shown that there is a countable
set of obstructions for being generated by a Borel action. Namely, there is
a sequence of pairs En ⊆ Fn of countable Borel equivalence relations on
2N, where Fn/En is not generated by a Borel action, such that if E ⊆ F
are countable Borel equivalence relations on a Polish space X and F/E is
not generated by a Borel action, then there is some n and a continuous
embedding of 2N into X , which simultaneously embeds En to E and Fn to
F .

Remark 3.44. In [dRM2] obstructions are also obtained for analogs of the
Glimm-Effros dichotomy theorem and the Lusin-Novikov theorem for quo-
tient spaces.

2) We next consider ergodicity of actions G yB X/E. Given a pair
E ⊆ F as in 1) above, F/E is ergodic if there is no Borel partition X =
A t B with A,B E-invariant, complete F -sections. The action G yB X/E
is ergodic if E∨G/E is ergodic. Ben Miller in [Mi5] showed the following
results concerning ergodicity.

For a countable group G, let F0(G) be the countable Borel equivalence
relation on GN given by

(g0, g1, g2, . . .) F0(G) (h0, h1, h2, . . .) ⇐⇒ ∃m ∀k > m [g0 · · · gk = h0 · · ·hk].

There is an action GyB (GN, F0(G)) defined by

g · (g0, g1, g2, . . .) = (g · g0, g1, g2, . . .),

inducing an ergodic action G yB GN/F0(G). Let E be a countable Borel
equivalence relation on a Polish space X , and let G yB X/E be a free ac-
tion. Then E∨G/E is ergodic iff there is a G-equivariant Borel injection of
GN/F0(G) to X/E induced by a continuous embedding of GN to X (see
[Mi5, Chapter 2, Theorem 7.2]). If E∨G is hyperfinite, then there is a G-
equivariant Borel injection of X/E to GN/F0(G) (see [Mi5, Chapter 2, The-
orem 8.1]).

3) In [FKS] the lifting problem for actions on quotients is studied. Let E
be a countable Borel equivalence relation on X . Denote by pE the canon-
ical surjective homomorphism of AutB(E) onto OutB(E). There is also a
canonical homomorphism of AutB(E) into SymB(X/E) which sends T ∈
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AutB(E) to the permutation [x]E 7→ [T (x)]E . This has kernel InnB(E)
and therefore it gives an injective homomorphism iE from OutB(E) into
SymB(X/E). Its range consists of the so-called outer permutations. An
action G yB (X,E), which can be viewed as a homomorphism from G
into AutB(E), gives via pE a homomorphism from G into OutB(E) and fi-
nally through iE to a homomorphism from G to SymB(X/E), i.e., an action
G yB X/E. One considers here the question of when a homomorphism
of G to SymB(X/E) lifts to a homomorphism of G to AutB(E), i.e., when
an action G yB X/E lifts to an action G yB (X,E). The first result is the
following:

Theorem 3.45 ([FKS, Theorem 1.1]). Let E be a compressible countable Borel
equivalence relation. Then every Borel action G yB X/E has a lift G yB

(X,E).

This has the following corollary:

Corollary 3.46 ([FKS, Corollary 1.2]). Let E be an aperiodic countable Borel
equivalence relation on a Polish space X . Then for any action G yB X/E, there
is a comeager E∨G-invariant Borel subset Y ⊆ X such that GyB Y/E lifts.

On the other hand there are examples of E for which not every element
of SymB(X/E) is outer and therefore there are actions G yB X/E, i.e.,
homomorphisms of G into SymB(X/E) which do not even lift to homo-
morphisms of G into OutB(E) and thus much less to actions GyB (X,E).

Call then an action G yB X/E outer if it acts by outer permutations.
The next question is then to find out when an outer action G yB X/E lifts
to an action GyB (X,E). Here we have the following result:

Theorem 3.47 ([FKS, Theorem 1.3]). Outer actions of amenable groups and
amalgamated free products of finite groups have a lift.

However there is a limit to the groups G that can have the lifting prop-
erty for outer actions. Below a countable group G is called treeable if it
admits a free Borel action on a standard Borel space X that has an invari-
ant probability Borel measure (see Chapter 5) and for which the associated
orbit equivalence relationEXG is treeable (see Section 10.1). For example, ev-
ery amenable group and every free group is treeable but infinite property
(T) groups and products of an infinite group and a non-amenable group are
not treeable.

Proposition 3.48 ([FKS, Proposition 1.4]). If every outer action of a countable
group G lifts, then G is treeable.
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Thus if G is the class of countable groups that have the lifting property
for outer actions, then G contains all the amenable groups and all amal-
gamated free products of finite groups and it is closed under subgroups
(see [FKS, Proposition 4.7]) and free products. Finally all groups in G are
treeable.

It is not known whether one can characterize the class of groups that
have this lifting property.

3.12 The Borel classes of countable Borel equivalence
relations

In a recent preprint, Lecomte [Lec] characterizes when a countable Borel
equivalence relation belongs to the Borel classes Σ0

ξ or Π0
ξ (ξ ≥ 1) in terms

of a dichotomy. (In fact he proves a more general result for Borel equiva-
lence relations with Fσ classes.)

Below we state his result for ξ ≥ 3, in which case the dichotomy is
somewhat easier to state. For each Polish space X and Γ one of the classes
Σ0
ξ or Π0

ξ (ξ ≥ 1), let Γ(X) be the class of subsets of X in Γ. We also let
Γ̌ be the dual class of Γ, i.e., Γ̌ is Π0

ξ or Σ0
ξ , resp. Let H = 2 × 2N and for

ξ ≥ 3 and Γ as above, let C ⊆ 2N be such that C ∩Ns ∈ Γ̌(Ns) \ Γ, for each
s ∈

⋃
n 2n. (Such C are shown to exist.) Define the equivalence relation EΓ

3

on H by:

(i, x)EΓ
3 (j, y) ⇐⇒ (i, x) = (j, y) or (x = y ∈ C).

Clearly EΓ
3 is a countable Borel equivalence relation and EΓ

3 ∈ Γ̌(H2) \ Γ.
Then we have:

Theorem 3.49 ([Lec, Theorem 1.4]). Let Γ be one of the classes Σ0
ξ or Π0

ξ , for
ξ ≥ 3, let X be a Polish space and E a countable Borel equivalence relation on X .
Then exactly one of the following holds:

(i) E ∈ Γ(X2);
(ii) EΓ

3 vc E.
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4. Essentially countable
relations

4.1 Essentially countable and reducible to countable
equivalence relations

It turns out that the scope of the theory of countable Borel equivalence re-
lations is much wider as it encompasses many other classes of equivalence
relations up to Borel bireducibility.

Definition 4.1. A Borel equivalence relation E is essentially countable if it is
Borel bireducible to a countable Borel equivalence relation. It is called reducible
to countable if it is Borel reducible to a countable Borel equivalence relation.

Remark 4.2. In the literature the term “essentially countable” is often used
for what we called here “reducible to countable”.

These two notions are distinct.

Theorem 4.3 ([H4]). There is a Borel equivalence relation which is reducible to
countable but not essentially countable.

On the other hand, for many naturally occurring Borel equivalence re-
lations the notions coincide. To explain this we need a definition first.

Definition 4.4. Let E be a Borel equivalence relation on a standard Borel space
X . Then E is idealistic if there is a map C ∈ X/E 7→ IC , assigning to each
E-class C a σ-ideal IC of subsets of C, with C 6∈ IC , such that C 7→ IC is Borel
in the following (weak) sense: For each Borel set A ⊆ Y ×X , Y a standard Borel
space, the set AI ⊆ Y ×X defined by (y, x) ∈ AI ⇐⇒ {x′ ∈ [x]E : (y, x′) ∈
A} ∈ I[x]E is Borel.

37
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A typical example of an idealistic E is a Borel equivalence relation in-
duced by a Borel action of a Polish group (see [Ke2, page 285]). In the next
result we will also need the following definition:

Definition 4.5. Let E be an equivalence relation on a space X . A complete
countable section forE is a complete section S such that for each x ∈ X , S∩[x]E
is countable.

If a Borel equivalence relation E admits a complete countable Borel sec-
tion, it is clearly essentially countable. Now we have:

Theorem 4.6. LetE be an idealistic Borel equivalence relation. Then the following
are equivalent:

(i) E is reducible to countable;
(ii) E is essentially countable;
(iii) E admits a complete countable Borel section.
In fact if E ≤B F , where F is a countable Borel equivalence relation on a

standard Borel space Y , then there is an F -invariant Borel set B ⊆ Y , such that
E ∼B F � B.

For a proof, see the more general result in [KMa, 3.7, 3.8] (and the cor-
rections posted in: pma.divisions.caltech.edu/people/alexander-kechris).

The following characterization of reducibility to countable is often use-
ful in establishing this property.

Proposition 4.7 (Kechris). Let E be a Borel equivalence relation on a standard
Borel space X . Then the following are equivalent:

(i) E is reducible to countable;
(ii) There is a standard Borel space Y and a Borel function f : X → Y such that

(a) f([x]E) is countable,∀x ∈ X , and (b) ¬(xEy) =⇒ f([x]E) ∩ f([y]E) = ∅.

A proof can be found in [Ka, 7.6.1].
Hjorth has proved a dichotomy for the property of essential countability

of Borel equivalence relations induced by Borel actions of Polish groups.
Let G be a Polish group and a : G × X → X a continuous action of G on
a Polish space X . This action is stormy if for every non-empty open set
U ⊆ G and any x ∈ X , the map g 7→ g · x from U to U · x in not an open
map.

We now have:

Theorem 4.8 ([H5, Theorem 1.3]). Let G be a Polish group and a : G×X → X
a Borel action of G on a standard Borel space X . Then if the associated equivalence
relation Ea is Borel, exactly one of the following holds:
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(i) Ea is reducible to countable;
(ii) There is a stormy action b of G on a Polish space Y and a Borel embedding

of the action b to the action a, i.e., a Borel injection F : Y → X such that F (g ·y) =
g · F (y).

Moreover if the action a on a Polish space X is continuous, F can be taken to
be continuous too.

We next proceed to discuss various classes of essentially countable Borel
equivalence relations.

4.2 Actions of locally compact groups
and lacunary sections

A rich source of essentially countable Borel equivalence relations comes
from actions of locally compact groups. Before we state the main result
here, we introduce some additional concepts.

Definition 4.9. LetG be a topological group and let a : G×X → X be an action of
G on a space X . A complete section S of Ea is lacunary if there is a neighborhood
U of the identity of G such that for all s ∈ S, U · s∩S = {s}. In this case, we also
say that S is U -lacunary. A complete section S is called cocompact if there is a
compact neighborhood U of the identity of G such that U · S = X . Again in this
case we say that S is U -cocompact.

Note that if G is second countable, then any lacunary complete section
is countable.

If a Polish locally compact group G acts in a Borel way on a standard
Borel space X , the induced equivalence relation is Borel (use, for example,
[Ke6, 9.17 and 35.46]. We now have:

Theorem 4.10 ([Ke2]). Let G be a Polish locally compact group and let a : G ×
X → X be a Borel action of G on a standard Borel space X . For any compact
neighborhood U of the identity of G, Ea has a complete U -lacunary Borel section
S. In particular Ea is essentially countable.

A measure theoretic version of this result (where null sets are neglected)
was proved in [FHM] (and for the free action case in [Fo]) and the case
G = R of Theorem 4.10 was proved in [Wa] (while the measure theoretic
version in the case of Rwas proved in [Am]).

Other proofs of Theorem 4.10 can be found in [Ke8, pages 244–245] ,[H5,
2.2] and [HMT, 7.8].



40 4. Essentially countable relations

One can also make the lacunary sections to be cocompact. This was
shown independently by Conley and Dufloux (unpublished).

Theorem 4.11. (i) (Conley, Dufloux) Let G be a Polish locally compact group
and let a : G×X → X be a Borel action of G on a standard Borel space X . Then
Ea has a complete lacunary cocompact Borel section.

(ii)[Sl1, 2.4] In fact, let U be a symmetric compact neighborhood of the identity
of G and put V = U2. Then for any complete V -lacunary Borel section S of Ea,
there is a maximal (under inclusion) complete V -lacunary Borel section T ⊇ S of
Ea and thus T is V -cocompact.

A measure theoretic version of such a result for free actions can be also
found in [KPV, 4.2].

One can formulate these results in the language of descriptive combi-
natorics. Let G be a Polish locally compact group and let a : G × X → X
be a Borel action of G on a standard Borel space X . Let U be a symmetric
compact neighborhood of the identity of G and put V = U2. Define the
Borel graph whose set of vertices is X and distinct x, y ∈ X are connected
by an edge iff y ∈ V · x. Then Theorem 4.10 and Theorem 4.11 imply that
in this graph there exists a maximal independent set which is Borel.

The following gives a more detailed analysis of the equivalence relation
induced by a locally compact group action.

Theorem 4.12 ([Ke4, Theorem 1]]). LetG be a Polish locally compact group and
let a : G×X → X be a Borel action of G on a standard Borel space X . Then there
is a (unique) decomposition X = A t B of X into invariant Borel sets such that
Ea � A is countable and Ea � B ∼=B F × IR, where F = Ea � S, with S a
countable complete Borel section of Ea � B.

Theorem 4.13 ([[Ke4, Theorem 2]). The map E 7→ E × IR induces a bijec-
tion between countable Borel equivalence relations, up to Borel bireducibility, and
equivalence relations induced by Borel actions of Polish locally compact groups
with uncountable orbits, up to Borel isomorphism.

One interesting application of Theorem 4.10 is in the proof of the result
in [HK2] that isomorphism (conformal equivalence) of Riemann surfaces,
and in particular complex domains (open connected subsets of C), is an
essentially countable Borel equivalence relation. We will discuss this in
more detail in Section 12.2, 5).

Concerning lacunary sections as in Theorem 4.10, it is of interest to ob-
tain in certain situations additional information about their structure. For
the case of free Borel actions of R on standard Borel spaces, each orbit is an
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(affine) copy of R, so if S is a complete lacunary section, it makes sense to
talk about the distance between consecutive members of S in the same or-
bit. We now have the following result that provides a purely Borel strength-
ening of a classical result of Rudolph [Ru] in the measure theoretic context
and again neglecting null sets.

Theorem 4.14 ([Sl2]). Let α, β be two rationally independent positive reals. Then
any free Borel action of R admits a complete lacunary Borel section such that the
distance between any two consecutive points in the same orbit belongs to {α, β}.

The paper [Sl3] further provides, for a set of positive reals A and a free
Borel action of R, criteria for the existence of a complete lacunary Borel
section such that the distance between any two consecutive points in the
same orbit belongs to A. The papers [Sl1] and [Sl4] use complete lacunary
and cocompact sections to prove classification results for Rn-actions.

In [Mi13] the following generalization of lacunarity was introduced. A
Borel action a of a Polish group on a standard Borel space X is called σ-
lacunary if X can be decomposed into countably many invariant Borel sets
on each of which the induced action admits a complete lacunary Borel sec-
tion. Clearly for any such action, in which Ea is Borel, Ea is essentially
countable. In fact the converse holds as well.

Theorem 4.15 ([Gr1]). Let G be a Polish group and let a be a Borel action of G
on a standard Borel space with Ea Borel. Then the following are equivalent:

(i) The action is σ-lacunary.
(ii) Ea is essentially countable.

Finally we consider the question of whether Theorem 4.10 actually char-
acterizes Polish locally compact groups.

Problem 4.16. Let G be a Polish group with the property that all the equivalence
relations induced by Borel actions of G on standard Borel spaces are Borel and
essentially countable. Is the group locally compact?

In [Tho] it is shown that every such group must be CLI, i.e., admit a
complete left-invariant metric. However there are many CLI groups that
are not locally compact.

An affirmative answer to Problem 4.16 has been obtained for certain
classes of Polish groups:

(i) [So] All separable Banach spaces, viewed as groups under addition;
(ii) [Ma] All abelian isometry groups of separable locally compact metric

spaces;
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(iii) [KMPZ] All isometry groups of separable locally compact metric
spaces. This class of groups includes those in (ii) and all non-archimedean
Polish groups,

A related result characterizing Polish compact groups was also proved
in [So]: A Polish group is compact iff all the equivalence relations induced
by Borel actions of G on standard Borel spaces are Borel and smooth.

4.3 On the existence of complete
countable Borel sections

We note here that the existence of a complete countable Borel section for
a Borel equivalence relation is in general stronger than being essentially
countable. The standard example is as follows: Let X ⊆ R × R be a Borel
set which projects onto R but admits no Borel uniformization (see, e.g.,
[Ke6, 18.17]). Let E on X be defined by (x, y)E(x′, y′) ⇐⇒ x = x′. Then
E ∼B ∆R butE admits no complete countable Borel section. The following
result gives a characterization of the existence of complete countable Borel
sections.

We call a Borel equivalence relation E ccc idealistic if it satisfies Def-
inition 4.4 with the σ-ideals IC being in addition ccc (i.e., any pairwise
disjoint collection of subsets of C not in IC is countable). For example, a
Borel equivalence relation induced by a Borel action of a Polish group is ccc
idealistic.

Below for σ-finite Borel measures µ, ν, on the same standard Borel space,
µ ∼ ν denotes measure equivalence, i.e., having the same null sets. Fi-
nally we call a Borel equivalence relation E σ-smooth if it can be written as
E =

⋃
nEn, where each En is a smooth Borel equivalence relation.

Theorem 4.17 ([Ke2, 1.5]). Let E be a Borel equivalence relation on a standard
Borel space X . Then the following are equivalent:

(i) E admits a complete countable Borel section;
(ii) (a) E is σ-smooth and (b) E is ccc idealistic.
(iii) As in (ii) but with (b) replaced by (b)*: There is a Borel assignment x 7→

µx of probability Borel measures to points x ∈ X such that µx([x]E) = 1 and
xEy =⇒ µx ∼ µy.

A generalization of the measure theoretic result in [FHM] is proved in
[R]. It states that if E is a Borel equivalence relation on a standard Borel
space X , µ a probability Borel measure on X , and there is a Borel assign-
ment x 7→ µx of probability Borel measures to points x ∈ X such that
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µx([x]E) = 1 and xEy =⇒ µx ∼ µy, then E admits a complete countable
Borel section, µ-a.e.. It is unknown if there is a purely Borel version of this
result;, i.e., whether condition (a) is necessary in Theorem 4.17, (iii).

Problem 4.18. Is it true that the following are equivalent:
(i) E admits a complete countable Borel section;
(ii) There is a Borel assignment x 7→ µx of probability Borel measures to points

x ∈ X such that µx([x]E) = 1 and xEy =⇒ µx ∼ µy?

It is known that condition (a) is necessary in Theorem 4.17, (ii); see the
discussion in [Ke2, Section 1, (III), (IV)].

Note that ifE is a Borel equivalence relation which is reducible to count-
able, then in Theorem 4.17, (a) is automatically satisfied by Corollary 3.7, so
for such equivalence relations the existence of a countable complete Borel
section is equivalent to condition (b) and also to condition (b)* and by The-
orem 4.6 also to the condition that E is idealistic.

Another characterization has been found in [H10]. Below a Borel equiv-
alence relation E on a standard Borel space X is called treeable if there is
a Borel acyclic graph on X such that the E-classes are exactly its connected
components. It is called σ-treeable if it can be written asE =

⋃
nEn, where

each En is Borel and treeable. We now have:

Theorem 4.19 ([H10]). Let E be a Borel equivalence relation which is reducible
to countable. Then the following are equivalent:

(i) E admits a complete countable Borel section;
(ii) E is σ-treeable.

Moreover the following holds, which shows that in Theorem 4.17, (ii),
condition (a) can be replaced by σ-treeability.

Theorem 4.20 ([H10]). Let E be a Borel equivalence relation on a standard Borel
space X . Then the following are equivalent:

(i) E admits a complete countable Borel section;
(ii) (a) E is σ-treeable and (b) E is ccc idealistic.

It is also shown in [H10] that every σ-treeable smooth Borel equivalence
relation admits a Borel transversal.

Finally in [CLM], dichotomy theorems are proved characterizing when
a treeable Borel equivalence relation admits a complete countable Borel sec-
tion and also when the equivalence relation ET , for a Borel function T , ad-
mits a complete countable Borel section.
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4.4 Actions of non-archimedean Polish groups

Recall that a Polish group is non-archimedean if it has a neighborhood
basis at the identity consisting of open subgroups. Equivalently these are
(up to topological group isomorphism) the closed subgroups of the infinite
symmetric group S∞ of all permutations of N, with the pointwise conver-
gence topology, and also the automorphism groups of countable structures
(in the sense of model theory); see [BK]. It turns out that one can charac-
terize exactly which Borel actions of such groups induce Borel equivalence
relations that are essentially countable. To formulate this we need the fol-
lowing definition:

Definition 4.21. Let E be a Borel equivalence relation on a standard Borel space
and Λ a class of sets in Polish spaces, closed under continuous preimages. Then E
is potentially Λ if there is an equivalence relation F , in some Polish space, which
is in the class Λ, such that E ≤B F . This is equivalent to saying that there is a
Polish topology τ on X inducing its Borel structure such that E is in the class Λ
(in the product space (X2, τ × τ))

For example, it turns out that a Borel equivalence relation is smooth iff
it is potentially Π0

1 iff it is potentially Π0
2 (see [HKL]). We now have:

Theorem 4.22 ([HK1, 3.8]), [HKLo, 4.1]). Let G be a Polish non-archimedean
group and let a : G×X → X be a Borel action of G on a standard Borel space X .
Then the following are equivalent:

(i) Ea is essentially countable;
(ii) Ea is potentially Σ0

2;
(iii) Ea is potentially Σ0

3.

This fails for arbitrary Polish groups (see, e.g., [HK1, first remark in
page 236]) and also for Polish non-archimedean groups if Σ0

3 is replaced
by Π0

3 (see [HKLo]; a specific example is the equivalence relation Ectble, on
the Gδ subspace of injective sequences in RN, given by (xn)Ectble(yn) ⇐⇒
{xn : n ∈ N} = {yn : n ∈ N}, which is Π0

3 but not essentially countable).

4.5 Logic actions and the isomorphism relation on the
countable models of a theory

Fix a countable relational language L = {Ri}i∈I , where Ri has arity ni. We
denote by XL = ModN(L) the space of L-structures with universe N. Thus
XL can be identified with the compact metrizable space

∏
i∈I 2N

ni . We let
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A ∼= B be the isomorphism relation between structures in XL. This is the
equivalence relation induced by the so-called logic action of the infinite
symmetric group S∞ of all permutations of N on XL, given by g · A = B iff
g is an isomorphism of Awith B. For each sentence σ ∈ Lω1ω, let

Mod(σ) = {A ∈ XL : A |= σ}

be the set of models of σ. This is a Borel invariant under isomorphism
subset of XL and, by the classical theorem of Lopez-Escobar, every such
Borel subset of XL is of the form Mod(σ), see [Ke6, 16.8]. Denote by ∼=σ the
isomorphism relation restricted to Mod(σ). It is shown in [BK, 2.7.3] that if
a : S∞ ×X → X is a Borel action of S∞ on a standard Borel space X , then
a is Borel isomorphic to the logic action on some Mod(σ).

Remark 4.23. In cases where we want to consider languages with function
symbols, we will replace them by their graphs.

We next state model theoretic criteria for essential countability (and
smoothness) of ∼=σ. Let F be a countable fragment of Lω1ω, see [B]. For
any L-structure A, we denote by ThF (A) the set of sentences in F that hold
in A. We say that a countable L-structure A is ℵ0-categorical for F if every
countable L-structure B for which ThF (A) = ThF (B), B is isomorphic to A.
We now have:

Theorem 4.24 ([HK1, 4.2]). Let σ ∈ Lω1ω. Then the following are equivalent:
(i) ∼=σ is Borel and smooth;
(ii) There is a countable fragment F of Lω1ω containing σ, such that every

countable model A of σ is ℵ0-categorical for F .

Theorem 4.25 ([HK1, 4.3]). Let σ ∈ Lω1ω. Then the following are equivalent:
(i) ∼=σ is Borel and essentially countable;
(ii) There is a countable fragment F of Lω1ω containing σ, such that for every

countable model A = 〈A, . . . 〉 of σ, there is n ≥ 1 and a finite sequence ā ∈ An
such that 〈A, ā〉 is ℵ0-categorical for F .

Using this last result, one can easily prove the essential countability of
the isomorphism relation on the following structures: finitely generated
groups (or more generally finitely generated structures in some countable
language), connected locally finite graphs, locally finite trees, finite tran-
scendence degree over Q fields, torsion-free abelian groups of finite rank,
etc.
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Remark 4.26. (i) For the case of torsion-free abelian groups of finite rank
≤ n, one can also directly see that the isomorphism relation is essentially
countable, since it is Borel bireducible to the equivalence relation on the
space of subgroups of 〈Qn,+〉 induced by the action of GLn(Q) on this
space.

(ii) Also in the case of finitely generated groups, one can also directly see
that the isomorphism relation is essentially countable by using the space of
finitely generated groups, see, e.g., [T8, Section 1].

We conclude with the following open problem of Hjorth and Kechris:

Problem 4.27. Let σ be a first-order theory, i.e., the conjunction of countably
many first-order sentences. Is it possible for ∼=σ to be Borel, non-smooth and es-
sentially countable?

A negative answer has been obtained in [Mar] for first-order theories
with uncountably many types.

4.6 Another example

Let U be the Urysohn metric space and F (U) the standard Borel space of
closed subsets of U with the Effros Borel structure. We view F (U) as the
standard Borel space of Polish metric spaces. Let M be a class of Polish
metric spaces closed under isometry. We callM a Borel class ifM∩F (U) is
Borel in F (U). Denote by∼=iso the equivalence relation of isometry on F (U)
and we let ∼=iso

M be its restriction toM∩ F (U), i.e, the equivalence relation
of isometry for spaces in M. See [GK] for the study of this equivalence
relation on various classes of Polish metric spaces. Recall that a metric
space is proper (or Heine-Borel) if every closed bounded set is compact.

Theorem 4.28 (Hjorth; see [GK, 7.1]). There is a Borel classM of Polish metric
spaces, closed under isometry, such thatM contains all connected locally compact
Polish metric spaces and all proper locally compact Polish metric spaces and such
that ∼=iso

M is an essentially countable Borel equivalence relation.

4.7 Dichotomies involving reducibility to countable

For the theorems below we use the following terminology and notation.
The equivalence relation E2 on 2N is defined by
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xE2y ⇐⇒
∑

{n∈N : xn 6=yn}

1

n+ 1
<∞

It can be shown that E2 is Borel bireducible to the equivalence relation in-
duced by the translation action of `1 = {(xn) ∈ RN :

∑
n |xn| < ∞} on RN,

see [Ka, 6.2.4]. We also let
E3 = EN0 .

A Polish group is tsi if it admits a compatible two-sided invariant metric.
For non-archimedean groups this is equivalent to admitting a nbhd basis
at the identity consisting of normal open subgroups.

We now have the following dichotomy theorems:

Theorem 4.29 ([H2, 0.4]). Let E be a Borel equivalence relation on a standard
Borel space. If E ≤B E2, then exactly one of the following holds:

(i) E is reducible to countable;
(ii) E2 ≤B E.

Theorem 4.30 ([HK3, 8.1]). Let E be a Borel equivalence relation on a standard
Borel space. If E ≤B Ea, where a is a Borel action of a non-archimedean tsi Polish
group G with Ea Borel, then exactly one of the following holds:

(i) E is reducible to countable;
(ii) E3 ≤B E.

In [Gr1, 1.2] it is shown that for E = Ea alternative (i) in Theorem 4.30
is equivalent to the following statement:

(i)’ There is a sequence (Nn) of open normal subgroups of G and for
each n a continuous action an of G/Nn on a Polish space such that Ea ≤B⊕

nEan .
Also for generalizations of Theorem 4.30, again in the case E = Ea, for

arbitrary tsi Polish groups, see [Mi13, 4.1] and [Gr2, 1.4].
Finally the following dichotomy is established in [dRM2], where E1 is

the following equivalence relation on RN

(xn)E1(yn) ⇐⇒ ∃m∀n ≥ m(xn = yn).

Theorem 4.31 ([dRM2]). Let E be a σ-smooth Borel equivalence relation on a
Polish space. Then exactly one of the following holds:

(i) E is reducible to countable,
(ii) E1 vc E.
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4.8 Canonization

In the book [KSZ] the authors study canonization theorems, which analyze
the behavior of equivalence relations on “large sets”. For example, Silver’s
Theorem 6.1 below implies that if E is a Borel equivalence relation on an
uncountable Polish space, E will be trivial on a non-empty perfect set P ,
i.e., E � P = ∆P or E � P = P 2. Chapters 4, 7 and 8 in [KSZ] deal with
problems of canonization related to countable and reducible to countable
Borel equivalence relations. For example, a result of Mathias, see [KSZ,
8.17], asserts that for every countable Borel equivalence relation E on the
space of all infinite subsets of N, there is an infinite subset A ⊆ N such
that E restricted to the set of all infinite subsets of A is hyperfinite, in fact is
contained inE0 (where we view hereE0 as the equivalence relation of finite
symmetric difference on the space of subsets of N). Another canonization
theorem is obtained in [PW].



5. Invariant and
quasi-invariant measures

5.1 Terminology and notation

For the rest of this survey we adopt the following terminology and nota-
tion: A measure on a standard Borel space X is a σ-finite Borel measure µ.
If µ(X) < ∞, µ is called finite and if µ(X) = 1 it is called a probability
measure. If µ is a measure on X and Y ⊆ X is a Borel set, then µ � Y is the
measure on Y which is the restriction of µ to the Borel subsets of Y . A mea-
sure µ is absolutely continuous to a measure ν, in symbols µ � ν, if for
every Borel set A ⊆ X , ν(A) = 0 =⇒ µ(A) = 0, and µ, ν are equivalent,
in symbols µ ∼ ν, if µ � ν & ν � µ. The equivalence class of a measure
under this equivalence relation is called its measure class. Note that every
measure is equivalent to a probability measure.

5.2 Invariant measures

If G is a countable group which acts in a Borel way on a standard Borel
space X , then G acts on the set of measures on X by g · µ(A) = µ(g−1 · A).
We say that µ is invariant under this action if for all g ∈ G, g · µ = µ.

Assume now that E is a countable Borel equivalence relation on a stan-
dard Borel space X . Denote below by [[E]]B the full pseudogroup of E,
which is the set of all Borel bijections f : A→ B between Borel subsetsA,B
of X such that ∀x ∈ A(f(x)Ex). Thus [E]B ⊆ [[E]]B . Note that if E is
induced by a Borel action of a countable group G on X , then f : A → B as
above is in [[E]]B iff there is a countable decomposition A =

⊔
nAn, and

group elements (gn) such that for each n and x ∈ An, f(x) = gn · x.
Note now the following simple fact, where for a Borel function T : X →

Y on standard Borel spaces X,Y and measure µ on X , T∗µ is the push-

49
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forward measure on Y , defined by T∗µ(B) = µ(T−1(B)), for every Borel
set B ⊆ Y .

Proposition 5.1. Let E be a countable Borel equivalence relation on a standard
Borel space X . Then the following are equivalent for each measure µ on X :

(i) For some countable group G and Borel action a of G on X such that Ea =
E, µ is invariant under this action;

(ii) For every countable group G and every Borel action a of G on X such that
Ea = E, µ is invariant under this action;

(iii) For every f : A→ B in [[E]]B , µ(A) = µ(B);
(iv) For every T ∈ [E]B , T∗µ = µ.

Definition 5.2. Let E be a countable Borel equivalence relation on a standard
Borel space X and µ a measure on X . Then µ is called E-invariant if it satisfies
the equivalent conditions of Proposition 5.1. Also µ is E-ergodic if for every
E-invariant Borel set A, we have µ(A) = 0 or µ(X \A) = 0.

Below a measure µ is called nonatomic if every singleton has measure
0.

Proposition 5.3 (see [DJK, 3.2]). Let E be a countable Borel equivalence relation
on a standard Borel space X and A a complete Borel section for E. Let ν be a
measure on A such that ν is E � A-invariant. Then there is a unique E-invariant
measure µ on X such that for all Borel sets B ⊆ A, µ(B) = ν(B). If ν is
nonatomic or ergodic, so is µ.

In particular if E has an invariant (nonatomic, ergodic measure) and
E vB F , then the same holds for F .

Note that E0 admits an invariant, nonatomic, ergodic probability mea-
sure, namely the usual product measure on 2N. Now the General Glimm-
Effros Dichotomy, proved in [HKL] asserts that a Borel equivalence relation
E is not smooth iff E0 vB E. The special case of this for countable Borel
equivalence relations was already proved in [E1], [E2] and [We1]. So we
have the following characterization:

Theorem 5.4 ([E1], [E2], [We1]). Let E be a countable Borel equivalence relation
on a standard Borel space X . Then the following are equivalent:

(i) E is not smooth;
(ii) There is a nonatomic, E-ergodic, E-invariant measure.

Corollary 5.5. Every countable Borel equivalence relation on an uncountable
standard Borel space admits a nonatomic invariant measure.
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5.3 Invariant probability measures and the theorem of
Nadkarni

The following result of Nadkarni characterizes the existence of E-invariant
probability measures.

Theorem 5.6 ([N2]; see also [BK, 4.5]). Let E be a countable Borel equivalence
relation on a standard Borel space X . Then the following are equivalent:

(i) E is not compressible;
(ii) There is an E-invariant probability measure;
(iii) There is an E-ergodic, E-invariant probability measure.

A proof of this result can be also found in [Ke5, 4.G] and [Sl5, 2.3-2.8].
For example Et, and eventual equality E0(N) on NN, being compress-

ible, do not admit an invariant probability measure and E0, having an in-
variant probability measure, is not compressible.

Corollary 5.7. LetE be a countable Borel equivalence relation on a standard Borel
space X .Then for any Borel set A ⊆ X the following are equivalent:

(i) [A]E is compressible;
(ii) For any E-invariant probability measure µ, µ(A) = 0.

There is also an effective version of Theorem 5.6:

Theorem 5.8 ([Di, Section 2.2, Theorem 1]). Let E be a countable Borel equiva-
lence relation on NN which is ∆1

1 (effectively Borel). Then the following are equiv-
alent:

(i) There is no ∆1
1 compression of E;

(ii) There is an E-invariant probability measure.

It follows from Theorem 3.29 that for every aperiodic countable Borel
equivalence relation E on a Polish space X , there is a comeager invariant
Borel set C such that E � C admits no invariant probability measure. For a
related result involving stationary measures, see [CKM, Corollary 18].

Remark 5.9. When G is a unimodular Polish locally compact group, a is a
free Borel action ofG on a standard Borel spaceX and Y ⊆ X is a complete
lacunary cocompact Borel section, then there is a canonical correspondence
between finite invariant measures for Ea � Y and finite invariant measures
for the action a, see [Sl1, Section 4] and [KPV, Section 4].
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5.4 Ergodic invariant measures and the
Ergodic Decomposition Theorem

For each standard Borel space X , denote by P (X) the standard Borel space
of probability measures on X , which is generated by the maps µ 7→ µ(A),
for Borel sets A; see [Ke6, 17.23, 17.24]. For a countable Borel equivalence
relation E, denote by INVE the set of E-invariant probability measures.
Also let EINVE be the set of E-ergodic, E-invariant probability measures.
The following is an important property of such measures:

Proposition 5.10. Let E be a countable Borel equivalence relation on a standard
Borel space X and let A,B ⊆ X be Borel sets. Then there is f ∈ [[E]]B, f : C →
D, such that C ⊆ A,D ⊆ B and µ(A \ C) = 0, ∀µ ∈ EINVE with µ(A) ≤
µ(B).

A proof can be found, for example, in [KM1, proof of 7.10].
The next results apply as well to Borel actions of Polish locally compact

groups but we will restrict here attention to actions of countable groups or
equivalently to countable Borel equivalence relations.

Theorem 5.11 ([Fa], [Va]). Let E be a countable Borel equivalence relation on a
standard Borel space X . Then

(i) INVE , EINVE are Borel sets in P (X) and EINVE is the set of the extreme
points of the convex set INVE (under the usual operation of convex combination
of probability measures);

(ii) INVE 6= ∅ ⇐⇒ EINVE 6= ∅.

The following result is known as the Ergodic Decomposition Theorem
for invariant measures.

Theorem 5.12 ([Fa], [Va]). Let E be a countable Borel equivalence relation on
a standard Borel space X and assume that INVE 6= ∅. Then there is a Borel
surjection π : X → EINVE such that

(i) π is E-invariant;
(ii) If Xe = π−1({e}), for e ∈ EINVE , then e(Xe) = 1 and e is the unique

E-invariant probability measure concentrating on Xe;
(iii) If µ ∈ INVE , then µ =

∫
π(x) dµ(x) =

∫
e dπ∗µ(e).

Moreover this map is unique in the following sense: If π, π′ satisfy (i)-(iii),
then for any µ ∈ INVE , π(x) = π′(x), µ-a.e. (x) (equivalently by Corollary 5.7,
the set {x : π(x) 6= π′(x)} is compressible).
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Corollary 5.13. Let E be a countable Borel equivalence relation on a standard
Borel space X and let µ, ν ∈ INVE . Then µ = ν iff for every E-invariant Borel
set A ⊆ X , µ(A) = ν(A).

Proofs of Theorem 5.11 and Theorem 5.12 can be also found in [Ke5,
3.K], [Sl5, 2.9] and [Ch3]. Moreover, [Di, Section 2.1.2, Theorem 10] gives
an effective version of Theorem 5.12.

In [Ch2] a connection is found between the ergodic decomposition of
a countable Borel equivalence relation E on a standard Borel space X and
the topological ergodic decomposition of continuous (in Polish topologies
on X that generate its Borel structure) actions of countable groups G that
generate E. Here the topological ergodic decomposition of an action of a
group G on a topological space X is the equivalence relation on X , where
two points of X are equivalent if the closures of their orbits coincide.

5.5 Quasi-invariant measures

If G is a countable group which acts in a Borel way on a standard Borel
space X and µ is a measure on X , then µ is quasi-invariant under this
action if for all g ∈ G, g · µ ∼ µ. Note that if µ is quasi-invariant under
the action and ν ∼ µ, then ν is also quasi-invariant under this action. Thus
for every quasi-invariant measure there is an equivalent quasi-invariant
probability measure.

We now have the following analog of Proposition 5.1.

Proposition 5.14. Let E be a countable Borel equivalence relation on a standard
Borel space X . Then the following are equivalent for each measure µ on X :

(i) For some countable group G and Borel action a of G on X such that Ea =
E, µ is quasi-invariant under this action;

(ii) For every countable group G and every Borel action a of G on X such that
Ea = E, µ is quasi-invariant under this action;

(iii) For every f : A→ B in [[E]]B , µ(A) = 0 ⇐⇒ µ(B) = 0;
(iv) For every T ∈ [E]B , T∗µ ∼ µ;
(v) For every Borel A ⊆ X , µ(A) = 0 ⇐⇒ µ([A]E) = 0.

Definition 5.15. Let E be a countable Borel equivalence relation on a standard
Borel space X and µ a measure on X . Then µ is called E-quasi-invariant if it
satisfies the equivalent conditions of Proposition 5.14.

The following two results show that studying the structure of countable
Borel equivalence relations with respect to arbitrary measures can often be
reduced to that of quasi-invariant measures.
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Proposition 5.16. Let E be a countable Borel equivalence relation on a standard
Borel space X and µ a measure on X . Then there is an E-quasi-invariant measure
µ̄ such that:

(i) µ� µ̄ and if ν is E-quasi-invariant with µ� ν, then µ̄� ν;
(ii) For any Borel E-invariant set A ⊆ X , µ(A) = µ̄(A);
(iii) If µ is nonatomic or ergodic, so is µ̄.

Proof. Let E be generated by a Borel action of a countable group G = {gn}
and put µ̄ =

∑
n 2−n−1(gn · µ).

Proposition 5.17 (Woodin, see [HK1, 6.5] and [Mi14, 1.3]). Let E be a count-
able Borel equivalence relation on a standard Borel space X and let µ be a proba-
bility measure on X . Then there is complete Borel section Y ⊆ X with µ(Y ) = 1
such that if A ⊆ Y is a Borel set with µ(A) = 0, then µ([A]E) = 0. Therefore
µ � Y is E � Y -quasi-invariant.

The following is an analog of Proposition 5.3:

Proposition 5.18 (see [DJK, 3.3]). Let E be a countable Borel equivalence rela-
tion on a standard Borel space X and A a complete Borel section for E. Let ν be a
probability measure on A such that ν is E � A-quasi-invariant. Then there is an
E-quasi-invariant probability measure µ on X such that for all Borel sets B ⊆ A,
µ(B) = µ(A)ν(B). If ν is nonatomic or ergodic, so is µ.

And the following is an analog of Theorem 5.4:

Theorem 5.19 ([E1], [E2], [We1]). Let E be a countable Borel equivalence rela-
tion on a standard Borel space X . Then the following are equivalent:

(i) E is not smooth;
(ii) There is a nonatomic, E-ergodic, E-quasi-invariant measure.

The following classical results of Hopf and Hajian-Kakutani character-
ize the existence of an invariant probability measure equivalent to a given
quasi-invariant measure (compare with Theorem 5.6). Below if a countable
group G acts in a Borel way on a standard Borel space X , a weakly wan-
dering Borel set for this action is a Borel set A ⊆ X such that for some
sequence (gn) of elements of G, we have gn ·A ∩ gm ·A = ∅,∀m 6= n.

Theorem 5.20 (Hopf, see [N3, Section 10]; Hajian-Kakutani, see [HaK]). Let
E be a countable Borel equivalence relation on a standard Borel space X and µ an
E-quasi-invariant measure. Then the following are equivalent:

(i) There is an E-invariant probability measure ν such that µ ∼ ν;
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(ii) (Hopf) There is no Borel set A with µ(A) > 0 such that E � A is com-
pressible;

(iii) (Hajian-Kakutani) Let G be a countable group and let a be a Borel action
of G on X such that Ea = E. Then there is no weakly wandering set of µ-positive
measure for this action.

Other related characterizations can be found in [Ke5, 2.83-2.85].

5.6 The space of quasi-invariant measures

Let E be a countable Borel equivalence relation on a standard Borel space
X . We denote by QINVE , EQINVE , ERGE , the spaces ofE-quasi-invariant,
E-ergodic and E-quasi-invariant, E-ergodic probability measures on X ,
resp. The following is a special case of a more general result concerning
Borel actions of Polish locally compact groups proved in [Di].

Theorem 5.21 ([Di]). Let E be a countable Borel equivalence relation on a stan-
dard Borel space X . Then QINVE , EQINVE , ERGE are Borel sets in P (X).

The set EQINVE is invariant under measure equivalence ∼, which is
a Borel equivalence relation, and [DJK, 4.1] shows that if E is not smooth,
measure equivalence on EQINVE (even restricted to nonatomic measures)
is not smooth.

The structure of QINVE and EQINVE under absolute continuity de-
pends only on the bireducibility type of E.

Proposition 5.22 ([DJK, 4.2]). Let E,F be countable Borel equivalence relations
on standard Borel spaces. If E ∼B F , then there are Borel maps ϕ : QINVE →
QINVF and ψ : QINVF → QINVE such that

(i) ψ(ϕ(µ)) ∼ µ and ϕ(ψ(ν)) ∼ ν;
(ii) µ� ν ⇐⇒ ϕ(µ)� ϕ(ν);
(iii) ϕ,ψ map ergodic measures to ergodic measures.

We also have the following related fact:

Proposition 5.23 ([Ke5, 4.34]). LetE,F be countable Borel equivalence relations
on standard Borel spaces such that E vB F . Then there is a Borel injection
ϕ : QINVE → QINVF such that µ � ν ⇐⇒ ϕ(µ) � ϕ(ν) and ϕ maps
ergodic measures to ergodic measures.

The paper [Ke12] studies the descriptive complexity of the Borel sets
QINVΓ = QINVE , EQINVΓ = EQINVE , where E is the equivalence re-
lation induced by the shift action of a countable group Γ on X = (2N)Γ.
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The following is shown, where the sets below belong to the space P (X),
which is given the usual compact metrizable topology (see, e.g., [Ke6, Sec-
tion 17.E]) that generates its standard Borel structure. Also F∞ is the free
group with a countably infinite set of generators.

Theorem 5.24 ([Ke12]). (i) For each infinite countable group Γ, the set QINVΓ

is Π0
3-complete and EQINVΓ is Π0

3-hard.
(ii) The set EQINVZ is Π0

3-complete.
(iii) There is a countable ordinal 3 ≤ α∞ ≤ ω + 2 such that EQINVF∞ is

Π0
α∞-complete.

The exact value of α∞ is unknown.

5.7 The cocycle of a quasi-invariant measure

Let E be a countable Borel equivalence relation on a standard Borel space
X and let µ be a probability measure. We define two Borel measures Ml,
Mr on the space E (viewed as a Borel subset of X2) as follows:

Ml(A) =

∫
|Ax| dµ(x),

where A ⊆ E is Borel, Ax = {y ∈ X : (x, y) ∈ A}, and |B| is the cardinality
of B, which is equal to∞ if B is infinite. For any nonnegative real-valued
Borel ϕ, ∫

ϕ(x, y) dMl(x, y) =

∫ ∑
y∈[x]E

ϕ(x, y)dµ(x).

Let also
Mr(A) =

∫
|Ay| dµ(y),

where Ay = {x ∈ X : (x, y) ∈ A}. Note that for f : A→ B in [[E]]B ,

Ml(graph(f)) = µ(A),Mr(graph(f)) = µ(B),

thus clearly Ml,Mr are σ-finite. Moreover, µ is E-quasi-invariant iff Ml ∼
Mr and µ is E-invariant iff Mr = Ml.

Assume now that µ is E-quasi-invariant. Consider then the Radon-
Nikodym derivative,

ρµ(x, y) = (dMl/dMr)(x, y),
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for (x, y) ∈ E. Therefore ρµ is a Borel map from E to R+ such that for any
nonnegative real-valued ϕ : E → R, we have∫

ϕ(x, y) dMl(x, y) =

∫
ϕ(x, y)ρµ(x, y) dMr(x, y),

thus for every Borel set A ⊆ E:

Ml(A) =

∫
A
ρµ(x, y) dMr(x, y),

and ρµ is uniquely determined Mr-a.e. by this property. Moreover ρ−1
µ =

dMr/dMl, Ml-a.e.
For any f : A→ B in [[E]]B and Borel C ⊆ B, we have

µ(f−1(C)) =

∫
C
ρµ(f−1(y), y) dµ(y),

thus if T ∈ [E]B , then (dT∗µ/dµ)(x) = ρµ(T−1(x), x), µ-a.e. (x).
A map ρ : E → G, where G is a group, is called a cocycle if it satisfies

the cocycle identity
ρ(x, z) = ρ(y, z)ρ(x, y),

for xEyEz. If this cocycle identity holds only on an E-invariant Borel set A
with µ(A) = 1, then ρ is a cocycle a.e. We now have that ρµ : E → R+ (the
multiplicative group of positive reals) is a cocycle a.e. We thus call ρµ the
cocycle associated with the E-quasi-invariant measure µ.

Proofs of the facts mentioned here can be found in [KM1, Section 8].

5.8 Existence of quasi-invariant probability measures
with a given cocycle

Again we will see that generically there are no quasi-invariant probability
measures with a given cocycle (compare with the paragraph following The-
orem 5.8). Below for a countable Borel equivalence relationE on a standard
Borel space X and ρ : E → R+ a Borel cocycle, we say that E is ρ-aperiodic
if for every x ∈ X ,

∑
y∈[x]E

ρ(y, x) =∞. Also we say that a probability mea-
sure µ on X is ρ-invariant if it is E-quasi-invariant and ρµ(x, y) = ρ(x, y),
for all xEy in an E-invariant Borel set A with µ(A) = 1. For more informa-
tion about such measures, see [Mi2, Section 18] and [Mi14].
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Theorem 5.25 ([KM1, 13.1]). Let E be a countable Borel equivalence relation on
a Polish space X and let ρ : E → R+ be a Borel cocycle such that E is ρ-aperiodic.
Then there is an E-invariant comeager Borel set C ⊆ X such that µ(C) = 0, for
any ρ-invariant probability measure µ.

In the papers [Mi2, Section 20], [Mi9], [Mi12], [Mi14] Miller obtains
analogs of Nadkarni’s Theorem 5.6 by characterizing when, for a given
countable Borel equivalence relation E on a standard Borel space X and
Borel cocycle ρ : E → R+, there exits a ρ-invariant probability measure.
Analogous results for measures (as opposed to probability measures) were
obtained in [Mi2, Section 18], [Mi8], [Mi14].

5.9 An ergodic decomposition theorem for
quasi-invariant measures with a given cocycle

The following is a generalization of the Ergodic Decomposition Theorem
Theorem 5.12 to measures having a given cocycle (Theorem 5.12 is the spe-
cial case of the constant value 1 cocycle).

Let E be a countable Borel equivalence relation on a standard Borel
space X . For each Borel cocycle ρ : E → R+, let INVρ, resp., EINVρ, be the
spaces of ρ-invariant, resp., E-ergodic, ρ-invariant, probability measures
on X .

Theorem 5.26 ([Di, Section 2.1, Theorem 6]). Let E be a countable Borel equiv-
alence relation on a standard Borel space X and ρ : E → R+a Borel cocycle. Then

(a) INVρ, EINVρ are Borel sets in P (X) and EINVρ is the set of the extreme
points of the convex set INVρ (under the usual operation of convex combination of
probability measures);

(b) INVρ 6= ∅ ⇐⇒ EINVρ 6= ∅.
Moreover there is a Borel surjection π : X → EINVρ such that

(i) π is E-invariant;
(ii) If Xe = π−1({e}), for e ∈ EINVρ, then e(Xe) = 1 and e is the unique

ρ-invariant measure concentrating on Xe;
(iii) If µ ∈ INVρ, then µ =

∫
π(x) dµ(x) =

∫
e dπ∗µ(e).

Moreover this map is unique in the following sense: If π, π′ satisfy (i)-(iii),
then for any µ ∈ INVρ, π(x) = π′(x), µ-a.e. (x).

Another proof of this result is given in [Mi9, 5.2]. Also [Di, Section 2.1,
Theorem 10] gives an effective version of Theorem 5.26.
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5.10 An ergodic decomposition theorem with respect
to an arbitrary probability measure

The following result is a special case of a more general theorem concerning
analytic equivalence relations, see [Ke5, 3.J] and [LM, 3.2].

Proposition 5.27 (Kechris). Let E be a countable Borel equivalence relation on a
standard Borel space X and let µ ∈ P (X). Then there is a Borel E-invariant map
π : X → P (X) such that letting π(x) = µx, we have:

(i) µx is E-ergodic, µ-a.e. (x);
(ii) {y ∈ X : µy = µx} has µx-measure 1;
(iii) µ =

∫
µx dµ(x).

5.11 Measures agreeing on invariant sets

Recall form Corollary 5.13 that ifE is a countable Borel equivalence relation
and µ, ν ∈ INVE , then µ, ν agree on the E-invariant Borel sets iff µ = ν. In
fact it turns out that one can characterize exactly when two arbitrary proba-
bility measures agree on the E-invariant Borel sets. The following result is
due to [Th, Theorem 1], where it is proved more generally for equivalence
relations induced by Borel actions of Polish locally compact groups. See
also [Kh, Section 3.4].

Theorem 5.28 ([Th, Theorem 1]). Let a be a Borel action of a countable group G
on a standard Borel space X and let E = Ea. Let µ, ν be two probability measures
on X . Then the following are equivalent:

(i) For each E-invariant Borel set A ⊆ X , µ(A) = ν(A);
(ii) There is a probability measure ρ on E such that s∗ρ = µ, t∗ρ = ν, where

s(x, y) = x, t(x, y) = y.
(iii) There is a probability measure σ on G ×X such that u∗σ = µ, v∗σ = ν,

where u(g, x) = x, v(g, x) = g · x;
(iv) There is a Borel map x 7→ µx from X to P (G) such that for every Borel

set A ⊆ X , ν(A) =
∫
µx({g ∈ G : g · x ∈ A}) dµ(x).

(v) There is a map g 7→ µg from G to the set of measures on X such that
µ =

∑
g µg and ν =

∑
g g · µg.

In [Sh], this is generalized to the context of cardinal algebras, in partic-
ular also leading to an algebraic proof of this result.
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6. Smoothness, E0 and E∞

We will now start studying the hierarchical order ≤B of Borel reducibility
on countable Borel equivalence relations.

6.1 Smoothness

The simplest Borel equivalence relations are the smooth ones and they are
easy to classify up to Borel bireducibility. Below for n ≥ 1, ∆n is the equal-
ity relation on a set of cardinality n.

First we recall the following dichotomy result of Silver:

Theorem 6.1 ([Si]). Let E be a Borel (or even Π1
1) equivalence relation on a

standard Borel space X . Then exactly one of the following holds:
(i) There are only countably many E-classes;
(ii) ∆R vB E.

We now have as an immediate consequence:

Corollary 6.2. If E is a smooth Borel equivalence relation, then E ∼B ∆n, for
some n ≥ 1, E ∼B ∆N or E ∼B ∆R.

Moreover the smooth countable Borel equivalence relations form an ini-
tial segment in ≤B .

Corollary 6.3. We have that

∆1 <B ∆2 <B · · · <B ∆n <B · · · <B ∆N <B ∆R

and every Borel equivalence E is either Borel bireducible to an equivalence relation
in this list or else ∆R <B E.

Remark 6.4. Given a pair E1 ⊆ E2 of countable Borel equivalence relations
on a standard Borel space X and a pair F1 ⊆ F2 of countable Borel equiva-
lence relations on a standard Borel space Y , we say that (E1, E2) is simul-
taneously Borel reducible to (F1, F2) if there is a Borel function f : X → Y
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such that f : E1 ≤B F1, f : E2 ≤B F2. The paper [Sc1] contains a classifica-
tion of pairs E1 ⊆ E2 of smooth countable Borel equivalence relations up
to simultaneous Borel bireducibility.

6.2 The simplest non-smooth relation

There is a least, in the sense of Borel reducibility, Borel equivalence relation
>B ∆R.

Theorem 6.5 (The General Glimm-Effros Dichotomy, [HKL]). Let E be a
Borel equivalence relation on a standard Borel space. Then exactly one of the fol-
lowing holds:

(i) E is smooth;
(ii) E0 vB E.

We note that for the case of a countable Borel equivalence relation E
this result is already included in [E1], [E2] and [We1].

We can thus extend the initial segment given in Corollary 6.3.

Theorem 6.6. We have that

∆1 <B ∆2 <B · · · <B ∆n <B · · · <B ∆N <B ∆R <B E0

and every Borel equivalence E is either Borel bireducible to an equivalence relation
in this list or else E0 <B E.

The countable Borel equivalence relations which are ≤B E0 are exactly
the hyperfinite ones and will be studied in detail in Chapter 8.

6.3 The most complicated relation

At the other end of the spectrum there is a most complicated, in terms of
Borel reducibility, countable Borel equivalence relation.

For each countable groupG and standard Borel spaceX , denote by sG,X
the shift action of G on the space XG:

(g · p)h = pg−1h,

for p ∈ XG, g, h ∈ G. Let E(G,X) = EsG,X be the associated equivalence
relation. Below let Fn, n = 1, 2, . . . , be the free group with n generators.
We also let F∞ be the free group with a countably infinite set of generators.
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If a is a Borel action of a countable group G on a standard Borel space
X , which we can assume is a Borel subset of R, the map

x ∈ X 7→ (g−1 · x)g∈G ∈ RG

is a Borel embedding of the action a to the shift action sG,R, so in particular
Ea viB E(G,R).

Definition 6.7. A countable Borel equivalence relationE is invariantly univer-
sal if for every countable Borel equivalence relation F , F viB E.

Since by Theorem 3.3 every countable Borel equivalence relation is in-
duced by a Borel action of F∞, it follows that the equivalence relation
E(F∞,R) is invariantly universal. Clearly there is a unique, up to Borel iso-
morphism, invariantly universal countable Borel equivalence relation and
it will be denoted by E∞.

Definition 6.8. We say that a countable Borel equivalence relationE is universal
if for any countable Borel equivalence relation F , we have F ≤B E, i.e., E ∼B
E∞.

Another example of a universal countable Borel equivalence relation is
the following:

Proposition 6.9 ([DJK, 1.8]). E(F2, 2) ∼B E∞

In [T15] S. Thomas studies what he calls E0-extensions, i.e., countable
Borel equivalence relations of the form E(a), where E, on some space X , is
Borel isomorphic to E0 and a : G yB (X,E). Up to Borel isomorphism
these are exactly the countable Borel equivalence relations that are nor-
mal over E0. For consistency with our terminology, we will call these E0-
expansions. He shows in [T15, Theorem 1.2] that for F2, and in fact any
countable group G containing F2, the following E0-expansion is universal:
Let E be the analog of E0 on the space 2G (i.e., pEq ⇐⇒ {g : p(g) 6=
q(g)} is finite), so that E ∼=B E0. Let s = sG,2 be the shift action of G.
Clearly this action is by automorphisms of E. Then the E0-expansion E(s)
is universal.

We will study universal countable Borel equivalence relations in Chap-
ter 12.

6.4 Intermediate relations

The interval [E0, E∞] in the Borel reducibility order≤B is not trivial, as one
can prove, for example, using the results in [A1] and [SlSt]. In fact we have
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the following, where by F (G,X) we denote the restriction of E(G,X) to
the (invariant Borel) free part F (XG) = {p ∈ XG : ∀g 6= 1G(g · p 6= p)} of
the shift action sG,X .

Theorem 6.10 ([JKL, Section 3]). E0 <B F (F2, 2) <B E∞

The relation F (F2, 2) is an example of a treeable countable Borel equiv-
alence relation, a concept that we will study in detail in Chapter 10.

We call countable Borel equivalence relations E such that E0 <B E <B
E∞ intermediate. In the next Chapter 7 we will see that they contain many
interesting examples and have a very rich structure.

It should be pointed out that all known proofs of existence of interme-
diate countable Borel equivalence relations use measure theoretic methods
of ergodic theory. We will see in Chapter 8 that generically, in the sense of
Baire category, all countable Borel equivalence relations are ≤B E0.



7. Rigidity and
incomparability

7.1 The complex structure of Borel reducibility

By the early 1990’s a small finite number of intermediate countable Borel
equivalence relations were known and they were linearly ordered under
≤B . This lead to the following basic problems: Are there infinitely many,
up to Borel bireducibility? Does non-linearity occur here?

These problems were resolved in [AK], where it was shown that the
structure of countable Borel equivalence relations under Borel reducibility
is quite rich.

Theorem 7.1 ([AK, Theorem 1]). The partial order of Borel sets under inclu-
sion can be embedded into the quasi-order of Borel reducibility of countable Borel
equivalence relations, i.e., there is a map A 7→ EA from the Borel subsets of R to
countable Borel equivalence relations such that A ⊆ B ⇐⇒ EA ≤B EB .

In particular it follows that any Borel partial order can be embedded
into the quasi-order of Borel reducibility of countable Borel equivalence
relations, Under the Continuum Hypothesis (CH), any partial order of the
size of the continuum can be embedded into the partial order of inclusion
of subsets of N modulo finite sets. It follows that for every quasi-order ≤
on a set X of the size of the continuum, there is a map x 7→ Ex from X to
countable Borel equivalence relations such that x ≤ y ⇐⇒ Ex ≤B Ey, i.e.,
≤B on countable Borel equivalence relations is a universal quasi-order of
the size of the continuum.

Other proofs of Theorem 7.1 can be found in [HK4], [CM1] and [T12].
Another indication of the complexity of ≤B on countable Borel equiv-

alence relations is contained in the next result. To formulate it, fix a cod-
ing (parametrization) of countable Borel equivalence relation by reals. This
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consists of a Π1
1 subset C of R and a surjective map c 7→ Ec from C to the

set of countable Borel equivalence relations on R, satisfying some natural
definability conditions; see [AK, Section 5]. Let

C≤ = {(c, d) ∈ C2 : Ec ≤B Ed}, C∼ = {(c, d) ∈ C2 : Ec ∼B Ed},

C∼= = {(c, d) ∈ C2 : Ec ∼=B Ed}.

Theorem 7.2 ([AK, Theorem 2]). The sets C≤, C∼, C∼= are Σ1
2-complete.

Concerning the equivalence relation C∼, it follows from Theorem 7.1
that every Borel equivalence relation can be Borel reduced toC∼ and in [G3]
this was extended to Σ1

1 equivalence relations. It appears to be unknown if
it also holds for Π1

1 equivalence relations.
The proof of Theorem 7.1 used methods of ergodic theory, more pre-

cisely Zimmer’s cocycle superrigidity theory for ergodic actions of linear
algebraic groups and their lattices.

The key point is that there is a phenomenon of set theoretic rigidity
analogous to the measure theoretic rigidity phenomena discovered by Zim-
mer; see [Z2]. Informally this can be described as follows:

• (Measure theoretic rigidity) Under certain circumstances, when a
countable group acts preserving a probability measure, the equiva-
lence relation associated with the action together with the measure
“encode” or “remember” significant information about the group (and
the action).

• (Borel theoretic rigidity) Such information is simply encoded in the
Borel cardinality of the (quotient) orbit space.

7.2 Cocycle reduction

A basic idea in establishing rigidity results in the measure theoretic, as well
as in the descriptive context, is cocycle reduction, which we will discuss
next in the framework of Borel reducibility.

Let E be a countable Borel equivalence relation on a standard Borel
space X and Γ a countable group. Two Borel cocycles α : E → Γ, β : E → Γ
are cohomologous or equivalent, in symbols α ∼ β, if there is a Borel
map f : X → Γ such that xEy =⇒ β(x, y) = f(y)α(x, y)f(x)−1. If G
is a countable group acting in a Borel way on a standard Borel space X , a
Borel cocycle of this action into Γ is a Borel map α : G × X → Γ such that
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α(g1g2, x) = α(g1, g2 · x)α(g2, x), for g1, g2 ∈ G. Two such cocycles α, β are
equivalent, in symbols α ∼ β, if there is a Borel map f : X → Γ such that
β(g, x) = f(g · x)α(g, x)f(x)−1. Note that if α is a cocycle of the associated
to this action equivalence relation E, then α gives a cocycle β of the action,
namely β(g, x) = α(x, g · x). Conversely if the action is free, any cocycle of
the action gives rise as above to a cocycle of the equivalence relation.

A simple example of a cocycle of an action of G on X is a homomor-
phism h : G→ Γ, which can be identified with the cocycle α(g, x) = h(g).

Now let F be a countable Borel equivalence relation on a standard Borel
space Y , which is induced by a free Borel action b of a countable group Γ
on Y , i.e., F = Eb. Let ϕ : E →B F be a Borel homomorphism. Then there
is a canonical Borel cocycle α : E → Γ associated to ϕ, namely α(x, y) = γ,
where γ is the unique element of Γ such that γ · ϕ(x) = ϕ(y), i.e., xEy =⇒
ϕ(y) = α(x, y) ·ϕ(x). Note now that if a ∼ β, via the Borel function f : X →
Γ, then β is also associated to a Borel homomorphism ψ : E →B F , such
that ϕ(x)Fψ(x) for every x ∈ X , namely ψ(x) = f(x) · ϕ(x). Similarly,
if E = Ea for a Borel action a of a countable group G on X , we have an
associated to ϕ cocycle of the action, given by ϕ(g · x) = α(g, x) · ϕ(x).

A cocycle reduction result, for some given action or equivalence rela-
tion, shows that certain cocycles of the action or equivalence relation are
equivalent to ones that are much simpler in some sense, e.g., are group
homomorphisms or have a “small range”. When such a cocycle reduction
result is applied to the cocycle coming from a homomorphism of equiva-
lence relations as above, it can be used to replace the given homomorphism
with another one that has additional structure.

For example, let a be a Borel action of a countable group G on a stan-
dard Borel space X and b a free Borel action of a countable group Γ on a
standard Borel space Y . Put E = Ea, F = Eb. Let ϕ : E →B F be a Borel
homomorphism and let α : G × X → Γ be the associated to ϕ cocycle of
the action a as above. If α is equivalent to a homomorphism h : G → Γ,
let ψ be the associated to the cocycle h as above homomorphism of E to F .
Then we have that ψ(g · x) = h(g) · ψ(x), which is a very strong property,
that can be ruled out in a given situation, thereby ruling out the existence
of the original homomorphism ϕ. This therefore gives a basic technique for
showing that an equivalence relation cannot be reduced to another one.

In practice such cocycle reduction results are actually established in a
measure theoretic context, i.e., in ergodic theory. Suppose we have a count-
able Borel equivalence relation E on a standard Borel space X with an in-
variant probability measure µ. Then we can define the above notion of
cocycle for E,µ by requiring that the cocycle identity holds only on an E-
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invariant Borel set of µ-measure 1, i.e., we consider cocycles a.e.. Moreover
we identify two such cocycles if they agree µ-a.e. Analogously we define
equivalence of cocycles, neglecting again µ-null sets. We can also similarly
define cocycles of group actions with an invariant measure.

To illustrate these ideas let us mention a cocycle reduction result due to
Popa [Po], which is usually referred to as cocycle superrigidity.

Theorem 7.3 ([Po]). Let G be an infinite countable group with property (T) and
consider the shift action s = sG,[0,1] of G on [0, 1]G with the invariant product
measure λG, where λ is Lebesgue measure on [0, 1]. Then for any countable group
Γ, any Borel cocycle of this action into Γ is equivalent, a.e., to a homomorphism of
G into Γ.

Such cocycle reduction results are used to prove measure theoretic rigid-
ity results in the sense of Section 7.1. For example, here is an application of
Theorem 7.3. Below if a is a Borel action of a countable group G on a stan-
dard Borel space X with invariant probability measure µ and if b is a Borel
action of a countable group Γ on a standard Borel space Y with invariant
probability measure ν, we say that a, b are orbit equivalent if there are in-
variant Borel setsX0 ⊆ X,Y0 ⊆ Y with µ(X0) = 1, ν(Y0) = 1 and a measure
preserving Borel bijection T : X0 → Y0, such that T : Ea|X0

∼=B Eb|Y0. We
now have:

Theorem 7.4 ([Po]). LetG be a simple infinite countable group with property (T)
and let s = sG,[0,1] be its shift action on X = [0, 1]G with the product measure
µ = λG. Let Γ be a countable group and let a be a free Borel action of Γ on
a standard Borel space Y with invariant probability measure ν. If s, a are orbit
equivalent, then there is an isomorphism h : G → Γ and a Borel isomorphism
T : (X,µ)→ (Y, ν) such that T (g · x) = h(g) · T (x), µ-a.e. (x).

Thus in Theorem 7.4, the equivalence relation Ea and the measure µ
determine completely the group and the action.

See also [Ke10, Section 30, (B)] for an exposition of the proofs of Theo-
rem 7.3 and Theorem 7.4.

In the Borel context, a method that has been frequently employed to
solve a problem of showing that one countable Borel equivalence relation
cannot be Borel reducible to another, ultimately comes down to an applica-
tion of a cocycle reduction theorem in a measure theoretic context, usually
after considerable technical work that often employs sophisticated meth-
ods of ergodic theory or other subjects depending on the context. Such a
technique has been used in the proof of Theorem 7.1 and also in all the
results that will be mentioned below in this section.
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Other methods, concerning the problem of showing failure of Borel re-
ducibility, were used, e.g., in [HK4, Chapters 6,7 and Appendices B3, B4]
(based on earlier work of Furstenberg, Zimmer and Adams), Hjorth [H3],
[H12], [Ke9], [ET], [Mi11], [CM1] and [CM2].

In the rest of this section, we will discuss concrete natural instances
of Borel theoretic rigidity phenomena that allow us to distinguish up to
Borel bireducibility countable Borel equivalence relations or show that one
cannot Borel reducible to another.

7.3 Actions of linear groups

The proof of Theorem 7.1 was based on the following result, which uses
cocycle reduction results of Zimmer; see [Z2] and references contained
therein.

Definition 7.5. If E is a Borel equivalence relation on a standard Borel space X ,
µ is a probability measure onX and F is a Borel equivalence relation on a standard
Borel space Y , we say that E is µ, F -ergodic if for any f : E →B F , there is a
Borel E-invariant set A ⊆ X , with µ(A) = 1, such that f maps A into a single
F -class.

Theorem 7.6 ([AK, 4.5]). For each nonempty set of primes S, consider the group
GS = SO7(Z[S−1]) of 7 × 7 orthogonal matrices with determinant 1 with coeffi-
cients in the ring Z[S−1] of rationals whose denominators, in reduced form, have
prime factors in S. Then

S * T =⇒ F (GS , 2) is µS , F (GT , 2)−ergodic,

where µS is the usual product measure on 2GS .
In particular,

S ⊆ T ⇐⇒ F (GS , 2) ≤B F (GT , 2).

Another set theoretic rigidity result proved in [AK] is the following:

Theorem 7.7 ([AK, Section 7, (i)]). Consider the canonical action of GLn(Z) on
Rn/Zn and let Gn be the associated countable Borel equivalence relation. Then

m < n ⇐⇒ Gm <B Gn.

In particular, the Borel cardinality of the orbit space of this action “en-
codes” the dimension n.
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Fix an integer n > 1. For each nonempty set of primes S consider the
compact group Hn

S =
∏
p∈S SLn(Zp). The group SLn(Z) can be viewed as

a (dense) subgroup of Hn
S via the diagonal embedding. Denote by EnS the

equivalence relation on Hn
S induced by the translation action of SLn(Z) on

Hn
S . Then we have:

Theorem 7.8 ([T4, Theorem 5.1], for n ≥ 3; [I2, Corollary C] for n = 2).

S = T ⇐⇒ EnS ≤B EnT .

Next for each prime p and n ≥ 2, consider the projective space PG(n−
1,Qp) over the field Qp of p-adic numbers, i.e., the space of 1-dimensional
vector subspaces of the n-dimensional vector space Qnp . Then the group
GLn(Z) acts in the usual way on PG(n−1,Qp). Denote by Fnp the associated
countable Borel equivalence relation. Then we have:

Theorem 7.9 ([T4, Theorem 6.7], for n ≥ 3; [I2, Corollary D] for n = 2).

p = q ⇐⇒ Fnp ≤B Fnq .

In [I2] further such set theoretic rigidity results are proved for similar
actions of non-amenable subgroups of SL2(Z).

For a finite set S of primes, a prime number p and n ≥ 2, denote
by Fnp,S the countable Borel equivalence relation induced by the action of
SLn(Z[S−1]) on PG(n−1,Qp). Also for a set of primes J such that S∩J = ∅,
view SLn(Z[S−1]) as a subgroup of

∏
p∈J SLn(Zp) and let FnS,J be the associ-

ated equivalence relation induced by the translation action. Then we have:

Theorem 7.10 ([T6, Theorem 1.1, Theorem 1.2],[T4]). Let n ≥ 2.
(i) If p, q are primes and S, T are nonempty finite sets of primes with p /∈ S, q /∈

T , then
(p, S) = (q, T ) ⇐⇒ Fnp,S ≤B Fnq,T ;

(ii) If S, T are finite nonempty sets of primes and J,K are nonempty sets of
primes with S ∩ J = ∅, T ∩K = ∅, then

(S, J) = (T,K) ⇐⇒ FnS,J ≤B FnT,K .

For n = 2 this result is contained in [T6], while for n ≥ 3 it is implicit in
[T4].

For other set theoretic rigidity results for actions of linear groups as
above, see also [T1], [Co2], [Co4], [I2], [C].
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7.4 Actions of product groups

There are also set theoretic rigidity results concerning actions of product
groups.

Theorem 7.11 ([HK4, Theorem 1]). For each nonempty set S of odd primes, let
HS = (?p∈S(Z/pZ ? Z/pZ))× Z. Then

S * T =⇒ F (HS , 2) is µS , F (HT , 2)−ergodic,

where µS is the usual product measure on 2HS .
In particular,

S ⊆ T ⇐⇒ F (HS , 2) ≤B F (HT , 2).

Among several other set theoretic (and measure theoretic) rigidity re-
sults proved in [HK4], we state the following.

Theorem 7.12 ([HK4, Theorem 7]). Let for n ≥ 1, Sn = F (Fn2 , 2) and Rn =
F (F2, 2)n (thus R1 = S1). Then

R1 <B R2 <B · · · <B Rn <B · · · , S1 <B S2 <B · · · <B Sn <B · · · ,

and for each n,
Rn ≤B Sn

but for 2 ≤ n < m,
Sn �B Rm, Rm �B Sn.

7.5 Torsion-free abelian groups of finite rank

We next discuss rigidity results in algebra. The classification problem for
torsion-free abelian groups of finite rank is a classical problem in group the-
ory. For rank 1 the problem was solved by Baer in 1937 but no reasonable
classification has been found for rank at least 2; see [T3], [T5] for more on
the history of this problem. Denote below by ∼=n the isomorphism relation
for torsion-free abelian groups of rank n ≥ 1. As explained in Remark 4.26,
we can view this (up to Borel bireducibility) as a countable Borel equiva-
lence relation. Baer’s result now implies the following:

Theorem 7.13 (Baer). ∼=1∼B E0
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Using methods from ergodic theory, Hjorth in [H1] showed that ∼=1 <B
∼=2 and finally Thomas proved, also using methods from ergodic theory,
the following:

Theorem 7.14 ([T3]). For each n ≥ 1, ∼=n <B ∼=n+1.

In particular, the Borel cardinality of the set of isomorphism classes of
torsion-free abelian groups of rank n encodes the dimension n. Also one
can interpret this result as a strong indication of the non-existence of a rea-
sonable classification for the rank at least 2 case.

For other discussions of these results, see [T5], [Co4], [Q] and [TS].
Denote by ∼=∗n the isomorphism relation on torsion-free abelian groups

of rank n that are rigid (i.e., the only automorphisms are the identity and
the map a 7→ −a). Then we have:

Theorem 7.15 ([AK]). For each n ≥ 1, ∼=∗n <B ∼=∗n+1.

Theorem 7.16 ([T3]). For each n ≥ 1, ∼=∗n+1 �B ∼=n.

For each set of primes S, an abelian group is S-local if it divisible by
any prime p /∈ S. Denote by ∼=S

n the isomorphism relation on the S-local
torsion-free abelian groups of rank n. Also let ∼=p

n = ∼=S
n , where S = {p}.

Then we have:

Theorem 7.17 ([T3]). For each prime p and n ≥ 1, ∼=p
n <B ∼=p

n+1.

Theorem 7.18 ([T13]). For sets of primes S, T , and n ≥ 2,

S ⊆ T ⇐⇒ ∼=S
n ≤B ∼=T

n .

In [T3, 5.7] it is shown that if Ep is the equivalence relation induced by
the action of GL2(Q) by fractional linear transformations onQp∪{∞}, then
Ep ∼B ∼=p

2, so if p 6= q, then Ep, Eq are incomparable in ≤B .
We also have:

Theorem 7.19 ([Co2, Theorem B]). Let n,m ≥ 3 and p 6= q be primes. Then

∼=p
m �B ∼=q

n,
∼=q
n �B ∼=p

m .

For other related results, see [Co1] and [Co3].
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7.6 Multiples of an equivalence relation

For any countable Borel equivalence relation E and n ≥ 1, recall that nE is
the direct sum of n copies of E. Note that nE0 ∼B E0 and nE∞ ∼B E∞.
On the other hand we have:

Theorem 7.20 ([T4, 4.9]). There is a countable Borel equivalence relation E such
that

E0 <B E <B 2E <B 3E <B · · ·

See also [HK4, 3.9] and [Q, 3.4.10].
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8. Hyperfiniteness

8.1 Characterizations and classification

Recall the following definition:

Definition 8.1. A countable Borel equivalence relation E is hyperfinite if E =⋃
nEn, where En ⊆ En+1 and each En is a finite Borel equivalence relation.

We next state a number of equivalent characterizations of hyperfinite-
ness.

Theorem 8.2. Let E be a countable Borel equivalence relation on a standard Borel
space X . Then the following are equivalent:

(i) E is hyperfinite;
(ii) E =

⋃
n≥1En, with (En) an increasing sequence of finite Borel equiva-

lence relations, such that each En-class has cardinality at most n;
(iii) E =

⋃
nEn, with (En) an increasing sequence of smooth Borel equiva-

lence relations;
(iv) There is a Borel action a of Z on X such that E = Ea;
(v) There is a Borel binary relation R ⊆ X2 such that xRy =⇒ xEy and

for each E-class C, R � C = R ∩ C2 is a linear ordering on C of order type Z or
finite;

(vi) E vB E0;
(vii) E ≤B E0.

In Theorem 8.2, the equivalence of (i) and (ii) is due to Weiss [We1, page
420] (see also [DJK, Theorem 5.1]), (iv) =⇒ (i) is due to Weiss [We1, Section
4, Theorem 6] and Slaman-Steel [SlSt, Lemma 3.1], and (i) =⇒ (iv) is due
to Slaman-Steel [SlSt, Theorem 3.1]. The equivalence of (i), (iii), (vi) and
(vii) is due to Dougherty-Jackson-Kechris [DJK, Theorem 5.1 and Theorem
7.1]. Another proof of the equivalence of (i) and (vi), due to Hjorth, can be
found in [Ts1].

75
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We thus have the following complete classification of hyperfinite Borel
equivalence relations up to Borel bireducibility.

Corollary 8.3 ([DJK]). Every hyperfinite Borel equivalence relation is Borel bire-
ducible to exactly one in the list:

∆1 <B ∆2 <B · · · <B ∆n <B · · · <B ∆N <B ∆R <B E0.

Moreover if E is a non-smooth hyperfinite Borel equivalence relation, then E 'B
E0.

Hyperfinite Borel equivalence relations have been also completely clas-
sified up to Borel isomorphism. The main result is the following, where for
any set S, card(S), is the cardinality of S.

Theorem 8.4 ([DJK, Theorem 5.1]). Let E,F be aperiodic, non-smooth hyperfi-
nite Borel equivalence relations. Then

E ∼=B F ⇐⇒ card(EINVE) = card(EINVF ).

Another version of the proof can be also found in [Sl5, Section 3.7].
Note that for any countable Borel equivalence relation E,

card(EINVE) ∈ {0, 1, 2, . . . , n, . . . ,ℵ0, 2
ℵ0}.

The tail equivalence relation Et is hyperfinite, see [DJK, Section 8], and, be-
ing compressible, it has no invariant probability measure. Also E0 has a
unique invariant, and thus ergodic, probability measure, nE0 has exactly
n ergodic invariant probability measures, NE0 has ℵ0 such measures and
F (Z, 2) has 2ℵ0 such measures (consider product measures corresponding
to the (p, 1− p) measure on {0, 1} for 0 < p < 1). Another example of a hy-
perfinite Borel equivalence relation with 2ℵ0 ergodic invariant probability
measures is RE0, where for each equivalence relation E, RE = E×∆R. We
thus have:

Corollary 8.5 ([DJK, Corollary 9.3]). Every aperiodic, non-smooth hyperfinite
Borel equivalence relation is Borel isomorphic to exactly one in the list:

Et <
i
B E0 <i

B 2E0 <i
B · · · <i

B nE0 <i
B · · · <i

B NE0 <i
B RE0

∼=B F (Z, 2).

Below for each countable Borel equivalence relation E, let EINV0
E be

the set of E-ergodic, E-invariant nonatomic probability measures and put

(i) cn(E) = card({C ∈ X/E : card(C) = n}), for 1 ≤ n ≤ ℵ0;
(ii) s(E) = 0, if E is smooth; = 1, otherwise;
(iii) t(E) = card(EINV0

E).
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Corollary 8.6 ([DJK, Corollary 9.2]). The list (cn)1≤n≤ℵ0 , s, t is a complete list
of invariants for Borel isomorphism of hyperfinite Borel equivalence relations.

A hyperfinite Borel equivalence E is invariantly universal hyperfinite
if for every hyperfinite Borel equivalence relation F , F viB E. It is easy to
see that E(Z,R) has this property. Clearly an invariantly universal hyper-
finite equivalence relation is unique up to Borel isomorphism and it will be
denoted by E∞h. The next corollary gives another manifestation of E∞h.

Corollary 8.7. E∞h ∼=B
⊕

n≥1R∆n ⊕ RE0

The proof of Theorem 8.4 uses, among other tools, the following classi-
cal result of Dye in ergodic theory.

Theorem 8.8 ([Dy]). Let E,F be hyperfinite Borel equivalence relations on stan-
dard Borel spaces X,Y , resp., and let µ ∈ EINVE , ν ∈ EINVF be nonatomic.
Then there is an E-invariant Borel set X0 ⊆ X , an F -invariant Borel set Y0 ⊆
Y , with µ(X0) = ν(Y0) = 1, and a measure preserving Borel isomorphism
T : E|X0

∼=B F |Y0.

Equivalently this theorem says that any two Borel Z-actions which have
nonatomic, ergodic invariant probability measures are orbit equivalent. For
a proof, see, e.g., [KM1, Section 7].

An important ingredient in the proof of Theorem 8.8 is the classical
Rokhlin’s Lemma. We state it below in a strong uniform version proved
in [GW]. Other references for this are [Sl5, 3.4.3] and the Corrections and
Updates of [KM1, 7.5] that are posted in:

http://www.math.caltech.edu/∼kechris/
Below a Borel automorphism T of a standard Borel space is called ape-

riodic if all its orbits are infinite.

Theorem 8.9 ([GW, 7.9]). Suppose T is an aperiodic Borel automorphism of a
standard Borel space X , n ≥ 1, and ε > 0. Then there is a Borel complete section
A ⊆ X of the equivalence relation induced by T such that

(I) T i(A) ∩ T j(A) = ∅, if 0 ≤ i < j < n,
and for any T -invariant probability measure µ,

(ii) µ(X \
⋃
i<n T

i(A)) < ε.

Suppose E,F are countable Borel equivalence relations on standard
Borel spacesX,Y , resp. Let µ ∈ EQINVE , ν ∈ EQINVF . We say that (E,µ)
is isomorphic to (F, ν) if there is anE-invariant Borel setX0 ⊆ X and an F -
invariant Borel set Y0 ⊆ Y with µ(X0) = ν(Y0) = 1 and T : E|X0

∼=B F |Y0
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such that T∗µ ∼ ν. The Dye-Krieger Classification provides a classification
up to isomorphism of such (E,µ) for hyperfinite E. One says that (E,µ)
is of type In, for 1 ≤ n ≤ ℵ0, if µ is atomic concentrating on an E-class of
cardinality n. Up to isomorphism there is exactly one (E,µ) of type In.

From now on assume that µ is nonatomic. Then (E,µ) is of type II1 if
there is ν ∼ µ with ν ∈ EINVE and it is of type II∞ if there is an infinite E-
invariant measure ν ∼ µ (i.e., ν(X) = ∞). Otherwise (E,µ) is of type III.
Dye’s Theorem implies that, up to isomorphism, there is exactly one (E,µ)
of type II1 and exactly one (E,µ) of type II∞. The type III equivalence
relations are further subdivided into classes IIIλ, for λ ∈ [0, 1]. Krieger
showed that for λ > 0, there is a unique, up to isomorphism, (E,µ) of type
IIIλ, while there is a bijection between isomorphism classes of III0 equiv-
alence relations and free Borel actions of R with nonatomic ergodic quasi-
invariant probability measure up to isomorphism (of the actions). For a
proof of Krieger’s results, see [Kr] and [KW].

Another corollary of Theorem 8.4 is the following:

Corollary 8.10 ([DJK, Corollary 9.7]). Let E be an aperiodic hyperfinite Borel
equivalence relation, Then for any sequence (Mn) of positive integers ≥ 2, there is
an increasing sequence (En) of finite Borel subequivalence relations of E such that
E =

⋃
nEn and every En-class has cardinality M0M1 · · ·Mn.

Compare this with Corollary 3.20 and Theorem 8.2, (ii).
A further application of Theorem 8.4 is a classification of non-smooth

Borel equivalence relations induced by Borel actions of R.

Theorem 8.11 ([Ke4, Theorem 3]). Let a, b be two Borel actions ofR on standard
Borel spaces. Let ca be the cardinality of the set of singleton orbits of the action a
and similarly for b. Then if Ea, Eb are not smooth, Ea ∼=B Eb ⇐⇒ ca = cb.

In particular, for any two actions of R as above with uncountable orbits
andEa, Eb not smooth, Ea ∼=B Eb. Using Theorem 4.12 and [JKL, 1.15, 1.16]
this holds as well for any such actions of a Polish locally compact group,
which is compactly generated of polynomial growth.

An analog of Theorem 8.4 for classification of non-smooth Ea, where a
is a free Borel action of Rn, up to Lebesgue Orbit Equivalence, i.e., Borel
isomorphism that preserves Lebesgue measure on each orbit, is given in
[Sl1] and [Sl2]. For results concerning time-change equivalence of free Borel
actions of Rn, see [MR2] and [Sl4].

Another analog of Theorem 8.4 is found in [DJK, Section 10], which
provides a classification (up to Borel isomorphism) of Lipschitz homeo-
morphisms of 2N.
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For countable Borel equivalence relations E,F we put E ⊆B F if there
is E′ ⊆ F with E ∼=B E′. Then ⊆B is a quasi-order called the Borel inclu-
sion order. Denote by ⊂B its strict part. Using Theorem 8.4 the following
was shown in [FKSV].

Below for a quasi-order �with strict part ≺ on a set Q and q, r ∈ Q, we
say that r is a successor to q if q ≺ r and (q ≺ s � r =⇒ r � s).

Theorem 8.12 ([FKSV, 2.2.5]). (i) RE0 ⊂B NE0 ⊂B · · · ⊂B 3E0 ⊂B 2E0 ⊂B
E0 ⊂B Et, each equivalence relation in this list is a successor in ⊆B of the one
preceding it and NE0 is the infimum in ⊆B of the nE0, n ∈ N \ {0}.

(ii) RIN ⊂B Et and Et is a successor of RIN in ⊆B .

Corollary 8.13 ([FKSV, 2.2.6]). Let E,F be non-smooth, aperiodic hyperfinite
Borel equivalence relations on uncountable standard Borel spaces. Then

E ⊆B F ⇐⇒ card(EINVE) ≥ card(EINVF ).

The next result is a version of the Glimm-Effros Dichotomy (see Theo-
rem 6.5) for the inclusion order ⊆B instead of vB .

Corollary 8.14 ([FKSV, 2.3.2]). Let E be an aperiodic countable Borel equiva-
lence relation. Then exactly one of the following holds:

(i) E is smooth,
(ii) RE0 ⊆B E.

Finally we mention the following characterization of smoothness for
aperiodic hyperfinite Borel equivalence relations.

Theorem 8.15 ([KST, 1.1]). Let E be an aperiodic hyperfinite Borel equivalence
relation on a standard Borel space X . Then the following are equivalent:

(i) E is smooth;
(ii) For every partition of X into Borel sets X = A t B such that both A,B

have infinite intersection with every E-class, we have that A ∼E B.

8.2 Hyperfinite subequivalence relations

Recall from Corollary 3.20 that every aperiodic countable Borel equivalence
relation contains an aperiodic hyperfinite Borel subequivalence relation.
The following is a strengthening of this result:

Theorem 8.16. Let E be an aperiodic countable Borel equivalence relation. Then
there is an aperiodic hyperfinite Borel equivalence relation F ⊆ E such that
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INVE = INVF , and so EINVE = EINVF , and E,F have the same ergodic de-
composition (as in Theorem 5.12) modulo compressible sets (for E or equivalently
F ).

For a proof, see [Ke5, 5.66 and paragraph following it]. The proof is
based on the following result related to Theorem 8.8 (and has a similar
proof).

Theorem 8.17 (see [Ke5, 5.26]). Let E be an aperiodic countable Borel equiv-
alence relation on a standard Borel space X and let ν ∈ EINVE . Then there is
an E-invariant Borel set X0 ⊆ X and an E0-invariant Borel set Y0 ⊆ 2N with
ν(X0) = µ(Y0) = 1, where µ is the usual product measure on 2N, and a measure
preserving Borel isomorphism T : Y0 → X0 such that: x, y ∈ Y0, xE0y =⇒
T (x)ET (y).

The fact that every aperiodic countable Borel equivalence relation con-
tains an aperiodic hyperfinite Borel equivalence relation admits the follow-
ing generalization.

Theorem 8.18 ([CM1, 2.5.1]). Let E be a countable Borel equivalence relation on
a standard Borel space and ρ : E → R+ a Borel cocycle for which E is ρ-aperiodic.
Then there is a hyperfinite Borel subequivalence relation F ⊆ E for which F is
ρ � F -aperiodic.

From Theorem 8.18 the following is also derived:

Theorem 8.19 ([CM1, 2.5.3]). Let E be a countable Borel equivalence relation on
a standard Borel space X and let µ ∈ QINVE be such that there is no Borel set of
µ-positive measure A for which E � A is smooth. Then there is a hyperfinite Borel
subequivalence relation F ⊆ E with the same property.

Actually in [CM1, 2.5.1, 2.5.3] stronger statements are proved concern-
ing Borel graphs.

8.3 Generic hyperfiniteness

A Borel equivalence relation is essentially hyperfinite if it is Borel bire-
ducible with a hyperfinite Borel equivalence relation and it is reducible to
hyperfinite if it is Borel reducible to a hyperfinite Borel equivalence rela-
tion. In view of Theorem 8.2 and Theorem 6.5 a Borel equivalence relation
E is essentially hyperfinite iff it is reducible to hyperfinite.

The following result shows that essential hyperfiniteness always holds
generically.
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Theorem 8.20 ([HK1, 6.2]). Let E be a Borel equivalence relation on a Polish
space X such that E is reducible to countable. Then there is a comeager E-
invariant Borel set C ⊆ X such that E � C is essentially hyperfinite. In par-
ticular, for any countable Borel equivalence relation E on a Polish space X , there
is an E-invariant Borel set C ⊆ X such that E � C is hyperfinite.

This extends an earlier result of [SWW] and its proof also uses the fol-
lowing result, which is an analog of Proposition 5.17.

Proposition 8.21 (Woodin, see [HK1, 6.5]). Let E be a countable Borel equiva-
lence relation on a Polish space X .Then there is a comeager complete Borel section
C ⊆ X such that for every meager Borel set A ⊆ C, [A]E is meager.

Another proof of Theorem 8.20 for countable E can be found in [KM1,
12.1].

The second part of the following result was originally proved in [SWW]
and the first part by Woodin. A countable Borel equivalence relation E on
a Polish space X is called generically ergodic if every E-invariant Borel set
is meager or comeager. It is called generic if the E-saturation of a meager
set is meager.

Theorem 8.22 ([SWW]; Woodin, see [Ke5, 5.44-5.46]). LetE be a a generically
ergodic countable Borel equivalence relation on a perfect Polish space X . Then
there is a dense Gδ set X0 ⊆ X , an E0-invariant dense Gδ set Y0 ⊆ 2N and a
homeomorphism f : X0 → Y0 which takes E � X0 to E0 � Y0. If moreover E is
generic, the set X0 can be also be taken to be E-invariant.

We note that Theorem 8.20 fails for measure instead for category. For
example, consider the equivalence relation E(F2, 2) on X = 2F2 with the
usual product measure. Then it is a standard result that for any Borel set
A ⊆ X of positive measure, E � A is not hyperfinite (see, e.g., Proposi-
tion 8.30 below).

In fact Theorem 8.20 fails for measure, even for compressible equivalence
relations. There is indeed a compressible countable Borel equivalence re-
lation E on a Polish space X and a probability measure µ on X for which
there is no invariant Borel set A ⊆ X with µ(A) = 1 and E|A hyperfinite;
see [CG, Théorème 2] and [Mo, Section 4].

8.4 Closure properties

Below we state the basic closure properties of hyperfiniteness:
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Theorem 8.23 ([DJK, 5.2], [JKL, 1.3], Theorem 3.37). (i) If E,F are countable
Borel equivalence relations, F is hyperfinite and E ≤wB F , then E is hyperfinite.

(ii) If E ⊆ F are countable Borel equivalence relations, E is hyperfinite and
every F -class contains only finitely many E-classes, then F is hyperfinite.

(iii) If each En, n ∈ N, is a hyperfinite Borel equivalence relation, then
⊕

nEn
is hyperfinite.

(iv) If E,F are hyperfinite Borel equivalence relations, then E × F is hyperfi-
nite.

The fundamental open problem concerning closure properties of hyper-
finiteness is the following:

Problem 8.24. LetEn, n ∈ N, be hyperfinite Borel equivalence relations such that
En ⊆ En+1 for every n. Is

⋃
nEn hyperfinite?

An interesting example of an equivalence relation which is the union
of an increasing sequence of hyperfinite Borel equivalence relations was
discovered in [Sm]. Fix a countable standard model M of set theory and
let X be the space of Cohen generic reals over M , a Gδ subset of 2N. On X
define the following equivalence relation:

xEy ⇐⇒ M [x] = M [y].

Then it is shown in [Sm] that E is the union of an increasing sequence of
hyperfinite Borel equivalence relations. It is not known if E is hyperfinite.

The following notion was introduce in [BJ2]. Below for x, y ∈ NN, we
let

x ≤∗ y ⇐⇒ ∃m∀n ≥ m(xn ≤ yn)

and recall that E0(N) is the eventual equality relation on NN.
Let E be a countable Borel equivalence relation on a standard Borel

space X . Then E is Borel-bounded if for every Borel function f : X →
NN, there is a Borel function g : X → NN such that ∀x(f(x) ≤∗ g(x)) and
g : E →B E0(N). Boykin-Jackson show that hyperfinite Borel equivalence
relations are Borel bounded and that the closure properties (i), (ii), (iii) of
Theorem 8.23 hold if hyperfiniteness is replaced by Borel-boundedness.
However the analog of part (iv) remains open. They also show that if
a Borel-bounded countable Borel equivalence relation is the union of an
increasing sequence of hyperfinite Borel equivalence relations, then it is
hyperfinite. It is unknown if every countable Borel equivalence relation is
Borel-bounded. Thomas in [T11, 5.2] has shown that Martin’s Conjecture
on functions on Turing degrees implies that ≡T is not Borel-bounded.
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We recall here the statement of Martin’s Conjecture. For x, y ∈ 2N, let
x ≤T y ⇐⇒ x is recursive in y. Then Martin’s Conjecture states that for
every Borel homomorphism f : ≡T →B ≡T , either there is x ∈ 2N and
z0 ∈ 2N such that for all y ≥T x, f(y) ≡T z0 or else there is x ∈ 2N such
that for all y ≥T x, y ≤T f(y). Equivalently this is stated as follows. Let
D = 2N/ ≡T be the set of Turing degrees equipped with the partial order
≤ induced by ≤T . A cone is a subset of the form {d ∈ D : c ≤ d}, for some
c ∈ D. Then Martin’s Conjecture says that for every function f : D → D
that has a Borel lifting, there is a cone C of Turing degrees such that either
f � C is constant or else d ≤ f(d), for all d ∈ C.

It is also unknown if every Borel-bounded countable Borel equivalence
relation is hyperfinite. So we have the following problem:

Problem 8.25. What is the extent of the class of Borel-bounded countable Borel
equivalence relations? Are they all hyperfinite or is every countable Borel equiva-
lence relation Borel-bounded?

For further results on a weakening of the notion of Borel boundedness
that holds for all countable Borel equivalence relations and other related
notions, see [BJ2].

In [CS] the authors introduce and study certain properties of countable
Borel equivalence relations that relate to cardinal characteristics of the con-
tinuum.

8.5 µ-hyperfiniteness

Let E be a countable Borel equivalence relation on a standard Borel space
X and µ a probability measure onX . We say thatE isµ-hyperfinite if there
is an E-invariant Borel set A with µ(A) = 1 such that E � A is hyperfinite.
Also E is measure hyperfinite if it is µ-hyperfinite for every probability
measure µ.

We now state some equivalent conditions for µ-hyperfiniteness.

Proposition 8.26. Let E be a countable Borel equivalence relation on a standard
Borel space X and let µ be a probability measure on X . Then the following are
equivalent:

(i) E is µ-hyperfinite;
(ii) For any f1, f2, . . . , fn ∈ [[E]]B , fi : Ai → Bi, and any ε > 0, there are

T1, T2, . . . , Tn ∈ [E]B such that the group generated by T1, T2, . . . , Tn is finite
and for each 1 ≤ i ≤ n, µ({x ∈ Ai : fi(x) 6= Ti(x)}) < ε;
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(iii) Same as (ii) but with f1, f2, . . . , fn ∈ [E]B ;
(iv) Let Tn ∈ [E] be such that xEy ⇐⇒ ∃n(Tn(x) = y). Define for any

Borel subequivalence relation F of E and n ≥ 1, dn(F,E) = µ({x ∈ X : ∃i <
n(¬xFTi(x))}). Then for each ε > 0, n ≥ 1, there is a finite Borel subequivalence
relation F of E such that dn(F,E) < ε.

For the proof of Proposition 8.26, see [FM, Section 4], [Ke5, 5.K, A)],
[Ts2, Proposition 4] and [M4, Lemma 3.1].

Using Proposition 8.26, one can see that the answer to Problem 8.24 is
positive in the measure theoretic category.

Theorem 8.27 (Dye, Krieger). LetX be a standard Borel space and µ a probabil-
ity measure on X . If En, n ∈ N, is an increasing sequence of µ-hyperfinite Borel
equivalence relations, then

⋃
nEn is µ-hyperfinite.

Another proof of this result can be given using the concept of Borel-
boundedness. In fact one has the following more general result. Below
if C is a class of countable Borel equivalence relations, denote by HYP(C)
the class of all countable Borel equivalence relations that can be written as
the union of an increasing sequence of equivalence relations in C. Then we
have:

Theorem 8.28 ([BJ2, page 116]). Let C be a class of countable Borel equivalence
relations closed under subrelations and countable direct sums. Then for any count-
able Borel equivalence relationE on a standard Borel spaceX and every probability
measure µ on X , if E =

⋃
nEn, with (En) increasing and En ∈ HYP(C), then

there is a Borel set A ⊆ X such that µ(A) = 1 and a countable Borel equivalence
relation F ∈ HYP(C) such that E � A = F � A.

Extending Theorem 8.27, Miller [Mi19] showed that if a countable Borel
equivalence relation is in the closure of the class of all smooth Borel equiv-
alence relations under countable increasing unions and countable intersec-
tions, then it is measure hyperfinite.

We conclude with the following basic open problem.

Problem 8.29. Does measure hyperfiniteness imply hyperfiniteness?

8.6 Groups generating hyperfinite relations

By Theorem 8.2, (iv) every Borel action of the group Z generates a hyperfi-
nite Borel equivalence relation. Which countable groups G have the prop-
erty that all their Borel actions generate hyperfinite Borel equivalence rela-
tions? The following is a well-known fact, see, e.g., [JKL, 2.5 (ii)].
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Proposition 8.30. Let G be a countable group and let a be a free Borel action of
G on a standard Borel space that admits an invariant probability measure. Then if
Ea is hyperfinite, G is amenable.

Since any countable group G admits a free Borel action with invariant
probability measure, e.g., its shift action on 2G, restricted to its free part,
with the usual product measure, it follows that every non-amenable group
has a free Borel action that generates a non-hyperfinite equivalence relation.

Ornstein and Weiss proved the following:

Theorem 8.31 ([OW]). Let G be an amenable group and consider a Borel action
a of G on a standard Borel space X . Then Ea is measure hyperfinite.

This motivates the following problem of Weiss [We1].

Problem 8.32. Let G be a countable amenable group. Is it true that every Borel
action of G generates a hyperfinite equivalence relation?

Weiss proved a positive answer for the finitely generated abelian groups
G. This was extended in [JKL] to all finitely generated nilpotent-by-finite
groups, which by the result of Gromov are exactly the finitely generated
groups of polynomial growth. In fact we have the following more general
result concerning locally compact groups.

Let G be a Polish locally compact group and let µG be a right Haar
measure on G. Let d be a positive integer. We say that G is compactly
generated of polynomial growth d if there is a symmetric compact neigh-
borhood K of the identity of G such that G =

⋃
nK

n and µG(Kn) ∈ O(nd).
For c > 0, G has the mild growth property of order c if there is an increas-
ing sequence (Kn) of compact symmetric neighborhoods of the identity,
such that: (a) K2

n ⊆ Kn+1; (b) for infinitely many n, µG(Kn+4) ≤ cµG(Kn);
(c)

⋃
nKn = G.

It can be shown that if G is compactly generated of polynomial growth,
then it has the mild growth property and if a Polish locally compact group
G can be written as a union of an increasing sequence (Gn) of Polish locally
compact groups that have the mild growth property of the same order c,
then so does G, see [JKL, 1.15]. We now have:

Theorem 8.33 ([JKL, 1.16]). Let G be a locally compact group with the mild
growth property. Then any equivalence relation generated by a Borel action of G
on a standard Borel space is essentially hyperfinite.
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In particular, as we mentioned before, any equivalence relation gener-
ated by a Borel action of a finitely generated nilpotent-by-finite (i.e., poly-
nomial growth) group is hyperfinite and the same holds for the group
(Qn,+).

A significant extension of the result about nilpotent-by-finite groups
was recently obtained in [BY, Corollary 1.17]. It is shown there that if a
countable Borel equivalence relation admits a locally finite Borel graphing
(see Section 10.1) of polynomial growth, then it is hyperfinite.

The next step towards a positive answer to Weiss’ problem was taken
in [GJ].

Theorem 8.34 ([GJ]). LetG be any countable abelian group. Then the equivalence
relation generated by a Borel action of G on a standard Borel space is hyperfinite.

Hjorth has raised the following problem: SupposeG is an abelian Polish
group and let a be a Borel action of G on a standard Borel space. Is it
true that if E is a reducible to countable Borel equivalence relation and
E ≤B Ea, then E is essentially hyperfinite?

A positive answer has been obtained for non-archimedean groups.

Theorem 8.35 ([DG, 1.4]). Let G be an abelian non-archimedean Polish group
and let a be a Borel action of G on a standard Borel space. If E is a reducible to
countable Borel equivalence relation and E ≤B Ea, then E is essentially hyperfi-
nite.

Another proof of Theorem 8.35 for E = Ea is given in [Gr1, 1.4].

Corollary 8.36 ([DG, 1.3]). LetG be an abelian non-archimedean locally compact
Polish group and let a be a Borel action of G on a standard Borel space. Then Ea
is essentially hyperfinite.

More recently a positive answer was obtained in [Cot] for any abelian
locally compact Polish group and further extended in [Al] to all countable
products of abelian locally compact Polish groups.

However Allison in [Al] has also proved that the answer to Hjorth’s
problem is in general negative by showing that for every treeable (see Chap-
ter 10) countable Borel equivalence relation E there is a Borel action a of
an abelian Polish group such that E ≤B Ea. Finally Frisch and Shinko
strengthened Allison’s result to show that this actually holds for every count-
able Borel equivalence relation.

Further extending the methods of [GJ] the following was proved. Be-
low a countable group G is locally nilpotent if all its finitely generated
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subgroups are nilpotent. This class of groups properly contains the class of
countable nilpotent groups.

Theorem 8.37 ([ScSe]). Let G be a locally nilpotent countable group. Then the
equivalence relation generated by a Borel action of G on a standard Borel space is
hyperfinite.

It is also shown in [ScSe] that the equivalence relation induced by a
free and continuous action of a countable locally nilpotent group on a zero-
dimensional Polish space continuously embeds into E0. For other such
results concerning continuous embeddings and reductions, see [BJ1], [GJ]
and [T9].

It is unknown if Weiss’ Problem has a positive answer for all solvable
groups. However in a recent development, Conley, Jackson, Marks, Se-
ward, and Tucker-Drob, in [CJMST2], introduce the novel concept of Borel
asymptotic dimension for a Borel action of a countable group and show
that when it is finite, then the induced equivalence relation is hyperfinite.
They also show that every free Borel action of a polycyclic group has finite
Borel asymptotic dimension and thus the induced equivalence relation is
hyperfinite. Combining this with work in [ScSe], the freeness assumption
can be dropped and one has the following:

Theorem 8.38 ([CJMST2, Corollary 1.9]). Let G be a polycyclic group. Then
the equivalence relation generated by a Borel action of G on a standard Borel space
is hyperfinite.

In particular the work in [CJMST2] provides the first examples of finitely
generated groups of exponential growth that give a positive answer to
Weiss’ Problem. In fact several other classes of countable groups are shown
to give a positive answer to Weiss’ Problem, at least for free actions. Finally
the methods introduced in [CJMST2] are used in this paper to substantially
simplify the proofs of earlier results, including Theorem 8.37.

Changing the point of view, a countable group G is called hyperfi-
nite generating if for every aperiodic hyperfinite E there is a Borel action
of G that generates E. In [FKSV] equivalent formulations of this prop-
erty are provided and it is shown that all countable groups with an infi-
nite amenable factor are hyperfinite generating, while no infinite countable
group with property (T) has this property.
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8.7 Examples

We will discuss here hyperfinite Borel equivalence relations that appear in
various contexts.

1) Let T : X → X be a Borel function on a standard Borel space. Con-
sider the Borel action a of the monoid S = (N,+, 0) on X given by 1 · x =
T (x). Then Et,a = ET and E0,a = E0,T ⊆ ET is the equivalence relation
xE0,T y ⇐⇒ ∃n(Tn(x) = Tn(y)). If T is countable-to-1, ET and thus E0,T

are hyperfinite, see [DJK, Section 8]. In particular, Et is hyperfinite. In fact
it turns out that for an arbitrary Borel function T the equivalence relations
ET and E0,T are hypersmooth, i.e., unions of an increasing sequence of
smooth Borel equivalence relations, see [DJK, Section 8].

Let E be a Borel equivalence relation on a standard Borel space X and
let T : E →B E. Put

xEt(E, T )y ⇐⇒ ∃m∃n(Tn(x) E Tm(y)).

and
xE0(E, T )y ⇐⇒ ∃n(Tn(x) E Tn(y)).

Clearly E0(E, T ) ⊆ Et(E, T ). The following is an open problem:

Problem 8.39. If E is Borel hypersmooth (resp., Borel hyperfinite) and T is a
Borel function (resp., countable-to-1 Borel function) are E0(E, T ), Et(E, T ) hy-
persmooth (resp., hyperfinite)?

As pointed out in [DJK, Section 8], a positive answer for E0(E, T ) im-
plies a positive answer to Problem 8.24 and gives another proof of Theo-
rem 8.34. In the paper [CFW, Corollary 12] a positive answer is given to
Problem 8.39, for the hyperfinite case, in the measure theoretic context, i.e.,
Et(E, T ) is measure hyperfinite.

2) The Vitali equivalence relation Ev is hyperfinite, see [My]. (This also
follows from Theorem 8.2, (iii) and the fact thatQ =

⋃
n≥1(Z/n!).) The com-

mensurability relation Ec is hyperfinite. This follows from Theorem 8.34.

3) Consider the action of GL2(Z) on R ∪ {∞} by fractional linear trans-
formations (or equivalently the natural action of GL2(Z) on the projective
space PG(1,R)). Then the associated equivalence relation is hyperfinite.
Similarly consider the action of GL2(Z) on the unit circle, where, identify-
ing it with the set of rays t~x (t > 0), for ~x ∈ R2 \ {0}, A ∈ GL2(Z) acts on
this ray to give the ray tA(~x) (t > 0). This generates again a hyperfinite
Borel equivalence relation. For a proof, see [JKL, 1.4, (C) and page 43].
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The action of GL2(Z) on the unit circle is also productively hyperfinite
in the terminology of [CM1, Section 2.1], i.e., its product with any Borel ac-
tion of GL2(Z) on a standard Borel space also induces a hyperfinite Borel
equivalence relation, see [CM1, 2.1.4]. Using this it is shown in [CM1, 2.2.3]
that the action of GL2(Z) on R2 also generates a hyperfinite Borel equiva-
lence relation.

4) Consider any countable free group Fn with a fixed set of free genera-
tors. Let ∂Fn be the boundary of Fn, i.e., the set of infinite reduced words
(xi), where each xi is one of the generators or its inverse and xixi+1 6=
1. Then Fn (viewed as the set of finite reduced words) acts on ∂Fn by
left-concatenation and cancellation. The associated equivalence relation is
Borel hyperfinite, see [JKL, 1.4, (E)].

It has been an interesting problem to extend this to the action of any
finitely generated hyperbolic group on its boundary. In [A4] a positive an-
swer was obtained for any finitely generated hyperbolic group but in the
measure theoretic category, i.e., the associated equivalence relation is mea-
sure hyperfinite. A positive answer in the Borel category has been obtained
in [HSS] for any cubulated finitely generated hyperbolic group. Finally in
[MS] the problem was solved in full generality by showing that the answer
is positive in the Borel category for any finitely generated hyperbolic group.
A new proof of this result is given in [NV], where it is actually shown that
this action has finite Borel asymptotic dimension. For other related results,
see [Marq], [PS], [O] and [EOSS].

5) Following up on Remark 4.26 and Theorem 7.13, consider the mul-
tiplication action of the multiplicative group of non-zero rationals on the
space of subgroups of (Q,+). The corresponding equivalence relation E is
Borel bireducible to ∼=1 and thus to E0. In fact it turns out that E restricted
to the subgroups different from {0},Q is Borel isomorphic to Et.

Consider now the class of Butler groups, which are finite rank torsion-
free abelian groups that can be expressed as finite (not necessarily direct)
sums of rank 1 subgroups. In [T7] it is shown that the isomorphism equiv-
alence relation on the class of Butler groups is essentially hyperfinite.

6) Recall here Examples 3.2, 5). The isomorphism relation on the space
of all subshifts of kZ is Borel bireducible toE∞, see [Cl2], However there are
various Borel classes of subshifts of 2Z for which the isomorphism relation
turns out to be hyperfinite (and not smooth). These include:

(i) The class of non-degenerate rank-1 subshifts, see [GH, Theorem 3.17];
(ii) The class of Toeplitz subshifts with separated holes; see [Kay]. See

also [ST] for this result in the measurable context and for raising the ques-
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tion of whether isomorphism in the class of all Toeplitz subshifts is hyper-
finite.

For each infinite countable group G, one can also consider the isomor-
phism equivalence relation for subshifts of kG, k ≥ 2. This is again a count-
able Borel equivalence relation and [GJS2, 9.4.3] shows that for all locally fi-
niteG, the isomorphism relation on the space of all subshifts is non-smooth
and hyperfinite. On the other hand if G is not locally finite, isomorphism
on the space of free subshifts is Borel bireducible to E∞, see [GJS2, 9.4.9].
Finally in [ST, 1.2] it is shown that for residually finite, non-amenable G,
the isomorphism relation on free, Toeplitz subshifts is not hyperfinite.

7) In the context of Section 4.6 it is shown in [GK, 8.2] that the isometry
relation on proper ultrametric Polish spaces is hyperfinite and not smooth.

8) For essentially hyperfinite Borel equivalence relations that occur in
the context of type spaces in model theory, see [KPS, 3.4, 3.6, 3.7, 3.9, 4.5]

9) Let G = (X,R) be a Borel graph on a standard Borel space X , i.e., X
is the set of vertices and the set of edges R ⊆ X2 is Borel. We let EG be the
equivalence relation whose equivalence classes are the connected compo-
nents of G. If G is locally countable, i.e., every vertex has countably many
neighbors, then EG is a countable Borel equivalence relation. In [Mi10] it
is shown that if there is a Borel way to choose two ends of the graph in
each connected component, then EG is hyperfinite. Moreover it is shown
in [Mi10] that if either there are no ends in each connected component or
else there is a Borel way to choose at least three but finitely many ends in
each connected component, thenEG is smooth. Finally, in the same paper it
is shown that the class of all EG, where G is locally finite, i.e., every vertex
has finitely many neighbors, and has one end in each connected compo-
nent, coincides with the class of all aperiodic countable Borel equivalence
relations.

10) LetH be a Polish group andG�H a countable normal subgroup. We
will say that the quotient group H/G is hyperfinite if the coset equivalence
relation of G in H is hyperfinite. It is shown in [FS] that H/G is always
hyperfinite. In particular the outer automorphism group of any countable
group is hyperfinite.

11) The three Thompson groups F ≤ T ≤ V can be defined as fol-
lows. By a T-tree we mean a finite nonempty subtree S of 2<N such that
if s1, . . . , sn are the terminal nodes of S, then ∀x ∈ 2N∃i ≤ n(si ⊆ x). For
such tree S, we put |S| = n and order its leaves in lexicographical order
s1 < · · · < sn. For two such trees S, T with |S| = |T | = n, let fS,T be the
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homeomorphism of 2N defined by fS,T (six) = tix, for x ∈ 2N, 1 ≤ i ≤ n.
The collection of all fS,T is a subgroup of the homeomorphism group of 2N,
the Thompson group F .

Now for each S, T as above and 1 ≤ m ≤ n, let cm : {1, . . . , n} →
{1, . . . , n} be the “cyclic” permutation cm(i) = (i+m− 1), if (i+m− 1) ≤
n; = (i+m− 1)− n, otherwise. Then define the homeomorphism fS,T,m of
2N by fS,T,m(six) = tcm(i)x, for 1 ≤ i ≤ n. The collection of all fS,T,m is a
subgroup of the homeomorphism group of 2N, the Thompson group T .

Finally for each S, T as above and π any permutation of {1, . . . , n}, de-
fine the homeomorphism fS,T,π of 2N by fS,T,π(six) = tπ(i)x, for 1 ≤ i ≤ n.
The collection of all fS,T,π is a subgroup of the homeomorphism group of
2N, the Thompson group V .

Each of these groups acts in the obvious way on 2N and we letEF , ET , EV
be the corresponding equivalence relations. Then it turns out that EF |(2N \
{0̄, 1̄}) = Et|(2N \ {0̄, 1̄}), ET = EV = Et, where ī is the constant sequence
with value i.

8.8 Dichotomies for essential hyperfiniteness

Recall here the discussion and notation in Section 4.7. Also recall that a
Borel equivalence relationE is hypersmooth if it can be written as the union
of an increasing sequence of Borel smooth equivalence relations. Then E1

is hypersmooth and for any hypersmooth Borel E, we have that E ≤B
E1, see [KL, 1.3]. Recall also from Theorem 8.2, (iii) that the hyperfinite
Borel equivalence relations are exactly the hypersmooth countable Borel
equivalence relations. We now have the following dichotomy:

Theorem 8.40 ([KL, Theorem 1]). Let E be a Borel equivalence relation such
that E ≤B E1. Then exactly one of the following holds:

(i) E is essentially hyperfinite;
(ii) E ∼B E1.

We also have an analogous dichotomy theorem for E3.

Theorem 8.41 ([HK3, 7.1]). LetE be a Borel equivalence relation such thatE ≤B
E3. Then exactly one of the following holds:

(i) E is essentially hyperfinite;
(ii) E ∼B E3.

Concerning E2 the following is an open problem:
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Problem 8.42. Let E be a Borel equivalence relation such that E ≤B E2. Is it
true that exactly one of the following holds:

(i) E is essentially hyperfinite;
(ii) E ∼B E2?

By Theorem 4.29 this holds if “hyperfinite” is replaced by “reducible to
countable”.

8.9 Properties of the hyperfinite quotient space

Let E,F be countable Borel equivalence relations on standard Borel spaces
X,Y , resp. Below we say that f : (X/E)n → Y/F, n ≥ 1, is Borel if it has a
Borel lifting. Similarly a relation R ⊆ (X/E)n is Borel if its lifting is Borel.
A Borel isomorphism of X/E with Y/F is a Borel bijection between X/E
and Y/F . It follows from Theorem 3.32 and Corollary 8.3 that if E,F are
non-smooth and hyperfinite, then X/E and Y/F are Borel isomorphic. We
can thus refer to 2N/E0 as the hyperfinite quotient space. We will discuss
here some properties of this space.

1) Borel equivalence relations on the hyperfinite space correspond to
Borel equivalence relations containing E0.

The papers [Mi4] and [Mi17] contain a classification of Borel equiva-
lence relations on the hyperfinite space, all of whose classes have fixed car-
dinality n ≥ 1, up to Borel isomorphism. The following is then a corollary
of this classification:

Theorem 8.43 ([Mi4], [Mi17, Theorem 5]). For each n ≥ 1, there are only
finitely many, up to Borel isomorphism, Borel equivalence relations on the hyperfi-
nite quotient space all of whose classes have cardinality n.

2) For each set X and n ≥ 1, let [X]n = {(xi)i<n : ∀i 6= j(xi 6= xj)}. Let
now E be a Borel equivalence relation on a standard Borel space X . Then
for n ≥ 1, we say that E has the n-Jónsson property if for all functions
f : [X/E]n → X/E, there is a set A ⊆ X/E such that there is a bijection
between X/E and A and f([A]n) 6= X/E. Also E has the Jónsson property
if the above holds when [X/E]n is replaced by

⋃
n≥1[X/E]n.

As a special case of more general results proved in [HJ] and [CM], we
have the following, where AD is the Axiom of Determinacy:

Theorem 8.44. (i) ([HJ]) (AD) ∆R has the Jónsson property and E0 has the 2-
Jónsson property.

(ii) ([CM]) (AD) E0 does not have the 3-Jónsson property.
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The n-Jónsson property is related to another property called the Myciel-
ski property. Let again n ≥ 1. We say that E has the n-Mycielski property
if for every comeager Borel set C ⊆ Xn, there is a Borel setA ⊆ X such that
E ∼B E � A and [A]nE = {(xi)i<n ∈ Xn : ∀i 6= j(¬xiExj} ⊆ C. A classical
result of Kuratowski and Mycielski (see, e.g., [Ke6, 19.1]) asserts that ∆R
has the n-Mycielski property for every n. We now have (again as special
cases of more general results):

Theorem 8.45. (i) ([HJ]) E0 has the 2-Mycielski property.
(ii) ([CM]) E0 does not have the 3-Mycielski property.

3) Finally in [CJMST1] the authors study, under AD, ultrafilters on the
hyperfinite space and show that there is such an ultrafilter lying above,
in the Rudin-Keisler order, the Martin ultrafilter on D = 2N/ ≡T (i.e., the
ultrafilter generated by the cones), see [CJMST1, 1.8].

8.10 Effectivity of hyperfiniteness

The following problem, raised in [DJK, Section 5], is still open:

Problem 8.46. Let E be a hyperfinite equivalence relation on NN which is ∆1
1

(effectively Borel). Is there a ∆1
1 automorphism of NN such that E = ET ? Equiva-

lently is it true that E =
⋃
nEn, where (En) is a ∆1

1 (uniformly in n) increasing
sequence of finite equivalence relations?

Miri Segal in her Ph.D.Thesis [Se] showed that the answer is positive in
the measure theoretic context:

Theorem 8.47 ([Se]). Let µ be a probability measure on NN and let E be a µ-
hyperfinite equivalence relation on NN which is ∆1

1. Then there is a ∆1
1(µ) E-

invariant set A, with µ(A) = 1, and a ∆1
1(µ) increasing sequence (En) of finite

equivalence relations such that E � A =
⋃
nEn � A.

A proof can be found in [Ts2], [CM1, 1.7.8] and [M4, Remark 4.4].

8.11 Bases for non-hyperfiniteness

Given a quasi-order ≤ on a set A, a basis for ≤ is a subset B ⊆ A such
that ∀a ∈ A∃b ∈ B(b ≤ a). In this terminology, Theorem 6.5 implies that
{E0} is a basis for the quasi-order ≤B on the non-smooth countable Borel
equivalence relations. One can now ask whether there is a “reasonable
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basis” for≤B on the non-hyperfinite countable Borel equivalence relations.
This is a rather vague question but one can still formulate some precise
problems.

Problem 8.48. (i) Is there a countable basis for the quasi-order of Borel reducibility
≤B on the non-hyperfinite Borel equivalence relations?

(ii) Consider the class B of all equivalence relations of the formEa, where a is a
free Borel action of F2 admitting an invariant probability measure. Is B a basis for
the quasi-order of Borel reducibility ≤B on the non-hyperfinite Borel equivalence
relations?

Although these questions are still open, recent work in [CM1] shows
that there are some severe obstacles towards a positive answer (at least for
part (i)). Below we say that a countable Borel equivalence relation E on a
standard Borel space X is measure reducible to a countable Borel equiv-
alence relation F , in symbols E ≤M F , if for every probability measure µ
on X , there is a Borel set A ⊆ X with µ(A) = 1 such that E � A ≤B F .
Analogously we define the concept of measure embeddability, E vM F ,
and their strict counterparts E <M F and E <M F

Consider now the class of all countable Borel equivalence relations that
are not measure hyperfinite. This is clearly closed upwards under ≤M . We
now have the following result from [CM1], but see also the correction in
item 26 under Publications in glimmeffros.github.io:

Theorem 8.49 ([CM1]). Any basis for the quasi-order of measure reducibility on
the countable Borel equivalence relations which are not measure hyperfinite has the
cardinality of the continuum.

In particular this shows that every basis of cardinality less than the con-
tinuum for the quasi-order of Borel reducibility ≤B on the non-hyperfinite
countable Borel equivalence relations must contain equivalence relations
which are measure hyperfinite. It is an open problem whether such rela-
tions exist, see Problem 8.29. Also it follows from Theorem 8.49 that in
Problem 8.48, (ii) one cannot replace B by a subset that has cardinality less
than that of the continuum.

One can also ask the analog of Problem 8.48 for the quasi-order of weak
Borel reducibility ≤wB .

Finally there are basis questions concerning inclusion of equivalence re-
lations instead of reducibility. A version of Problem 8.48, ii) was considered
in [KM1, 28.7].
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Problem 8.50. Consider the class C of countable Borel equivalence relations E
which are not µ-hyperfinite for every E-invariant probability measure µ and let C′
be the subclass consisting of all equivalence relations of the form Ea, where a is a
free Borel action of F2. Is C′ a basis for C for the partial order ⊆ of inclusion?

For a partial answer, see [KM1, 28.8].
The following is also a related well known problem in the measure the-

oretic context (see, e.g., [KM1, 28.14]). It is a dynamic version of the von
Neumann-Day Problem that asked whether every non-amenable count-
able group contains a copy of F2 (the answer is negative as proved by
Ol’shanskii).

Problem 8.51. LetE be a countable Borel equivalence relation on a standard Borel
space X and let µ be an E-invariant, E-ergodic probability measure on X . Is it
true that exactly one of the following holds:

(i) E is µ-hyperfinite;
(ii) There is an E-invariant Borel set A ⊆ X with µ(A) = 1 and a free Borel

action a of F2 on A such that Ea ⊆ E � A?

It was shown in [GL] that for every countable non-amenable group G,
there is some standard Borel space X and probability measure ν on X , such
that ifE is induced by the shift action ofG onXG and µ = νG is the product
measure, then (ii) holds, with µ being alsoEa-ergodic. It was shown in [Bo]
that this holds for every (X, ν), when ν does not concentrate on one point.

Moreover it is shown in [BHI] that if E is a countable Borel equivalence
relation on a standard Borel space X and µ is an E-invariant, E-ergodic
probability measure on X such that E is not µ-hyperfinite, then there is
a countable Borel equivalence relation F on a standard Borel space Y , an
F -invariant, F -ergodic measure ν on Y , a Borel map f : Y → X such that
f∗ν = µ and a Borel F -invariant set A ⊆ Y with ν(A) = 1 such that for
every y ∈ A, f � [y]F is a bijection with [f(y)]E and there is a free Borel
action a of F2 on A such that Ea ⊆ F � A, with ν being also Ea-ergodic.
More succinctly, this states that E has a class bijective extension in which
(ii) of Problem 8.51 holds.

8.12 Hyper-Borel-finiteness

The following notion is introduced in [DaMa], which traces its origins in
the paper [SlSt]. Let X be a standard Borel space and (fn) a sequence of
Borel functions fn : X → XN. A countable Borel equivalence relation E on
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X is called (fn)-finite if for every x ∈ X and every n, fn(x)(N) is not an
infinite subset of [x]E . Also E is called hyper-(fn)-finite if E is the union
of an increasing sequence of (fn)-finite subequivalence relations. Finally
E is called hyper-Borel-finite if it is hyper-(fn)-finite, for every sequence
of Borel functions (fn). Every hyperfinite equivalence relation is hyper-
Borel-finite but it is unknown whether the converse holds or in fact whether
every countable Borel equivalence relation is hyper-Borel-finite. It is also
unknown how this notion is related to the concept of Borel boundedness
discussed in Section 8.4.

In [SlSt, Question 6] the question was raised of whether Turing equiva-
lence≡T on 2N is hyper-(fn)-finite, where (fn) is the sequence enumerating
the Turing reductions. It is shown in [DaMa, 3.5] that a positive answer is
equivalent to the statement that every countable Borel equivalence relation
is hyper-Borel-finite.



9. Amenability

9.1 Amenable relations

Let G be a Polish locally compact group and let λ be a left Haar measure.
Recall that G is amenable if there is a finitely additive probability measure
defined on all λ-measurable subsets of G, vanishing on λ-null sets, that is
invariant under left-translation. We say that a Polish locally compact group
G satisfies the Reiter condition if there is a sequence (Fn) of Borel functions
Fn : G → R such that Fn ≥ 0, ‖Fn‖1 = 1 and ∀g ∈ G(‖Fn − g · Fn‖1 → 0),
where for a function F : G → X , X any set, g · F : G → X and g · F (h) =
F (g−1h).

One of the many equivalent characterization of amenability is the fol-
lowing (see [Pa, 0.8, Problem 4.1]):

Theorem 9.1. Let G be a Polish locally compact group. Then the following are
equivalent:

(i) G is amenable;
(ii) G satisfies the Reiter condition.

We can now use an analog of the Reiter condition to define a notion of
amenability for countable Borel equivalence relations (see [Kai] for such a
definition in the measure theoretic context and [JKL, Section 2.4] and [KM1,
Section 9]):

Definition 9.2. Let E be a countable Borel equivalence relation. Then E is
amenable if there is a sequence of Borel functions (fn) with fn : E → R, fn ≥ 0
such that letting fnx (y) = fn(x, y), we have ∀x(fnx ∈ `1([x]E), ‖fxn‖1 = 1) and
xEy =⇒ ‖fnx − fny ‖1 → 0.

The following is now immediate, see, e.g., [JKL, 2.13]:

Proposition 9.3. Let G be a countable amenable group and let a be a Borel action
ofG on a standard Borel space. ThenEa is amenable. In particular any hyperfinite
Borel equivalence relation is amenable.

97
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Conversely we have the following, extending Proposition 8.30 (see, e.g.,
[JKL, 2.14]):

Proposition 9.4. Let G be a countable group and let a be a free Borel action of G
on a standard Borel space which admits an invariant probability measure. Then if
Ea is amenable, G is amenable.

The following strengthening of Problem 8.32 is also open:

Problem 9.5. Let E be an amenable countable Borel equivalence relation. Is it
true that E is hyperfinite?

Proposition 9.3 can be generalized as follows for actions of Polish locally
compact groups. Below a Borel equivalence relation is called essentially
amenable (resp., reducible to amenable) if it is Borel bireducible (resp.,
reducible) to an amenable countable Borel equivalence relation.

Proposition 9.6. Let G be an amenable Polish locally compact group and let a be
a Borel action of G on a standard Borel space X . If S ⊆ X is a countable complete
Borel section of Ea, then Ea|S is amenable and thus Ea is essentially amenable.

Proof. Fix a Borel surjective function π : X → S such that π(x)Eax,∀x ∈ X .
Let (Fn) be a sequence as in the definition of the Reiter condition for G. Let
E = Ea|S and for xEy, putAxy = {g ∈ G : g−1 ·x ∈ π−1({y})}. Then define
fn : E → R by

fn(x, y) =

∫
Axy

Fn(g) dλ(g).

Since for each x ∈ S, {Axy : xEy} is a Borel partition of G, it is clear that
fn ≥ 0 and fnx ∈ `1([x]E), ‖fnx ‖1 = 1. Also given xEy, let g ∈ G be such that
g · x = y. Then ‖fnx − fny ‖1 ≤ ‖Fn − g · Fn‖1 → 0.

Again we have the following generalization of Problem 8.32:

Problem 9.7. Let G be an amenable Polish locally compact group. Is it true that
any Borel action of G generates an essentially hyperfinite equivalence relation?

As an application of Proposition 9.6, one can give a stronger version of
a result proved in [HK2, 5.C]. Let E be the Borel equivalence relation of
isomorphism (conformal equivalence) of domains of the form C\S, for S a
discrete subset of C. As explained in [HK2, 5.C] this is Borel isomorphic to
the equivalence relation induced by the action of the “az+ b” group (where
a ∈ C, a 6= 0, b ∈ C) on the standard Borel space of discrete subsets of C.
Since this group is amenable, it follows that this isomorphism relation is
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essentially amenable. In [HK2, 5.C] it is shown that it is not smooth and is
conjectured to be actually essentially hyperfinite.

Another interesting example of an amenable equivalence relation is in
[EH, Theorem 1.2, (i)]. Let G be a countable group with a finite set of gen-
erators S, and consider the action of G on the space of ends of this group
(for this set of generators) and also its associated action on the space of 2-
element subsets of the space of ends. Then if there are infinitely many ends,
the equivalence relation generated by the action on the space of 2-element
sets is amenable.

9.2 Fréchet amenability

We will now discuss a (possibly) wider notion of amenability, introduced
in [JKL, Section 2.4].

Recall that a free filter on N is a filter containing the Fréchet filter

Fr = {A ⊆ N : A is cofinite}.

Definition 9.8. Let E be a countable Borel equivalence relation on a standard
Borel spaceX . LetF be a free filter onN. We say thatE isF -amenable if there is
a sequence (fn) of Borel functions fn : E → R, fn ≥ 0 such that letting fnx (y) =
fn(x, y) we have: ∀x(fxn ∈ `1([x]E), ‖fxn‖1 = 1) and xEy ⇒ ‖fnx − fny ‖1 →F 0.

As usual if xn, x ∈ R, then xn →F x means that for every nbhd U of x
there is A ∈ F such that n ∈ A⇒ xn ∈ U . Clearly xn →Fr x iff xn → x.

Define a quasi-order between filters on N by

F ≤ G ⇐⇒ ∃f : N→ N(f−1(F) ⊆ G)

and the corresponding equivalence relation

F ≡ G ⇐⇒ F ≤ G and G ≤ F .

Then if E is F-amenable and F ≤ G, E is G-amenable, so F-amenability
only depends on the ≡-equivalence class of F .

Next define a transfinite iteration of the Fréchet filter. For two filters
F ,G on N, define their (Fubini) product by

F ⊗ G = {A ⊆ N : {m : {n : 〈m,n〉 ∈ A} ∈ G} ∈ F},

where 〈m,n〉 is a fixed bijection of N2 with N. We also define for each se-
quence (Fn) of filters, the filter

F ⊗ (Fn) = {A ⊆ N : {m : {n : 〈m,n〉 ∈ A} ∈ Fm} ∈ F}.
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For each countable limit ordinal λ, fix an increasing sequence α0 < α1 <
· · · < λ with limit λ and inductively define the αth iterated Fréchet filter
Frα as follows:

Fr1 = Fr,

Frα+1 = Fr ⊗ Frα,
F rλ = Fr ⊗ (Frαn).

This definition depends on the choice of 〈m,n〉 and the sequences (αn), but
it can be shown that it is independent up to ≡.

Definition 9.9. Let E be a countable Borel equivalence relation and 1 ≤ α < ω1

a countable ordinal. We say that E is α-amenable if E is Frα-amenable. It is
Fréchet-amenable if it is α-amenable, for some 1 ≤ α < ω1.

Therefore for any countable Borel equivalence relation E:

E is amenable iff E is 1-amenable.

By a simple induction on β,

α ≤ β ⇒ Frα ≤ Frβ

and so
α ≤ β and E is α-amenable =⇒ E is β-amenable.

We also have the analog of Proposition 9.4:

Proposition 9.10 ([JKL, 2.14]). Let G be a countable group and let a be a free
Borel action of G on a standard Borel space which admits an invariant probability
measure. Then if Ea is Fréchet-amenable, G is amenable.

We now have the following closure properties;

Proposition 9.11 ([JKL, 2.15] for (i)-(vi)). LetE,F,En be countable Borel equiv-
alence relations and 1 ≤ α < ω1. Then we have:

(i) If F is α-amenable and E ≤wB F , then E is α-amenable.
(ii) If E ⊆ F , E is α-amenable, and every F -equivalence class contains only

finitely many E-classes, then F is α-amenable.
(iii) If each En is α-amenable, so is

⊕
nEn.

(iv) If E,F are α-amenable, so is E × F .
(v) If (En) is an increasing sequence, and for each n, En is αn-amenable for

some αn < α, then E =
⋃
nEn is α-amenable.

(vi) If E is α-amenable and T : E ≤wB E, then Et(E, T ) is (α+ 1)-amenable.
(vii) If E is α-amenable and a is a Borel action of an amenable countable group

by automorphisms of E, then the expansion E(a) is (α+ 1)-amenable.



9. Amenability 101

In particular, the union of an increasing sequence of hyperfinite Borel
equivalence relations is 2-amenable. It is not known if the union of an in-
creasing sequence ofα-amenable Borel equivalence relations isα-amenable.

The following are the two basic problems about Fréchet amenability,
representing two opposite possibilities.

Problem 9.12. Is Fréchet amenability equivalent to amenability? Even more, is
Fréchet amenability equivalent to hyperfiniteness?

Problem 9.13. Is the transfinite hierarchy of Fréchet amenability proper, i.e., does
α < β imply that there is a β-amenable Borel equivalence relation which is not
α-amenable?

An α-amenable Borel equivalence relation E is invariantly universal
α-amenable if for every α-amenable Borel equivalence relation F , F viB
E. As a special case of a general result, see [CK, Corollary 4.4], such a
universal equivalence relation exists and it is of course unique up to Borel
isomorphism. It will be denoted by E∞α.

9.3 Amenable classes of structures

An important method used to generate Fréchet-amenable countable Borel
equivalence relations proceeds through assigning to each equivalence class,
in a uniform Borel way, a structure (in the sense of model theory) with
special properties. The more detailed study of structurability of countable
Borel equivalence relation will be undertaken in Chapter 14.

Let L = {Ri : i ∈ I} be a countable relational language, where Ri has
arity ni. Let K be a class of countable structures in L closed under iso-
morphism. Let E be a countable Borel equivalence relation on a standard
Borel space X . An L-structure on E is a Borel structure A = 〈X,RAi 〉i∈I
of L with universe X , i.e., RAi ⊆ Xni is Borel for each i ∈ I , such that
RAi (x1, x2, . . . , xni) =⇒ x1Ex2E · · ·Exni . Then for each E-class C, we
have that A � C = 〈C,RAi ∩ Cni〉i∈I is an L-structure with universe C. If
now A � C ∈ K, for each E-class C, we say that A is a K-structure on E. If
E admits such a K-structure, we say that E isK-structurable.

For each (nonempty) countable setX , we denote by ModX(L) the space
of L-structures with universe X . It can be identified with

∏
i 2X

ni , so it is
a compact metrizable space. A class of countable structures K as above is
Borel (resp., analytic, coanalytic) if for each countable X , K ∩ModX(L) is
Borel (resp., analytic, coanalytic) in ModX(L).

We now consider amenability for classes of structures.
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Definition 9.14 ([JKL, Section 2.5]). (i) An analytic class of L-structures K is
α-amenable, where α ≥ 1 is a countable ordinal, if for each countable set X ,
there is a family of maps

(fAn )n∈N, A∈K∩ModX(L),

such that
(a) fAn : X → R, fAn ≥ 0, fAn ∈ `1(X) and ‖fAn ‖1 = 1;
(b) The map fn : (K ∩ModX(L)) ×X → R defined by fn(A, x) = fAn (x) is

Borel;
(c) If π : A→ B is an isomorphism between A and B, then

‖fAn − fBn ◦ π‖1 →Frα 0.

(ii) An arbitrary class K of L-structures is Fréchet-amenable if for any ana-
lytic class K′ ⊆ K there is a countable ordinal α (which may depend on K′) such
that K′ is α-amenable. (So, in particular, if K is analytic, it is Fréchet-amenable iff
it is α-amenable for some α.)

(iii) A countable L-structure A, with universe A, is α-amenable if there is
a sequence of maps fn : A → R such that fn ≥ 0, fn ∈ `1(A), ‖fn‖1 = 1, and
for every π ∈ Aut(A), ‖fn − fn ◦ π‖1 →Frα 0, where Aut(A) is the group of
automorphisms of A. (This is equivalent to saying that the isomorphism class of A
is α-amenable.)

Again in this definition, “1-amenable” will be simply called from now
on “amenable”.

We now have:

Proposition 9.15 ([JKL, 2.18]). Let E be a countable Borel equivalence relation.
If E is K-structurable and K is Fréchet-amenable, then E is Fréchet-amenable. If
moreover K is analytic and α-amenable, then E is α-amenable.

We proceed to describe various Fréchet-amenable classes of countable
structures.

Recall that a linear order is scattered if it contains no copy of the rational
order. The class of scattered linear orders is coanalytic but not Borel. We
now have:

Theorem 9.16 ([Ke1], see also [JKL, 2.19]). The class of countable scattered
linear orders is Fréchet-amenable.

This result was used in [Ke1] to show (assuming that sharps of reals ex-
ist) that if one assigns in a Borel way (in the sense described above) a linear
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order to each Turing degree, then on a cone of Turing degrees this linear
order contains a copy of the rationals. Also if E is an aperiodic countable
Borel equivalence relation on a Polish space, which is not Fréchet-amenable
and admits an ergodic invariant probability measure µ, like for example
F (F2, 2), then, by Theorem 8.20, on a comeager invariant Borel set one can
assign in a Borel way to each E-class a copy of the integer order but for any
Borel assignment of a linear order to each E-class, there will be a µ-conull
invariant Borel set on which this order contains a copy of the rationals.

Recall that a tree T = 〈T,R〉 is a connected (undirected) graph with
no cycles. Here T is the set of vertices and R is the edge relation. For the
concept of the branching number of a locally finite T, due to Lyons, see
[JKL, 2.20] and references therein. Every locally finite tree of subexponen-
tial growth has branching number 1. We now have the following result
which was proved in the measure theoretic context in [AL].

Theorem 9.17 ([AL], see also [JKL, 2.21]). The class of infinite locally finite
trees of branching number 1 is amenable.

The same result also holds for the class of locally finite connected graphs
of strongly subexponential growth, see [JKL, 2.22].

One can completely characterize when an infinite locally finite tree T is
Fréchet-amenable.

Theorem 9.18 ([AL], [Ne], see also [JKL, 2.24]). Let T be an infinite locally
finite tree. Then the following are equivalent:

(i) T is Fréchet-amenable;
(ii) T is amenable;
(iii) Aut(T) (which is a locally compact Polish group) is amenable.
(iv) One of the following is invariant under Aut(T); (a) a vertex; (b) the set of

two vertices connected by an edge; (c) an end; (d) a line.

Finally we mention the following model-theoretic property of Fréchet-
amenable structures. A countable structure A = 〈A, . . . 〉 has trivial de-
finable closure if for every finite F ⊆ A and formula φ(x) in Lω1ω with
parameters in F , if there is a unique a ∈ A such that A |= φ(a), then a ∈ F .

Theorem 9.19 ([CK, 8.18]). Let A be an infinite amenable countable structure.
Then A does not have trivial definable closure.

9.4 The Connes-Feldman-Weiss Theorem

Let E be a countable Borel equivalence relation on a standard Borel space
X and µ a probability measure on X .
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We say that E is µ-amenable if there is an E-invariant Borel set A ⊆ X
with µ(A) = 1 such that E|A is amenable. Similarly we define what it
means to say that E is µ-Fréchet-amenable.

We will now formulate a number of conditions that turn out to be equiv-
alent to µ-amenability. Then we state the Connes-Feldman-Weiss Theorem
which identifies these conditions with µ-hyperfiniteness.

(1) First we discuss the following condition, due to Zimmer (see, [Z1,
3.1]), which was the original definition of the concept of µ-amenability. It is
motivated by the formulation of amenability for countable groups in terms
of a fixed point property of affine actions of the group; see [Z2, 4.1.4].

Let B be a separable Banach space, LI(B) the group of its linear isome-
tries, which is Polish under the strong operator topology. Let B∗1 be the
closed unit ball of the dual B∗, with the weak∗-topology. For T ∈ LI(B),
denote by T ∗ the adjoint operator restricted to B∗1 , so that T ∗ is a homeo-
morphism of B∗1 . If α : E → LI(B) is a Borel cocycle, its adjoint cocycle
α∗ (into the homeomorphism group H(B∗1) of B∗1) is defined by α∗(x, y) =
(α(x, y)−1)∗.

For each compact metrizable space C, let K(C) be the compact metriz-
able space of closed subsets of C. A Borel map x 7→ Kx from X into K(B∗1)
is a Borel field, if for all x, Kx is convex and nonempty. A Borel map
S : X → B∗1 is a section of Kx, if S(x) ∈ Kx, µ-a.e. (x). A Borel field
(Kx)x∈X is α-invariant if there is an E-invariant Borel set A ⊆ X with
µ(A) = 1 such that x, y ∈ A, xEy =⇒ α∗(x, y)(Kx) = Ky, and a section
S is α-invariant if there is an E-invariant Borel set A ⊆ X with µ(A) = 1
such that x, y ∈ A, xEy =⇒ α∗(x, y)(S(x)) = S(y).

We say that E is µ-Z-amenable if for every separable Banach space
B and every Borel cocycle α : E → LI(B), every α-invariant Borel field
(Kx)x∈X has an α-invariant section.

(2) The next condition comes from [CFW]. We say that E is µ-CFW-
amenable if there is a positive linear operator

P : L∞(E,Ml)→ L∞(X,µ),

which sends the constant 1 function to the constant 1 function, such that
for every Borel map f : A → B in [[E]]B , we have P (F f ) = P (F )f , where
for F ∈ L∞(E,Ml), F f (x, y) = F (f−1(x), y), if x ∈ B; 0, otherwise, while
for F ∈ L∞(X,µ), F f (x) = F (f−1(x)), if x ∈ B; 0, otherwise.

Remark 9.20. In [CFW] another condition is also considered, which pos-
tulates that there is an assignment of means [x]E 7→ ϕ[x]E , which is µ-
measurable (in the weak sense), i.e., for each bounded Borel map f : E → C,
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the function x 7→ ϕ[x]E (fx) is µ-measurable. Compare this with the para-
graph preceding Theorem 3.13. We will discuss this further in Remark 9.23.

(3) A further condition, originating in [Kai] and [El], is motivated by
the following equivalent formulation of amenability for finitely generated
groups (the Følner condition): Let G be a finitely generated group with
finite symmetric set of generators S and let Cay(G,S) be the Cayley graph
of (G,S). For finite A ⊆ G, let ∂(A) = {g ∈ G : g ∈ (G \ A) & ∃s ∈ S∃h ∈
A(hs = g)} be the boundary of A in the Cayley graph. The isoperimetric
constant of the Cayley graph is the infimum of the ratios |∂(A)|

|A| over all
finite nonempty subsets A of G. Then G is amenable iff the isoperimetric
constant of the Cayley graph is 0.

Analogously for each locally finite Borel graph G = 〈X,R〉 with vertex
set X and edge set R, we define for each Borel set A ⊆ X , the boundary
of A in G by ∂G(A) = {x ∈ X : x ∈ (X \ A) & ∃y ∈ A(xRy)}. Then the
isoperimetric constant of G is the infimum of the ratios µ(∂G(A))

µ(A) , over all
Borel subsets A ⊆ X of positive measure such that the induced subgraph
G � A = (A,R ∩A2) has finite connected components.

We say that E is µ-KE-amenable if for some locally finite Borel graph
G = 〈X,R〉with EG = E (see also Remark 10.4 here) and any Borel set Y of
positive measure, the isoperimetric constant of G � Y = 〈Y,R ∩ Y 2〉 (with
the normalized probability measure (µ � Y )/µ(Y )) is 0.

(4) The final condition originates in another characterization of the no-
tion of amenability for countable groups: A countable groupG is amenable
iff every continuous action of G on a compact metrizable space admits an
invariant probability measure.

The following condition, due to Furstenberg, see [H6], is as follows. We
say thatE isµ-F-amenable if for any Borel cocycle α : E → H(K), whereK
is a compact metrizable space and H(K) its homeomorphism group, there
is a Borel map x 7→ µx fromX to P (K) such that for someE-invariant Borel
set A ⊆ X with µ(A) = 1 we have

x, y ∈ A, xEy =⇒ µy = α(x, y)∗µx.

We now have the following main theorem concerning all these notions:

Theorem 9.21. Let E be a countable Borel equivalence relation on the standard
Borel space X and let µ be a probability measure on X . Then the following are
equivalent:

(i) E is µ-hyperfinite;
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(ii) E is µ-amenable;
(iii) E is µ-Fréchet-amenable;
(iv) E is µ-Z-amenable;
(v) E is µ-CFW-amenable;
(vi) E is µ-KE-amenable;
(vii) E is µ-F-amenable.

The equivalence of (i), (ii), (iv), (v) is due to [CFW]; see also [Kai] for (ii).
The equivalence of (i) and (iii) follows from this and the proof of [JKL, 2.13,
(ii)]. A proof of the equivalence of (i) and (vi), following up on [Kai] and
[El], is contained in [CGMT, Theorem 1.1], where it is also shown that in
the definition of µ-KE-amenability one can equivalently replace “for some
locally finite Borel graph” by “for all locally finite Borel graphs” and finally
the equivalence of these conditions with (vii) is proved in [H6].

In [M4] there is a simpler proof of the equivalence of (i) and (ii). In [AL,
Appendix 1] there is an exposition of the proof of the equivalence of (iv)
and (v) and in [KeL, Theorem 4.72] there is also an exposition of the proof of
equivalence of (v) with (i) and (ii), in the case of E-invariant µ. For further
characterizations, for E-invariant µ, see also [KeL, Section 4.8.2] and [KT,
Lemma 3.10]. Also see [Kai] for another equivalent condition, called (IS),
for E-quasi-invariant µ, analogous to µ-KE-amenability.

Note that Theorem 9.21, together with Proposition 9.3, implies also The-
orem 8.31.

We say that E is measure amenable if it is µ-amenable for every proba-
bility measure µ. Thus E is measure amenable iff it is measure hyperfinite.
It turns out that, assuming the Continuum Hypothesis (CH), this is also
equivalent to the condition in Remark 9.20 above but in which one requires
that the map x 7→ ϕ[x]E (fx) is universally measurable; see [Ke3] and [JKL,
2.8], where other equivalent conditions are also formulated. The role of CH
here comes from the following result used in the proof of this equivalence,
due independently to Christensen [Chr] and Mokobodzki (see [DM]).

Theorem 9.22. Assume CH. Then there is a mean ϕ on N such that ϕ assigns
the value 0 to every eventually 0 function, and it is universally measurable in the
sense that ϕ � [−1, 1]N : [1,−1]N → [−1, 1] is universally measurable.

It is now known, see [La], that this result cannot be proved in ZFC.
On the other hand, Christensen and Mokobodzki have also shown, in ZFC
alone, that for each probability measure µ on [−1, 1]N, one can find such ϕ
for which ϕ � [−1, 1]N : [−1, 1]N → [−1, 1] is µ-measurable.
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Remark 9.23. The condition discussed in Remark 9.20 can be easily seen
to imply µ-CFW-amenability (see [CFW, page 437]). It can be also shown
that, if one assumes CH, then conversely µ-hyperfiniteness implies this con-
dition (see, e.g., [JKL, proof of 2.5 (i)]. It seems to be unknown if CH can be
eliminated here and so it seems to be unknown (as pointed out by Tserun-
yan and Tucker-Drob) whether µ-CFW-amenability and the condition in
Remark 9.20 are equivalent (as mentioned in several papers) without using
CH.

9.5 Free groups and failure of µ-amenability

A special case of Proposition 8.30 and Theorem 9.21 shows that if a is a
free action of the free group F2 = 〈g1, g2〉, where g1, g2 are free genera-
tors, on a standard Borel space which admits an invariant probability mea-
sure µ, then Ea is not µ-amenable. It is shown in [CG, Théorème 1] and
[BG, Section 5] that if a admits a quasi-invariant probability measure µ and
each generator g1, g2 produces a non-smooth subequivalence relation ofEa,
when restricted to every Borel set of positive µ-measure, then Ea is not µ-
amenable. Using this one can show that if F2 ≤ G, where G is a Lie group
and F2 is not discrete, the translation action of F2 on G is not µ-hyperfinite,
where µ is (a probability measure in the measure class of) the Haar mea-
sure; see [CG, Théorème 2]. In [Mo, 4.8] the following generalization is
proved:

Theorem 9.24 ([Mo, 4.8]). Let X be a Polish space and µ a measure on X such
that the open subsets of X of finite measure generate the topology of X . Suppose
that a is a free action of F2 on X , which is continuous with respect to a metrizable
non-discrete topology on F2. Then Ea is not µ-amenable.
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10. Treeability

10.1 Graphings and treeings

Let G be the class of all countable connected graphs and T ⊆ G the class
of all countable trees, i.e., connected acyclic graphs. Clearly these are both
Borel classes.

Let E be a countable Borel equivalence relation on a standard Borel
space X . A Borel graphing of E is a G-structure on E, i.e., a Borel graph
G = 〈X,R〉 with E = EG. A Borel treeing of E is a T -structure on E,
i.e., a graphing G which is acyclic. Graphings and treeings of countable
Borel equivalence relations play an important role in the study of count-
able Borel equivalence relations both in the measure theoretic context, e.g.,
in the Levitt-Gaboriau theory of costs (see [Le], [Ga1] and [KM1]), and in
the Borel theoretic context. Graphings and treeings in the measure theoretic
context were introduced in [A1], [A3].

Definition 10.1. A countable Borel equivalence relationE is treeable if it admits
a Borel treeing.

Equivalently if T is the class of countable trees, then E is treeable iff E
is T -structurable. The most obvious examples of treeable countable Borel
equivalence relations are generated by free actions of free groups. Let Fn
be the countable free group with n ≤ ∞ generators S and let a be a free
Borel action of Fn on a standard Borel space X . Consider the Borel graph
G = 〈X,R〉, where xRy ⇐⇒ ∃s ∈ S(s · x = y or s · y = x). Clearly this
is a treeing of Ea. In particular, F (Fn, Y ), for any standard Borel space Y ,
is treeable but we will see later that E∞ ∼B E(Fn, 2), n ≥ 2, is not treeable.
Also every hyperfinite Borel equivalence relation is treeable but there are
treeable countable Borel equivalence relations which are not hyperfinite,
like, for example, F (F2, 2).

109
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10.2 Equivalent formulations and universality

For compressible countable Borel equivalence relations treeability coincides
with generation by free actions of free groups.

Theorem 10.2 ([JKL, 3.16, 3.17]). LetE be a compressible countable Borel equiv-
alence relation. Then the following are equivalent:

(i) E is treeable;
(ii) For every free group Fn, 2 ≤ n ≤ ∞, there is a free Borel action a of Fn

such that E = Ea.
(iii) For every countable group G such that F2 ≤ G, there is a free Borel action

a of G such that E = Ea.

It follows from the theory of cost that there are non-compressible tree-
able countable Borel equivalence relations which are not generated by free
actions of free groups, see, e.g., [KM1, 36.4].

Below we will give a number of equivalent formulations of treeability.
We need some definitions first.

Let G be a Polish group and let a be a Borel action of G on a standard
Borel space X . We say that this action has the cocycle property if there is
a Borel cocycle α : Ea → G such that α(x, y) · x = y, see [HK1]. Clearly
any free action has this property. We say that a countable Borel equivalence
relation is locally finite treeable it admits a locally finite treeing. We now
have:

Theorem 10.3 ([JKL, 3.3, 3.7, 3.12, 3.17, page 45]). Let E be a countable Borel
equivalence relation.Then the following are equivalent:

(i) E is treeable;
(ii) E is locally finite treeable;
(iii) For any free group Fn, 2 ≤ n ≤ ∞, there is a free Borel action a of Fn

such that E ∼B Ea;
(iv) For every countable group G with F2 ≤ G, there is a free Borel action a of

G such that E ∼B Ea;
(v) E vB F (F2, 2);
(vi) E ≤B F (F2, 2);
(vii) For every countable group G and every Borel action a of G with E = Ea,

the action a has the cocycle property;
(viii) For every countable groupG and every Borel action a ofG withE = Ea,

there is a free Borel action b of G with E ∼B Eb.
(ix) For every countable group G and every Borel action a of G with E ⊆ Ea,

there is a free Borel action b of G such that E vB Eb.
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Further equivalent conditions in the context of groupoids are contained
in [L, 8.4.1], which studies functorial Borel complexity for Polish groupoids.

Remark 10.4. The proof of the equivalence of (i) and (ii) in Theorem 10.3
also shows that any countable Borel equivalence relation admits a locally
finite graphing, see [JKL, page 50]. For a stronger statement, see Section 8.7,
9)

From the theory of cost, it follows that there are non-compressible, tree-
able countable Borel equivalence relations that do not admit a bounded
degree treeing. On the other hand, Theorem 10.2, (iii) for the group G =
Z/2Z?Z/2Z?Z/2Z shows that every compressible treeable countable Borel
equivalence relation has a Borel treeing in which every vertex has degree 3.

A treeable countable Borel equivalence E is invariantly universal tree-
able if for every treeable countable Borel equivalence relation F , F viB E.
As a special case of a general result, see [CK, Corollary 4.4], such a univer-
sal equivalence relation exists and it is of course unique up to Borel isomor-
phism. It will be denoted by E∞T . Clearly E∞T ∼B F (F2, 2). On the other
hand E∞T cannot be generated by a free Borel action of a countable group.
To see this notice, following [A2], that E0 ⊕ F (F2, 2) cannot be generated
by any free Borel action of a countable group (because such a group would
have to be amenable by Proposition 8.30).

On the other hand we have the following:

Theorem 10.5 ([H7, Corollary 1.3]). Let E be a treeable countable Borel equiva-
lence relation on a standard Borel space X and let µ be an E-ergodic, E-invariant
probability measure. Then there is a countable group G, a Borel E-invariant set
Y ⊆ X with µ(Y ) = 1 and a free Borel action a of G on Y with Ea = E � Y .

This fails for some non-treeable relations by a result of Furman [Fu].

10.3 Closure properties

The following are the basic closure properties of treeability:

Theorem 10.6 ([JKL, Proposition 3.3]). Let E,F,En be countable Borel equiv-
alence relations. Then we have:

(i) If F is treeable and E ≤wB F , then E is treeable.
(ii) If each En is treeable, so is

⊕
nEn.

Although the product of a treeable countable Borel equivalence relation
with a smooth one is treeable, it is not true that the product of a treeable
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countable Borel equivalence relation with a hyperfinite one is treeable, and
also it is not true that the union of an increasing sequence of treeable count-
able Borel equivalence relations is treeable, see Theorem 10.12 below.

The following is a basic open problem:

Problem 10.7. Let E ⊆ F be countable Borel equivalence relations such that E
is treeable and every F -class contains only finitely many E-classes. Is F treeable?

For several results related to this problem, see [Ts3]

10.4 Essential and measure treeability

We say that a Borel equivalence relation E is reducible to treeable (resp.,
essentially treeable) if it is Borel reducible to a treeable countable Borel
equivalence relation (resp., Borel bireducible with a treeable countable Borel
equivalence relation). The following is a strengthening of Theorem 4.3.

Theorem 10.8 ([H4], [I2]). There is a Borel equivalence relation which is re-
ducible to treeable but not essentially treeable.

The proof proceeds by using the results of [I2] to show that the family
of equivalence relations E2

S , in the notation of the paragraph before Theo-
rem 7.8, satisfies all the conditions of [H4, 0.2] (Adrian Ioana pointed out
that the proof of [I2, Corollary 4.4, (1)] can be used to show that this family
satisfies condition (iii) in [H4, 0.2].)

On the other hand, by Theorem 4.6, if E is an idealistic Borel equiva-
lence relation, then the following are equivalent:

(i) E is reducible to treeable;
(ii) E is essentially treeable;
(iii) E admits a complete countable Borel section A such that E � A is

treeable.
Let E be a countable Borel equivalence relation on a standard Borel

space X and let µ be a probability measure on X . Then we say that E
is µ-treeable if there is a Borel E-invariant set A ⊆ X such that µ(A) = 1
and E � A is treeable. Finally E is measure treeable if it is µ-treeable for
every probability measure µ.

Problem 10.9. (i) Is every measure treeable countable Borel equivalence relations
treeable?

(ii) Does the analog of Problem 10.7 have a positive answer in the case of µ-
treeability, even for F -invariant µ.
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10.5 Treeings and µ-hyperfiniteness

For each tree T = 〈T,R〉, two infinite paths (xn), (yn) (without backtrack-
ing) in T are equivalent if ∃m∃n∀k(xm+k = yn+k). The boundary ∂T of T
is the set of equivalence classes of paths. The following result was proved
in [A3] for locally finite treeings and in [JKL] in general.

Theorem 10.10 ([A3], [JKL, Section 3.6]). LetG be a Borel treeing of a countable
Borel equivalence relation E on a standard Borel space X . For each E-class C,
let TC = G � C. Let µ be an E-invariant probability measure. Then E is µ-
hyperfinite iff card(∂T[x]E ) ≤ 2, µ-a.e. (x).

In fact, it follows from Section 8.7, 9), that if G is a Borel treeing of a
countable Borel equivalence relation E on a standard Borel space X and
card(∂T[x]E ) = 2 for each x ∈ X , then E is hyperfinite, and from Sec-
tion 8.7, 1), it follows that if card(∂T[x]E ) = 1, for each x ∈ X , then E is also
hyperfinite. Also for any Borel treeing G of E and any probability measure
µ on X , card(∂T[x]E ) ≤ 2, µ-a.e.(x), implies that E is µ-hyperfinite. The
converse is not necessarily true if µ is not E-invariant (see Section 8.7, 4) or
the paragraph following Theorem 11.2 below).

Gaboriau [Ga1, IV.24], as a corollary of a result of Ghys, generalized
Theorem 10.10 to graphings. Tserunyan and Tucker-Drob (see [TT] and
[CTT, 1.3]) generalized Theorem 10.10 to E-quasi-invariant measures (for
treeings) and Chen, Terlov and Tserunyan in [CTT, 1.4] generalized the
Gaboriau-Ghys result to E-quasi-invariant measures.

It is unknown whether every treeable countable Borel equivalence rela-
tion which is also Fréchet amenable is hyperfinite. This is a special case of
Problem 9.12.

L. Bowen and Tserunyan–Tucker-Drob have studied the structure of
hyperfinite subequivalence relations of µ-treeable countable Borel equiv-
alence relations, see [TT].

10.6 Examples

1) A construction discussed in [JKL, Section 3.2] shows the following. Let
G be a Polish group and A a countable structure with universe A for which
there is a Borel action of G on A by automorphisms of A so that the stabi-
lizer of every point in A in this action is compact. Then for every free Borel
action a of G on a standard Borel space X , one can find an A-structurable
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countable Borel equivalence relation E (i.e., K-structurable, where K is the
isomorphism class of A) such that Ea ∼B E.

We say that a Polish group G is strongly Borel treeable if for every
free Borel action a of G on a standard Borel space, Ea is essentially tree-
able. Using the inducing construction, see Section 3.3, it follows that a
closed subgroup of a strongly Borel treeable group is strongly Borel tree-
able. See also [CGMT, Appendix B] for more closure properties of the class
of strongly Borel treeable countable groups. From [SeT, Theorem 1.1] (see
also Theorem 11.2 below) it follows that a countable group G is strongly
Borel treeable iff F (G, 2) is treeable.

We now have:

Proposition 10.11 ([JKL, Proposition 3.4]). LetG be a Polish group which has a
Borel action on a countable tree with compact stabilizers. Then G is strongly Borel
treeable.

In particular, if a countable group G acts on a countable tree with finite
stabilizers, then G is strongly Borel treeable. This includes, for example,
groups that contain a free subgroup with finite index, free products of finite
cyclic groups, and in particular PSL2(Z),SL2(Z),GL2(Z), see [JKL, page
41].

Other examples of strongly Borel treeable groups include SL2(Qp) and
the group of automorphisms Aut(T) of a locally finite tree T; see [JKL, page
42].

The canonical action of GL2(Z) on the two-dimensional torus R2/Z2 is
not free but it still generates a treeable (not hyperfinite) countable Borel
equivalence relation, see [JKL, page 42]. It was also shown in [T3, Theorem
5.11] that the action of GL2(Z) onQp∪{∞} by fractional linear transforma-
tions generates a treeable but not hyperfinite equivalence relation. Com-
pare this with Section 8.7, 3).

2) Let K be the class of all rigid locally finite trees and let σ ∈ Lω1ω be
a sentence such that K = Mod(σ). Then ∼=σ is essentially treeable, in fact
∼=σ∼B E∞T , see [JKL, page 43] and [HK1, pages 241-242].

3) In [Ts5, Corollary 1.5] a sufficient condition for treeability of a count-
able Borel equivalence relation is given, in connection with graphings and
Stallings’ Theorem on ends of groups.

In [CPTT] it is shown that if there are Borel graphings with “tree-like”
large scale geometry of a countable Borel equivalence relation E, then E is
treeable.
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4) We call a Polish group G strongly measure treeable if for every free
Borel action a of G on a standard Borel space X and every probability mea-
sure µ on X , there is an invariant Borel set Y ⊆ X with µ(Y ) = 1 such
that Ea � Y is essentially treeable. It is shown in [CGMT] that the isometry
group of the hyperbolic plane H2,PSL2(R), SL2(R) (and their closed sub-
groups, in particular surface groups), finitely generated groups with planar
Cayley graphs, and elementarily free groups, are all strongly measure tree-
able.

10.7 Conditions implying non-treeability

1) Product indecomposability

The first obstruction to treeability has to do with indecomposability un-
der products of treeable equivalence relations. The following was proved
in [A1] in the locally finite case and in [JKL, 3.27] in general. Another proof
can be given using the theory of cost, see, e.g., [KM1, 24.9].

Theorem 10.12 ([A1], [JKL, 3.27]). Let E1, E2 be aperiodic countable Borel
equivalence relations, let E = E1 × E2 and let µ be an E-invariant probability
measure. If E is treeable, then E is µ-hyperfinite.

In particular it follows that E0×E∞T , E2
∞T are not treeable and thus in

particular
E∞T <B E∞.

Also it follows that ≡T ,≡A are not treeable.
Recall also here Theorem 7.12 that extends these results and determines

the relation under Borel reducibility of Rn = F (F2, 2)n (product of the
shifts) and Sn = F (Fn2 , 2) (shift of the products).

Product indecomposability results for countable Borel equivalence re-
lations generated by free Borel actions of non-amenable hyperbolic groups
are contained in [A5, Section 6].

2) Antitreeable groups

Let G be a Polish group. We say that G is antitreeable if for every free
Borel action a of G on a standard Borel space X , which admits an invariant
probability measure, Ea is not essentially treeable.

Remark 10.13. For a countable group G, being antitreeable means that for
every free Borel action a of G, if Ea is not compressible, then it is not
treeable. The requirement of non-compressibility is necessary, since every
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countable group G has a free Borel action a with Ea smooth, therefore tree-
able.

Theorem 10.14 ([AS, Theorem 1.8]). LetG be an infinite countable group which
has property (T). Then G is antitreeable.

Thus groups such as SLn(Z),GLn(Z),PSLn(Z), n ≥ 3, are antitreeable.
In particular, as opposed to the n = 2 case, see Section 10.6, 1), the equiv-
alence relation induced by the canonical action of GLn(Z) on the torus
Rn/Zn, for n ≥ 3, is not treeable.

Actually one has the following strengthening of Theorem 10.14, as noted
in [HK1, 10.5]:

Theorem 10.15 ([AS], [HK1, 10.5] ). Let G be an infinite countable group which
has property (T). Let a be a Borel action of G on a standard Borel space X and let
µ be an Ea-invariant, Ea-ergodic probability measure. If F is a treeable countable
Borel equivalence relation, then Ea is µ, F -ergodic.

Hjorth [H1] used the antitreeability of SLn(Z) to show that ∼=n, for n ≥
3, is not treeable and this was extended in [Ke7] to the case n = 2, see below.
Thomas (unpublished) has shown that ∼=∗n, for n ≥ 3, is not treeable but it
seems to be unknown if this holds in the n = 2 case.

Certain products of groups are also antitreeable. Extending results of
[Ga1] and [Ke7], the following was shown in [H9].

Theorem 10.16 ([H9, 0.6]). Let G = G1 × G2 be the product of two Polish
locally compact, non-compact groups, and assume that G is not amenable. Then G
is antitreeable.

Notice that, by the inducing construction, a lattice in a Polish locally
compact antitreeable group is also antitreeable. In particular, PSL2(Z[1/2])
is antitreeable, being a lattice in PSL2(R)×PSL2(Q2), and this was used in
[Ke7] to show that ∼=2 is not treeable and in [T3, 5.3] to show that ∼=p

2 is not
treeable. Hjorth [H1, Section 4] had earlier shown that ∼=p

n is not treeable
for n ≥ 3.

Also Calderoni in [C, Theorem 1.1] used Theorem 10.14, for n ≥ 5, and
a cocycle superrigidity result for n = 3, 4, to show that for n ≥ 3 the equiv-
alence relation induced by the action of SOn(Q) on Sn−1 is not treeable.

Remark 10.17. A stronger ergodicity type result, related to Theorem 10.15,
for actions of product groups is also proved in [Ke7, Theorem 10].
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Remark 10.18. In [HK4, Chapters 6,7] various results are proved to the ex-
tent that for certain countable groups and free Borel actions with invariant
probability measure, the associated countable Borel equivalence relation
is not Borel reducible even to a finite product of treeable countable Borel
equivalence relations.

10.8 Intermediate treeable relations

1) We have seen that there is a simplest non-smooth treeable countable
Borel equivalence relation, namely E0, and a most complex one, namely
E∞T . Thus all non-smooth treeable countable Borel equivalence relations
are in the interval [E0, E∞T ] in the sense of ≤B . The first problem, already
raised in [JKL] was whether this interval is non-trivial, i.e., whether there
are intermediate treeable countable Borel equivalence relations E0 <B
E <B E∞T . This was answered affirmatively by Hjorth in [H3]. To ex-
plain his result we need a definition first.

LetG be a countable group and let a be a Borel action ofG on a standard
Borel space X . The action a is modular if there is a sequence of countable
Borel partitions (Pn) of X , which generates the Borel sets of X , and is such
that each Pn is invariant under the action.

We now have the following result:

Theorem 10.19 ([H3, Theorem 3.6]). Consider the equivalence relationF (F2, 2),
which is ∼B E∞T , and the usual product measure µ on 2F2 . Then for any Borel
invariant set A ⊆ 2F2 , with µ(A) = 1, and any equivalence relation Ea generated
by a modular Borel action a of a countable group G, F (F2, 2) � A �wB Ea.

There are free Borel actions a of F2 with invariant probability measure
which are modular (see, e.g., [SlSt]). In fact a countable group G admits a
free modular Borel action with invariant probability measure iff it is resid-
ually finite; see [Ke9, 1.4]. Thus we have:

Corollary 10.20 ([H3]). There are intermediate treeable countable Borel equiva-
lence relations E0 <B E <B E∞T .

If a is a modular action of G on X and b is a modular action of H on
Y , the action of G × H on X × Y is also modular. Using this and Theo-
rem 10.12 it also follows that there are products of two treeable countable
Borel equivalence relations which are incomparable in the sense of≤B with
E∞T .
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One can find in [H3] and [Ke9] several other characterizations of mod-
ularity as well various examples of modular actions, including the transla-
tion action of any countable subgroup G ≤ S∞ on S∞ and the translation
action of SLn(Z) on SLn(Zp).

Let us a call a Borel action a of a countable group antimodular if for
any modular Borel action b of a countable group, Ea �wB Eb. Thus Theo-
rem 10.19 says that the shift action of F2 restricted to any invariant Borel set
of measure 1 is antimodular. This was generalized in [Ke9] by extracting
a representation theoretic condition from the proof of Theorem 10.19 that
implies antimodularity.

Let a be a Borel action of a countable groupG on a standard Borel space
X with invariant probability measure µ. The Koopman representation as-
sociated to a, in symbols κa, is the unitary representation of G on L2(X,µ)
defined by g · f(x) = f(g−1 · x). Its restriction to the orthogonal of the
constant functions L2

0(X,µ) = (C1)⊥ is denoted by κa0 . The (left) regular
representation of G is the unitary representation λG of G on `2(G) defined
by g · f(h) = f(g−1h). Also π ≺ ρ denotes weak containment of unitary
representations of G, see, e.g., [Ke9, Section 2]. Finally we say that the ac-
tion a is tempered if κa0 ≺ λG. We now have:

Theorem 10.21 ([Ke9, 3.1]). Let G be a countable group with F2 ≤ G. If a is a
Borel action of G on a standard Borel space with a nonatomic invariant probability
measure, and a is tempered, then a is antimodular.

Several examples of tempered actions are given in [Ke9, Sections 4, 5]
These include the action of SL2(Z) on the 2-dimensional torus, which in
view of Section 10.6, 1) generates a treeable countable Borel equivalence
relation R2. It turns out also that R2 <B E∞T (see the paragraph following
Theorem 10.25 below). The action of SLn(Z) on the n-dimensional torus is
not tempered, if n ≥ 3, but it is still antimodular (even when restricted to
an invariant Borel set of measure 1). This is because there is a copy of F2 in
SLn(Z) such that its action on the n-dimensional torus is tempered.

These results were further generalized in [ET]. A unitary representation
π of a countable group G on a Hilbert space H is called amenable (in the
sense of Bekka) if there is a bounded linear functional Φ on the C∗-algebra
B(H) of bounded linear operators on H such that Φ ≥ 0, Φ(I) = 1 and
Φ(π(g)Sπ(g−1)) = Φ(S), for every g ∈ G,S ∈ B(H). The relevant point
here is that for a non-amenable countable group G, λG is not amenable and
that if π ≺ ρ and ρ is not amenable, so is π. Thus if G is not amenable and
a is a tempered Borel action of G on a standard Borel space with invariant
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probability measure, then κa0 is not amenable. The following result, which
is a corollary of a stronger result proved in [ET], generalizes Theorem 10.21:

Theorem 10.22 ([ET, 1.3]). LetG be a countable group and let a be a Borel action
of G on a standard Borel space with a nonatomic invariant probability measure. If
κa0 is non-amenable, then a is antimodular. In particular, Theorem 10.21 is true
for any non-amenable group G.

As a consequence the following is also shown in [ET]:

Theorem 10.23 ([ET, 1.5, 1.6]). (i) Let the countable group G have property (T).
Then any probability measure preserving, weakly mixing action of G is antimodu-
lar.

(ii) Let the countable group G fail the Haagerup Approximation Property
(HAP). Then any probability measure preserving, mixing action of G is antimod-
ular.

Further antimodularity results are obtained in [I4].

2) The next question is whether there are uncountably many incompa-
rable, under Borel reducibility, treeable equivalence relations. Inspired by
work in [I1], Hjorth provided a positive answer. In fact he showed the fol-
lowing:

Theorem 10.24 ([H12], see also [Mi11, 6.1]). Let R2 be the equivalence relation
generated by the action of SL2(Z) on R2/Z2 and let µ be the Lebesgue probability
measure on R2/Z2. Then there is a family (Er)r∈R of countable Borel equivalence
relations such that:

(i) Er ⊆ Es ⊆ R2, if r ≤ s;
(ii) Er is induced by a free Borel action of F2;
(iii) If r 6= s, then there is no µ-measurable reduction from Er to Es.

Recall from Section 10.6, 1) that the equivalence relation R2 of Theo-
rem 10.24 is treeable.

A streamlined version of Hjorth’s work that isolated the key ideas was
subsequently developed in [Mi11]. This eventually led to the work in [CM1],
[CM2] (see also [Mi15]), in which the following concept was introduced.

Let F be a countable Borel equivalence relation on a standard Borel
space Y . For any countable Borel equivalence relation E on a standard
Borel space X and probability measure µ on X , consider the space of all
(partial) weak Borel reductions f : E � A ≤wB F , where A ⊆ X is a Borel
set. This carries the pseudometric dµ(f, g) = µ(D(f, g)), where if f : A→ Y
and g : B → Y , then D(f, g) = {x ∈ A ∩ B : f(x) 6= g(x)} ∪ (A∆B). We
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also say thatE is µ-nowhere hyperfinite if there is no Borel setA ⊆ X with
µ(A) > 0 and E � A hyperfinite.

Then the countable Borel equivalence relation F is called projectively
separable if for every E,µ as above such that E is µ-nowhere hyperfinite,
the pseudometric dµ is separable.

The following is then shown in [CM1]:

Theorem 10.25 ([CM1, Theorem B, Proposition 2.3.4]). (i) The equivalence
relation R2 induced by the action of SL2(Z) on R2/Z2 is projectively separable.

(ii) If E,F are countable Borel equivalence relations, E ≤wB F and F is pro-
jectively separable, so is E.

In particular, since RR2 is not projectively separable, it follows that
R2 <B E∞T .

Note that every measure hyperfinite countable Borel equivalence rela-
tion is projectively separable but the equivalence relation R2 is not mea-
sure hyperfinite. It is now shown in [CM1] that incomparability, and many
other of the complexity phenomena for countable Borel equivalence rela-
tions that we have seen earlier, occur among subequivalence relations of
any countable Borel equivalence relation, which is not measure hyperfi-
nite and projectively separable and treeable, like, for example R2. Here are
some of the main results:

Theorem 10.26 ([CM1, Theorem G, Theorem E, Theorem F, Theorem H]).
LetE be a countable Borel equivalence relation on a standard Borel spaceX , which
is not measure hyperfinite and is projectively separable and treeable. Then the
following hold:

(i) There is a family (Er)r∈R of pairwise incomparable under measure re-
ducibility ≤M countable Borel subequivalence relations of E such that r ≤ s =⇒
Er ⊆ Es;

(ii) RE �M F , for every Borel subequivalence relation F ⊆ E, and in partic-
ular E <M E∞T ;

(iii) For some Borel set A ⊆ X , if F = E � A, then for each n ≥ 1, nF <M
(n+ 1)F ;

(iv) If moreover E is aperiodic and the failure of measure hyperfiniteness for E
is witnessed by an invariant probability measure, then there is an aperiodic Borel
subequivalence relation F ⊆ E such that for every n ≥ 1, F × In <M F × In+1.

In Theorem 10.26, compare (i) with Theorem 10.24 and Theorem 3.38;
(ii) with Corollary 10.20; (iii) with Theorem 7.20; (iv) with Theorem 3.33.
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In [CM2] the authors study the situations under which certain such
results hold for subequivalence relations induced by free actions of free
groups.

3) The first explicit examples of uncountably many incomparable, un-
der Borel reducibility, treeable countable Borel equivalence relations were
constructed in [I2]. As usual, we view below SL2(Z) as a dense subgroup
of the compact group H2

S =
∏
p∈S SL2(Zp), for any nonempty set of primes

S. Also for any G ≤ SL2(Z), we let KG,S be the closure of G in H2
S . Thus

KSL2(Z),S = H2
S . We denote by EG,S the equivalence relation induced by

the translation action of G on KG,S . Thus ESL2(Z),S = E2
S , in the notation of

the paragraph before Theorem 7.8.

Theorem 10.27 ([I2, Corollary C]). Let S 6= T be nonempty set of primes and
G,H ≤ SL2(Z) be non-amenable. ThenEG,S , EH,T are treeable and incomparable
in ≤B .

Recall from Section 10.6, 1), that the equivalence relation Fp induced by
the action of GL2(Z) on Qp ∪ {∞} by fractional linear transformations is
treeable. We now have:

Theorem 10.28 ([I2, Corollary D]). Let p, q be primes. Then

p = q ⇐⇒ Fp ≤B Fq.

10.9 Contractible simplicial complexes

We will discuss here a higher dimension generalization of treeability. A
simplicial complex is a countable set X together with a collection Sk of
subsets ofX of cardinality k+1, for each k ∈ N, such that all singletons from
X are in S0 and every subset of an element of Sk of cardinalitym+1 ≤ k+1
belongs in Sm. (The elements of S0 are called vertices, the elements of S1

are called edges, etc.). We say that a simplicial complex K is contractible
if its geometric realization is contractible (see, e.g., [Ch1, Section 2]). We
can view each simplicial complex as a structure in some language L and
then we let C be the class of all countable contractible simplicial complexes,
which is a Borel class. A simplicial complex K is n-dimensional if Sn 6= ∅
but Sm = ∅ for m > n. We denote by Cn the class of all countable con-
tractible n-dimensional simplicial complexes (which is again a Borel class).

For n = 1, C1 coincides with the class T of all countable trees. Thus C1-
structurability coincides with treeability and Cn-structurability, n ≥ 2, can
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be considered as a higher dimensional analog of treeability. For example,
any equivalence relation induced by a free Borel action of (F2)n, for n ≥ 1, is
Cn-structurable. The Cn-structurable countable Borel equivalence relations,
in a measure theoretic context, play an important role in Gaboriau’s theory
of `2 Betti numbers, see [Ga2]. From his work it follows that for each n ≥ 1,
if En+1 is induced by a free Borel action of (F2)n+1 with invariant probabil-
ity measure, then En+1 is Cn+1-structurable but not Cn-structurable, in fact
En+1 is not even Borel reducible to a Cn-structurable countable Borel equiv-
alence relation (see also [HK4, Appendix D] and [Ke11, Section 7] here).

Again as a special case of a general result, see [CK, Corollary 4.4], there
is an invariantly universal Cn-structurable countable Borel equivalence re-
lation, denoted by E∞Cn (so that E∞C1 = E∞T ). Thus E∞Cn <B E∞Cn+1 ,
for each n ≥ 1.

We have seen in Section 10.2 that every compressible treeable countable
Borel equivalence relation admits a Borel treeing in which every vertex has
degree 3. We now have the following higher dimensional analog:

Theorem 10.29 ([Ch1, Corollary 2]). Let E be a compressible countable Borel
equivalence relation which is Cn-structurable. Then E admits a Cn-structure in
which every vertex belongs to exactly 2n−1(n2 + 3n+ 2)− 2 edges.

Call a simplicial complex locally finite if every vertex belongs to finitely
many edges. Then we have:

Theorem 10.30 ([Ch2, Corollary 5]). Every compressible countable Borel equiv-
alence relation admits a C-structure which is locally finite.

There are many open problems concerning the class of Cn-structurable
Borel equivalence relations, including the following:

Problem 10.31. If the countable Borel equivalence relationF is Cn-structurable,
n ≥ 2, and E vB F , is E also Cn-structurable?

For this and other open problems, see [Ch1, Section 4].
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11.1 Free actions and equivalence relations

Definition 11.1. A countable Borel equivalence relation E on a standard
Borel space X is called free if there is a countable group G and a free Borel ac-
tion a of G such that E = Ea.

As in Section 6.3, for any infinite countable group G and any free Borel
action a of G, we have that Ea viB F (G,R). Actually by [JKL, 5.4], we in
fact have that there is a Borel embedding of the action a into sG,N, so Ea viB
F (G,N) and therefore F (G,R) ∼=B F (G,N). For G = Z and more generally
for any infinite countable groupG for which all of its Borel actions generate
a hyperfinite relation, we have, as it follows from Corollary 8.5, that actu-
ally F (G,R) ∼=B F (G, 2). On the other hand it was shown in [T14, 6.3] that
forG = SL3(Z) (and other groups) F (G, 2) <B F (G, 3) <B · · · <B F (G,N).
Apparently it is unknown if this also holds for G = F2.

Despite this, there is still a close relationship of Ea, for a free action a of
G, with F (G, 2) in view of the following theorem.

Theorem 11.2 ([SeT, 1.1]). LetG be an infinite countable group and let a be a free
Borel action ofG on a standard Borel spaceX . Then there is a Borel homomorphism
f : X → 2G from a to sG,2 such that f(X) ⊆ F (2G).

In particular, f : Ea →B F (G, 2) and f � C is a bijection of every Ea-class C
with the F (G, 2)-class f(C).

Every aperiodic hyperfinite Borel equivalence relation is clearly free.
Moreover, by [DJK, 11.2], for every compressible hyperfinite Borel equiva-
lence relation E and every infinite countable group G, there is a free Borel
action a ofGwithE = Ea. In general ifE is a compressible countable Borel
equivalence relation and E = Ea, for a free Borel action a of a countable
group G, then for any countable group H ≥ G, there is a free Borel action b
of H such that E = Eb, see [DJK, 11.1]. We have seen in Theorem 10.2 that

123
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in fact every compressible treeable countable Borel equivalence relation is
free but we have also seen in Section 10.2 that there are treeable countable
Borel equivalence relations that are not free.

We say that a countable Borel equivalence relationE is reducible to free
if there is a free countable Borel equivalence relation F such that E ≤B F
and essentially free if there is a free countable Borel equivalence relation F
such that E ∼B F . It is shown in [JKL, 5.13] that E is reducible to free iff E
is essentially free. Also E is essentially free iff E× IN is free; see [JKL, 5.11].
Moreover the class of essentially free countable Borel equivalence relations
has the following closure properties.

Proposition 11.3 ([JKL, 5.13]). Let E,F,En be countable Borel equivalence re-
lations. Then we have:

(i) If F is essentially free and E ≤wB F , then E is essentially free.
(ii) If E,F,En are essentially free, so are

⊕
nEn, E × F ;

The following is an open problem.

Problem 11.4. Let E ⊆ F be countable Borel equivalence relations such that each
F -class contains only finitely many E-classes. If E is essentially free, is F also
essentially free?

From Theorem 10.3 it follows that every treeable countable Borel equiv-
alence relation is essentially free (but there are essentially free countable
Borel equivalence relations that are not treeable, see, e.g., Theorem 10.12).
The question of whether every countable Borel equivalence relation is es-
sentially free was raised in [DJK, Section 11]. It was shown in [T12], using
the Popa cocycle superrigidity theory, that this is not the case.

Theorem 11.5 ([T12, 3.9]). Let E be an essentially free countable Borel equiva-
lence relation. Then there is a countable group G such that F (G, 2) �B E.

Below by a universal essentially free countable Borel equivalence re-
lation we mean an essentially free countable Borel equivalence relation E
such that for every essentially free countable Borel equivalence relation F ,
we have F ≤B E.

Corollary 11.6. There is no universal essentially free countable Borel equivalence
relation. In particular, E∞ and ≡T are not essentially free.

It follows, for example from Theorem 7.6, that there are continuum
many pairwise incomparable under ≤B free countable Borel equivalence
relations. It is also shown in [T12, 3.13] that there are continuum many
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incomparable under ≤B countable Borel equivalence relations, which are
not essentially free. In [T14, 5.2] it is shown that if G = B(m,n) is the free
m-generator Burnside group of exponent n, then, for sufficiently large odd
n, E(G, 2) is not essentially free.

Finally [T12, 6.3] raises the question of whether ∼=n, for n ≥ 2, is essen-
tially free.

If E is a countable Borel equivalence relation on a standard Borel space
X and µ is a probability measure on X , we say that E is µ-free, resp., µ-
essentially free if there is an E-invariant Borel set A ⊆ X with µ(A) = 1
such that E � A is free, resp., essentially free.

By Theorem 10.5 every treeable countable Borel equivalence relation E
is µ-free for any E-invariant, E-ergodic probability measure µ. In [Fu] ex-
amples are given of countable Borel equivalence relations for which this
fails. Finally in [H8] an example is constructed of a countable Borel equiv-
alence relation E on a standard Borel space with E-invariant, E-ergodic
probability measure µ such that for every E-invariant Borel set A ⊆ X
with µ(A) = 1, E � A is not essentially free.

11.2 Everywhere faithfulness

We finally consider a weakening of the notion of free action. Let a be an
action of a group G on a space X . Then a is called everywhere faithful if
the action of G on every orbit is faithful, i.e., for every g 6= 1G and every
orbit C, there is x ∈ C such that g · x 6= x.

It is shown in [Mi6, Page 1] that for every group G, not isomorphic
to Z/2Z ? Z/2Z, of the form G = H ? K, with H,K countable non-trivial
groups, every compressible countable Borel equivalence relation is gener-
ated by an everywhere faithful action of G. Moreover, as a special case of
[Mi6, Theorem 20] (see also [Ke10, 4.1.3]), it is shown that if Gn are non-
trivial countable groups which are residually amenable, then every aperi-
odic countable Borel equivalence relation is generated by an everywhere
faithful Borel action of ?nGn.
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12.1 Structural results

Recall that a countable Borel equivalence relation E is universal if for every
countable Borel equivalence relation F , F ≤B E or equivalently E ∼B
E∞. We will first discuss some structural properties of such equivalence
relations.

The first result shows a stronger property enjoyed by all universal rela-
tions.

Theorem 12.1 ([MSS, 3.6]). Let E be a universal countable Borel equivalence
relation. Then for every countable Borel equivalence relation F , F vB E.

In [JKL, 6.5, (C)] it was asked whether every universal countable Borel
equivalence relation is indivisible, in the sense that in any partition of the
space into two disjoint invariant Borel sets the restriction of the equiva-
lence relation to one of these sets is still universal. In fact a much stronger
statements turns out to be true.

Theorem 12.2 ([MSS, 3.1, 3.8]). (i) Let E be a universal countable Borel equiva-
lence relation on a standard Borel space and let f : E →B ∆Y , for some standard
Borel space Y . Then for some y ∈ Y , E � f−1(y) is universal.

(ii) Let E be a universal countable Borel equivalence relation on a standard
Borel space X and let X =

⊔
nXn be a Borel partition of X (where the Xn might

not be E-invariant). Then for some n, E � Xn is universal.

The next result, related to a question in [T12, 3.22], shows that univer-
sality is always present in null sets.

Theorem 12.3 ([MSS, 3.10]). Let E be a universal countable Borel equivalence
relation on a standard Borel spaceX and let µ be a probability measure onX . Then
there is an E-invariant Borel set A ⊆ X with µ(A) = 0 such that E � A is still
universal.

127
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An alternative way to prove Theorem 12.2 was developed in [M3, Sec-
tion 4]. In [M3, Section 4.2] a countably complete ultrafilter U on the σ-
algebra of E∞-invariant Borel sets is constructed, reminiscent of the Martin
ultrafilter of invariant under ≡T Borel sets (where such a Borel set is in the
ultrafilter iff it contains a cone of Turing degrees). It is shown that for every
set A ∈ U , we have E∞ ∼B E � A, i.e., E � A is also universal. This implies
immediately Theorem 12.2, (i). Using the definition of U , which involves
infinite games, one can also prove Theorem 12.2, (ii).

12.2 Manifestations of universality

Below we call a Borel equivalence relation E essentially universal count-
able if E ∼B E∞. We will next discuss universal and essential universal
equivalence relations that occur in several areas.

1) Computability theory

Slaman and Steel proved that the arithmetical equivalence relation is
universal.

Theorem 12.4 (see [MSS, Theorem 2.5]). The equivalence relation ≡A is uni-
versal.

The universality of Turing equivalence is an open problem.

Problem 12.5. Is ≡T universal?

Note that Martin’s Conjecture implies a negative answer to this prob-
lem. In fact Martin’s Conjecture easily implies that we cannot even have
≡T ∼B 2(≡T ).

We will next discuss some refinements of Turing equivalence that give
universal relations. Consider the Polish space kN, where

k ∈ {2, 3, . . . n, . . . , } ∪ {N}.

Then the group S∞ acts on kN by shift g · x(n) = x(g−1(n)) and so does
(by restriction) any countable subgroup G ≤ S∞. We denote by ∼=k

G the
equivalence relation induced by the shift action of G on kN. Although the
results below hold for many other countable groups G, we are primarily
interested here in the case where G is the group of all recursive permuta-
tions of N, in which case we write ∼=k

rec instead of ∼=k
G. In particular ∼=2

rec is
the usual notion of recursive isomorphism of subsets of N.

It was shown in [DK] that ∼=Nrec is universal and in [ACH] that ∼=5
rec is

universal. Finally this was improved to the following:
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Theorem 12.6 ([M3, Theorem 1.6]). The equivalence relation ∼=3
rec is universal.

Surprisingly the following is still open.

Problem 12.7. Is ∼=2
rec universal?

Call a countable Borel equivalence relation E measure universal if for
every countable Borel equivalence relation F on a standard Borel space
X and every probability measure on X , there is an F -invariant Borel set
A ⊆ X with µ(A) = 1 such that F � A ≤B E. It is unknown if measure
universality implies universality. It is shown in [M3, Theorem 1.7] that∼=2

rec

is measure universal. Moreover it is also shown in that paper that the prob-
lem of the universality of ∼=2

rec is related to problems in Borel graph combi-
natorics and leads the author to conjecture that the answer to Problem 12.7
is negative; see the discussion in [M3, pages 5-6]

In [M2] computational complexity refinements of Turing equivalence
are shown to be universal, including the following:

Theorem 12.8 ([M2, Theorem 1.1]). Let ∼=P
T be polynomial time Turing equiva-

lence. Then ∼=P
T is universal.

Consider now a Borel class K of countable structures, closed under iso-
morphism, in a countable relational language L. Then for some sentence
σ in Lω1ω, we have K ∩ ModN(L) = Mod(σ). Let then ∼=K = ∼=σ be the
isomorphism relation for the structures in K. This is induced by the logic
action of S∞ on Mod(σ). Consider again the restriction of this action to the
subgroup of recursive permutations of N and denote by ∼=rec

K = ∼=rec
σ the in-

duced equivalence relation, i.e., the relation of recursive isomorphism for
the structures in K. Again, see Remark 4.23, in case we consider structures
in a language with function symbols, we replace them by their graphs.

In [ACH] and [Ca] various recursive isomorphism relations are shown
to be universal, including the following:

Theorem 12.9. (i) [ACH, 3.8] Let K be the class of unary functions that are per-
mutations. Then ∼=rec

K is universal. Similarly for the class of equivalence relations.
(ii) [Ca] Let K be one of the following classes: trees, groups, Boolean algebras,

fields, linear orders. Then ∼=rec
K is universal.

In particular, the first part of Theorem 12.9, (i) says that the equivalence
relation induced by the conjugacy action of the group of recursive permu-
tations on S∞ is universal.
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2) Isomorphism of countable structures

We will now consider the isomorphism relation ∼=K of various classes
of structures K.

Theorem 12.10. The isomorphism relations of the following classes of structures
are essentially universal countable:

(i) ([TV1]) Finitely generated groups; ([H11]) 2-generated groups;
(ii) ([TV2]) Fields of finite transcendence degree over the rationals;
(iii) ([JKL, 4.11]) Locally finite trees.

Two finitely generated groups G,H are commensurable if they have
finite index subgroups which are isomorphic. This is a Borel equivalence
relation, which is essentially universal countable, see [T10, Theorem 1.1].

3) Groups

For every countable group G, denote by Econj(G) the equivalence rela-
tion of conjugacy in the (compact metrizable) space of all subgroups of G.
In [TV1] it was shown that Econj(F2) is universal. Later it was shown that
this holds for all groups containing F2.

Theorem 12.11 ([ACH, 1.3]). The equivalence relation Econj(G) is universal for
all countable groups G such that F2 ≤ G.

In [G2] it was shown that for every countable groupG and any nontriv-
ial cyclic group H , E(G, 2) ≤B Econj(G ? H) and this gives another proof
of Theorem 12.11 for F2.

Various results about the equivalence relation Econj(G) are proved in
[T14, Section 4], In particular it is shown in [T14, 4.7] that there are contin-
uum many countable groups G for which the relations Econj(G) are essen-
tially free and pairwise ≤B-incomparable, thus non-universal.

In [TV1, Theorem 8] it is shown that the equivalence relation induced
by the action of Aut(F5) on the space of subgroups of F5 is also universal.

For a left-orderable countable groupG, let LO(G) be the compact metriz-
able space of all left-orderings of G. The group G acts continuously by con-
jugation on LO(G) and the corresponding equivalence relation Elo(G) is
studied in [CC], where in particular it is shown that Elo(Fn) is universal,
for all n ≥ 2.

Finally, in a different direction, consider the action of SL2(Z) on Z2. This
induces a shift action of SL2(Z) on 2Z

2
. It is shown in [G1] that this shift

action generates a universal relation.
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4) Topological dynamics

For a countable groupG consider now the isomorphism relationEkssh(G)
of subshifts of kG, k ≥ 2, which is defined in Section 8.7, 6), whose result
we recall below.

In [Cl2] it was shown that Ekssh(Zn) is universal. This was extended in
[GJS2, 9.4.9] and [Cl3, Section 2] to show the following:

Theorem 12.12 ([GJS2, 9.4.9], [Cl3, Section 2]). Let G be a countable group
which is not locally finite. Then Ekssh(G) is universal. The same holds for the
restriction of Ekssh(G) to free subshifts.

However, as shown in [GJS2, 9.4.3], Ekssh(G) ∼B E0, if G is an infinite
countable group which is locally finite, so we have here a strong dichotomy.

5) Riemann surfaces and complex domains

Let ∼=R be the isomorphism (conformal equivalence) relation of Rie-
mann surfaces and let ∼=D be its restriction to complex domains (open con-
nected subsets of C), in an appropriate standard Borel space of parameters
for Riemann surfaces and domains, see [HK2, Section 3]. Then we have:

Theorem 12.13 ([HK2, 4.1]). The equivalence relations ∼=R and ∼=D are essen-
tially universal countable.

In fact the same holds even if one restricts the isomorphism relation to
complex domains of the form H \ S, where S is a discrete subset of the up-
per half plane H. On the other hand, we have seen in Section 9.1 that the
isomorphism relation on domains of the form C \ S, where S is a discrete
subset of C, is essentially amenable, so it is not essentially universal count-
able. It is also shown in [HK2, 5.2] that the conjugacy equivalence relation
on the space of discrete subgroups of PSL2(R) is also essentially universal
countable.

6) Isometric classification

Recall here Section 4.6. Concerning Theorem 4.28 we actually have the
following:

Theorem 12.14 (Hjorth; see [GK, 7.1]). Let M as in Theorem 4.28 Then the
relation ∼=iso

M is an essentially universal countable Borel equivalence relation.



132 12. Universality

7) Universal countable quasi-orders

Let Q be a Borel quasi-order on a standard Borel space X . We say that
Q is countable if for each x ∈ X the set {y ∈ X : yQx} is countable. In par-
ticular a countable Borel equivalence relation is a countable quasi-order.
For each countable Borel quasi-order Q we associate the countable Borel
equivalence relation xEQy ⇐⇒ xQy & yQx. As with equivalence rela-
tions, if Q,Q′ are quasi-orders on standard Borel spaces X,X ′, resp., then
we let f : Q ≤B Q′ denote that f : X → Y is a Borel function such that
xQy ⇐⇒ f(x)Q′f(y) and we say that Q is Borel reducible to Q′, in sym-
bols Q ≤B Q′, if such an f exists. Note that if Q ≤B Q′, then EQ ≤B EQ′ .
Borel reducibility for countable Borel quasi-orders was studied in [W1],
where the following analogs of results for countable Borel equivalence re-
lations were proved.

If a is a Borel action of a countable monoid S on a standard Borel space
X such that for every s ∈ S, the map x 7→ s · x is countable-to-1, we let Qa
be the countable Borel quasi-order defined by x Qa y ⇐⇒ ∃s(s · x = y).
For a countable monoid S and standard Borel space X , we let sS,X be the
shift action of S on XS given by (s · p)t = pts. Let Q(S,X) = QsS,X . We
also let E(S,X) be the associated equivalence relation.

We say that a countable Borel quasi-order Q is universal if for every
countable Borel quasi-order R we have R ≤B Q. Then EQ is a universal
countable Borel equivalence relation. Finally, let S∞ be the free monoid
with a countably infinite set of generators.

The following is an analog of Theorem 3.3.

Theorem 12.15 ([W1, 2.1]). If Q is a countable Borel quasi-order on a standard
Borel space X , then there is a countable monoid S and a Borel action a of S on X
such that Q = Qa.

Next we have an analog of E∞. Below let Q∞ = Q(S∞,R).

Theorem 12.16 ([W1, 2.4]). The quasi-order Q∞ is a universal countable Borel
quasi-order. In particular E(S∞,R) is a universal countable Borel equivalence
relation.

Finally we have the following, where we consider the relations as liv-
ing in the space of finitely generated groups, defined for example in [T8,
Section 2]; see also Remark 4.26.

Theorem 12.17 ([W1, 1.6]). The embeddability quasi-order for finitely generated
groups is a universal countable Borel quasi-order. In particular, the bi-embeddability
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equivalence relation for finitely generated groups is a universal countable Borel
equivalence relation.

In view of Problem 12.5 it is a natural question to ask whether ≤T is a
universal countable Borel quasi-order. However it was recently shown by
P. Lutz and B. Siskind that this is not the case (see [LS, 4.17]) and also [HL,
1.7].

8) Action universality

We have seen in Proposition 6.9 that E(F2, 2) is universal and since for
any G ≤ H we have that E(G,X) ≤B E(H,X), it follows that for any
countable group G which contains a copy of F2, E(G, 2) is universal. It is
unknown if there are any other countable groups for which E(G, 2) is uni-
versal. More generally, following [T14], call a countable group G action
universal if there is a Borel action a of G with Ea universal. Then it is un-
known if there are action universal groups that do not contain F2. Clearly
no amenable group can be action universal. It is shown in [T14, 1.6] that
there are countable non-amenable groups that are not action universal.

9) Generators and invariant universality

Given a Borel action a of a countable groupG on a standard Borel space
X and n ∈ {2, 3, . . . ,N} an n-generator is a Borel partition X =

⊔
i<nAi of

X such that {g·Ai : g ∈ G, i < n} generates the Borel sets inX . Equivalently
such a generator exists iff the action a can be Borel embedded into the shift
action of G on nG. It is shown in [JKL, 5.4] that for every Borel action a of
a countable group G for which Ea is aperiodic, there is an N-generator. For
every equivalence relation E on a set X , let Eap be the aperiodic part of E,
i.e., Eap = E � Xap

E , where Xap
E = {x ∈ X : [x]E is infinite}. If E = Ea as

above, then the aperiodic part of a is the action of G on Xap
Ea

. Then Eapa is
the associated equivalence relation. For the case of the shift action of G on
XG, denote by Eap(G,X) the aperiodic part of the associated equivalence
relation.

Thus we have seen that for any Borel action a of a countable group G,
the aperiodic part of a can be embedded in the aperiodic part of the shift ac-
tion on NG. As a consequence, Eapa viB Eap(G,N), and therefore Eap(G,N)
is invariantly universal for all aperiodic countable Borel equivalence rela-
tions given by actions of G. In particular, Eap(G,N) ∼=B Eap(G,R).

Because of entropy considerations, even for the group G = Z it is not
the case that every Borel action of Z with an invariant probability measure
admits a finite generator. The following open problem was raised in [We2]:
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Is it true that every Borel action a of Z with Ea compressible has a finite
generator? In [JKL, 5.7] this question was extended to actions of arbitrary
countable groups.

Recall that any Borel action of a countable group on a standard Borel
space is Borel isomorphic to a continuous action of the group on a Polish
space, so it is enough to consider this problem for continuous actions. In
[Ts4] an affirmative answer (with a 32-generator) was obtained for any con-
tinuous action of a countable group on a σ-compact Polish space. Moreover
it was shown that for any countable group and any continuous action of G
on a Polish space with infinite orbits, there is a comeager invariant Borel set
on which the action has a 4-generator. Later in [Ho], and by different meth-
ods, the original problem of Weiss, i.e., the case G = Z, was shown to have
a positive answer with a 2-generator. More recently Hochman-Seward (un-
published) have extended this to arbitrary countable groups and thus have
solved Weiss’ problem in complete generality for all countable groups..

In [FKSV] the question was considered of whether it is true that we
have Eap(G,R) ∼=B Eap(G, 2). If this happens then the group G is called
2-adequate.

Using the result of Hochman-Seward mentioned above, the following
was shown:

Theorem 12.18 ([FKSV, 6.0.4]). Every infinite countable amenable group is 2-
adequate.

This in particular answers in the negative a question of Thomas [T14,
Page 391], who asked whether there are infinite countable amenable groups
G for which E(G,R) is not Borel reducible to E(G, 2).

Moreover we have:

Theorem 12.19 ([FKSV, 6.0.10, 6.0.11]). (i) The free product of any countable
group with a 2-adequate group that has an infinite amenable factor and thus, in
particular, the free groups Fn, 1 ≤ n ≤ ∞, are 2-adequate.

(ii) Let G be n-generated, 1 ≤ n ≤ ∞. Then G × Fn is 2-adequate. In
particular, all products Fm × Fn, 1 ≤ m,n ≤ ∞, are 2-adequate.

On the other hand there are groups which are not 2-adequate:

Theorem 12.20 ([FKSV, 6.0.12]). The group SL3(Z) is not 2-adequate.

It is not known if there is a characterization of 2-adequate groups.
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12.3 Weak universality and Martin’s Conjecture

Definition 12.21. A countable Borel equivalence relation E is called weakly
universal if for every countable Borel equivalence relation F , F ≤wB E.

By Theorem 3.37 this is equivalent to stating that there is a universal
countable Borel equivalence relation E′ ⊆ E. In that form an old question
of Hjorth, see [ACH, 1.4] or [JKL, 6.5, (A)], asks the following:

Problem 12.22. Is every weakly universal countable Borel equivalence relation
universal?

A special case of this question is the following: If E is a countable Borel
equivalence relation, E′ ⊆ E is a universal countable Borel equivalence
relation and every E-class contains only finitely many E′-classes, is E uni-
versal?

We next discuss some examples of weakly universal countable Borel
equivalence relations for which it is not known if there are universal:

(i) Since E(F2, 2) ⊆ ∼=2
rec, ∼=2

rec and therefore also ≡T are weakly univer-
sal.

(ii) ([TW, 1.4, 1.5]) The isomorphism and biembeddability relations on
Kazhdan groups are weakly universal.

(iii) ([W2, 1.4, 1.5] The isomorphism relation on finitely generated solv-
able groups of class 3 is weakly universal (thus the same holds for the iso-
morphism relation on finitely generated amenable groups).

Recall from the paragraph following Problem 12.5 that Martin’s Conjec-
ture implies that the weakly universal equivalence relation ≡T is not uni-
versal. In [T11] it was shown that Martin’s Conjecture has several strong
implications concerning weak universality, including the following:

Theorem 12.23 ([T11, 1.2, 4.5]). Assume Martin’s Conjecture. Then there are
continuum many weakly universal countable Borel equivalence relations which are
pairwise incomparable in ≤B .

Theorem 12.24 ([T11, 1.4]). Assume Martin’s Conjecture. Let E be a countable
Borel equivalence relation on a standard Borel space X . Then exactly one of the
following holds:

(i) E is weakly universal;
(ii) For every f : ≡T →B E, there is a cone of Turing degrees C such that

f(C) is contained in a single E-class.
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It is not even known whether (ii) in this result holds unconditionally for
E = E0.

Problem 12.25. Is it true that for every f : ≡T →B E0, there is a cone of Turing
degrees C such that f(C) is contained in a single E0-class?

Also Theorem 12.24 has the following strong ergodicity consequence
for weakly universal countable Borel equivalence relations.

Corollary 12.26 ([T11, 3.1]). Assume Martin’s Conjecture. Let E be a countable
Borel equivalence relation on a standard Borel space X and F a countable Borel
equivalence relation on a standard Borel space Y . Assume that E is weakly uni-
versal but F is not. Then for every f : E →B F , there is an E-invariant Borel
set A ⊆ X such that E � A is weakly universal and f(A) is contained in a single
F -class.

Thomas [T12, 3.22] raised the question of whether there exists a count-
able Borel equivalence relation E and an E-invariant, E-ergodic probabil-
ity measure such that the restriction of E to every E-invariant Borel set
of measure 1 is universal. Such E are called strongly universal. Martin’s
Conjecture implies a negative answer.

Theorem 12.27 ([T11, 5.4]). Assume Martin’s Conjecture. For any countable
Borel equivalence relationE and any probability measure µ, there is anE-invariant
Borel set A with µ(A) = 1 such that E � A is not weakly universal.

Finally it is shown in [T14, 3.4] that, assuming Martin’s Conjecture,
a countable group G has a Borel action a with Ea weakly universal iff
Econj(G) is weakly universal.

12.4 Uniform universality

The concept of uniform universality was introduced in unpublished work
of Montalbán, Reimann and Slaman and extensively developed in [M3] (see
also [MSS]).

Suppose X is a standard Borel space and (ϕn)n∈N a sequence of partial
Borel functions ϕn : An → X , with An a Borel subset of X , which contains
the identity function and is closed under composition. Then (ϕn)n∈N gen-
erates the countable Borel equivalence relation R(ϕn) defined by

xR(ϕn)y ⇐⇒ ∃m,n(ϕm(x) = y & ϕn(y) = x).
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In this definition we say that xR(ϕn)y via the pair (m,n).
For example, if G is a countable group, say G = {gn : n ∈ N}, a is a

Borel action of G on a standard Borel space X and ϕn(x) = gn · x, then
Ea = R(ϕn). Also on 2N if τn is the nth Turing functional (which is a Borel
partial function on 2N), then ≡T = R(τn).

If now E = R(ϕn), F = R(ψn) are given and f : E →B F , then we say
that f is a uniform homomorphism, with respect to (ϕn), (ψn), if there is
a function u : N2 → N2 such that if xEy via (m,n), then f(x)Ff(y) via
u(m,n).

For example, if a is a Borel action of a countable group G and b is a free
Borel action of a countable group H , then a Borel homomorphism of Ea to
Eb is uniform (with respect to the Borel functions given by the actions as
above) iff the cocycle of the action a toH associated to this homomorphism
(see Section 7.2) is simply a homomorphism from G to H .

Definition 12.28. A countable Borel equivalence E = R(ϕn) is uniformly uni-
versal (with respect to (ϕn)) if for every countable Borel equivalence relation
F = R(ψn), there is f : F ≤B E which is uniform (with respect to (ϕn), (ψn)).

We now have the following result:

Theorem 12.29 ([M3, Proposition 3.3]). For every universal countable Borel
equivalence relation E, there is a sequence of partial Borel functions (ϕn) such
that E = R(ϕn) and E is uniformly universal with respect to (ϕn).

Below we say that an equivalence relation E = Ea generated by a Borel
action a of a countable group G is uniformly universal if it is uniformly
universal with respect to the Borel functions given by this action.

Theorem 12.30 ([M3, Theorem 1.5, Theorem 3.1]). For any countable groupG
the following are equivalent:

(i) G contains a copy of F2;
(i) There is a Borel action a of G such that Ea is uniformly universal;
(ii) For every standard Borel space X , with more than one element, E(G,X)

is uniformly universal;
(iii) Econj(G) is uniformly universal.

In fact as pointed out in [M3, page 20] every known proof that a count-
able Borel equivalence relation E is universal actually shows that E is uni-
formly universal for an appropriate (ϕn) such that E = R(ϕn). A positive
answer to the following problem is conjectured in [M3, Conjecture 3.1]:
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Problem 12.31. Is it true that for every universal countable Borel equivalence
relation E and every (ϕn) such that E = R(ϕn), E is uniformly universal with
respect to (ϕn)?

On the other hand, as pointed out in [M3, page 20], ≡T = R(τn) is not
uniformly universal. A much more general result on non-uniform univer-
sality is proved in [M3, Theorem 3.4], which includes many other equiva-
lence relations in computability theory, including, for example, many-one
equivalence on 2N. However the following is an open problem (compare
with Problem 12.7):

Problem 12.32. Is ∼=2
rec uniformly universal?

Uniform universality is not preserved on measure theoretically large
sets.

Theorem 12.33 ([M3, Theorem 3.7]). If E = R(ϕn) is a uniformly universal
countable Borel equivalence relation on a standard Borel space X and µ is a prob-
ability measure on X , then there is a Borel E-invariant set A ⊆ X with µ(A) = 1
such that E � A is not uniformly universal.

12.5 Inclusion universality

Recall from Section 8.1 the concept of the Borel inclusion order ⊆B , where
for countable Borel equivalence relations E,F , we put E ⊆B F iff there is
E′ ∼=B E with E′ ⊆ F . This quasi-order is studied in [FKSV]. We say that
a countable Borel equivalence relation F is inclusion universal if for each
countable Borel equivalence relation E on an uncountable standard Borel
space, we have that E ⊆B F .

Proposition 12.34 (Miller). There exists an inclusion universal countable Borel
equivalence relation.

Proof. We will show that F = E∞ × IN works. First notice that F con-
tains a smooth aperiodic countable Borel equivalence relation, so if E is a
smooth countable Borel equivalence relation on an uncountable standard
Borel space , then there is a Borel isomorphic copy of E contained in F .

So let E be a non-smooth countable Borel equivalence relation. We can
of course assume thatE = E∞ � Y , whereE∞ is on the spaceX and Y is an
uncountable Borel E∞-invariant subset of X . Let Z = (X ×N) \ (Y × {0}).
Then let R ⊆ F � Z be an aperiodic smooth Borel equivalence relation and
put E′ = (F � Y × {0}) ∪R ⊆ F . We will check that E ∼=B E′.
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First we have that E′ ∼=B E ⊕R. Let A ⊆ Y be an E-invariant Borel set
such that E � A ∼=B R. Then E′ ∼=B E ⊕ R ∼=B R ⊕ E � (Y \ A) ⊕ R ∼=B

R⊕ E � (Y \A) ∼=B E.

12.6 A picture
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This is a rough picture of the quasi-order of Borel reducibility of count-
able Borel equivalence relations, in view of the results in Sections 8, 10–12.
We omit amenability since its extent is not clear at this time.
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13. The poset of bireducibility
types

Let E denote the class of countable Borel equivalence relations equipped
with the quasi-order ≤B and the associated equivalence relation ∼B . In
this section we also allow the empty equivalence relation ∅ on the empty
space as a countable Borel equivalence relation with the convention that
∅ viB E for every countable Borel equivalence relation E. For each E ∈ E
we denote by E = [E]∼B the bireducibility class of E, usually called the
bireducibility type of E. Let E be the set of bireducibility types. Then ≤B
descends to a partial order E ≤B F ⇐⇒ E ≤B F on E . It has a minimum
element ∅ and a maximum element E∞. We call 〈E,≤B〉 the poset of bire-
ducibility types. Notice that every bireducibility type e contains a unique
Borel isomorphism class consisting of the compressible elements of e.

It is clear from Theorem 7.1 that this poset is quite complex, since one
can embed in it the poset of Borel subsets of R under inclusion. Until re-
cently very little was known about the algebraic structure of this poset.
Some progress has been now made by applying in this context Tarski’s the-
ory of cardinal algebras, see [Ta], which was originally developed as an
algebraic approach to the theory of cardinal addition devoid of the use of
the Axiom of Choice.

A cardinal algebra, see [Ta], is a system A = 〈A,+,
∑
〉, where 〈A,+〉

is an abelian semigroup with identity, which will be denoted by 0, and∑
: AN → A is an infinitary operation, satisfying the following axioms,

where we put
∑

n<∞ an =
∑

((an)n∈N):
(i)

∑
n<∞ an = a0 +

∑
n<∞ an+1.

(ii)
∑

n<∞(an + bn) =
∑

n<∞ an +
∑

n<∞ bn.
(iii) If a+ b =

∑
n<∞ cn, then there are (an), (bn) with a =

∑
n<∞ an, b =∑

n<∞ bn, cn = an + bn.

(iv) If (an), (bn) are such that an = bn + an+1, then there is c such that
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for each n, an = c+
∑

i<∞ bn+i.
Let also

a ≤ b ⇐⇒ ∃c(a+ c = b).

It turns out that this is a partial ordering. All the expected commutativity,
associativity laws for +,

∑
and monotonicity with respect to ≤ hold (see

[Ta, Part 1]).
We can define on E the operations

E + F = the bireducibility type of E ⊕ F ;

and ∑
n

En = the bireducibility type of
⊕
n

En.

and, as a special case of a more general result, we now have the following:

Theorem 13.1 ([KMa, 3.3]). 〈E,+,
∑
〉 is a cardinal algebra. Moreover, for

E,F ∈ E , E ≤B F ⇐⇒ E ≤ F .

Also clearly ∅ is the additive identity of this cardinal algebra. One can
now apply the algebraic laws of cardinal algebras established in [Ta] to
immediately derive such laws for the poset of bireducibility types and thus
for the quasi-order ≤B , including the following:

Theorem 13.2 ([KMa, 1.1]). (i) (Existence of least upper bounds) Any in-
creasing sequence F0 ≤B F1 ≤B . . . of countable Borel equivalence relations has
a least upper bound (in the quasi-order ≤B).

(ii) (Interpolation) If S, T are countable sets of countable Borel equivalence
relations and ∀E ∈ S∀F ∈ T (E ≤B F ), then there is a countable Borel equiva-
lence relation G such that ∀E ∈ S∀F ∈ T (E ≤B G ≤B F ).

(iii) (Cancellation) If n > 0 and E,F are countable Borel equivalence rela-
tions, then

nE ≤B nF =⇒ E ≤B F

and therefore
nE ∼B nF =⇒ E ∼B F.

(iv) (Dichotomy for integer multiples) For any countable Borel equivalence
relation E, exactly one of the following holds:

(a) E <B 2E <B 3E <B . . . ,

(b) E ∼B 2E ∼B 3E ∼B . . . .
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References to the parts of [Ta], where the relevant laws that are used
in Theorem 13.2 are proved, can be found in [KMa, 2.2]. Another result
proved in [Ta, 3.4] is that in any cardinal algebra, if the infimum (meet)
a ∧ b of two elements exists, then the supremum (join) a ∨ b exists (and
(a ∧ b) + (a ∨ b) = a + b). It is unknown if the poset of bireducibility types
is a lattice and this can be stated equivalently as follows:

Problem 13.3. Is it true that any two bireducibility types have an infimum?

In fact until very recently it was even unknown if there exist two in-
comparable under ≤ bireducibility types that have an infimum. A positive
answer is given in Theorem 14.9 below.

Finally, concerning the cancellation law Theorem 13.2, (iii), for sums, it
is natural to ask if there is a similar cancellation law for products. Using
methods of ergodic theory it can be shown that this is not the case.

Theorem 13.4 ([KMa, 4.1]). There are two countable Borel equivalence relations
E,F with E <B F such that E2 ∼B F 2.

Remark 13.5. Cardinal algebras also occur in another context in the theory
of countable Borel equivalence relations. Let E be a compressible count-
able Borel equivalence relation on a standard Borel space X . Consider the
space of all Borel subsets of X modulo ∼E (see the paragraph following
Definition 3.21). It was shown in [Ch2] that, with some natural operations,
this becomes a cardinal algebra, which exhibits interesting properties and
is studied in detail in [Ch2].
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14. Structurability

14.1 Universal structurability

We will consider in this section K-structurable countable Borel equivalence
relations for Borel classes K of countable structures in some language L
(see Section 9.3). We denote by EK the class of countable Borel equivalence
relations that are K-structurable. Examples of such classes, for various K,
include the following: aperiodic, smooth, compressible, hyperfinite, tree-
able, α-amenable, the equivalence relations induced by a free Borel action
of a fixed countable group G, all countable Borel equivalence relations.

The next result shows that EK contains an invariantly universal element.
It was proved in [KST, 7.1] for classes of graphs and generalized by Miller.
Below, for any class C of countable Borel equivalence relations, a relation
E ∈ C is called invariantly universal for C if for F ∈ C, F viB E.

Theorem 14.1 (see [M3, Theorem 4.13], [CK, 1.1]). For each Borel class K
of countable structures, there is a (unique up to Borel isomorphism) invariantly
universal equivalence relation in EK.

This invariantly universal relation will be denoted by E∞K. For exam-
ple, for the classes K of hyperfinite (resp., treeable, induced by a free Borel
action of a countable group G, all countable Borel equivalence relations),
E∞K is Borel isomorphic to E∞h (resp., E∞T , F (G,R), E∞).

14.2 About universally structurable relations

Results that are analogous to those forE∞ in Section 12.1 have been proved
in [M3, Sections 4.3, 4.4] for certain E∞σ.

The following is an analog of Theorem 12.3.

Theorem 14.2 ([M3, Theorem 4.4]). Let σ be a theory in Lω1ω. Let E∞σ be
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on the space X∞σ and let µ be a probability measure on X∞σ.Then there is an
E∞σ-invariant Borel set A ⊆ X∞σ with µ(A) = 0 such that E∞σ ∼=B E∞σ � A.

Recall that a family (Ei)i∈I of equivalence relations on a set X is inde-
pendent if for any sequence x0, x1, . . . , xn = x0, with n > 1, if

x0Ei0x1Ei1x2 . . . xn−1Ein−1x0,

where ik 6= ik+1, if k < n− 2, and in−1 6= i0, there is j < n, with xj = xj+1.
In this case we call

∨
iEi an independent join.

Note, for example, that the classes Cn, n ≥ 1, defined in Section 10.9
(which are of the form Eσn for an appropriate σn) are closed under count-
able independent joins. For σ such that Eσ is closed under independent
joins of two relations, it was shown in [M3, Theorem 4.5], generalizing the
result mentioned in Section 12.1, that there is a countably complete ultrafil-
ter U on the E∞σ-invariant Borel sets such that if A ∈ U , E∞σ ∼B E∞σ � A.
From this, and the definition of U , we have the analog of Theorem 12.2:

Theorem 14.3 ([M3, Theorem 4.5, Theorem 4.6]). Let σ be a theory in Lω1ω.
(i) Assume that Eσ is closed under independent joins of two relations. Then

if f : E →B ∆Y , for some standard Borel space Y , there is y ∈ Y such that
E∞σ � f−1({y)} ∼B E∞σ.

(ii) If moreover Eσ is closed under countable independent joins, E∞σ is on
the space X∞σ and X∞σ =

⊔
nXn is a Borel partition (where the Xn might

not be E∞σ-invariant), then for some n, E∞σ vB E∞σ � Xn. In particular, if
E∞σ ≤B F , for some countable Borel equivalence relation F , then E∞σ vB F .

14.3 Elementary classes of relations

By the result of Lopez-Escobar in [LE] a class K of countable structures is
Borel iff there is a countable Lω1ω theory, i.e., an Lω1ω sentence σ, such that
K is exactly the class of countable models of σ. We thus often write

Eσ = EK, E∞σ = E∞K

and for a countable Borel equivalence relation E, we put

E |= σ ⇐⇒ E ∈ EK.

We then say that a class C of countable Borel equivalence relations is el-
ementary if C = Eσ for some σ. Thus all the examples we mentioned in
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Section 14.1 are elementary. The elementary classes can be characterized as
follows.

A Borel homomorphism f : E →B F between countable Borel equiv-
alence relations E,F on standard Borel spaces X,Y , resp., is called class
bijective if for each x ∈ X , f � [x]E is a bijection of [x]E onto [f(x)]F . We
write in this case f : E →cb

B F and if such f exists we put E →cb
B F . We now

have:

Theorem 14.4 ([CK, 1.2]). Let C be a class of countable Borel equivalence rela-
tions. Then C is an elementary class iff it is closed downwards under →cb

B and
contains an invariantly universal element.

The following classes are not elementary (see [CK, Section 3.1]): non-
smooth, non-compressible, free, essentially free.

Every countable Borel equivalence relation is contained in a smallest,
under inclusion, elementary class.

Theorem 14.5 ([CK, 1.3]). Let E be a countable Borel equivalence relation. Then
EE = {F ∈ E : F →cb

B E} is the smallest elementary class containing E.

We next consider elementary classes closed downwards under Borel re-
ductions, like, e.g., hyperfinite or treeable. These are called elementary
reducibility classes.

Theorem 14.6 ([CK, 1.4]). Let C be an elementary class of countable Borel equiv-
alence relations. Then Cr = {F ∈ E : ∃E ∈ C(F ≤B E)} is the smallest elemen-
tary reducibility class containing C.

Elementary reducibility classes can be characterized as follows. A Borel
homomorphism f : E →B F between countable Borel equivalence relations
E,F on standard Borel spaces X,Y , resp., is called smooth if for each y ∈
Y , E � f−1({y}) is smooth. This notion was considered in [CCM]. We write
in this case f : E →sm

B F and if such f exists we put E →sm
B F . We now

have:

Theorem 14.7 ([CK, 1.5]). Let C be a class of countable Borel equivalence rela-
tions. Then C is an elementary reducibility class iff it is closed downwards under
→sm
B and contains an invariantly universal element.

There is an interesting connection between these concepts and amenabil-
ity of groups. For each infinite countable group G, let E∗G be the elementary
class of all countable Borel equivalence relations whose aperiodic part is
generated by a free Borel action of G.
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Theorem 14.8 ([CK, 1.6]). Let G be an infinite countable group. Then the fol-
lowing are equivalent:

(i) G is amenable;
(ii) E∗G is an elementary reducibility class.

We call any countable Borel equivalence relation which is Borel isomor-
phic to one of the form E∞σ, for a Lω1ω theory σ, universally structurable.
Let E∞ be the class of these equivalence relations and let E∞ = {E : E ∈
E∞}. Then 〈E∞,≤〉 is a subposet of 〈E,≤〉. It is quite rich since it can be
shown that the poset of Borel subsets of R under inclusion can be embed-
ded into it, see [CK, 1.9]. However this subposet has desirable algebraic
properties.

Theorem 14.9 ([CK, 1.8]). The poset 〈E∞,≤〉 is a countably complete, distribu-
tive lattice. Moreover the countable meets and joins in this lattice are also meets
and joins in the poset 〈E,≤〉.

Remark 14.10. Notice that if E ∈ E∞, then RE ∼=B E. It follows that E∞ is
a proper subset of E , even when restricted to non-smooth countable Borel
equivalence relations, see Theorem 7.20. It is unknown if there is E /∈ E∞
with RE ∼=B E.

It is an interesting problem to understand the connection between the
model theoretic properties of a theory σ and the Borel theoretic properties
of the class Eσ. The following result, answering a question of Marks [M3,
end of Section 4.3], is a step in that direction.

Theorem 14.11 ([CK, 1.10]). Let σ be a theory in Lω1ω. Then the following are
equivalent:

(i) Every equivalence relation in Eσ is smooth;
(ii) There is a formula φ(x) in Lω1ω which defines a finite nonempty set in

every countable model of σ.

The next step would be to characterize the σ for which every equiva-
lence relation in Eσ is hyperfinite. This is however an open problem.

Problem 14.12. Is there a characterization of the Lω1ω theories σ for which every
equivalence relation in Eσ is hyperfinite?

It is also of interest to find out which theories σ have the property that
every aperiodic countable Borel equivalence relation is in Eσ.

Problem 14.13. Is there a characterization of the Lω1ω theories σ for which every
aperiodic countable Borel equivalence relation is in Eσ?
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In the case where σ is the Scott sentence of a countable structure A,
the following result was proved by Marks as a consequence of the work in
[AFP]. Recall that a countable Borel equivalence relation is A-structurable
iff it is in Eσ for the Scott sentence σ of A.

Theorem 14.14 (Marks, see [CK, 1.11]). Let A be a countable structure with
trivial definable closure. Then every aperiodic countable Borel equivalence relation
is A-structurable.

Such structures A include, for example, many Fraïssé structures such as
the rational order and the random graph, see [CK, 8.17].
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15. Topological realizations

The main concern of [FKSV] is the subject of well-behaved, in some sense,
realizations of countable Borel equivalence relations. Generally speaking a
realization of a countable Borel equivalence relation E is a countable Borel
equivalence relation F ∼=B E with desirable properties.

To start with, a topological realization of a countable Borel equivalence
relationE on a standard Borel space is an equivalence relation F on a Polish
space Y such that E ∼=B F , in which case we say that F is a topological
realization of E in the space Y . It is clear that every E admits a topological
realization in some Polish space but we will look at topological realizations
that have additional properties.

Also by the Feldman-Moore Theorem 3.3, it is clear that every count-
able Borel equivalence relation E admits a topological realization, in some
Polish space Y , which is induced by a continuous action of some countable
(discrete) group G on Y . We will look again at such continuous action
realizations for which the space and the action have additional properties.

To avoid uninteresting situations, unless it is otherwise explicitly stated or
clear from the context, all the standard Borel or Polish spaces below will be un-
countable and all countable Borel equivalence relations will be aperiodic. We
will denote by AE the class of all aperiodic countable Borel equivalence relations
on uncountable standard Borel spaces.

Concerning topological realizations, we first have the following:

Theorem 15.1 ([FKSV, Theorem 1.1.1]). For every equivalence relationE ∈ AE
and every perfect Polish space Y , there is a topological realization of E in Y in
which every equivalence class is dense.

This has in particular as a consequence a stronger version of the Marker
Lemma, see Theorem 3.15. Let E be a countable Borel equivalence relation
on a standard Borel space X . A Lusin marker scheme for E is a family
{As}s∈N<N of Borel sets such that

(i) A∅ = X ;

151



152 15. Topological realizations

(ii) {Asn}n are pairwise disjoint and
⊔
nAsn ⊆ As;

(iii) Each As is a complete section for E.

We have two types of Lusin marker schemes:

(1) The Lusin marker scheme {As}s∈N<N for E is of type I if in (ii) above
we actually have that

⊔
nAsn = As and moreover the following holds:

(iv) For each x ∈ NN,
⋂
nAx|n is a singleton.

(Then in this case, for each x ∈ N , Axn = Ax|n \
⋂
nAx|n is a vanishing

sequence of markers (i.e.,
⋂
nA

x
n = ∅).)

(2) The Lusin marker scheme {As}s∈N<N for E is of type II if it satisfies
the following:

(v) If for each n, Bn =
⊔
{As : s ∈ Nn}, then {Bn} is a vanishing se-

quence of markers.

We now have:

Theorem 15.2 ([FKSV, Theorem 1.1.2]). Every E ∈ AE admits a Lusin marker
scheme of type I and a Lusin marker scheme of type II.

We next look at continuous action realizations. An important case of
such a realization of E ∈ AE would be a continuous action realization F on
a compact Polish space, called a compact action realization. If in addition
the action is minimal, we call it a minimal, compact action realizations.
Excluding the case of smooth relations, for which compact action realiza-
tions are impossible, we have the following result. Below for each count-
able group G and topological space X , a subshift of XG is the restriction of
the shift action of G on XG to a nonempty shift-invariant closed set.

Theorem 15.3 ([FKSV, Theorem 1.1.3]). Every non-smooth hyperfinite equiva-
lence relation inAE has a minimal, compact action realization. In fact this realiza-
tion can be taken to be a subshift of 2F2 if the equivalence relation is compressible
and a subshift of 2Z otherwise.

We next discuss other cases of countable Borel equivalence relations
which admit such realizations. Recall that every equivalence relation in-
duced by a free Borel action of a countable group G is Borel isomorphic
to the restriction of F (G, 2N) to an invariant Borel set and similarly ev-
ery equivalence relation induced by an aperiodic Borel action of G is Borel
isomorphic to the restriction of Eap(G, 2N) to an invariant Borel set. As
opposed to Theorem 15.3, the next results show that some very complex
countable Borel equivalence relations have compact action realizations.
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Theorem 15.4 ([FKSV, Theorem 1.1.4]). (i) For every infinite countable group
G, F (G, 2N) admits a compact action realization. If G is also finitely generated,
then Eap(G, 2N) admits a compact action realization. In fact in both cases such a
realization can be taken to be a subshift of (2N)G.

(ii) Every compressible, universal countable Borel equivalence relation admits
a compact action realization. In fact such a realization can be taken to be a subshift
of 2F4 .

In particular, it follows that arithmetical equivalence ≡A on 2N has a
compact action realization but it is unknown if Turing equivalence ≡T has
such a realization.

Problem 15.5. Does Turing equivalence ≡T have a compact action realization?

More generally, we do not know whether every non-smooth countable
Borel equivalence relation has a compact action realization.

Problem 15.6. Does every non-smooth aperiodic countable Borel equivalence re-
lation have a compact action realization?

We also do not know if every non-smooth aperiodic countable Borel
equivalence relation even admits some other kinds of realizations, for ex-
ample transitive (i.e., having at least one dense orbit) continuous action
realizations on arbitrary or special types of Polish spaces.

In relation to Theorem 15.4, call a countable group G minimal subshift
universal if there is a minimal subshift of 2G on which the restriction of the
shift equivalence relation is universal. Then we have the following result:

Theorem 15.7 ([FKSV, Theorem 1.2.1]). Let G and H be infinite countable
groups, where H admits a Borel action on a standard Borel space whose induced
equivalence relation is universal (e.g., any group containing F2). Then we have
that the wreath product G o H is minimal subshift universal. In particular, F3 is
minimal subshift universal.

The preceding considerations have some connections to the concept of
tests of amenability. It is well known that a countable group G is amenable
iff every continuous action of G on a compact space admits an invari-
ant Borel probability measure. Call a class F of such actions a test for
amenability for G if G is amenable provided that every action in F ad-
mits an invariant Borel probability measure. In [GdlH] it is shown that the
class of actions on 2N is a test for amenability for any group. Equivalently
this says that the class of all subshifts of (2N)G is a test of amenability for
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G. It turns out that the strongest result along these lines is actually true,
namely that the class of all subshifts of 2G is a test of amenability for G.
This gives a new characterization of amenability.

Theorem 15.8 ([FKSV, Theorem 1.2.2]). Let G be a countable group. Then G is
amenable iff every subshift of 2G admits an invariant Borel probability measure.

Finally we mention that, in response to a question raised by Conley,
it is shown in [FKSV, Section 1.3] that every every E ∈ AE admits a Kσ

realization on 2N with at least one dense class.



16. A universal space for
actions and equivalence
relations

In [FKSV] the authors also consider a universal space for actions and equiv-
alence relations and study the descriptive or topological properties of vari-
ous subclasses.

For a countable group G and Polish space X , define the standard Borel
space of subshifts of XG by:

Sh(G,X) = {F ∈ F (XG) : F is G-invariant}

Here F (Y ) is the standard Borel space of nonempty closed subsets of a
Polish space Y . If X is compact, we view this as a compact Polish space
with the Vietoris topology.

Every compact Polish space is (up to homeomorphism) a closed sub-
space of the Hilbert cube IN, and thus every continuous action of a count-
able group G on a compact Polish space is (topologically) isomorphic to a
subshift of (IN)G. We can thus consider the compact Polish space Sh(G, IN)
as the universal space of such actions.

Similarly consider the product space RN. Every Polish space is (up to
homeomorphism) a closed subspace of RN, and thus every continuous ac-
tion of G on a Polish space is (topologically) isomorphic to a subshift of
(RN)G. We can thus consider the standard Borel space Sh(G,RN) as the
universal space of such actions.

In particular taking G = F∞, we see that every countable Borel equiva-
lence relation is Borel isomorphic to the equivalence relation EF induced
on some subshift F of (RN)F∞ and so we can view Sh(F∞,RN) also as
the universal space of countable Borel equivalence relations and study the
complexity of various classes of countable Borel equivalence relations (like,

155



156 16. A universal space for actions and equivalence relations

e.g., smooth, aperiodic, hyperfinite, etc.) as subsets of this universal space.
Similarly we can view Sh(F∞, IN) as the universal space of countable Borel
equivalence relations that admit a compact action realization. In this case
one can also consider complexity questions as well as genericity questions
of various classes. We now state some of the main results proved in [FKSV].
Below G is a countable infinite group. A countable group G is called exact
if it admits a topologically amenable action on a compact Polish space (see
[BO, Chapter 5]). For example, all free groups and all amenable groups are
exact.

Theorem 16.1 ([FKSV, Section 4]). (i) In the space of subshifts of (IN)G: finite-
ness and smoothness are meager properties; freeness (of the action), aperiodicity,
and (for non-amenable G) compressibility are comeager. Also (for exact groups G)
amenability and measure hyperfiniteness are comeager.

(ii) In the space of subshifts of (IN)G: (for residually finite G) finiteness and
smoothness are Π1

1-complete; freeness (of the action) and aperiodicity are Gδ and
compressibility is open. Also (for residually finite and non-amenable G) measure
hyperfiniteness is Π1

1-complete and hyperfiniteness and amenability are Π1
1-hard.

(iii) In the space of subshifts of (RN)G: (for residually finite G) finiteness and
smoothness are Π1

1-complete; freeness (of the action), aperiodicity and compress-
ibility are Π1

1-complete; (for non-amenable G) hyperfiniteness and amenability are
Π1

1-hard and measure hyperfiniteness is Π1
1-complete.

The following are open problems:

Problem 16.2. Is hyperfiniteness comeager in Sh(G, IN)?

It was shown recently in [IS] that the answer is positive for the free
groups and in fact all groups with finite asymptotic dimension.

Theorem 16.3 ([IS]). Hyperfiniteness is comeager in Sh(G, IN) for all groups
with finite asymptotic dimension.

It is unknown whether this holds for every exact group or even every
amenable group. Since for exact groups measure hyperfiniteness is comea-
ger, this has some relevance to Problem 8.29.

Problem 16.4. What is is the exact descriptive complexity of hyperfiniteness in
the space Sh(G, IN)?

In connection to Problem 16.2, it is shown in [FKSV, Proposition 4.8.12,
Proposition 4.8.14] that hyperfiniteness is dense in Sh(G, IN) for several
groups, including all subgroups of hyperbolic groups.



17. Open problems

We collect here many of the open problems discussed earlier.

17.1 Bireducibility vs isomorphism of quotient spaces

Problem 17.1. (Problem 3.34) Is it true that E ∼B F ⇐⇒ E ∼=q
B F?

17.2 Essential countability and countable sections

Problem 17.2. (Problem 4.16) Let G be a Polish group with the property that all
the equivalence relations induced by Borel actions of G on standard Borel spaces
are Borel and essentially countable. Is the group locally compact?

Problem 17.3. (Problem 4.18) Is it true that the following are equivalent for a
Borel equivalence relation E on a standard Borel space X :

(i) E admits a complete countable Borel section;
(ii) There is a Borel assignment x 7→ µx of probability Borel measures to points

x ∈ X such that µx([x]E) = 1 and xEy =⇒ µx ∼ µy?

17.3 Isomorphism of models of first-order theories

Problem 17.4. (Problem 4.27) Let σ be a first-order theory, i.e., the conjunction of
countably many first-order sentences. Is it possible for∼=σ to be Borel, non-smooth
and essentially countable?

17.4 Hyperfiniteness

Problem 17.5. (Problem 8.24) Let En, n ∈ N, be hyperfinite Borel equivalence
relations such that En ⊆ En+1 for every n. Is

⋃
nEn hyperfinite?
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Problem 17.6. (Problem 8.25) What is the extent of the class of Borel-bounded
countable Borel equivalence relations? Are they all hyperfinite or is every count-
able Borel equivalence relation Borel-bounded?

Problem 17.7. (Problem 8.29) Does measure hyperfiniteness imply hyperfinite-
ness?

Problem 17.8. (Problem 8.32) Let G be a countable amenable group. Is it true
that every Borel action of G generates a hyperfinite equivalence relation?

Problem 17.9. (Problem 8.39) If E is Borel hypersmooth (resp., Borel hyperfinite)
and T is a Borel function (resp., countable-to-1 Borel function) are the relations
E0(E, T ), Et(E, T ) hypersmooth (resp., hyperfinite)?

Problem 17.10. (Problem 8.42) Let E be a Borel equivalence relation such that
E ≤B E2. Is it true that exactly one of the following holds:

(i) E is essentially hyperfinite;
(ii) E ∼B E2?

Problem 17.11. (Problem 8.46) Let E be a hyperfinite equivalence relation on
NN which is ∆1

1 (effectively Borel). Is there a ∆1
1 automorphism of NN such that

E = ET ? Equivalently is it true that E =
⋃
nEn, where (En) is a ∆1

1 (uniformly
in n) increasing sequence of finite equivalence relations?

Problem 17.12. (Problem 8.48) (i) Is there a countable basis for the quasi-order of
Borel reducibility ≤B on the non-hyperfinite Borel equivalence relations?

(ii) Consider the class B of all equivalence relations of the formEa, where a is a
free Borel action of F2 admitting an invariant probability measure. Is B a basis for
the quasi-order of Borel reducibility ≤B on the non-hyperfinite Borel equivalence
relations?

Problem 17.13. (Problem 8.50) Consider the class C of countable Borel equiv-
alence relations E which are not µ-hyperfinite for every E-invariant probability
measure µ and let C′ be the subclass consisting of all equivalence relations of the
form Ea, where a is a free Borel action of F2. Is C′ a basis for C for the partial order
⊆ of inclusion?

Problem 17.14. (Problem 8.51) Let E be a countable Borel equivalence relation
on a standard Borel space X and let µ be an E-invariant, E-ergodic probability
measure on X . Is it true that exactly one of the following holds:

(i) E is µ-hyperfinite;
(ii) There is an E-invariant Borel set A ⊆ X with µ(A) = 1 and a free Borel

action a of F2 on A such that Ea ⊆ E � A?
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17.5 Amenability

Problem 17.15. (Problem 9.5) Let E be an amenable countable Borel equivalence
relation. Is it true that E is hyperfinite?

Problem 17.16. (Problem 9.7) LetG be an amenable Polish locally compact group.
Is it true that any Borel action ofG generates an essentially hyperfinite equivalence
relation?

Problem 17.17. (Problem 9.12) Is Fréchet amenability equivalent to amenability?
Even more, is Fréchet amenability equivalent to hyperfiniteness?

Problem 17.18. (Problem 9.13) Is the transfinite hierarchy of Fréchet amenability
proper, i.e., does α < β imply that there is a β-amenable Borel equivalence relation
which is not α-amenable?

17.6 Treeability

Problem 17.19. (Problem 10.7) Let E ⊆ F be countable Borel equivalence re-
lations such that E is treeable and every F -class contains only finitely many E-
classes. Is F treeable?

Problem 17.20. (Problem 10.9) (i) Is every measure treeable countable Borel equiv-
alence relations treeable?

(ii) Does the analog of Problem 10.7 have a positive answer in the case of µ-
treeability, even for F -invariant µ.

17.7 Contractible simplicial complexes

Problem 17.21. (Problem 10.31) If the countable Borel equivalence relation F is
Cn-structurable, n ≥ 2, and E vB F , is E also Cn-structurable?

17.8 Freeness

Problem 17.22. (Problem 11.4) Let E ⊆ F be countable Borel equivalence rela-
tions such that each F -class contains only finitely many E-classes. If E is essen-
tially free, is F also essentially free?
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17.9 Universality and equivalence relations from
computability theory

Problem 17.23. (Problem 12.5) Is ≡T universal?

Problem 17.24. (Problem 12.7) Is ∼=2
rec universal?

Problem 17.25. (Problem 12.22) Is every weakly universal countable Borel equiv-
alence relation universal?

Problem 17.26. (Problem 12.25) Is it true that for every f : ≡T →B E0, there is
a cone of Turing degrees C such that f(C) is contained in a single E0-class?

Problem 17.27. (Problem 12.31) Is it true that for every universal countable Borel
equivalence relation E and every (ϕn) such that E = R(ϕn), E is uniformly
universal with respect to (ϕn)?

Problem 17.28. (Problem 12.32) Is ∼=2
rec uniformly universal?

17.10 The poset of bireducibility types

Problem 17.29. (Problem 13.3) Is it true that any two bireducibility types have
an infimum?

17.11 Structurability

Problem 17.30. (Problem 14.12) Is there a characterization of the Lω1ω theories
σ for which every equivalence relation in Eσ is hyperfinite?

Problem 17.31. (Problem 14.13) Is there a characterization of the Lω1ω theories
σ for which every aperiodic countable Borel equivalence relation is in Eσ?

17.12 Compact action realizations

Problem 17.32. (Problem 15.5) Does Turing equivalence ≡T have a compact ac-
tion realization?

Problem 17.33. (Problem 15.6) Does every non-smooth countable Borel equiva-
lence relation have a compact action realization?
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17.13 Complexity of hyperfiniteness in the space of
subshifts

Problem 17.34. (Problem 16.2) Is hyperfiniteness comeager in Sh(G, IN)?

Problem 17.35. (Problem 16.4) What is is the exact descriptive complexity of
hyperfiniteness in the space Sh(G, IN)?
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α-invariant field, 104
α-invariant section, 104
α ∼ β, 66
AE , 151
A-structurable, 113
A ∼= B, 45
F∞, 56, 62
Fn, 62
G � A, 105
NE, 13
RE, 76
S∞, 132
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U, 46
Z[S−1], 69⊕

iEi, 13⊕
iXi, 13∨
iEi, 14∧
iEi, 14

E, 141
E∞, 148
E , 141
e0, 141
e∞, 141
C, 121
Cn, 121
D, 83
∼=∗n, 72
∼=P
T , 129
∼=S
n , 72
∼=k
rec, 128
∼=iso, 46
∼=iso
M , 46
∼=D, 131
∼=R, 131
∼=K, 129
∼=rec
K , 129
∼=σ, 45
∼=rec
σ , 129
∼=n, 71
E , 141
E∞, 148
EK, 145, 146
Eσ, 146
≡A, 17
≡T , 17
F-amenable, 99
G, 109
K-structurable, 101
K-structure on E, 101
κa, 118
κa0, 118
λG, 118

≤T , 83
µ-CFW-amenable, 104
µ-F-amenable, 105
µ-KE-amenable, 105
µ-Fréchet-amenable, 104
µ-Z-amenable, 104
µ-amenable, 104
µ-essentially free, 125
µ-free, 125
µ-hyperfinite, 83
µ-nowhere hyperfinite, 120
µ-treeable, 112
µ, F -ergodic, 69
µ� ν, 49
µ ∼ ν, 42, 49
µ � Y , 49
∂T, 113
π ≺ ρ, 118∏
iEi, 13

ρ-aperiodic, 57
ρ-invariant, 57
ρµ, 56
σ-lacunary, 41
σ-smooth, 42
σ-treeable, 43
R̃, 13
f̃ , 13
|B|, 56
|X/E|B , 28
a ∨ b, 143
a ∧ b, 143
dµ, 119
f : E ∼= F , 14
f : E ≤ F , 14
f : E v F , 14
f : E vi F , 14
f : E → F , 14
f : E ∼=B F , 15
f : E ∼=c F , 15
f : E ≤wB F , 29



188 Index

f : E ≤B F , 15
f : E ≤c F , 15
f : E viB F , 15
f : E vic F , 15
f : E vB F , 15
f : E vc F , 15
f : E →cb

B F , 147
f : E →sm

B F , 147
f : E →B F , 15
f : E →c F , 15
f : Q ≤B Q′, 132
g · x, 14
n-dimensional simplicial

complex, 121
n-generator, 133
nE, 13
sG,X , 62
sS,X , 132
xE(ϕn)y, 137
AutB(E), 31
Cay(G,S), 105
EINV0

E , 76
EINVE , 52
EINVρ, 58
EQINVE , 55
ERGE , 55
HYP(C), 84
III, 78
IIIλ, 78
II1, 78
II∞, 78
INDH

G (a), 20
INVE , 52
INVρ, 58
InnB(E), 30
In, 78
Mod(σ), 45
ModX(L), 101
ModN(L), 44
OutB(E), 32

OutB(X/E), 32
PG(1,R), 88
PG(n− 1,Qp), 70
QINVE , 55
ThF (A), 45
card(S), 76
(fn)-finite, 96
2-adequate, 134

absolutely continuous, 49
action of a monoid, 17
action universal, 133
amenable equivalence relation,

97
amenable group, 97
amenable representation, 118
amplification, 26
analytic class of structures, 101
antimodular, 118
antitreeable group, 115
aperiodic Borel automorphism,

77
aperiodic equivalence relation, 22
aperiodic part, 133
arithmetical equivalence, 17
assignment of means, 22
automorphism group, 31
Axiom of Determinacy (AD), 92

basis for a quasi-order, 93
Bergman property, 31
bireducibility type, 141
Borel action on a quotient space,

32
Borel asymptotic dimension, 87
Borel biembeddable, 15
Borel bireducible, 15
Borel cardinality, 28
Borel class of Polish metric

spaces, 46
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Borel class of structures, 101
Borel embeddable, 15
Borel equivalence relation, 15
Borel field, 104
Borel functions on quotient

spaces, 32
Borel graph, 90
Borel inclusion order, 79
Borel invariantly biembeddable,

15
Borel invariantly embeddable, 15
Borel isomorphic, 15
Borel isomorphism of quotient

spaces, 92
Borel reducibility for

quasi-orders, 132
Borel reducible, 15
Borel symmetric group, 32
Borel theoretic rigidity, 66
Borel-bounded, 82
boundary of a group, 89
boundary of a tree, 113
branching number, 103
Butler group, 89

cardinal algebra, 141
Cayley graph, 105
ccc idealistic, 42
class bijective homomorphism,

147
coanalytic class of structures, 101
coarser, 14
cocompact, 39
cocycle, 57, 66
cocycle a.e., 57
cocycle associated to a

homomorphism, 67
cocycle associated with a

measure, 57
cocycle identity, 57

cocycle property, 110
cocycle reduction, 66, 67
cocycle superrigidity, 68
cohomologous cocycles, 66
commensurability relation, 18
commensurable, 130
compact action realization, 152
complete countable section, 38
complete section, 14
compressible Borel equivalence

relation, 25
compression, 25
cone, 83
continuous action realization, 151
Continuum Hypothesis (CH), 65
contractible, 121
countable Borel equivalence

relation, 17
countable quasi-order, 132

Dedekind infinite, 24
direct product, 13
direct sum, 13
Dye’s Theorem, 77
Dye-Krieger Classification, 78
dynamically compressible, 27

elementary class, 146
elementary reducibility class, 147
embedding, 14
equivalence class, 13
equivalent cocycles, 66
equivalent measures, 49
equivalent paths, 113
ergodic action on a quotient, 33
ergodic decomposition theorem,

52
ergodic quotient, 33
essentially amenable, 98
essentially countable, 37
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essentially free, 124
essentially hyperfinite, 80
essentially treeable, 112
essentially universal countable,

128
eventual equality, 17
everywhere faithful, 125
exact group, 156
expansion, 32

Feldman-Moore Theorem, 18
finer, 13
finite Borel equivalence relation,

17
finite measure, 49
Fréchet filter, 99
Fréchet-amenable, 100
Fréchet-amenable class of

structures, 102
free action, 14
free equivalence relation, 123
free filter, 99
free group, 62
free part, 64
fsr, 24
full group, 30
full pseudogroup, 49
Følner condition, 105

generated by a Borel action, 33
generator, 133
generic, 81
generically ergodic, 81
Glimm-Effros Dichotomy, 62
graphing, 109

Haagerup Approximation
Property, 119

HAP, 119
Heine-Borel, 46
hyper-Borel-finite, 96

hyper-(fn)-finite, 96
hyperfinite, 20, 75
hyperfinite generating, 87
hyperfinite quotient group, 90
hyperfinite quotient space, 92
hypersmooth, 88

idealistic, 37
inclusion universal, 138
independent equivalence

relations, 146
independent join, 146
index, 14
induced action, 20
inducing construction, 20
inner automorphism group, 30
intermediate, 64
intermediate treeable, 117
invariant embedding, 14
invariant measure, 49
invariantly universal

α-amenable, 101
invariantly universal for C, 145
invariantly universal hyperfinite,

77
invariantly universal treeable,

111
invariantly universal countable

Borel equivalence
relation, 63

isomorphism, 14
isoperimetric constant, 105
iterated Fréchet filter, 100

Jónsson property, 92
join, 143
join of equivalence relations, 14

Koopman representation, 118

lacunary, 39
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lifting, 13
locally countable graph, 90
locally finite graph, 90
locally finite simplicial complex,

122
locally finite treeable, 110
locally nilpotent, 86
logic action, 45
Lusin marker scheme, 151

Marker Lemma, 22
markers, 21
Martin’s Conjecture, 83
mean, 22
measure, 49
measure amenable, 106
measure class, 49
measure embeddability, 94
measure equivalence, 42
measure hyperfinite, 83
measure reducible, 94
measure theoretic rigidity, 66
measure treeable, 112
measure universal, 129
meet, 143
meet of equivalence relations, 14
mild growth property, 85
minimal subshift universal, 153
minimal, compact action

realization, 152
modular action, 117
Mycielski property, 93

Nadkarni’s Theorem, 51
non-archimedean, 44
nonatomic measure, 50
normal, 32

odometer, 19
orbit, 14
orbit equivalent, 68

outer action, 34
outer automorphism group, 32
outer permutation, 34

partial subequivalence relation,
24

polynomial growth, 85
poset of bireducibility types, 141
potentially Λ, 44
probability measure, 49
product of filters, 99
productively hyperfinite, 89
projectively separable, 120
proper, 46
push-forward measure, 50

quasi-invariant measure, 53
quotient Borel isomorphic, 29
quotient Borel structure, 21
quotient space, 13

rank-1 subshifts, 89
recursive isomorphism, 129
reducible to amenable, 98
reducible to countable, 37
reducible to free, 124
reducible to hyperfinite, 80
reducible to treeable, 112
reduction, 14
regular representation, 118
Reiter condition, 97
restriction, 13
Rokhlin’s Lemma, 77

saturation, 13
scattered linear order, 102
section of a Borel field, 104
shift action, 62, 132
simplicial complex, 121
simultaneously Borel reducible,

61
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smooth, 21
smooth homomorphism, 147
standard Borel space, 15
stationary measures, 51
stormy, 38
strong Bergman property, 31
strongly Borel treeable, 114
strongly measure treeable, 115
strongly universal, 136
subshift, 18, 152
syndetic, 26

tail equivalence, 17
tempered, 118
test for amenability, 153
Thompson groups F,T,V, 90
Toeplitz subshifts, 89
topological ergodic

decomposition, 53
topological realization, 151
transversal, 14
tree, 103
treeable, 43, 109
treeable group, 34
treeing, 109

trivial definable closure, 103
tsi, 47
Turing degrees, 83
Turing equivalence, 17
type n, 19
type I, 152
type II, 152

uniform homomorphism, 137
uniformly universal, 137
universal countable Borel

equivalence relation, 63
universal countable Borel

quasi-order, 132
universally structurable, 148
Urysohn metric space, 46

vanishing sequence of markers,
22

Vitali equivalence relation, 17

weak Borel reduction, 29
weak containment, 118
weakly Borel reducible, 29
weakly universal, 135
weakly wandering, 54
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