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1. Introduction

This work is to a large extent a continuation of that in [K] on the global
aspects of measure preserving actions of countable groups. We define and
study here natural topologies on the spaces of measure preserving equiv-
alence relations and graphs on a standard probability space.

Here is an overview of its contents. In Chapter 2 we recall some basic
facts about the space of closed subgroups of a Polish group which admits a
(two-sided) invariant metric. In Chapter 3 we discuss full groups of mea-
sure preserving countable Borel equivalence relations on a standard prob-
ability space (X, p), including a characterization of these groups among
the subgroups of the group Aut(X,u) of measure preserving automor-
phisms of (X, ). In Chapter 4 we define a natural Polish topology on
the space S(F) of subequivalence relations of a measure preserving count-
able Borel equivalence relation E. Several formulations of the topology are
given and shown to be equivalent. A stronger (non-separable) topology,
useful in certain applications, is also discussed. In Chapter 5 we discuss
the structure of limits of convergent sequences in S(E). In Chapter 6 it
is shown that the topologies on S(E) are coherent under inclusion and
can be used to define a topology on the space of all measure preserving
countable Borel equivalence relations (which is however far from Polish).

In Chapter 7 we discuss continuity properties of the map that assigns
to each measure preserving action of a countable group I' the associated
equivalence relation and show that they are related to properties of the
group such as amenability and property (T). In Chapter 8, Chapter 9, and
Chapter 10 we include several descriptive set theoretic complexity calcula-
tions for classes of equivalence relations in S(£). This leads in Chapter 11
to the introduction and study of the class of richly ergodic equivalence re-
lations E, i.e., those for which the generic equivalence relation in S(F) is
ergodic. In Chapter 12 we consider the cost function on the space of sube-
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6 1. Introduction

quivalence relations and in Chapter 13 the concept of normality. In Chap-
ter 14 we prove a Borel selection theorem for hyperfiniteness. In Chap-
ter 15 we study the connections of the preceding theory to the structure of
invariant, random equivalence relations on a countable group. Chapter 16
deals with ultraproducts of equivalence relations and in Chapter 17 we
define and study various notions of factoring for equivalence relations.

In Chapter 18 we introduce an analogous canonical topology on the
space Gr(FE) of Borel subgraphs of a measure preserving countable Borel
equivalence relation £ and in Chapter 19 we include various descriptive
complexity calculations related to this topology. Chapter 20 deals with the
notion of treeability for equivalence relations.

Finally we mention that a survey (without proofs) of the results pre-
sented here appeared on [K3].

Acknowledgments. Research in this paper was partially supported by
NSF Grants DMS-0968710, DMS-1464475 and DMS-1950475. I would like
to thank Lewis Bowen for asking some questions that got me thinking
about this topic. Thanks also to Lewis, Peter Burton, Francois Le Maitre,
Ben Miller, Forte Shinko , Anush Tserunyan and Robin Tucker-Drob for
many useful comments and corrections or for allowing me to include some
results of theirs in this paper.



2. The space of closed subgroups

We start with some preliminaries. Fix a Polish metric space (X, d), with
d < 1 and let 7*(X) be the set of non-empty closed subsets of X. We can
identify F' € F*(X) with the distance function

fr(z) =d(z, F),z € X,

and view F*(X) as a subset of [0,1]*. The relative topology on F*(X)
induced by the product topology on [0, 1]* is called the Wijsman topology
on F*(X). It is the topology generated by the functions:

F—d(z F), zeX.

It is shown in Beer [B] that F*(X), the closure of F7*(X) in [0, 1}%, is
compact metrizable and F*(X) is G in F*(X), thus a Polish space. More-
over the Borel o-algebra of the Wijsman topology on F*(X) is the Effros
o-algebra generated by the sets {FF € F*(X): FNV # (0}, for V C X open
(Hess, see, e.g., [BK, 2.6.2]).

Equivalently, we can describe this topology as follows. Fix a countable
dense subset X, C X. Then it is clear that this topology is also the one gen-
erated by the functions F' — d(zo, F'), zo € X,. Then we can also identify
F € F*(X) with the function

f??(xo) = d(x(J?F)?mO € X7

and view F*(X) as a subset of [0,1]*°. The relative topology on F*(X)
induced by the product topology on [0, 1]*° is again the Wijsman topology.
Assume next that I' is a Polish group with a compatible (two-sided)
invariant metric d < 1. Then (I, d) is complete, thus a Polish metric space.
Let
Sg(I') = {H CT': H is aclosed subgroup}.
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8 2. The space of closed subgroups

Proposition 2.1. S¢(I") is a closed subspace of F*(I").

Proof. Let H, € S¢(I') and H, — H. Then d(1,H,) = 0 — d(1,H), so
d(1,H) = 0and 1 € H. Let now g,h € H in order to show that gh™! €
H. Since 0 = d(g,H) = lim,_,» d(g, H,), find g, € H, with d(g,g,) —
0 and similarly find %, € H, with d(h,h,) — 0. Then d(h~*,h,') — 0
(since d(h, h,) — 0 iff h, — hiff h,' — h=tiff d(h™' k') — 0) and so
d(gh™, g,h;') — 0, thus d(gh™', H,) — d(gh™',H) =0,ie.,gh ' € H. 0O

It follows that Sg(I') with the induced topology is also Polish. The
group I' acts on Sg(T') by conjugation: g - H = gHg ™'

Proposition 2.2. The conjugation action of I on Sg(I") is continuous.

Proof. It is enough to show that it is separately continuous (see [K2, 9.14]).

(1) Letg, — ginT'and H € Sg(I"). We will show that g, Hg,' — gHg™!,
ie., thatforxz €T,

d(z, g Hg,") — d(x,gHg™).

Now d(z,g,Hg, ') = d(g,,'xg,, H) and d(z,gHg™') = d(¢g~'zg, H). Since
9. rg, — g 'zgand |d(z, H) — d(y, H)| < d(x,y), this is clear.

(2) Let g € T'and H, — H in Sg(T'). We will show that gH,g~' —
gHg ', ie, foranyz €T

d(z,gHug™") — d(z,gHg ™)

or equivalently
d(g~'zg, H,) — d(g™'zg, H)

which is obvious. ]



3. Full groups

Let now (X, 1) be a standard probability space (i.e., X is a standard Borel
space and . is a probability Borel measure on X). We denote by Aut(X, u)
the group of all Borel automorphisms of X which preserve the measure p
and in which we identify two such automorphisms if they agree yi-a.e.

Unless otherwise stated or is clear from the context, we will assume
that (X, p) is non-atomic and moreover, as usual, we neglect null sets
in the sequel.

The uniform metric d = d, on Aut(X, p) is defined by d,(S,7) =
p({z: S(z) # T(x)}). This is a (two-sided) invariant complete metric on
Aut(X, 1) and the associated uniform topology, u, makes it a topological
group.

Let now £ be a measure preserving countable Borel equivalence rela-
tion on X and I' = [E] the full group of £, i.e., the subgroup of Aut(X, u)
consisting of all 7" € Aut(X, ) with T'(z) Ex, for (almost) all z. Then I is a
closed subgroup of Aut(X, i) in the uniform topology and d restricted to
I" is separable, thus I' is a Polish group admitting the compatible invariant
metric d. When T € Aut(X, p), its full group [T, is the full group of the
equivalence relation £ induced by 7.

For further reference, we also define the full pseudogroup of E, in
symbols [[E]], consisting of all Borel bijections f: A — B, with A, B Borel
subsets of X and f(z)Ex, for (almost) all z € A, where we again identify
any two such functions if they agree a.e. Clearly [E] C [[E]].

It is an interesting question to characterize the full groups [E] among
the subgroups of the topological group Aut(X, ;1) equipped with the uni-
form topology, using only the topological group structure of this group.
Below we provide one such characterization. We start with the following
lemma.



10 3. Full groups

Lemma 3.1. For any non-trivial involution T' € Aut(X, p), the centralizer Cp
of T in the group Aut(X, u) has a largest abelian normal subgroup, denoted by
Ar. Moreover Ar = [T).

Proof. By [K, Lemma 4.7], if T" € [E], E ergodic, then [T is the largest
abelian normal subgroup of Cr N [E]. Since

Aut(X, u) = | J{[E]: E ergodic,T € [E]}

the result follows. O
We now have:

Theorem 3.2. The following are equivalent for a subgroup I" of Aut(X, p):
(i) I' = [E], for a measure preserving countable Borel equivalence relation E,
(ii) (a) I is closed and separable in (Aut(X, u), u), (b) every element of I is a
product of involutions, and (c) for any nontrivial involution T' e I', Ap C T

Proof. Itis clear that (i) implies (ii), (a) and (c). That (i) implies (ii), (b), see
[M1, Chapter 1] or [M2, Theorem 1].

To prove that (ii) implies (i), assume that I' is nontrivial and let Z be a
countable set of nontrivial involutions in I" which is uniformly dense in the
set of all nontrivial involutions in I' (this is nonempty by (b)). Let E be the
equivalence relation induced by Z. The group generated by 7 is included
in [E] and thus so is its uniform closure, so I' C [E]. By [KT, 4.4], the group
generated by the union of the full groups [T, T’ € Z, is uniformly dense in
[E]. By (c) and Lemma 3.1 this group is contained in I', soI" = [E]. O

Theorem 3.3. The following are equivalent for a subgroup I" of Aut(X, pu):

(i) I' = [E], for an ergodic measure preserving countable Borel equivalence
relation E,

(ii) (a) I' is closed and separable in (Aut(X, i), u), (b) I' is simple, and (c) '
contains a nontrivial involution T with A7 C T

Proof. For the proof that (i) implies (ii), use [K, 4.5, 4.6]. For the other direc-
tion, it is enough to show that I' is of the form [E], because (b) then implies
the ergodicity of E (see [K, page 22]). By [KT, proof of 4.14], and using (c),
we see that there is a nonempty countable set of nontrivial involutions Z
contained in I" such that if £ is the equivalence relation induced by Z, then
[E] < T. Since I' is simple and [E] is nontrivial, I' = [E]. O
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Remark 3.4. In Theorem 3.3, (b) can be replaced by (b)*: I is topologically
simple.

The above characterization of the subgroups I' of (Aut(X, p),u) that
are full groups involves the properties of I' within (Aut(X, ), u). One can
wonder whether there is a characterization that depends only on the topo-
logical group structure of (I',u). In other words, is it possible to find a
property P(I') of Polish groups I', invariant under topological group iso-
morphism, such that for a closed separable subgroup of (Aut(X, u),u), I’
is a full group iff P(I') holds. It turns out that no such “internal" charac-
terization is possible, even if one uses the metric d,, on I'.

Proposition 3.5. For each measure preserving countable Borel equivalence rela-
tion E, different than equality, there is a closed separable subgroup G of the group
(Aut(X, p), w) which is not a full group but there is an isometry between (G, d,,)
and ([E), d,,) which is also a group isomorphism.

Proof. LetY = X x {0,1}, v = p x n, where 7 is the uniform measure on
{0,1}. Consider the equivalence relation E* on Y given by

(z,0)E*(y,j) <= zBy&i=].

Then E* is a measure preserving countable Borel equivalence relation on
(Y, v), which is of course isomorphic to (X, ). For T' € [E], let T* € [E¥]
be defined by

T*(z,4) = (T'(x),1).

Then 7' — T* is an isometry of ([E], d,) with (T', d,,), where
I'={T":T € [E]}

is a closed subgroup of (Aut(Y,v),u), and T' — T* is also clearly a group
isomorphism.

However I is not a full group. Indeed if I' = [F], then F' = E¥, so
I' = [E*]. Butif Ty # T} arein [E], let S € [E] be defined by

S(a.i) = (Ti(a), ).

Then S € [E*| \ T, a contradiction. O
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4. The space of subequivalence
relations

Let E be a measure preserving countable Borel equivalence relation on
(X, ). We denote by S(E) the set of all subequivalence relations of E,
where as usual we identify two such relations if they agree a.e. We will
next define a canonical Polish topology on S(F). In fact we will give sev-
eral equivalent descriptions of this topology.

4.1 The weak topology

We can identify any F' € S(£) with its full group [F] and thus view S(E)
as a subspace of Sg([E]).

Proposition 4.1. S(E) is a closed subspace of Sg([E]).

Proof. Let F,, € S(F) and [F,] - H € Sg([E]). We will show that H €
S(E),i.e., that H = [F]|, where F' is a subequivalence relation of E.

Let Hy < H be a countable dense subgroup of H. Thus H, < [E] and
let F' be the subequivalence relation of £ induced by H,. We will show
that this works.

Since Hy C [F| and H, is dense in H, clearly H C [F.

We verify next that [F] C H. Fix any 7' € [F]. Then there is a Borel
decomposition X = | | A, and h, € H, such that 7" = | | (h,|A,). Fix
e > 0 and let N be so large that

Z w(Ay,) <e.

n>N

Put ¢ = ||, y(hn|Ay). Since ho, ..., hy_y € H = lim,,_,..[F}], for all large
enough Ny we can find go, ..., gnv-1 € [Fy,] with d(h,, g,) < § forn < N.

13



14 4. The space of subequivalence relations

Forn < N let B, C A, be such that (A, \ B,) <  and h,|B, = gu|B,.
Let then ¢ = | |,_y 9»|B» and note that +)(z) F,z (for almost all = in the
domain of ¥). Let U € Aut(X, u) be such thaty C U.

We now recall the following fact (see Ioana-Kechris-Tsankov [IKT, 1.1,
1.2]).

Proposition 4.2. Let F' be a measure preserving countable Borel equivalence re-
lation and S € Aut(X, ). Then

d(S,[F]) = p({z: (,5(x)) & F'})

and there is T' € [F| such that {z: (z,S(x)) € F} = {x: S(z) = T(x)}, so that,
in particular, d(S, [F]) = d(S,T).

By this result, there is S € [Fy,] such that S(z) = U(x) if U(z)Fn,x.
Thenif x € B,,n < N,U(z) = gn(x)Fy,z,50 19 C S.

Now S, T agree except on a set of measure < N+ +¢,50d(5,T) < 2¢
and thus d(T, [Fy,) < 2¢. Thus we have shown that if T € [F], then we
can find N; < N, < ... such that d(T,[Fy,]) < 1, so d(T,H) = 0, ie,
TeH. []

Below we put
d(S. F) = d(S,[F)).

From Proposition 4.1, we have that S(£) is also a Polish space with the
topology it inherits from Sg([E]). We call this the weak topology on S(E)
and denote it by w. We recall that in this topology

F, - Fiff VS € [E](d(S, F,,) — d(S, F)).
Moreover [E] can be replaced in this equivalence by any dense subset of
[E]. The group [E] acts on S(E) by
(T F)y <= T Ya)FT (y)

and, since [T - F] = T[F|T*, Proposition 2.2 shows that this action is
continuous. It is clear that this action is not minimal, since F is a fixed
point of the action. In an earlier version of this work the following problem
was raised:

Is there a dense orbit for the action of [E] on S(E)?
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Subsequently, in [LeM1], Le Maitre has shown that the answer is pos-
itive when FE is ergodic hyperfinite but negative if E is aperiodic, i.e., has
infinite classes, and generated by a measure preserving action of an infi-
nite countable group with property (T) (and in fact all non approximable
E; see Definition 11.2) . We do not know a characterization of the equiva-
lence relations E for which the above problem has a positive answer.

In fact Le Maitre has shown the following, where we use the terminol-
ogy and notation below:

(a) For each Borel set A C X and equivalence relation £, we let £|A =
E N A% be the restriction of F to A.

(b) We say that F' € S(E) has everywhere infinite index in E if for
every Borel set A C X of positive measure, [E|A : F|A] = oo, i.e.,, each
E| A-class contains infinitely many F'| A-classes.

(c) id is the equality relation on X.

(d)If F € S(F), then [E]- F is the orbit of F' in the action of [E] on S(E).

(e) For R C S(E), R is the closure of R in the weak topology of S(E).

(f) Hr C S(E) is the class of hyperfinite subequivalence relations of £.

Theorem 4.3 ( Le Maitre, [LeM1]). (i) If E is aperiodic, then for every F &
S(E), F has everywhere infinite index in E iffid € [E] - F.

(ii) If E is ergodic and F' € S(E) is aperiodic and has everywhere infinite
index in E, then Hg C [E] - F. Therefore for ' € S(E), F is aperiodic and has
everywhere infinite index in E iff id € [E] - F iff Hg C [E] - F.

In particular, if E is ergodic hyperfinite, then for F € S(E), F is aperiodic
and has everywhere infinite index in E iff [E] - F is dense in S(E).

Moreover Le Maitre has shown the following:

Theorem 4.4 ( Le Maitre, [LeM1]). If E is ergodic, then all [E] orbits in Hg
are meager in Hg
In particular, if E is ergodic hyperfinite, then all [E] orbits are meager in S(E)

Consider now an aperiodic equivalence relation £ and its automor-
phism group, N(E), which is also the stabilizer of £ in Aut(X, i), with its
associated Polish topology (see [K, Section 6]). Clearly N(E) also acts on
S(E) by the formula:

x(T-F)y < T '(x)FT '(y),

or equivalently
T-[F|=T[F)T.
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Proposition 4.5. If E is aperiodic, then the action of N(E) on S(E) is continu-
ous.

Proof. It is enough to check separate continuity. Below the superscripts on
the arrows indicate the spaces in which these limits are taken.

() F, — F = T-F, — T - F: This is equivalent to
F, % F = d(T"'ST,F,) — d(T'ST, F)

for all S € [E], which is clear as T~'ST € [E].

(i) T, "B 7 = T, . F s T F: Fix S € [E] in order to show that

d(S, T, - F) = d(S,T - F).
This is equivalent to

d(T;'ST,, F) — d(T~'ST, F).

But 7, N implies that 7, ' ST, RN T-1ST, so this is clear. O

Le Maitre in [LeM1] has also shown that there is no dense orbit for
the action of N(E) on S(FE), if E is aperiodic and generated by a measure
preserving action of an infinite countable group with property (T).

We finally note, for further reference, the following simple fact:

Proposition 4.6. Let [, C F; C ... bein S(E) and let F = |, F,,. Then
F, = F. Similarly, if o D Fy D Fy... and F = F,.

Proof. This is immediate from Proposition 4.2. O

4.2 The strong topology

We now define another topology on S(E).

Definition 4.7. Let E be a countable Borel equivalence relation on X. A sequence
(T)ien of Borel automorphisms is called generating for E if

T;(z)Ex, forall x,i,

and if x # vy, v Ey, then there is i such that y = T;(x).
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Such generating sequences exist by the Feldman-Moore Theorem (see,
e.g., [K4, Section 3.2] and references therein). In fact one can see the fol-
lowing stronger version, where we call a generating sequence (7;);cy for
E a uniquely generating sequence if for all x # y, zEy, there is a unique
i such that y = T;(z). The following is a special case of [KST, 4.10] but we
include a proof for completeness.

Proposition 4.8. Let E be a countable Borel equivalence relation on X. Then
there is a uniquely generating sequence (1;);en for E consisting of Borel involu-
tions of X.

Proof. The proof of the Feldman-Moore Theorem gives a sequence
{S;};en of Borel involutions such that zEy <= 3j(S;(x) = y). For each
g, let supp(S;) = {z: Sj(x) # z}. Now let Y; = {z: Vj < i(S;(x) # S;j(x))}.
If x € Y}, then S;(z) € Y}, since otherwise there is j < i with z = S;(S;(x)) =
S;(Si(x)),so0 S;(z) = Si(x), a contradiction. Thus if we let

T; = S;|Y; Uid|(X \ Y;),

T; is an involution and clearly 7;(x) Ex. Now let x # y, xEy. Let i be least
such that S;(z) = y. We claim that x € Y, thus 7;(z) = y. Otherwise,
for some j < i,S5;(x) = S;(x) = y a contradiction. Finally assume that
y = T;(z) = T;(z) with j < i, towards a contradiction. Since z # y this
means that = € supp(7}), so y = S;(z), a contradiction. O

Definition 4.9. Consider the space S(E) and for T' € [E], F € S(E) let
Arp={z: (z,T(x)) € F}.

Therefore, by Proposition 4.2, d(T, F') = 1 — u(Ar ). Fix a generating
sequence (T;);ey for £ and consider the map

F— (ATi,F>i€N S MALGN?

where MALG = MALG,, is the measure algebra of (X, 1). We also endow
MALG with the usual complete, separable metric

du(A, B) = u(AAB),

and the associated topology.
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Lemma 4.10. The map F — (Arq, r)ien is 1-1.

Proof. Assume F,G € S(E) and Ap, p = Arp, ¢ for all i. Then for « # v,
(x,y) e F <= FJi(y=Ti(x) &x € A, r) <= (z,y) € G. O

Thus we can identify F with (A7, r);eny and transfer the product topol-
ogy on MALG" to S(E) to get a separable, metrizable topology on S(E),
which we will call the strong topology on S(E), Thus

F, =5 F < Vi(Arp, 25 Ap p).

We next note that this topology is independent of the choice of (7;);en.
Proposition 4.11.

F, i) F «— VI e [E](AT,Fn Mﬂ)G AT,F)~

Proof. <« is obvious.
= Assume F,, = FandletT € [E]. Let A, = {z: T(z) = x} and let
A, be a Borel partition of X \ A, such that z € A; = T(x) = T;(x), ie.,
X =2, AU Ay and T|A; = T;|A;. Fix now € > 0 and choose N large
enough so that > ..\ ;1(A4;) < e. Then choose M large enough so that for
anyn > M and any i < N,
€

M(ATi,FnAATi,F) < N

Now
Arp, ={x: (z,T(x)) € F,}
= A U| |(Ain{z: (2,T(2)) € F,})
€N
= Aw U | |(Ain Ag, ) UGy,

where £(C),) < e. Similarly

Arp =AxU| |(AinArp)uC,
<N
=AU | |(AinAgp)uC

<N
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where 11(C) < €. Therefore

(Arp, AA7p) € (| [(AinAn p)A | (A0 Azp))uCUC,

<N <N
= (| |(Ain (A7, rAALR,)) UC UC,,
<N

thus
WAL E AAT ) < Az, pA AT, p,) + 2¢ < 3
<N

[]

We will next show that the strong topology on S(FE) is Polish. Before
we do that however we state the following elementary lemma that will be
also useful later on. Its proof is straightforward, so we omit it.

Lemma 4.12. Let I" be a group, a: I' x X — X an action of I" on a set X and put
a(g,x) = g - x. Let E, be the induced equivalence relation on X and let F C E,
be a subequivalence relation. For g € T, let

A p=Agr ={x: (v,9-2) € F}.
Then forall g,h € T,
1. Avp=2X,
2. A4 rCgt Ay g,
3. AyrNg - Apr C Angr,
4. AnrNFix(h~lg) C A, F,

where
Fix(p) ={z: p- 2z = z}.
Conversely, if (Ay) ger is a family of sets satisfying 1.-3. above, then the relation
rFy <= 3Jg(g-x=yVreA)

defines a subequivalence relation of E, and if 4. also holds we have that A, =
Agyp, forall g €T



20 4. The space of subequivalence relations

Theorem 4.13. The strong topology on S(E) is Polish.

Proof. Proposition 4.11 shows that the strong topology does not depend
on which generating sequence we use. So fix a Borel action of a count-
able group I' generating I and for each group element g denote also by
g the automorphism of the space X induced by the action of g. Since the
strong topology is obtained by transferring to S(E) the relative topology
(in MALGPT) of the range of the map

F (Ag,F>g€1"7

it is enough to show that the range of this map is closed in MALG". This

means that we have to show thatif F,, € S(£) and foreach g, A, 5, MALS A,

as n — oo, then there is /' € S(E) with A, p = A,, forall g € T

Since, for each n, the family (A, g, ) er satisfies (a.e.) conditions 1.-4. of
Lemma 4.12, it follows, by taking limits, that so does the family (A,)er,
and then, by Lemma 4.12 again, there is ' € S(E) such that A, » = A, for
allg e T. O

An alternative description of the strong topology on S(E) is as follows:
First consider MALG and let D C MALG be a countable dense subset
of MALG. Then the map

A e MALG — {,u(A N D)}Dep S [0, 1]D

is 1-1. Because if A, B € MALG are distinct, then either (A \ B) > 0 or
pu(B\A) > 0.Say a = u(A\B) > 0. Let D € Dbesuch u((A\B)AD) < a/2.
Then u(DNA) > u(DN(A\ B)) = a—pu((A\ B)\ D) > a/2, while
WD B) < p((DN(X\A)UDAB) = u(D\ (A\'B) < a/2, so
(AN D) # (BN D). Thus we can identify MALG with the range of
this map and transfer to MALG the relative topology from [0, 1] (with the
product topology). We can now see that this topology is the same as the
topology of MALG. This follows from the next proposition.

Proposition 4.14. The following are equivalent:

(i) A, "2 4,

(i) VB € MALG(u(B N A,) — u(B N A)),
(iii) YD € D(u(D N A,) = u(D N A)).
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Proof. Clearly (i) = (ii) = (iii). To see that (ii) = (i), take in (ii) B = A and
B = X\ A. Finally for (iii) = (ii), fix B € MALG and € > 0. Thenlet D € D
be such that u(DAB) < e. Choose next N such that for n > N we have
lu(DN A, —pu(DnNA)| <e Then for such n, [u(BNA,) —u(BNA)| <
(BOA) — p(DOA|+ (DO Ay) — (DA + (DA A) — u(BAA)| <
2u(BAD) 4 € < 3e. O

From this it follows that if (7});cy is a generating sequence for £ and D
is a dense subset of MALG,

F, > F <= Vi e NVYD € D(u(Ar, , N D) = u(Az, N D))

For comparison we note that
F, = F <= VT € [E|(u(Arr,) = w(Arr)).

Moreover in all these equivalences we can replace [E] by any dense subset
of [E].

4.3 Identification of the topologies

We next show that the two topologies we introduced are the same.

Theorem 4.15. The weak topology on S(E) is equal to the strong topology on
S(E).

Proof. Clearly the weak topology is contained in the strong topology, so it
is enough to show thatif F},, F € S(F) and F, A F,thenF, > F.

So assume that F,, = F. Fix T' € [E|] in order to show that j(Ar , A
Ar ) — 0. By Proposition 4.2, let S € [F] be such that (z,T(x)) € F <=
S(x) = T'(z). The rest of the argument is due to Anush Tserunyan. My
original proof was more complicated.

We have M(AT,F \ AT,Fn) = [L({ZE € AT7FI (ZL‘, T(ZL‘)) ¢ Fn}) = ,U({l' €
Arp: (x,5(x)) ¢ F,})} <d(S, F,) — 0.

Also ((Arr, \ Arp) — (A e \ Arr,) = (WA, \ Arrp) + w(Ar s, N
Arr)) = (WArr N Arp,) + (Arp\ A1 g,)) = WAz p,) — p(Arr) — 0, and
hence /UL<14T’Fn \ AT,F) — 0, s0 ,u(ATfn AN AT,F) — 0. O
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Remark 4.16 (A. Tserunyan). Note that in the proof of Theorem 4.15 we
only needed to verify that £, = F = Vi(u(Ap p, A Arp) — 0), for a
sequence of involutions (7;),cy generating £. For an involution 7, it is
obvious how to find S € [F] such that S(z) = T'(z), whenever (z,T(z)) €
F. One simply defines A = {z : (z,7(z)) € F} and, noting that A is
T-invariant, let S(z) = T'(z),ifx € A, and S(x) =z, if x ¢ A.

From now on we will call this topology simply the topology of S(E).
Note that we also have the following characterization of convergence in
this topology.

Let ((E)) be the set of Borel maps ¢: A — B, with A, B Borel subsets
of X, such thatz € A= p(x)Ez. For p € ((E)),F € S(E), let

A, p = {z € dom(p): (z,p(x)) € F}.
Then for F,,, F € S(E):

o= F <= Vo e ((B)(u(Apr,) = m(Apr))
= Vo€ (B)(Apr = Apr)
This is because if ¢ € ((F)) and (7;) is such that xFy <— 3i(y = T;(x)),
then there is a Borel decomposition dom(yp) = | |, A; such that z € A; =
¢(z) = Ti(xz). Thenif F,, - F, we have u(A,r, A Apr) = D> u(AiN
(ATan A AT,L-,F)) — 0,asn — oo.

Remark 4.17. One can also consider the topology on S(£) induced by the
complete metric

o(Fy, Fy) = p({z: [2]p # [2]R})

(see [CM1, 1.7]). This is stronger than the topology of S(E) but it is not
separable in general. However it is shown in [CM1, Proposition 1.7.4] that
it is separable when restricted to the finite subequivalence relations of £.

4.4 Alternative descriptions
We discuss here three more equivalent descriptions of the topology of
S(E).

(1) If Y is a standard Borel space and v, p are Borel probability mea-
sures on Y that are equivalent, i.e., have the same null sets, then MALG, =
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MALG,. The measure v induces the usual Polish metric 6, (A4, B) = v(AAB)
on MALG, and similarly for p. Since v is equivalent to p, these two metrics
are equivalent, i.e., induce the same topology. In particular, if ¥ is a o-finite
Borel measure on Y one can define unambiguously a Polish topology on
MALGy, = MALG,, for any Borel probability measure v equivalent to %,
eg, v =1 " 3(Sy,), where Y = | | Y, is a Borel decomposition of ¥
into sets of positive finite ¥-measure and Xy, is the normalized restriction
of XtoY,,.

The set F C X? admits a Borel measure M = My defined by

M(W) = / W, ldu(z) = / W dpu(y)

for Borel W C E,where W, = {y: (z,y) € W}, W¥ = {z: (z,y) € W}. This
measure is o-finite. We call the measure algebra of M, the measure algebra of
E, in symbols MALGg. (Thus MALGg = MALG,,.) Fix a sequence (7;);en
in [E], such that zEy <= 3i(T;(z) = y). Note that M (graph(T;)) = 1.
Define next the Borel probability measure v = v(r,) on E by

v(W) = Z .1 M (W N graph(T;)).

where for T € [E],W C E:
Arw ={z: (z,T(x)) € W}.
This is equivalent to M and the metric
5, (W, V) =v(WAV).
gives the topology of MALGy = MALG,. In this topology

W, =W <= Vi(ATi,Wn Mﬁs AT,',W)~

It is clear that S(£) C MALGg and the topology of S(£) is the induced
topology from MALGpg. Also as in the proof of Theorem 4.13, S(E) is a
closed set in the topology of MALGg. Thus we can view S(E) as a closed
subspace of MALGg.



24 4. The space of subequivalence relations

We next note a selection property of this representation of S(£). Below
we view F as a genuine countable Borel equivalence relation on X and
not one viewed ji-a.e. The measure v as above is a non-atomic probability
measure on F and therefore there is a Borel bijection : £ — (0, 1), which
takes v to the Lebesgue measure A on (0,1). For any A € MALG,, let
©(A) = {z € (0,1): z is a density point of A}. Then p(A) is a Borel subset
of (0,1) which represents A in the measure algebra MALG,. So for each
FeSE),let

B(F) = 07 ((0(F)).

Then 1(F) represents F in the measure algebra MALG,. Let F be a Borel
subequivalence relation of E that represents F' in the measure algebra
MALG,. Then v(EFA(F)) = 0, so there is a Borel E-invariant set L. C X
with (L) = 1and for z,y € L, (z,y) € F <= (z,y) € ¥(F). Let

B = {z € X: ¢(F)|[z]g is an equivalence relation}.

Then u(B) = 1 and B is E-invariant Borel. Let F° = (¢/(F)|B)U{(z,z): = ¢
B}. Then F* is a Borel subequivalence relation of E and F° represents F
in MALG, . In fact a simple calculation shows that F° has a uniform Borel
definition from F, i.e., we have the following;:

Proposition 4.18. There is a Borel set R C S(E) x E such that for any F €
S(E), the section Rp = F° is a Borel subequivalence relation of E which repre-
sents F'in the measure algebra MALG,, i.e., F° is equal to F in S(E).

We can also use this result to formulate a “uniform Borel version" of
the Ergodic Decomposition Theorem for elements of S(E).

First recall the Ergodic Decomposition Theorem of Farrell and (in-
dependently) Varadarajan, where again below F' is viewed as a genuine
countable Borel equivalence relation on X.

Theorem 4.19 (Farrell [F], Varadarajan [V]). Let F be a countable Borel equiv-
alence relation on a standard Borel space X. Then

EIp = {o € P(X): o is invariant, ergodic for F'}

is a Borel set in the standard Borel space P(X) of probability measures on X and
if F admits an invariant probability Borel measure, then ELr # 0, and there is a
Borel surjection m : X — ELp such that
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1. 7 is F-invariant,

2. if X, = {x : w(x) = e}, then e(X.) = 1 and F|X. has a unique invariant
measure, namely e,

3. if u € P(X) is invariant for F, then = [ w(x) du(x).

Moreover, 7 is uniquely determined in the sense that, if 7' is another such
map, then {x : w(x) # 7'(x)} is null with respect to all invariant measures for
F.

The proof of this result is effective and therefore, in combination with
Proposition 4.18, shows the following:

Theorem 4.20. Let E, R, F' — F*° be as in Proposition 4.18. Let Q C S(E) x
P(X) be defined by

(F,o0) € Q < o€ ELp..
Then @ is Borel, nonempty and there is a Borel set R C S(E) x X x P(X) such

that for each F' € S(E), the section Rp C X x P(X) is the graph of a (Borel)
function 7 which is an ergodic decomposition for F*° as in Theorem 4.19.

(2) The next description is due to Robin Tucker-Drob and the author. It
is motivated by the idea of measurable subgroups, see [Bo, Section 4].

First, without loss of generality, we can assume that X = 2V and F is
generated by a continuous action of a countable group I'. (Recall here that
we identify equivalence relations if they agree a.e.)

Forz € X,F € S(E), define 'Y’ = {g € T': (x,g7! - z) € F}. Then
' eP(T)={aCT:1€a}. ForgeT,ae P(),let ga ={gh: h € a}
anda™' = {h7': h € a}. Put

pr(r) = (z,I]) € X x Py(D).
On X x P;(I') put
(z,a)R(y,b) < Jg€a(g-v=y&ga=0).
Proposition 4.21. R is an equivalence relation.

Proof. This is obvious. O
Proposition 4.22. ¢pp: X — X x Py(T") is 1-1.
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Proof. This is also obvious. O
Proposition 4.23. ¢ (X) is R-invariant.

Proof. Let (z,TE)R(y,b) and let g € T be such that g -z = y, g’ = b,
So (z,9-x) € F, thus (z,y) € F. Now I') = {h: (y,h™" - y) € F} =
{h: (y,h"tg-2) € F} = {h: (z,h"'g-2) € F} = {gp: (x,p™' - 2) € F} =
gip: (w,p™" - x) € F} = gI'y = b,50 (y,b) = pr(y). O

Proposition 4.24. zF'y <= ¢p(x)Rop(y).

Proof. = Let zFy and let g € T be such that y = g - x. That gI' = I'
follows as in Proposition 4.23.

< Let g € I'besuch that g - 2 = y and ¢gI') = T']. Then g~ € '], so
(x,9-x) = (x,y) € F. O

Since p is F-invariant and ¢p is a Borel bijection between X and a
Borel R-invariant subset of X x P (I'), it follows that (¢r). = pp is an
R-invariant probability measure on X x Py (I') .

Remark 4.25. Actually the definition of pr, F' € S(E), depends on picking
an a.e. representative for I but it is easy to check that 1.r is well defined.

Let M be the compact, metrizable space of probability measures on
the compact zero-dimensional space Y = X x P;(I') C X x P(I'), where
P(T') = {a: a C I'} (we identify of course here P(I') with the product space
21'). We first note the following:

Proposition 4.26. {y € M: pis R-invariant} is closed in M.

Proof. For g € T, let N, = {(z,a) € Y: g € a™'}, a clopen subset of Y. Let
Il'acton X x P(I') by g - (z.a) = (g - z,ga). Of course Y is not invariant
under this action but note that g - N, C Y. It is enough to show for € M
the following:

Claim. For 1 € M, pis R-invariant <= VgV clopen N C N, (u(N) =
(g - N)).

Granting this claim, it is clear that {¢x € M: p is R-invariant} is closed
in M.

Proof of the claim. = Fix N C N, N clopen. Then N 3 ¢+ ¢ -tisin
[[R]], so u(N) = pu(g - N) follows.
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< Let p: A — B be in [[R]], in order to show that p(A) = u(p(A)).
Now ¢ = || cr g, 091 Ay = By, A = |,cr Ay B = [ er Bys Ay» By Borel
and A; € Ny, ¢,(y) = g-yfory € A, Itis thus enough to show that
w(By) = p(4,). Since A, C N, it is enough to show that for every Borel
set A C Ny, p(A) = p(g- A). Let B={A C N,: Ais Borel and p(A) = u(g -
A)}. By hypothesis B contains the algebra of clopen sets contained in (the
clopen set) N, and clearly B is closed under relative complementation in
N, and under countable disjoint unions, so B contains all the Borel subsets
of N,. O

Define now ®: S(E) - M by ®(F) = pp = (¢r) .

Theorem 4.27. The map ®: S(E) — M is a homeomorphism of S(E) with a
(necessarily) G5 subspace of M.

Proof. (a) ® is continuous: It is enough to show that for each clopen rect-
angle U x VinY = X x P;(I'), the function

F e S(E) = (pp)u(U x V)
is continuous. Now V is a finite disjoint union of sets of the form
W={acP():gi'€ak ... &g, ' ca&khi'dak...&h, &a}
for g;, h; € T, so it is enough to show that
FeS(E) = (or)p(U x W)
is continuous. We have
(0r)ept(U x W) = plpp' (U x W))
=pu({z:xcU&g el &.. &gt elt
&hitgTh& .. . &h,' ¢
=pu{z:zelU&recA,r&k...&xel, r
& ¢Ah1,F&--~&x ¢Ahm,F}>

—w(UNAypN---NAy p
NX N\ App) N0 (XN Ap,, 0)]-

This function is continuous in the (strong) topology of S(E), so ® is con-
tinuous.
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(b) @ is 1-1: For Borel B C X,g € I', let N,p = B x {a € Pi(I') :
gt € a}. Then up(N, ) = u(BN A, r). Thus ®(F) = (F”) implies that
w(BNAyp)=pu(BNAy ) forany B,g,s0 Ay p = Ay pr and F = F".

(c) @~ is continuous: We check that

/QLFn%MFan—)F

Let D be the collection of clopen sets in X, so that D C MALG is count-
able dense in MALG. Then for D € D, N, p is clopen in X x P;(I'), so

pr, (Ngp) = pr(Nyp). Thus u(DNAyr,) = p(DNAyr)forall D € D, g €

I', therefore, by Proposition 4.14, A, p, MALG Agp forall g € T, and so

F, — F. O]

Thus the topological space S(E£) can be identified with a G5 subspace
of M and this gives another description of the topology of S(E).

(3) The final description is due to Peter Burton.

Let I' be a countable group and let A(I', X, ) be the space of mea-
sure preserving actions of I' on (X, it). Denote by (A(I", X, u1), u) the space
of measure preserving actions of I" on (X, 1) with the uniform topology
u (see [K, Section 10, (A)]). Here we consider the product topology on
Aut(X, u)", where Aut(X, ) is given the uniform topology. The space
A(T, X, p) is then viewed as a closed subspace of Aut(X, )" in this prod-
uct topology. Given an equivalence relation £, we denote by A(I', E) =
A(T, [E]) the subspace of A(I", X, i) consisting of all a € A(T', X, i) “con-
tained” in £, i.e.,, Vy € I'(y* € [E]) (see [K1, Section 6]). Then A(T', E) is
separable and closed in (A(T', X, 1), u), so a Polish space in the uniform
topology.

Consider now the case I' = F, the free group with a countably infinite
sequence of free generators (;). Then a complete compatible metric for
(A(T, E),u) is given by

S(ar, ag) =27V d, (11, 472),
=0

Fix a generating sequence of involutions (7;) for E. Then the following is
a compatible metric for the topology of S(FE)

p(Fy, Fy) =) 27V p(Ar, n AAz,p,)

1=0
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(see Section 4.2).

Note that the metric p is complete. Indeed if (F),) is a p-Cauchy se-
quence, then for each i, (Ar, 5, ). is a Cauchy sequence in the usual metric
of MALG given by 1(AAB). The argument in the proof of Proposition 4.11
shows then that for each 7' € [E] the sequence (At p, ), is Cauchy in the
metric of MALG and thus converges to some Ar. Then the argument in the
proof of Theorem 4.13 shows that there is an F' € S(E) such that F,, — F.

We define a map V: S(E) — A(F, F) as follows: We let ¥(F) = q,
where the action a is defined by letting 7¢(z) = T;(x), if T;(z)Fz, and
v (x) = x, otherwise. Denoting by F, the equivalence relation generated
by an action a, we have that ' = Ey 5.

Theorem 4.28. U is an isometric embedding of (S(E), p) onto a closed subspace
of (A(Fw, E),9).

Proof. To show that ¥ is an isometry it is enough to check that for each ¢,
and each Fy, Fy in S(E) with V(F}) = a1, V(F32) = az, we have

{z: " (2) # 7% (2)} = A, ., AA7 B,

which follows easily from the definitions. Finally the range of V is closed,
since the metric ¢ is complete. O

Therefore the topological space S(E) can be identified with a closed
subspace of (A(Fw, E), u).

4.5 Continuity of operations

We discuss here the continuity (or lack thereof) of various operations in
S(E).

The operation (F}, Fy) — Fy N F, from S(E) x S(E) to S(E) is continu-
ous. The relations F; C F, and F; L F; (see [KM, Section 27] are closed in
S(E) x S(E). Moreover the map (F, Fy) — Fy x I, from S(E;) x S(E) to
S(E; x Es) is continuous. Finally the map

(F,A) € S(E) x MALG — F|A € S(E),

where F|A = {(z,y): (z,y € A& xEy) V x = y}, is continuous.
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One the other hand, the operation (£, F3) — Fy V F, from S(E) x S(E)
to S(E) is not continuous, if E is aperiodic. (Here F; V F; is the smallest
equivalence relation containing both Fi, F;.) To see this, first find S €
[E] which is aperiodic, see [K4, 8.16]. Let F,, = Eg:n, so that the F,, are
decreasing and (), F,, = id, where id is the equality relation on X, thus
F,, — id. Let also F' = Fgs. Since for each n, 2" and 3 are relatively prime,
it is clear that F}, V F' = Fg. On the other hand id V F = Fgs # FEg.

Proposition 4.29. The operation (F, Fy) — FyV F;, from S(E) x S(E) to S(E)
is of Baire class 1.

Proof. For each T}, T, € [E] and F € S(E), let
Ay 1, p = {22 (Ti(2), Ta(x)) € F}

(so that Arp = Ajurr). Since Ap g, p = Ty 1(AT2T;1, ), it is clear that
F — Aq, 1, r is continuous for every 73,75 € [E].

In order to prove the proposition, it is enough to show that for any
T € [E],a < BinR,

{(F, ) o < p(Arpvr,) < B}

is F,. Let (T});en be a generating sequence for £.
Let

T &€ A%F17F2 = dm S nEIil, . ,i2m+1 S n(a; € ATiliFl &
v €Ar, 1,5 & .. &1 €A &

2m?

T"i2m+17

xEAT

2m+1 7T7F2 ) °

n n+1 _ n
Then A} 1, 5, € A7p p, and Arpve, = U, AT gy 5y SO

WA pvr,) >y = In(u(Arp p) > 7)-

Since A} p, p, is equal to

T mn N A T.F),

U U (AT'LPFI N ATil yTig F2 N---N ATZ‘

MmN 11 ,..,02m+1<N

2m’’" 2m+41? 2m+17?

the map (F1, F2) — A% p, g, is continuous and thus the set {(F1, F2): v <
p(Az rvr, )} is open, for every v € R. It follows that

{(F1, F): (Arpvm) < B} = S(E)* \{(F1, F2): V(B — 2 < u(Armvr,))}
is F, and so {(F1, Fs): a < p(Arpvr,) < B} s F. O
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4.6 The uniform topology

We will next discuss a stronger topology for S(E). Recall that the topology
on S(FE) is the smallest topology making the functions ' — Ar g, T € [E],
from S(£) to MALG, continuous. It is also the smallest topology making
the functions F' — u(Arr),T € [E], from S(F) to [0, 1], continuous. This
topology is induced by the equivalent metrics:

T(F1, Fy) = ) 27 (A, AAr, ),

i=0
T/(Fla F2> = Z 27(i+1) ‘/’L(ATi:Fl) - M(ATi,Fz)‘ )
=0

where (7});ey is a dense sequence in [E]. Consider now the following two
metrics:

Too(-Fla F2) = sup ,U/(ATi,Fl AATZ-,FQ) = sup N(AT,FlAAT,F2>a
i Te[E]

oo (F1, Fo) = sup |u(Aq, p ) — (A, p,)| = Su[p} lW(Arr) — p(Arg)| -
7 TelE

Proposition 4.30. 7. < 7, < 37..

Proof. Clearly 7., < 7. Let now 7. (Fi,F;) = a. We will show that
Too(F1, F2) < 3a. We have that |u(Ar g ) — p(Arp)| < a, forallT € [E], so
in particular for S € [Fi], 1 — p(Asp,) < a,ie., d(S, F>) < a. Now given
T € [E], thereis S € [Fi]such thatz € App, = S(z) = T'(x) (see Propo-
sition 4.2). Then by the last two paragraphs of the proof of Theorem 4.15,

WAz \ Arp,) < d(S, Fy) <a
and also
W Ar e \ Arry) — (Ar e, \ Arp) = W(Arr) — Az s,),

therefore
w(Ar e \ Arr) < p(Arp \ Argy) +a < 2a,

SO N(AT,FlAAT,F2> S 3CL, thus Too(Fh FQ) S 3a. ]
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Thus 7., 7, induce the same topology, which we call the uniform topol-
ogy of S(E). It clearly contains the topology of S(E). It is easy to see
that the metric 7., (or equivalently 7/ ) is complete. Indeed let (F},) be
Too-Cauchy. Then it is also 7-Cauchy (where we can assume that 7 is de-
fined using a countable dense subgroup of [E]), so, by the proof of The-
orem 4.13, there is F' € S(FE), such that F,, — F (in the topology of
S(E)). Fix now ¢ > 0 and let N be big enough, so that for m,n > N,
we have 7/_(F,,,F,) < e. Let T € [E] and then choose N, > N such
that for m > Ny, |u(Ar g, ) — (Arr)| < e. Then for n > N we have
(A p,) — w(Arp)| < [#(Arr,) — 1A rg) |+ 1A Ry, ) — 1(ATF)| < 26,
thus 7/ (F,, F) < 2e.

However the uniform topology is not, in general, separable.

Proposition 4.31. Let E be aperiodic. Then the uniform topology on S(E) is not
separable.

Proof. Let F' C E be aperiodic hyperfinite. Then there is free Borel action a
of Z5" such that E, = F (see [K4, 8.10]). For I' a subgroup of Z5" consider
the subequivalence relation Er induced by the restriction of the action a
to I'. There are clearly uncountably many such I' and the map I' — Er is
injective. Suppose now that I' is not contained in A and choose v € I" \ A.
Then 1(A,a ) = 1. On the other hand, by the freeness of «, there is no
such that v*(z) = 0%(z), for some 6 € A. Thus p(A,«g,) = 0. It follows
that 7/ (Er, Ea) = 1, thus the uncountable set consisting of the Er’s is
discrete. [

Remark 4.32. Recall the metric o on S(£) defined in Remark 4.17. Then the
topology induced by o contains the uniform topology. In particular, the
uniform topology is separable when restricted to the finite subequivalence
relations of E.



5. Limits of sequences

The following shows how the limit of a convergent sequence in S(E) is
related to the members of the sequence.

Theorem 5.1. Let F,, F € S(E) and F,, — F. Then for each i, there is an

increasing sequernce ng) < ngi) < ..., so that (nﬁffl))meN is a subsequence of

F= U ﬂ Fn](cm)'

m k>m

(n\)men and

Proof. Let {T}}i;en be a countable subset of [F], with T, = id, such that
rFy <= 3i(T;(z) = y). We will define for each i an increasing sequence

i)

nl < n®

<ny’) <...,

so that (nﬁffl))meN is a subsequence of (ng,?)meN and moreover if we put

Rim={) Fo,

k>m

then for (almost) all z,

(z, Ti(z)) € | Rigm-

We construct (n'), recursively on i.
To start with, take n{Y = m. Assume now (nfﬁ)) is defined. We will next
define (ngﬁﬂ)).

Consider T}, € [F]. Since d(T;41, F) =0,
d(Tiyr, o) = p{z: (z, Tia(2)) € Fu}) = 0,

33
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so we can find a subsequence (nl:™") of (n'y)) with 1u(A,,) < 2=, where
Ay =A{z: (2, T (2)) € F o0}

Thus, by the Borel-Cantelli Lemma, y(lim,,4,,) = 0, where lim,,4,, =
My Uksm Ak~ Therefore, p(lim,,(~ A,,)) = 1, where

lim,, B, = | [ Be.

m k>m

i.e., for almost all z, there is m such that for all k£ > m, (2, T;11(x)) € anu),
thus (z, Tj11(2)) € U,, Rit1.m-

Now note that R;,, C Rit1,, and R;,,, C Rim41, thus R, C R;,, if
i < j,m < n. SoletR,, = R,,. Then clearly Uzm Rim = U,, Rm and
Ry C Ry C .... Finally if (z,y) € F, then for some i,y = T;(x), so (z,y) €
U,, Rim €U, R, ie, F C,, Rn. Wethushave FF C |, mk:Zm Fnim).

We will now verify that conversely

Let T € [R] in order to show that T € [F]|. We have Vax3dm|(x,T(z)) €
ﬂkzm Fnzm)]. Let

A, = {x: (x,T(x)) € ﬂ Fn](vm}a

MALG
so that |J,, A, = X. Now F o — Fask — oo,80 Arp . — Arr.
k "

Since A,, C Arp ) for all £ > m, by taking limits as k¥ — oo, we obtain

A, CArpie,x € Ap = (x,T(x)) € Fand so (z,T(z)) € F forall z, i.e.,
T € [F). O

Although the preceding result is sufficient for the subsequent applica-
tions, Le Maitre in [LeM1], showed, using the description of the topology
in Section 4.4, (1), that one has the following stronger form of Theorem 5.1
(similar to Theorem 5.6):
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Let F,,, F € S(E) and F,, — F. Then there is an increasing sequence ng <

ny < ...,so that
F=J) Fu

m k>m

For R a class of measure preserving countable Borel equivalence rela-
tions on (X, u), let

‘&:{ﬂﬂﬁ%QﬂQ“wEeR}

and

‘&:{Uﬂﬁ%gﬂgnwEER}

Theorem 5.2. Let R C S(F) be closed under finite intersections. Then

R = (Ry)r.
(where R is the closure of R in S(E)).

Proof. Clearly (R;); C R. The converse follows from Theorem 5.1, noting
that ;> F ) can be written as a decreasing intersection of relations in
- k

R. O

Put
R* = (Ry)s.

The preceding shows that if R C S(F) is closed under finite intersections,
then R* = R and thus (R*)* = R*. Also note that if R is hereditary, i.e,
closed under subequivalence relations, then R = R* = R.

For any class R of measure preserving countable Borel equivalence
relations on (X, ;1) closed under finite intersections (not necessarily con-
tained in some S(E)), we have that if ' € (R*)*, then for some large
enough £, F' € (R})* withRg = RN S(E),so F € R},. Thus (R*)* = R".

This has the following implication about arbitrary hereditary classes of
equivalence relations (not necessarily within a fixed S(£)). It was origi-
nally proved (in a somewhat stronger form not requiring invariance of the
measure) in Boykin-Jackson [B], page 116].
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Corollary 5.3 (Boykin-Jackson [BJ]). Let R be a hereditary class of measure
preserving countable Borel equivalence relations on (X, p). Then Ry is closed
under taking unions of increasing sequences of relations, i.e., (Ry)r = R4.

Proof. Let S, € R4+,5% € Sy C ...,E =, Sn. Thenif Rp = S_(E)ﬂ
R, we have that (Rg)r = S(E) N Ry and S, € (Rg)s, so E € Rg, by
Proposition 4.6, and thus £ € R;. O

Put also
Ri = (Ri)y-
If R is closed under finite intersections, then R, C R = R*.

Problem 5.4. If R is closed under finite intersections, is it true that R, = R*?

We also have the following corollary of Theorem 5.1. Recall that id is
the equality equivalence relation.

Corollary 5.5. If F,, € S(E), F,, — id, then (,, F,, = id.

Proof. By Theorem 5.1, there is an increasing sequence (n;) with (), F,,, =
id and thus (), £, = id. O

We finally note the following for the uniform topology.

Theorem 5.6. Let F,, F' € S(E) and F,, — F in the uniform topology. Then
there is an increasing sequence nop < ny < ..., so that

F=JM Fu.
m k>m

Proof. We have

sup IU’(X \ AT,F,,,) — 07
TEe[F]

therefore let ny < n; < ... be such that for every T" € [F|, (X \ Arp, ) <
27(m*1)_Then for every T € [F], u(lim,, (A7 5, )) =1, so for every T € [F]
and (almost) all z there is m such that for all k > m, x € Ay p, ). It follows

that
FclJ Fu

m k>m

The reverse inclusion follows as in the last part of the proof of Theorem 5.1.
O]



6. The space of equivalence
relations

We discuss here a topology on the space of all measure preserving count-
able Borel equivalence relations.

6.1 Coherence of topologies

We consider now the relation of the topologies of S(E), S(F), when E C F.

Theorem 6.1. Let E C F'. Then S(F) is a closed subset of S(F') and the topology
of S(E) is the relative topology from S(F).

Proof. From Theorem 5.1 it is clear that S(F) is a closed subset of S(F').
Let 7 be the relative topology of S(E) and let o be the topology of S(E).
We will use the description of the topology of S(E) from Section 4.4, (1).
Let Mg, My be the corresponding measures and let vy be a probability
Borel measure equivalent to AMp. Then vp(E) > 0, so let vz be the nor-

malized measure on £ given by vg(W) = ’;i ((VEV)), for Borel W C E. Then,
since Mp is simply the restriction of My to E, clearly vy is equivalent to
ME. It follows that the identity map is a homeomorphism of (S(E), 7) with

(S(E),0),soT =o0. O

Denote by £ the set of all measure preserving countable Borel equiv-
alence relations on (X, ;1) (where again we identify two equivalence rela-
tions if they agree a.e.). Thus & = |z S(E). By the preceding Theo-
rem 6.1, the topologies on S(E), S(F') agree on S(E) N S(F) = S(ENF)
and S(E N F) is closed on S(F) and S(F'). So we can define the weak
topology on &£ induced by the spaces S(E), which is the topology on &
defined by declaring that U C £ is open iff U N S(F) is open in S(E) for

37



38 6. The space of equivalence relations

all £ € £. In particular f: £ — Y, Y a topological space, is continuous if
fIS(E): S(E) — Y is continuous for all E € £. Also on each S(F) the rel-
ative topology from £ coincides with its topology and S(E) is closed in £.
(For the general concept of weak topology on a set induced by topologies
on families of subsets, see, e.g., [D, VL8].)

We should also note here that for £ C F, S(F) is a retract of S(F), with
the retraction given by the map R € S(F) — RN E € S(E). From this
it follows that the map £ € S(F) — S(E) € F*(S(F)), where F*(S(F))
is equipped with the Effros Borel structure, is a Borel map. To see this fix
a countable dense subset {F,,: n € N} of S(F). Then {E N F,: n € N} is
dense in S(FE) and the map ®: S(F) — S(F)" given by ®(E),, = ENF,
is Borel and gives for each £ € S(F) a dense sequence in S(£), which
implies that the map £ € S(F) — S(E) € F*(S(F)) is Borel. On the other
hand, we do not know if the map £ € S(F) — {G € S(F): E C G} €
F*(S(F)) is Borel.

Finally we point out that each space S(E) is contractible (to the equality
relation) by the map ¢: S(E) x [0,1] — S(E) given by ¢(F.,t) = F|[1,1 —
t|U{(z,x): z € (1—t,1]}, where without loss of generality we assume that
X =[0,1] and y is Lebesgue measure.

Remark 6.2. The question of the Borelness of the map E € S(F) — S(F) €
F*(S(F)) is a special case of the following more general question: Let X
be a Polish space and < a closed (as a subset of X?) partial ordering on X.
Isthemapzr € X — [, = {y € X:y <z} € F*(X) Borel (where again
F*(X) is equipped with the Effros Borel structure)?

The answer is in general negative. To see this, fix a Polish space ¥ and
a closed subset F' C Y? such that Vy € Y3z € Y(y,2) € F but there is
no Borel function f: Y — Y such that Vy € Y(y, f(y)) € F (see, e.g., [K,
Exercise 18.17]).

Let Y* = @,.,Y" be the direct sum of the Y". Thus each Y" is
clopen in Y. Let X C Y be the closed subset of Y* consisting of Y =
{(y): y € Y}, and for each n > 2 of all (v1,...,y,) such that (y,—1,y,) €

F7 (yn—QayTL—l) € Fu"‘»(yhyQ) S F.
Finally define on X the partial ordering

S=(S1,...,8) <t=(t1,...,tm) <= n>m&s 2Dt

This is closed in X. Suppose now, towards a contradiction, that the map
x + I, is Borel. Define K: Y — F*(Y?) by K(y) = I,y N (X NY?). Since
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X NY?is clopen in X, this is also a Borel map. Now
K(y) ={(u,v) €Y?: (u,0) € F&u=y}={y} x F,.

Since K is Borel, there is a Borel map ¢: Y — Y such that ¢(y) € K(y) and
so there is a Borel map f: Y — Y such that f(y) € F,, contradicting our
assumption about F'.

On the other hand, it is easy to see that if < is a closed pre-linear or-
dering on a Polish space X, then the map = +— I, is Borel. Indeed for
each openset U C X, let Py = {z € X: I, NU # 0}. We will check
that P is Borel, in fact either open or closed. For that notice that for each
r € X, theset J, = {y € X: 2 < y}is open. Then if U has a least ele-
ment ug, Py = {z: up < z} is closed, while if U has no least element, then
Py =,y Jo is open.

6.2 Properties of the weak topology

We will next give another description of the weak topology of £. Consider
the compact space [0, 1]4"(*X:#) with the product topology. Define

IT: € — [0, A
by II(F)(T) = d(T, F). Since [F| = {T": d(T, F') = 0}, clearly II is injective.

Proposition 6.3. The map 11 defined above is a homeomorphism of £ with a
subspace of [0, 128X,

Proof. Below denote by 7 the weak topology of £. We first verify that II is
continuous. Let V = (), V; be a basic open set in [0, 1]A%(*#), where V; =
{p € [0,1]AX0): p(T;) € Uy}, with U; open in [0,1] and Ty, T3, - -+ ,T), €
Aut(X, ). Then

MY (V)={Fe&: dT,F)cU,1<i<n}.

Let ' € Ebesuchthat T; € [F] forall 1 < i < n. Then II"'(V) N S(F)
is open in S(F). Since for each E € & there is such an F' containing F,
it follows from Theorem 6.1 that II"!(V) N S(E) is open in S(F) for each
F €&, 5017 Y(V) is T-open.

Conversely, we show that II sends 7-closed sets to closed subsets of
I1(€) (in its relative topology from [0, 1]Au(X:0), 5o 1! is also continuous.
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Fix F C & which is 7-closed. Let (F;);c; be a netin F and F' € & be
such that II(F;) — II(F), i.e., d(T, F;) — d(T, F),¥T € Aut(X, ). We will
show that F' € F.

We inductively define an increasing sequence £, C E; C ... of ele-
ments of £ and for each n € N a countable dense subset {7} }xen of [E),]
such that {17 }reny € {17 }ren, as follows:

(i) Eo = F, {T? }1en is some dense subset of [Ey],

(ii) Given E,,, {1} } ken, for each [ > 1, finite sequence m = (my,...,m;) €
N, and e € Q*, find %, € F such that

(T F) —d(Tp  Fr )| <e,1<i<lL

Put
En+1 = En \4 (\/ F%,e)?

where for a sequence of equivalence relations (£}), \/; F} is the smallest
equivalence relation containing all Fj. Finally let {7]"'}1cn be a dense
subset of [E,, 1] containing {7} }xen.

Let E = |, E,. Since F N S(FE) is closed in S(E), it is enough to show
that £ is in the closure of 7 N S(E) in S(E). Since {1}’ },x is dense in [E],
a basic open nbhd of F' in S(E) is of the form

U=({F €S(E): [d(S;, F') = d(S;, F)| < e},

i=1

for some Sy,...,S;, € {TI}'},r and € € QF. Then for large enough n, we
have that Sy,..., 5 € {I}'}x,say S; =T}, ,1 <i <. Putm = (my,...,my).
Then by construction F; . € F N U and the proof is complete. [

Thus € can be viewed as a subspace of [0, 1]*"X:#), so, in particular, it

is Hausdorff. On the other hand it is neither separable or first countable.
Proposition 6.4. The weak topology on £ is not separable.

Proof. The closure of any countable set {F,,} C & is clearly contained in
SV, Fn). O

Proposition 6.5. The weak topology of £ is not first countable.
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Proof. We will use the following lemma. Recall that for 7" € Aut(X, pu), Er
is the equivalence relation generated by 7.

Lemma 6.6. Let ' € £,51,5,--- € Aut(X,p) and T € Aut(X, ) be such
that Ep L (FV (\/;2, Es,)). Then for every i > 1, d(S;, F V Er) = d(S;, F).
Proof. By definition of L, As, pvi, = As, p. O

Assume now, towards a contradiction, that £ is first countable. Fix
F € &£ and let {U,} be a local basis at F. Then, for each n, there is a
sequence T, ..., 7' € Aut(X,u) and open sets V;",..., V" in [0, 1] such
that

kn
Fe({F:dT, F) eV} CU,.
=1
Let R =FV V. neny B The set {T' € Aut(X, u): Er L R} is comeager

in the weak topology of Aut(X, i) (see Conley-Miller [CM, Theorem 8§]),
so fix aperiodic 7" € Aut(X, u) with E7 L R. Then d(T', F) = 1. Put

U=A{F'€&:dT,F") > ¢},
where 0 < ¢ < 1. Then F € U, so for some n, F' € U, C U and thus
Fe N {F:dT F)eVr}y CU.Put F' = FV Ey. Then, since Ep | R,
we have by Lemma 6.6 that d(T", F') = d(T", F), therefore d(T*, F') € V"

forl1 <i <k, Thus F' € U, C U,sod(T,F’") > e ButT € [F'], so
d(T, F') = 0, a contradiction. O

6.3 Parametrization by actions
To see another aspect of the global structure of £, consider the Polish space
A(Fo, X, 1v) with the weak topology. The map a — FE, is a surjection from
A(Fo, X, 1) to £ and provides a canonical parametrization of £. Let

a ~g b <— E,=E,

be the associated equivalence relation, so that £ = A(Fo., X, 1)/ ~r.. -

Proposition 6.7. ~y__ is F,;.
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Proof. We use below letters 3, v, 0 for elements of F, and a, b for elements
of A(Fo, X, it). We will verify that the negation of ~y__ is Gs,. For this it is
enough to check that for each v, € > 0 the relation

P(a,b) <= p({z: ¥o(y"(z) # 8"(x))}) > €

is G5 and for this it suffices to check that for each fixed 4, ..., d, the rela-
tion
Qa,b) <= p({z: V1 <i<n(y(x) #6;(2))}) > €

is G5. Since the maps a — [ from A(F., X, p) to Aut(X, i) (with the
weak topologies) are continuous, this reduces to showing that the relation
R C Aut(X, p)"*! given by

n

R(T,Sy,...,Sy) <= p([)supp(T~'S:) > e

i=1
is GGs, where as usual
supp(T') = {z: T(x) # x}.
This is clear, since the map
(Uy,...,U,) € Aut(X, u) — (supp(Uy),...,supp(U,)) € MALG"
is of Baire class 1 (see [K, page 4]). O

Below let . be the equivalence relation on PN, where P is an un-
countable Polish space, given by

(%) Eetple(Yn) <= {x,: n € N} ={y,: n € N}.

It is well known that this is a non-smooth equivalence relation and more-
over it is Fis-complete (as a set of pairs). Below for Borel equivalence
relations E, F' in Polish spaces X,Y, we let E <, F mean that there is a
continuous reduction from £ to F'.

Theorem 6.8. E.inie <.~r., S0, in particular, ~y_ is F,s-complete (as a set of
pairs) and non-smooth.
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Proof. Let R, C Aut(X, )" be defined by
Rn(TI, e 7Tn) <~ V1 << TL(E'E 1 ETlv---vTi—lvTH—l 77777 Tn)'

By Conley-Miller [CM, Theoem 8] and the Kuratowski-Ulam Theorem,
a simple induction on n shows that each R,, is comeager in Aut(X, u)".
Thus by the Kuratowski-Mycielski Theorem (see [K2, 19.1]), there is a Can-
tor set P C Aut(X,u) so that for any distinct 73,...,7,, € P we have
R, (Ty,...,T,).

Define now f: PN — A(F., X, u) by f((T})) = a, where v¢ = T;, with
(v;) free generators of F,. Clearly f is continuous and a reduction of E.e
to N+ ]

It can be also shown that ~p_ is Borel reducible to an equivalence rela-
tion induced by a Borel action of a Polish group. In fact, by using a slightly
different parametrization of £, the associated equivalence relation is again
F,s and induced by a continuous action of a Polish group (see Tornquist
[T, page 33]).

The preceding show that it is not possible to find a “definable" injection
of £ into a standard Borel space, so in particular £ does not admit any
“definable" separable metrizable topology. The following remains open:

Problem 6.9. What is the complexity of the equivalence relation (as a set of pairs)
on the space A(T', X, ) (in the weak topology) given by

a ~r b <— Ea = Eb,
for other groups I, e.g., I' = 7.2

Problem 6.10. Determine the complexity of the equivalence relation ~y_ in the
hierarchy of Borel equivalence relations under Borel reducibility.

6.4 The inclusion poset

We finally note an interesting property of the poset (£, C). We start with
the following simple observation.

Let (P, <) be an upper semilattice having the following two properties:
(i) there is no strictly increasing w; sequence in P and (ii) every increasing
w sequence in P has a least upper bound. Then for every function f: P —
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P and every p € P, there is ¢ > p such that f(¢) < ¢. Indeed if this fails,
then for some py and all ¢ > p, we have that ¢* = ¢ VvV f(q) > ¢, which
using (ii) above produces a strictly increasing w, sequence. Moreover note
that if f is w-continuous, i.e., for any increasing sequence (p,) we have
that f(lub p,) = lubf(p,), then the set {p € P: f(p) < p} is w-closed, i.e.,
closed under suprema of increasing sequences, and cofinal.

In the following paragraph, we work in ZF + DC + AD.

By a result of Harrington [H] there is no injective w; sequence of Fs
sets and thus condition (i) above holds for (£, C). Clearly condition (ii) is
also true. Thus for every f: £ — £ and every E € &, thereis F' O E, with
f(F) C F. An interesting example of such an f is defined as follows. Fix
a measure preserving bijection ¢ of X? (with the product measure) with
X and let f(£) be the image of £ x E by ¢. Clearly f is w-continuous.
It follows that there is an w-closed, cofinal set of £ for which F x E is
isomorphic to a subequivalence relation of E.

We work next in the stronger theory ZF + DC + ADg.

Let for any uncountable Polish space Z, Py, (Z) be the set of all count-
able subsets of Z. Solovay [S] has shown that the set Py, (Z) admits a
non-principal, countably complete ultrafilter ¢/ defined by:

A €U <= A contains an w-closed, cofinal subset.

(Here a subset C' C Py, (Z) is called w-closed if for any S, C S; C ..., with
S, € C,Vn, we have that |, S, € C. It is cofinal if for any S € Py, (2)
thereis 7' e C' with S C T)

We can use this to define a non-principal, countably complete ultrafil-
ter on £ as follows: For each S € Py, (Aut(X, p1)), let Eg be the equivalence
relation generated by S. Then for every R C &, put

R el — {S:EsER}Eu.

It is easy to see that if R C £ is w-closed and cofinal in (£, C), then R €
Ug, thus Ug contains the countably complete filter of sets containing an
w-closed, cofinal subset of £. The following is open:

Problem 6.11. Is the filter generated by the w-closed, cofinal subsets of £ an
ultrafilter? Equivalently, is Ug equal to that filter?

In any case, the ultrafilter s provides a natural way to define a notion
of “largeness" for sets of equivalence relations. For example, the class of
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ergodic equivalence relations is “large", i.e., belongs to U (and we will see
in Chapter 11 that so is the class of richly ergodic ones, being w-closed,
cofinal). On the other hand, the class of hyperfinite equivalence relations
is “small", i.e., is not in Us.

Remark 6.12. The above can be also viewed as results concerning “defin-
able" functions and sets in £, where we interpret “definable" as meaning
“belonging to some inner model of ZF + DC + AD or ZF + DC + ADg con-
taining the set of reals R" and working in a strong enough large cardinal
extension of ZFC .

We conclude this section by pointing out the following unboundedness
property of £: There is no F € £ such that for every F' € £ there is a
subequivalence relation F” of E which is isomorphic to F. This follows
from a result of Ozawa, see [K, page 29].
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7. Relations with the space of
actions

Let I" be a countable group and let (A(I', X, 11), u) be the space of measure
preserving actions of I on (X, i) with the uniform topology v and consider
its closed subspace A(I', E). For each a € A(I', E), let E, € S(E) be the
equivalence relation induced by a. We also let Er, 1, . be the equivalence
relation induced by 71, T, ... in Aut(X, u).

IfI" = Fo., the map a — E, gives a parametrization of S(E) by A(F.., E),
i.e., a surjective map from A(F., F) onto S(E). By Theorem 4.28, and the
paragraph preceding it, we have the following selection result.

gove

Theorem 7.1. There is a continuous map V: S(E) — A(Fw, E) such that for
Fe S(E), Eq,(p) = F.

We now have:
Theorem 7.2. The map a € A(I', E) — E, € S(E) is of Baire class 1.

Proof. A subbasis for the weak topology of S(E) consists of the sets of the

form
{FeS(E):dT,F) € (a,b)},

where T' € D, with D a countable dense subset of [E], and a < b rationals.
It is thus enough to show that

{a € A(T,E): d(T,E,) € (a,b)}
is F,, and for that it suffices to show that for any such 7"and » > 0
{a e AT, E): d(T, E,) > 1}

is closed.
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So assume a,, — a in A(I', E) and d(T, E,,) > r. Let U € E, be such
that d(T,U) = d(T, E,). Then d(T, E, ) < d(T,U) + d(U, E,, ).

Claim. d(U, E,,) — 0.

Granting this » < lim,d(T, E,,) < d(T,U) = d(T, E,).

Proof of claim. Fix ¢ > 0. Find next a Borel partition {4, }7°, of X and
elements {7, };2; of I' with U = | | 7;;|A,. Let NV be large enough so that

Y non H(An) < €. Then let M be large enough, so that d(7{,vj") < +, if
i< Nandn> M. Letfori < N,n> M

B ={z € Ai: 7 () = 7" () }.
Then B} C A; and pu(A; \ B}') < &, so if
p=JauJur\ .

i>N i<N
then u(B) < 2¢. If ¢ ¢ B, then U(x) = ~{"(x) forsome i < N, so (z,U(z)) €
E,, . Thus {z: (z,U(x)) € E,,} C B, so

d(U, E,,) = p({z: (2,U()) € E,, }) < 2¢

for all n > M and we are done. [l

Corollary 7.3. Let I' = F,. Let P be a property of equivalence relations such
that

Py ={a€ A(T',E): E, € P}
is Borel in A(T', E). Then Pr = P N S(E) is Borel in the topology of S(E).
Proof. For F € S(E),

FeP < Jac AI'LE)(E,=F &a € P")
< Vae A(ILE) (E,=F = a€P).

Since a — E, is Borel this shows that P N S(E) is both analytic and co-
analytic, thus Borel. O

In particular, taking again I' = [F, suppose P is a property of equiva-
lence relations such that {a € A(T', X, u): E, € P} is Borel in the topology
of A(T', X, it). Since this is contained in the uniform topology of A(T", X, ),
this set is Borel in the uniform topology of A(I', X, 1) and it follows that
{a € A(I',E): E, € P} is Borel in (the uniform topology of) A(T', E).
Therefore P is Borel in S(E).
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Problem 7.4. For which countable T is the map a € A(T',E) — E, € S(E)
continuous, for each E?

Anush Tserunyan and Robin Tucker-Drob found the first examples that
showed that this map is not always continuous.

(1) (R. Tucker-Drob) Take I' = F, with free generating set {,, }men. Fix
any two transformations S,7" € Aut(X, i) such that Eg vV Ep # Er. Let
E = EgV Er and define a,, € A(T', E) by

o, )S ifm>n,
T = T ifm<n.

Also define a € A(T', E) by ~%, = T for all m. Clearly E,, = E and E, =
Er. Also a, converges uniformly to a. On the other hand, the constant
sequence F,, = E does not converge to E, = Er.

(2) (A. Tserunyan) Take I' = F, with free generating set {7, }men. Let a
be the usual shift action of ' on 2" and E, the induced equivalence relation.
Let T be the measure preserving automorphism on 2" such that 7'(z)(y) =
1 — x(y), for all ¥ € T. Let a,, be the action of I" such that

a ) if m <n,
mn T ifm > n.

Let E be large enough so that all 7%, for all v € I', and T are in [E]. Then
a, — a uniformly but E,, does not converge to E,, since d(T, E,,) = 0 but
d(T,E,) = 1.

(3) (R. Tucker-Drob) Take I' = Z. Let (S,T) be any free action of Z*
on (X, p1) and fix some ergodic equivalence relation £ whose full group
contains the transformations S and 7. Fix also sequences ¢, > 0, ¢, — 0
and k, € N, k,, — oo. By the Rokhlin Lemma for Z? actions, for each n we
can find a set B, = B C X such that the sets S'T7(B), 0 < i,j < k,, are
pairwise disjoint, and satisfy u(C) > 1 — ¢,, where

c= || sTB).
0<4,5<kn
Define the transformation S,, as follows: view powers of the transforma-

tion S as successively moving the block B upward and view powers of T
as moving B horizontally to the right. We thus have a square structure
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consisting of k,-many rows and k,-many columns, and where B is in the
bottom left corner. Define S, to be equal to S on all rows except for the
top. On the top row define

& (2 — TS~ k=1 (g) if v € Sk~1T77(B) where j < k, — 1,
()= TG~ () if x € S*1T*~1(B).

Thus, on C, S, is a cyclic permutation of the blocks {S"T7(B)}o<i j<k,
with Eg, |C' C Egr)|C € E|C. We extend S, to all of X so that it has
period k2 and is in [E]. Then it is clear that S,, — S uniformly. Since (S, T
defines a free action of Z? we have d(T, Es) = 1 — p({z € X : (z,T(z)) €
Egs}) = 1. On the other hand, if x € C' is in any column except the last,
then S* (z) = T(z), so that (z, T(z)) € Es, and thus d(T, Es,) = 1 — pu({z :
(x,T(x)) € Eg,}) — 0. This shows that Eg, does not converge to Es.

Assume now that S is ergodic. We can use the sequence {5, } to define
a new sequence {@,} C [£] of ergodic transformations which converge
uniformly to S and also satisfy u({z : T(z) = Q" (x)}) — 1, so that F,
does not converge to Eg in S(E). Let n, > 0 be chosen so that k,7n, — 0.
Since E is ergodic, any two transformations in [E] of period k2 are isomor-
phic via an element of [E], so by the Uniform Approximation Theorem
(see [K, 3.3]), for each n there exists an ergodic transformation @), € [E]
such that d,(S,, Q,) < é + Ny Then Q,, — S uniformly (since S, con-

verges to S uniformly), and d,(Q}", Si") < kn(iz +10) = - + knttn — 0,
so p({z : T(w) = Qu(x)}) — 1.
It turns out now that we have the following general fact.

Theorem 7.5. Let E be ergodic. Let I' be a countable infinite amenable group.
Then the map a € A(L', E) — E, € S(E) is not continuous.

Proof. By Dye and Ornstein-Weiss (see [KM, 10.7]), let T" € [E] be mixing
and let a € A(T', E) be such that F, = Er. Let S = T?% Then S is ergodic
and Es & Ep. Again by Ornstein-Weiss, there is a free ergodic b € A(T', E)
such that £, = Es. By Foreman-Weiss [FW, proof of Claim 19], there
is a sequence Sy, Sy, -+ € [E, V Ey] = [E,] such that a, = S,aS,;! — b
uniformly. But £, = E, # L. O

We now define a stronger topology than the uniform topology on the
space A(T', X, p1) (see [K, Remark in page 103]). It is induced by the com-
plete metric
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dr.oo(a, b) = supd, (7, vb).
vyel

The main fact is that the map a € A(I', E) — E, € S(E) is Lipschitz in the
metrics Jr ., 7o (defined in Section 4.6). Below recall that [[E]] is the full
pseudogroup of £, i.e., the set of all partial Borel bijections p: A — B with
o(x)Ex,VYx € A. As usual we identify two such partial bijections if they
agree i-a.e.

Theorem 7.6. For any countable group I and any a,b € A(T', E),
Too(Eay Eby) < 8001 (a, b).

In particular, a € A(I', E) — E, € S(E) is continuous from the or -topology
on A(T', E) to the uniform topology of S(E) (and thus to the topology of S(E)).

Proof. We will show that for any 6 > 0,

2
dreo(a,b) < % = Too(E,, By) < 400°.

Assume 6poo(a,b) < % and fix T € [E]. By [K, Remark in page 103],
there is ¢: A — B, ¢ € [[E]] such that A is a-invariant, B is b-invariant,
o(alA)p™ = b|B, u(A) > 1 —166% and u({z € A: p(x) # x}) < 4562
Put
={reA:p(x)=a}={x € B: p(z) =2z},
A"={zx e A:T(x) e A'}.
Suppose now that (z,7(z)) € E, and z € A”. Then there is v € I" such that
v*(x) =T(x),s0,as z,T(xz) € A", we have
(

V(@) =" (e(@)) = o(v"(2)) = o(T(x)) = T(x),

o (z,T(z)) € Ep. Similarly let (z,7(z)) € E, and x € A”. Then there is
v € T such that v*(z) = T(z), so, as =, T'(x) € A’, we have
)

T(2) = ¢ (T(x) = ¢~ (+"(2)) =7"(¢7" (2)) = "(2),

thus (z,7(x)) € E,.

It follows that A7 g, AArp, C X \ A”, and, since A" = A'NT~1(4"), we
have (X \ A”) <2u(X \ A'). Also X \ A’ C (X \ A) U{x € A: p(x) # z},
so u(X \ A') < 166% + 46% = 206°. Thus p(Ar g, AAr ) < 406% and, since
T was arbitrary, 7o (E,, Ey) < 400°. O
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It is known that when I has property (T) the or -topology on A(T", )
coincides with the (uniform) topology of A(T', E) (see again [K, Remark in
page 103]), so we have the following result originally proved by R. Tucker-
Drob:

Corollary 7.7 (Tucker-Drob). IfI" has property (T), then themap a € A(T', E) —
E, € S(F) is continuous.

In view of Theorem 7.5 and Corollary 7.7, one can consider the follow-
ing more precise version of Problem 7.4.

Problem 7.8. Let I be an infinite group. Is it true that the map a € A(I', E) —
E, € S(E) is continuous for every E iff the group I" has property (T).

Finally we have:
Proposition 7.9. Assume a,, — ain A(I', E') and for every T € [E|,
p({x: "T(x)Ex & T'(z)E,,x}) — 0.
Then E,, — E,. In particular this holds if E,, C E,.

Proof. We have to show that for T" € [E],d(T, E,, ) — d(T, E,).
Let now U € [E,] be such that

T(x)E,x = U(x) = T(x) (therefore d(T, E,) = d(U,T))
Let

B, ={z: -T(x)E,, (z) & T(z)E,x}
Cn=Az:T(x)E,,x & U(x)E,, x & —T(x)E,x}

D, ={z: T(x)E,,x & -U(z)E, x & -T(x)E,x}
E,={x: "T(z)E,x & U(x)E,, v & -T(x)E,x}
F,={z: "T(2)E, x & -U(z)E,, x & =T (x)E,z}.

Let by, ¢,,, dy, €n, [, be the measure of these sets, resp.
Then

d(Ta Ean) = bn + e, + fn
d(U, E,,) = by, +dy + [
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and

d(Tan) =c, +d, +€n+fn

Therefore d(T, E,,) — d(T, E,) = b, — ¢n, — d,.

Now as d(U, E,,) — 0 (by the Claim in Theorem 7.2), we have that
b, +d, — 0.

So it is enough to show that ¢, — 0. But

Ch={x:T(x)E,x & U(x)E,,x & -T(x)E,x}
CH{z: T(x)E,,x & -T(z)E,x},

so ¢, — 0 by hypothesis. O
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8. Complexity calculations

We now discuss the complexity of various classes of equivalence relations.
For any class R of measure preserving countable Borel equivalence rela-
tions and any given such relation £, we denote by

Re=RNS(E),

the set of subequivalence relations of E that are in the class R. In particular
Er = S(FE). Recall that an equivalence relation is finite if all its equivalence
classes are finite and hyperfinite if it is the union of an increasing sequence
of finite equivalence relations.

Theorem 8.1. Let H be the class of hyperfinite equivalence relations. Then Hp
is closed in S(F).

Proof. By Theorem 5.2. O

Denote by F, resp., BF the classes of equivalence relations which are
finite, resp., bounded finite (i.e., for some /N each equivalence class has at
most N elements). It follows that

Py = BFp = Ha.

In particular, E is hyperfinite iff 75 is dense in S(E) iff BFy is dense in
S(FE). Italso follows from this that the map £ € S(F) — Hg € F*(S(F))is
Borel (when F*(S(F')) is equipped with the Effros Borel structure). To see
this let { F,: n € N} be a countable dense subset of Fr and let : S(F') —
S(F)N be given by ®(E),, = ENF,. Then ® is Borel and for each F it gives
a dense sequence in Fp, and so in Hg, thus the map £ € S(F) — Hp €
F*(S(F)) is Borel.

Next we calculate the complexity of the class of aperiodic equivalence
relations.
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Theorem 8.2. Let A be the class of aperiodic equivalence relations. Then Ag is a
G set in the topology of S(E). Moreover, if E is aperiodic, then Ag is dense.

Proof. Let {T,,} C [E] be a sequence of aperiodic automorphisms which is
dense in the set of aperiodic elements of [E]. We claim that the following
are equivalent for F' € S(E):

(1) Fis aperiodic,
(2) Ve e QT In(d(T,, F) <),

which clearly shows that the class of aperiodic elements of S(E) is Gs.

(1) = (2). By [K, 3.5], [F] contains an aperiodic 7. Then for each e € Q*
there is n such that d(7,,,T) < ¢, s0 d(T,,[F]) < e.

(2) = (1). Assume (2) and also that (1) fails, towards a contradiction.
Then there is N € N* such that if A = {z: |[z]r| = N}, then pu(A) = a > 0.

Choose n so that d(T,,,F) < 5+%+s and let T € [F] be such that

2(N+1)2

d(T,,T) < 53yy2- Now note that for i < N,d(T;,,T") < 5yt < (V1o
. . 2

so pu({z: Ji < N(Ti(x) # Ti(x))} < Pl . Therefore if B = {x: Vi <

(N+1)2 — 2(N+1)2”/
2(N+1)2

N(T'(z) =T.(z))}, then u(B) > 1 — %,s0 u(AN B) > 0.

Ifz € ANB,thenT'(x) = T'(x), fori < N,so N = |[z]r| > {T"(z): i <
N} =|HTi(z): i < N}| = N + 1, a contradiction.

Finally we prove that Ap is dense in S(E), if E is aperiodic. For that
it is enough to show that if /' € S(E) is finite, then there is a sequence
Fo D Fy 2 ... with F,, € Agand ), F,, = F. Let Y be a Borel transversal
for F.

Note now that if R is an aperiodic equivalence relation, then there is
a sequence of aperiodic R O Ry 2 R; 2 ... such that (R, = id (the
equality equivalence relation). To see this, let 7' € [R] be aperiodic and let
R, be the equivalence relation generated by 72", n = 0,1,2,.... Apply
this now to R = F|Y to find R,, as above and let F;,, = R,, VV F. O

We also have the following calculation concerning the Marker Lemma
(see [KM, Lemma 6.7]).

Proposition 8.3. There is a Borel function Z: Ar — MALG" such that for each
FeAg, Z2(F)o 2 2(F)1 2 ..., W(E(F),) — 0and each =(F),, is a complete
section of F.
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Proof. Use Proposition 4.18 and the proof of the Marker Lemma as in [KM,
Lemma 6.7]. O]

It is clear that BFg is F, in the topology of S(FE) and it is dense if £
is hyperfinite. Moreover if E is aperiodic, so that S(E) \ BFg is dense by
Theorem 8.2, it follows that BFp is in F,, \ G5 in the topology of S(E) for £
aperiodic, hyperfinite. From Theorem 6.1, if £ C F', then the topology on
S(E) is the relative topology it inherits from S(F). Since every aperiodic
F contains an aperiodic, hyperfinite subequivalence relation, we have the
following:

Theorem 8.4. For every aperiodic E, BFg isin I, \ Gs and Ag is in G5\ F, in
the topology of S(E).

Theorem 8.5. The set Fy of finite equivalence relations in S(E) is F,; in the
topology of S(E).

Proof. The proof is a variation of that of Theorem 8.2. Since every equiva-
lence relation is included in an aperiodic one, by the paragraph preceding
Theorem 8.4, we can assume that £ is aperiodic.

First note that for each open set V' C [£], the set

{F eS[E]: [FINV #£0}
is open in the weak topology of S(E). To see this, let

V=T elE]: dT.T,) < e},

for some sequence {7,,} € [E]" and sequence (e,) of positive reals. Then
[FINV £ 0 < 3n(d(T,, F) < ¢,), so the above set is clearly open.

Below let A(E) be the set of aperiodic elements of [E]. We claim that
the following are equivalent for F' € S(E):

(1) F isnot finite,

(2) 3a € QTYN e Nt3S € A(F)
3T € [F)[p({z: Vi < N(S(z) = T'(z))}) > a].
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Granting this, it is enough to see that the expression in the second line
of (2) above defines an open set of F”s (for each fixed S). Let

V ={T € [E]: p({z: Vi < N(S'(z) = T'(x))}) > a}.

Clearly V' C [E] is open and this expression is equivalent to [F] NV # (),
which by the above defines an open set of F”s.

We finally prove the equivalence of (1) and (2).

(1) = (2). Assume that F'is not finite. Let A be an F-invariant Borel set
of positive measure with F'|A aperiodic and let « € Q" be such that p(A) >
a. Let T € [F|A] be aperiodic and let T € [F] be such that T'|A = Tp| A. Let
also S € A(FE) be such that T|A = S|A. Then for each N € N*,z € A, we
have that S%(z) = T"(z),Vi < N, so u({z: Vi < N(S'(z) = T(x))}) > a.

(2) = (1). Assume that (2) is true and fix « € Q* witnessing that.
If (1) fails, towards a contradiction, find N € N large enough so that
p({z: |[z]p] < N}) >1—a. Thenfind S € A(E),T € [F]so that u({z: Vi <
N(Si(x) = T%z))}) > a. Thus there is = so that |[z]r| < N but S'(z) =
T'(z), fori < N. Then N > |[z]r| > {T%(x): i < N} = |{S%(x): t < N}| =
N + 1, a contradiction. O

In an earlier version of this work, the following question was asked:
If E is aperiodic, is Fg in F,s \ Gs, for the topology of S(E)?

The following then provided an affirmative answer when FE is ergodic.
Theorem 8.6. If E is ergodic, then Fy, is in F,5 \ Gs, in the topology of S(E).

Proof. First notice that for any aperiodic E, Fz is not G in the topology
of S(E). To see this, we can assume, by the paragraph preceding The-
orem 8.4, that I is aperiodic, hyperfinite. In this case Ff is dense and
disjoint from the dense G; set Ag, so it cannot be G;. It follows (see [K2,
21.18] and proof of 22.10) that for any aperiodic F, Fp is F,-hard, i.e., for
each F, subset A C Y, Y a zero-dimensional Polish space, there is a con-
tinuous function f: Y — S(F)such thaty € A < f(y) € Fg.

Since every ergodic F contains an ergodic, hyperfinite subequivalence
relation, we can assume as before that E is ergodic, hyperfinite. Since
every aperiodic, hyperfinite equivalence relation is contained in an er-
godic, hyperfinite equivalence relation (see [K, Lemma 5.4]) and all er-
godic, hyperfinite equivalence relations are isomorphic by Dye’s Theorem,
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it is enough to find some aperiodic, hyperfinite equivalence relation £ such
that this theorem holds for E.

Given a sequence of measure preserving countable Borel equivalence
relations (£,) on (X, i), define their direct sum, in symbols ), £, , as
follows: Let Y = || X, be the direct sum of infinitely many copies of
X. On each X,, put a copy p,, of the measure y and define the measure
vonY by v = % strp,. Then put on each Y, a copy E/, of E,, and
let @, E, = U, E,. Clearly @, E, is a measure preserving equivalence
relation on (Y,r). Moreover the map [[, S(E,) — S(&D,, E.) given by
(F,) — €D, F, is a homeomorphism of [], S(E,) with S(,, E,), each
equipped with the weak topology. Moreover, under this homeomorphism
11, 7z, goesto Fg g,

Take now each E,, to be aperiodic, hyperfinite, so that £ = @, E, is
also aperiodic, hyperfinite. Then each Fj, is F,-hard and so [], Fg, is
Fss-hard and thus Fp is also F,s-hard, which completes the proof. O

Recently Le Maitre, in [LeM1], gave a positive answer in general for
every aperiodic E.

Theorem 8.7 (Le Maitre, [LeM1]). If E is aperiodic, then Fg is in F,5\ Gs, in
the topology of S(E).

Let 7 be the class of treeable equivalence relations and let D,,n =
1,2,..., be the class of equivalence relations that have geometric dimen-
sion < n, i.e., can be Borel reduced (a.e.) to a KC,,-structurable Borel equiv-
alence relation, where /C,, is the class of n-dimensional contractible sim-
plicial complexes (see Gaboriau [G1, 3.18], and Hjorth-Kechris [HK, Ap-
pendix D]). Thus D; = 7. Gaboriau [G1, 5.8], shows that D,, is hereditary
and by [G1, 3.17], if E € D,, then §,(E) = 0, if p > n, where (3, is the p-th
L*-Betti number. Recall also from [G1, 3.16], that if F is induced by a free
measure preserving action of (F;)", then f,,(F) = 1.

Let D, p = (Dn)p. Wehave Tp =D1p G Dop G- S Dup & ..., for
any large enough E. This is because an equivalence relation £}, induced
by a free measure preserving action of (F2)"*! is in D, \ D, for n > 1.
That F), € D,,;; follows from [G1, 5.17], and F,, € D,, since §,.1(F) = 1.

Gaboriau [G1, 5.13], also shows that if Ry € R; C ... are measure
preserving countable Borel equivalence relations, with R = |J; R;, then
Bn(R) < lim,f,(R;), thus if all 5,(R;) = 0, we also have that 5,(R) = 0. It
follows that if R; € D,, so that §,(R;) = 0, for p > n, then ,(R) = 0, if
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p > n. Therefore if R € (D,)+, then 5,(R) = 0, if p > n. In particular, if
FE is large enough so that it contains equivalence relations induced by free

measure preserving actions of (Fy)",n = 1,2, ..., then no D, g is dense in
S(E).

Problem 8.8. Let Do, = |J,, Dy Is Do i dense in the topology of S(E) (for
large enough E)?

We also note that for n > 1,(D,,)+ # D,, thus no D, g is closed in the
topology of S(E) (if £ is large enough). To see this, let F;, be the equiva-
lence relation induced by the shift action of F; and let F; be the equivalence
relation induced by the shift action of Z = @@, (Z/2)". Then F' = (F,)" x F},
is induced by a free measure preserving action of (F)" x Z. Gaboriau (see
[G2, 7.3]) has shown that the ergodic dimension of (F2)" x Z is n+1. Recall
that the ergodic dimension of a group is the minimum of the geometric
dimensions of the equivalence relations given by free measure preserv-
ing actions of the group. It follows that the geometric dimension of F' is
> n+ 1, thus F' € D,. On the other hand it is easy to see (see, e.g., [HK,
page 62]) that F' € (D,,)+.

Finally notice that by [G2, 7.3], (a), (D,)+ € D,41, so for every E,
Doo.r = U,, Dne = U, Dngis an F, set.

Problem 8.9. What is the descriptive complexity of each D, p,n > 1, in the
topology of S(E) (for large enough E)? Is Dy  a true F, set?

We will see later in Corollary 19.5 that 7 is analytic in S(E) but it is
not known if it is Borel; see Problem 19.6.



9. Finite and infinite index
subrelations

Denote by Finlndex(E) (resp., InfIndex(E)) the setof all F' € S(E) such
that [E : F] < oo, i.e., every E-class contains only finitely many F'-classes
(resp., [E : F] = oo, i.e., every E-class contains infinitely many F-classes).

Proposition 9.1. The set InfIndex(E) is G5 in S(E) and it is dense if E is
aperiodic.

Proof. Let (1;) be a generating sequence for E. Then the following are
equivalent for F' € S(E):

(i) F € InfIndex(E),
(i) Yk > 03M (u({z: Im < MVi < n=Tp,(z)FTy(z)}) > 1 - 1).
Let
Bryg = U ﬂ(X \ E_l(ATmT;HF))-
m<M i<n

Then .
InfIndex(E) = ﬂ ﬂ U{F W(Bparn) > 1— E}

n k>0 M
Since F' +— p(Bp ) is continuous, this shows that InfIndex(FE) is Gs.
Assume now that £ is aperiodic and let Ay O A; D ... be Borel sets
which are complete sections of E and p(A,) — 0. Given F' € S(E), let
F, = F|(X'\ A,)Uid|A,. Then (F,) is increasing and F' = |J F},, so F;,, — F.
Since each A, meets every E-class in an infinite set, there are infinitely
many F),-classes in each E-class, i.e., F;, € InfIndex(FE). O

Remark 9.2. A similar calculation gives another way to show that Ay is
Gsis S(F) (see Theorem 8.2). Indeed as in the proof of Proposition 9.1, put
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62 9. Finite and infinite index subrelations

Ci,m = {IZ ﬂ(l’) 7£ Tm(l‘)} and DF7MJL = Umgl\/[ ﬂign(C’i,m N AF,Tm)- Then
Ap =N, Niso Un{F: (Dpprn) > 1 — 7} and since F — Dy, is again
continuous, Ag is Gj.

Answering a question raised in an earlier version of this work, Le
Maitre in [LeM1] showed the following:

Theorem 9.3 (Le Maitre, [LeM1]). If E is aperiodic, then InfIndex(E) is
Gs \ F, in the topology of S(E).

Proposition 9.4. The set FinIndex(E) is F,sin S(E). If E is aperiodic, hyper-
finite, then it is also dense.

Proof. Let (T;) be a generating sequence for E. Let
Lpyn =Az: Vi <ndm < M(T;(z)FT,,(z))}.

Then 1
FinIndex(F) = ﬂ Uﬂ{F w(Lpavn) > 1 — E}

k>0 M n
and since the map F' — Lp ), is continuous, this shows that Finlndex(E)
is F, o8-

Assume now that F is aperiodic, hyperfinite. It is enough to approxi-
mate every smooth F' € S(E) by finite index subrelations of E£. Let Y be a
Borel transversal for F. Then E|Y is aperiodic (on Y), so there is aperiodic
S € [E|Y] which generates E|Y. Let F,, = 'V Egn (note that Eg.» is an
equivalence relation on Y, which we can view as an equivalence relation
on X but extending it by equality outside Y). Then (F},) is decreasing,
F, € FinIndex(E) and F,, — F. O

Again answering a question raised in an earlier version of this work,
Le Maitre in [LeM1] showed the following:

Theorem 9.5 (Le Maitre, [LeM1]). If E is aperiodic, then FinlIndex(FE) is
Fy5\ Gso (in the topology of S(E)) iff E has infinitely many ergodic components.
Otherwise it is in F, \ Gj.

We next show that Finlndex(E) is not always dense in S(E).

Theorem 9.6. There is an ergodic E such that FinIndex(E) is not dense in
S(E).
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Proof. Let I' be an infinite property (T) group all of whose proper sub-
groups are finite (such groups exist by a result of Olshanskii, see [DC,
Proposition 2] and [O, Corollary 4]). Consider the shift action of I' on
X = [0,1]" and denote by E the associated equivalence relation. We will
show that this works.

Call F € FinIndex(E) degenerate if there is a Borel partition X =
AgU Ay U--- U A, into sets of positive measure such that

rFy < zBy & Ji <n(x,y € A)).

Such an F'is denoted by E 4 4,...4, ;-
The next fact strengthens the last part of Bowen [Bol, Theorem 1.1].

Lemma 9.7. If F € Finlndex(E), then F is degenerate.

Proof. Let [E : F] = n be the index of F in F, i.e., the number of F'-classes
in each F-class. Let also (¢;);<, be a choice sequence for F' in F, i.e., a
sequence of Borel functions such that for each z, ([¢;(z)]r)i<n is an injective
enumeration of the F-classes in [z]g. Let also 0 : E — S, (= the symmetric
group of n elements) be the associated index cocycle defined by

o(z,y)(i) =j < pi(x)Fo;y).

This of course can also viewed as a cocycle of the shift action of I into 5,
so by Popa superrigidity, see [Po], it is cohomologous to a homomorphism
from I into S,,, which, since I" has no proper finite index subgroups, must
be trivial, i.e.,, ¢ is a coboundary and so by [FSZ, Proposition 1.7], F' is
degenerate. O

Call I € S(FE) relatively smooth, resp., relatively hypersmooth, if
there is a smooth (resp., hypersmooth) Borel equivalence relation R such
that F = ENR.

Lemma 9.8. If F' € S(E) is the limit of a sequence of degenerate relations, then
F is relatively hypersmooth.

-----

Proof. Let F; = E Ai AL be such that ; — F. Then by Theorem 5.1, for
l @ _ . @) (i+1)

each i, there is an increasing sequence n,” < n;’ < ..., so that (nm ’)men
is a subsequence of (ngﬁ))meN and

F= U ﬂ Fnl(cm)'

m k>m
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Put R, = Nism F (. Then Ry C Ry ... and F' = \U,,, Bm- Define for each
- k
m,
fn: X — NN
by
W)
fn(x)(@) =n <= x € A"

Then if
Sy = fm(z) = fin(y),

wehave R,, = ENS,,. AlsoSp C S C...and F =, R =EN,, Sm)
and (J,, S is hypersmooth. O

By a result of Gaboriau-Lyons [GL], there is a free, measure preserving,
ergodic action of F; whose induced equivalence relation F'is in S(£). Then
by the result of Chifan-loana [CI], F is strongly ergodic (see Section 10.2
for the definition of strong ergodicity). We claim that F' cannot be the
limit of a sequence of degenerate relations, thus it is not in the closure
of FinIndex(E). Otherwise, by Lemma 9.8, we would have F' = EN R,
with R hypersmooth, say R = (J,, R,, with (R,) increasing and each R,
smooth. Let f,,: X — 2" be Borel such that 2R,y <= f.(z) = fu(y).
Let F,, = EN R, so that (F),) is increasing and F' = | J,, F,,. By a result of
Gaboriau [G2, Proposition 5.2], there is n and a F),-invariant Borel set A of
positive measure such that F, | A is ergodic. Since f,|A is F},|A-invariant, it
is constant, so F,|A = E|A and thus

F.AC FIAC E|A = F,|4,

i.e, F|A = E|A. But F|A is treeable, so E|A is treeable and, since A is a
complete section for E, £ is treeable, contradicting the result of Adams
and Spatzier [AS]. ]

Remark 9.9. For an arbitrary F, it is the case that ' € S(F) is relatively
hypersmooth iff F' is the limit of a sequence of degenerate relations. One
direction is proved as in Lemma 9.8 (which did not use any particular
properties of E). For the other direction it is enough to show that every
relatively smooth F' € S(F) is the limit of degenerate relations. Indeed. let
R be smooth such that F = EN R and let f: X — 2" be a Borel function
such that xRy <= f(z) = f(y). For s € 2",n € N\ {0}, let N, =
{x € 2: zln = s} and A, = f'(IV,). Consider then, for each n > 0,



9. Finite and infinite index subrelations 65

the degenerate relation F,, determined by the partition {A;}scon. Clearly
Fi D F, D F;2...and F =), F,, so F is the limit of the sequence (F},).

Problem 9.10. For what ergodic E is Finlndex(E) dense in S(E)?

Remark 9.11. In Vaes [Va] and Bowen [Bol] examples are given of ergodic
equivalence relations that do not have proper finite index ergodic sube-
quivalence relations or proper finite index extensions.

Remark 9.12. In Popa [Po, Section 6.6] it is suggested that it might be pos-
sible that the cocycle superrigidity proved in that paper could be extended
to target groups that are closed subgroups of the (infinitary) unitary group
U(H). One can see however that this fails for the infinite symmetric group
Ss, which is a closed subgroup of U(H). Indeed let I', E be as in the proof
of Theorem 9.6. Let F' € S(E) be ergodic, hyperfinite, so that [£ : F| = cc.
Let (¢i)i<eo be a choice sequence for /' in E and let o be the associated
index cocycle, which now takes values in S,,. Assume, towards a contra-
diction, that this is cohomologous to a homomorphism 7: I' = S,.. Thus
there is a Borel map p: X — S, such that

o(x,v-x)=p(y-z)m(y)p(x)".

Put ¢;(z) = ¢p@)6)(z), so that (1;) is also a choice sequence with associ-

ated index cocycle 7(x,v - ) = 7(7), so that ©;(x)F'r()u) (v - ©). Since

Va3i(y;(x)Fx), fix ig such that if A = {z: ¢;,(z)Fx}, then A has positive

measure. By the ergodicity of F', A meets every F-class infinitely often.
Now if z,v-x € Aand xF'v - x, we have

IFwio(x)Fwﬂ(v)(io)(’y . x)F’y . meio<7 : I)
SO
() (io) (V- ) Fig (v - @),
thus 7()(ip) = 7. It follows that
A = {vy: m(y)(io) =0}

is an infinite subgroup of I', so A =T, i.e., Vy € I'(w(7y)(ip) = 7). Then

wio (x)FwW("/)(io)('y : JJ) - wio (7 ) ZL’),
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so x +— 1;, () is a homomorphism of E into F. Since E is strongly er-
godic and F' is hyperfinite, this maps a.e. to a single F'-class, which is a
contradiction, since ;,(x)Ex.

More generally, one can show that if £ is induced by a free, measure
preserving, ergodic action of a countable infinite group I' on a standard
measure space (X, ), if ' € S(F) is aperiodic and the index cocycle of F'
in I is cohomologous to a homomorphism, then there is a Borel decom-
position X = | | X, and infinite subgroups A,, of I' such that if £, is the
equivalence relation induced by the restriction of the action to 4A,,, then
E,| X, = F|X,.



10. Ergodic and strongly ergodic
equivalence relations

We discuss here the complexity of the notions of ergodicity and strong
ergodicity.

10.1 Ergodic equivalence relations

We first calculate the complexity of the set of ergodic equivalence relations
in S(E). We denote by ERG the class of (measure preserving countable
Borel) equivalence relations which are ergodic.

Theorem 10.1. The set ERG, of ergodic equivalence relations in S(E) is G in
S(E).

Proof. We will give two proofs based, resp., in two descriptions of the
topology of S(E) given in Section 4.4.

(1) (with R. Tucker-Drob) In the notation of Section 4.4, (2) we have the
following fact:

Lemma 10.2. The set ERG = {p € M: p is R-invariant, ergodic} is G5 in M.

Proof. The set {u € M: p is R-invariant} is compact, convex and, since
R is a countable Borel equivalence relation, the ergodic measures in {y €
M pis R-invariant} are exactly its extreme points, which clearly form a
Gy set. O

Then
ERGE = CDfl(ERG)

and since ¢: S(E) — M is continuous, ERGg is G5 in S(E).
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(2) (P. Burton) In the notation of Section 4.4, (3), we note that if we
let ERG(F, X, 1) be the set of ergodic actions in A(F, X, 1), then we
have that ERG(F, X, i) is G5 in the weak topology of A(F, X, 1) (see
[K, Proposition 12.1]) and thus it is also G5 in the uniform topology. Since
U is a homeomorphism between S(E) and a closed subspace of A(F, E)
with the uniform topology and for /' € S(E), F = Eyr), we have that
ERGE = V" HERG(Fy, X, 1)), 80 ERGE is G5 in S(E). O

10.2 Strongly ergodic equivalence relations

An equivalence relation F is called strongly ergodic or E(-ergodic iff for
any Borel homomorphism 7: X — Y from F' to a hyperfinite equiva-
lence relation R on Y (i.e., tF2' = 7(x)Rn(z')), there is y € Y such that
7~ !([y]r) has measure 1. By a result of Jones-Schmidt this is equivalent to
the non-existence of non-trivial almost invariant sets for F' (see, e.g., [HK,
Theorem A2.2], in which the hypothesis of ergodicity is unnecessary). We
denote the class of all (measure preserving countable Borel) equivalence
relations that are strongly ergodic by &RG.

We call an equivalence relation F’ anti-E(-ergodic if there is homomor-
phism 7 as above to a hyperfinite equivalence relation for which all preim-
ages of F'-classes are null. Denote by A& RG the class of all anti-Ey-ergodic
equivalence relations.

Proposition 10.3. The set AEyRG is closed in S(E).

Proof. Miller [M, 2.1], has shown that ARG is closed under taking unions
of increasing sequences. It is obvious that it is also hereditary, so by Theo-
rem 5.2 it is closed. [

Theorem 10.4. The set E¢RGy is in the class F, N Gsin S(E).

Proof. Consider S = S(E) \ &RGg. Then clearly ERGr NS = ERGe N
AERGE. Moreover S(E) \ ERGr C S. Thus § = (ERGe N AERGE) U
(S(E)\ ERGE), which is in G5 U F,, by Theorem 10.1 and Proposition 10.3.

[l

Problem 10.5. Are there E for which Theorem 10.4 gives the optimal descriptive
complexity of E§RGE?



11. Richly ergodic equivalence
relations

We first note that for any E, S(E) \ ERGg is dense in S(E). This is because
any F' € S(F) can be approximated by equivalence relations of the form
F|(X \ A)Uid|A, for Borel A of small positive measure, which clearly are
not ergodic.

We discuss here the following problem:

Problem 11.1. For which ergodic equivalence relations E is the set ERGp, dense
in S(E)?

Let us call an ergodic equivalence relation E for which ERGp, is dense
in S(E) richly ergodic. We first show that there exist ergodic but not
richly ergodic equivalence relations. These arise in the context of the so-
called non-approximable equivalence relations, introduced in the paper
Gaboriau-Tucker-Drob [GT].

Definition 11.2. Let E be a measure preserving countable Borel equivalence re-
lation on (X, ). We say that E is non-approximable if whenever E = | J, F),,
where F,, are Borel equivalence relations with Fy C Fy C Fy. .., then there isn
and a positive measure Borel set A with E|A = F),|A.

It is an unpublished result of Gaboriau that if a € A(I", X, u), where
I" is an infinite property (T) group, and a is ergodic, then the equivalence
relation F, is non-approximable. This can be also seen as an application of
[IKT, Corollary 5.4 and Corollary 2.15]. In [GT] the authors also show that
ifa € A(I' x A, X, pu) is a free action, where I', A are finitely generated, and
a|I" is strongly ergodic while a|A is ergodic, then E, is non-approximable.
We now have:

69



70 11. Richly ergodic equivalence relations

Proposition 11.3. If E is ergodic and non-approximable, then E is not richly
ergodic.

Proof. First we show that £ is an isolated point in ERGg. Otherwise there
is a sequence F,, € ERGg such that F;, — E and F,, # E,Vn. By Theo-
rem 5.1, we can write £ = |J,, R,,, with Ry C R; C ..., and for each m,
there is n such that R,, C F,. Since E is non-approximable, there is m,n
and a positive measure Borel set A such that F|A = R,,,|A C F,|A C E|A,
so that E|A = F,,|A. Since E is ergodic, A is a complete section for £. Let
B = [A]p,. Then we also have E|B = F,|B. Since B has positive measure,
is F,-invariant and F,, is ergodic, B = X (modulo null sets) and so E = F,,,
a contradiction.

If now E was richly ergodic, it would follow that E is also an isolated
point in S(E). However it is easy to see that S(FE) is perfect, i.e., has no
isolated points. This follows from the remarks in the first paragraph of
this section. O

We will next see that in some sense most E are richly ergodic (see the
paragraph following Problem 6.11 here). If £y C E; C ... is an increasing
sequence, we say that (E),),cy is strongly increasing if for each n there is
an ergodic 7" € [J,, E,,] such that £, L Er.

Proposition 11.4. If (E,) is strongly increasing and E = |, E,, then E is
richly ergodic.

Proof. Let ' € S(E). Then F'N E, — F, so it is enough to show that for
each n, S(E,) is contained in the closure of ERGg. Fix F' € S(E,). Let then
T € [E] be ergodic with E7 L E,. By Dye’s Theorem, there is S € [Er],
S mixing. Then also F' L Eg. Put F,, = F'V Eg» € S(E). Then (F),) is
decreasing, (), F;, = F, so that F,, — F, and each F,, is ergodic. O

Proposition 11.5. For any E, there is E' O E which is richly ergodic.
Proof. Recall that for each equivalence relation R, the set
{T € Aut(X,pn): Er L R}

is comeager in the weak topology of Aut(X, i) (see Conley-Miller [CM,
Theorem 8]). Since the set of ergodic automorphisms in Aut(X, p) is also
comeager, it follows that there is an ergodic 7" with R L Er.
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Define now recursively £y C £y C ..., by Ey = E, E,.1 = £,V Ep,,
where Er, 1 E, and T, is ergodic. Then (E,) is strongly increasing and
thus £’ = J,, E, is richly ergodic. O

Proposition 11.6. If £, C E; C ... are richly ergodic, sois E = | J,, E,.

Proof. It F' € S(E), then FNE,, — F and each F'N E,, is the limit of ergodic
equivalence relations contained in E,,. O

Thus the collection of richly ergodic equivalence relations is w-closed
and cofinal in the class of all equivalence relations. We next discuss some
classes of richly ergodic equivalence relations. Below let ERGH = ERGNH
be the class of ergodic, hyperfinite equivalence relations.

Proposition 11.7. For any ergodic E, ERGH is dense in Hg. In particular,
every hyperfinite ergodic equivalence relation is richly ergodic.

Proof. 1t is enough to show that if F' € S(F) is smooth, then F' is the limit
of ergodic, hyperfinite equivalence relations in S(E).

Let Y be a Borel transversal for . Then E|Y is ergodic (on Y), so there
is S € [E|Y] which is mixing. Let F,, = F'V Egn (note that Egr is an
equivalence relation on Y, which we can view as an equivalence relation
on X but extending it by equality outside Y). Then (F,,) is decreasing and
each F,, is ergodic. Indeed, if a Borel set A is F,-invariant, then ANY is
Egn-invariant, so, since Egn is ergodic (on Y'), we have that y(ANY) =0
or u(Y \ A) =0, thus u(A) = 0or u(X \ A) =0, since A = [ANY]r and
similarly for X \ A. Moreover Y is a complete section of F,, and F,|Y =
Egon is hyperfinite, so F), is hyperfinite.

Finally we claim that (), F,, = F, which completes the proof. Let
p: X — Y be the Borel selector corresponding to Y, i.e., p(z) € Y and
zFp(x). Thenif (z,y) € (), F., we have that for each n there is a unique
k, € Z with p(y) = §*2"(p(x)). Since S is aperiodic, this can only happen
if p(z) = p(y), i.e., zFy. O

Proposition 11.8. Let I' =I'y * I'y * - - -, where each countable group T',, is non-
trivial. Let E be induced by a free, measure preserving, mixing action of I'. Then
FE is richly ergodic.

Proof. Let A,, =T';1*---xI', and let E, be the equivalence relation induced
by the restriction of the action to A,,. Then (E,,) is clearly increasing with
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U,, E» = E and we claim that (£,) is strongly increasing. This is because
I',11 * 42 contains an element of infinite order, say o. If T' € [E] corre-
sponds to the action of §, then 7' is ergodic and clearly E,, L Er. So, by
Proposition 11.4, E is richly ergodic. O

Finally we call an equivalence relation E richly Ey-ergodic if §RG g is
dense in S(F).

Problem 11.9. Which Ey-ergodic equivalence relations E are richly Eq-ergodic?

By Proposition 11.3 and the paragraph preceding it, it clearly follows
that there are Ej-ergodic equivalence relations which are not richly FEj-
ergodic. There are also richly Ey-ergodic equivalence relations, One way
to see this is by using a variation of the construction in Proposition 11.8.

LetI' = Fo = (70,71, ... ). Let a be the shift action of I" on 2", equipped
with the usual product measure. Then for any non-amenable A < T, the
restriction a|A of this action to A is Ey-ergodic (see, e.g., [HK, Theorem
A41]). Let E = E,, T, = (0,75 -+ Yn), an = all'y, and E,, = E, . Then
the E,, are increasing and E = |, E,,. We will check that E is richly Eo-
ergodic. For this it is enough to show that for each n and F' € S(E,), F'is
the limit of Ey-ergodic equivalence relations in S(F£).

Let A, < (Ynt1, Ynt2) be non-abelian subgroups with Ag O A, ... and
N,, An = {1}. Put b,, = a|A,, and R, = E,,, so that R,, is Ey-ergodic.
Also clearly R, L F. Let F,, = 'V R,,,. Then F,, is Ey-ergodic, Fy 2 Fj ...
and ), F = F,s0 F,,, = F.
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For an equivalence relation £’ denote by C(F') = C,(F') the cost of F. We
will discuss here the complexity of the function F' € S(E) — C(F) €
[0, o0].
Let
FinCostg = {F € S(E): C(F) < oo},

InfCostgp ={F € S(E): C(F)

oo}
Proposition 12.1. The set FinCostg is dense in S(E).

Proof. Let F € S(F) and fix a € A(Fs, X, u) with F' = FE,. Let F,, = Eq,.
Then F,, — F and each F,, has finite cost. [l

We next have the following dichotomy:

Theorem 12.2. For any aperiodic equivalence relation E, exactly one of the fol-
lowing holds:

(i) For every F € S(E), C(F) <1,

(ii) InfCosty is dense in the uniform topology of S(E).

Proof. We will need the following lemma:

Lemma 12.3. Let F be an equivalence relation with C(F') > 1. Then there is a
subequivalence relation F' C F with C'(F") = oo.

Proof. We use the ideas in the proof of [KM, Proposition 28.8]. Consider
the ergodic decomposition 7: X — 7, where £Zr is the standard Borel
space of F-ergodic invariant probability measures on X (we view here F’
as a genuine countable Borel equivalence relation and not one defined /-
a.e.); see Theorem 4.19. Let v = m, .
Put
Yi={ee€&Zp: : C.(F|X.)> 1}, Yy =ELp \ Y4,
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where X, = 77'({e}). Then Y; is coanalytic and by [KM, Theorem 18.6]
v(Y1) > 0, so there is Borel Z; C Y; such that v(Y;) > 0. Put X; =
7 1(Z),Xo = X\ X;. Then X is Borel, u(X;) > 0 and if X, C X,
then C.(F|X.) > 1. By the proof of [KM, Proposition 28.8], there is a free
Borel action a of Fy on X; with £, C F|X; and thus there is a free Borel
action o’ of F, on X; with £, C F|X;. Put F' = E, @ F|Xy, C F. Then
C(F') = Cyx, (Ey) + Cpux, (F|Xo) = 00, since O x, (Eq) = o0. O

It is clear that (i) and (ii) are contradictory, so let us assume that (i)
fails for E' and then show (ii). By Lemma 12.3, we can assume that there
is F' € S(F) with C(F) = oo. It follows that F' is not smooth (see, e.g.,
[KM, Proposition 20.1]). Put Xy = {z: |[z]g| = oo}, X7 = X \ Xo. Thus
1(Xo) > 0. Now F'|X; is smooth and thus C),x, (F|X;) < oo. Since

C(F) = Cux, (F|Xo) + Cpuix, (F]X1) = oo,

it follows that C), x, (F'| Xo) = oo.
Fix now ¢ > 0. Let S C X, be a complete section of F'|X, such that
u(S) < e. We have

Cuixo (FXo) = Cus(F|S) + u(Xo \ §) = oo,
so Cys(F|S) = oo.
Letnow R € S(E). Put R, = R|(X \ S) @ F|S. Then
C(Re) = Cux\s) (RI(X\ 5)) + Cis(F|S) = oo.
Also for any T € [E], we have

Arp. ={z: 2 ¢ S&T(x) ¢ S& x € Arr}
U{(z: (xS V T(x)eS)&zecArp},

Arp={z:2 ¢ S&T(zx)¢ S&x € Arr}
U{(z: (xS V T(x)eS) &z e Arg},

s0 Arp. AArr C SUT(S) and therefore pu(Ar p AAr r) < 2e. It follows
that R: converges in the uniform topology to R. O

Remark 12.4. It is unknown if condition (i) in Theorem 12.2 is equivalent
to hyperfiniteness.
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The following problem is open. For convenience, we will say that E is
of type II if it is aperiodic and there is F' € S(E) with C(F) > 1.

Problem 12.5. Let E be a type 1I equivalence relation. Is In fCosty comeager in
S(E)?

We will next consider the descriptive complexity of the cost function.

Proposition 12.6. The set FinCostg is analytic in S(E) and the cost function
F +— C(F) is Borel on FinCostg.

Proof. The first assertion follows by a direct calculation (or using Proposi-
tion 19.1 and Proposition 19.11 below).

For the second assertion, we recall that if an ergodic F' € S(E) has
finite cost, then it is induced by an action of some F,, (see [KM, Lemma
27.7]). Also the cost function a € A(F,,F) — C(a) = C(E,) is upper
semicontinuous on A(F,, ) by [K, First Remark in page 78]. Thus for
ergodic ' € S(FE) of finite cost and r € R, we have:

C(F)<r <= dndac A(F,,,E)(E, = F & C(a) <)
< VnVa € A(F,,E)(E,=F = C(a) <),

which shows that the cost function is Borel on the set ERGr N FinCostg.
The general case can be proved using the Ergodic Decomposition Theo-
rem 4.19, Theorem 4.20 and the integration formula for cost with respect
to the ergodic decomposition [KM, Corollary 18.6], which, in particular,
shows that if an equivalence relation has finite cost, so do (almost) all its
ergodic components. [

The following is an open problem:

Problem 12.7. Is the cost function F' — C(F') Borel on S(E)? Equivalently is
the set F'inCostg Borel in S(E)?

We next notice some related facts and questions. It is clear from The-
orem 12.2 that for each E of type Il the sets {F' € S(E): C(F) > r},{F €
S(E): C(F) > r}, for r € R,r > 0, are not uniformly closed. We can
also see that for some E the sets {F € S(E): C(F) < r},r > 1,{F €
S(E): C(F) <r},r>1,arenotclosed. Taken > r,letI' =F, x Z, leta €
FR(T', X,p)andlet £, C E. Putl'y, = 2"Z,m > 1,and let E,, = Eq|#, x1,),
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sothat £y O E,... and C(E,,) = 1. Now (", By, = Equ,, 50 £y — Egp,
and C(E,r,) = n > r. A similar argument, using I' = F, x Z, shows that
in general {F' € S(F): C(F) < oo} is not closed. The following problem is
open:

Problem 12.8. Are the sets

{FeSE):CF)<r}r>1,
{FeS(E): C(F) < oo},
{FeSE):C(F)<r},r>1.

uniformly closed?

One can also use these observations to answer a question that arises
from [K, First Remark in page 78]. It is shown there that when the infinite
group I is finitely generated, the cost function C on A(T', E) is upper semi-
continuous. Is that true for arbitrary infinite I'? The answer is negative:

Proposition 12.9. For any equivalence relation E of type Il, the function a €
A(Fo., E) — C(a) is not upper semicontinuous.

Proof. By Theorem 7.1, there is a continuous map V: S(E) — A(F, E)
such that Fyr)y = F. So if the cost function was upper semicontinuous in
A(F.., E), for each r € R the set {F' € S(F): C(F) > r} would be closed
in S(E), a contradiction. O

Finally we show that an analog of Theorem 7.1 fails for F,,n > 2. Be-
low let F,, p = {F' € S(E): Ja € A(F,, E)[E, = E]}.

Proposition 12.10. Let n > 2. If E is of type I, there is no continuous function
U,: Fop — A(F,, E) such that By, (p) = F.

Proof. As in the proof of Lemma 12.3, there is an invariant Borel set X; of
positive measure and a free Borel action a, of F, on X; with E,  C E.
Let for n > 1, a, = aoo|(Y0,7n), Where {79, 71,...} are free generators of
Fo. Let Xo = X \ Xj and put Ry = id|X, and F,, = E,, & Ro. Then
C(F,) = 2u(X71).

Lemma 12.11. Let ag = aoo|{(70), Fo = Eu, ® Ro. Then F,, — Fy.
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Proof. Below put ¢ - = aw (6, x). Fix T € [E]. Then
Arp, ={r € X1: T(x) € (70,7m) -2} U{x € Xo: T'(z) = z},

Arp, ={r e Xi: T(z) € (y) -z} U{r € Xo: T(x) = x}.
ThUS AT,FO C AT,Fn and (AT,Fn \AT,FO) N (AT,Fm \ AT,FO) = @, lf n 7£ m, SO

M(AT,F" \AT,FO) — O, thus M(AT,F") — /L(AT,F")- OJ

Note also that C'(Fy) = u(X;). If such ¥, existed, and since the cost
function is upper semicontinuous on A(F,,, £), theset {F' € S(E): C(F) >
r} would be closed in F,, g. Taking r = 24(X;) we have a contradiction.

[]

Notice that the set 7, g is analytic in S(£). The following problem is
open:

Problem 12.12. Let n > 2. Is there a Borel function V,,: F,, g — A(F,, E') such
that E\Iln(F) = F?

Forn =1, Fi g = Hg, thus, by Theorem 8.1, F g is closed in S(F) and
we will see in Theorem 14.1 that Problem 12.12 has a positive solution for
n = 1. (Note that A(Fy, E) = A(Z, E) is homeomorphic to [E].) However
we do not know if there is continuous V,: 7, p — A(Z, E) with Ey, p) =
F.



78

12. The cost function




13. Normality

We discuss here normal subequivalence relations, see [FSZ]. Let E be er-
godic and let N = [E : F] < oo be the index of F' in E, i.e., the number
of F-classes in each E-class. A sequence (¢, ),<n of Borel functions on X
such that for each z, ([¢,(7)]F)n<n is an injective enumeration of the F-
classes in [z]g is called a choice sequence. Again we identify two such
sequences if they agree a.e. Every F' admits a choice sequence and if F' is
also ergodic, then such (¢,,),<n can be found which are in Aut(X, i) (see
[FSZ, Lemma 1.3]).

Definition 13.1. Let E be ergodic. A subequivalence relation F' € S(E) is
normal in E, in symbols
F<FE,

if there are choice sequences which are F-invariant.

In particular, if ' < E and F is ergodic, then one can find choice se-
quences which are F-invariant and in Aut(X, 1). We now have the follow-
ing result concerning the complexity of the set of normal subequivalence
relations.

Theorem 13.2. The set Normal(E) of normal subequivalence relations of an
ergodic equivalence relation E is Borel in S(E).

Proof. We first note the following fact:
Lemma 13.3. Theset {F € S(E): [E: F| = N} is Fys, forany N < oo.

Proof. For N = oo this follows from Proposition 9.1. So we can assume
that V < oco. Then the proof is similar to that of Proposition 9.4. Let (1)
be a generating sequence for £. Then we have that [/ : E] < N iff

VE3IMVn <u({x: Js € MNVj <n3k < N(Tj(z)FTyuxy(x)}) > 1 — %) :
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]

So it is enough to show that for each N < oo, the set {F € S(E): [E :
F] =N & F < E} is Borel.

We will first deal with ergodic normal subequivalence relations and
then consider the general case.

Ergodic case. The set {F' € ERGg: [E: F]= N & F < E}is Borel in S(E).

We will view below £ as a genuine countable Borel equivalence rela-
tion (and not one defined a.e.). Let then R C S(E) x E be as in Proposi-
tion 4.18, so that for each F' € S(FE), Rr = F" is a subequivalence relation
of £ which is a representative for /' in S(£). Let I' = {~,,} be a countable
group acting in a Borel way on X generating E. Then define inductively
for each F' € S(E),n < N, a Borel function ¢ : X — X as follows:

oo (@) =

n (1) = - @,
where k is least such that v, - & [pf (x)]po,Vi < n, if such exists; else

¢F(x) = x. Clearly (p5),<n is a choice sequence for F (a.e.). Moreover the
relation Q C S(E) x N x X?, given by:

Q(F,n,x,y) < ¢l(z)=y

is Borel.
Define now for each F' € S(F), a function o : E — Sy, where Sy is
the symmetric group on N elements, as follows:

ar(z,y)(i) = <= ¢ (@)F'%] (y),

provided that there are exactly N F'-classes in [x]p = [y]g; else or(z,y)(i) =
i. Then op is a Borel cocycle from E into Sy and is the index cocycle of
F corresponding to the choice sequence (%), -y (a.e.) (see [FSZ, Lemma
1.2]).

From [FSZ, Definition 2.1 and Theorem 2.2], we have that F' < E iff
orp|F is a coboundary, i.e., there is a function f € L(X,u, Sy) such that
for xFy, or(z,y) = f(y)f(z)~! (a.e.). Here L(X,u,Sy) is the space of
Borel functions from X to the Polish group Sy, two functions being iden-
tified if they agree a.e. Then L(X, u, Sx) is a Polish group under point-
wise multiplication and the topology of convergence in measure. Let also
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Z'(F,Sy) be the Polish space of Borel cocycles from F to Sy (two such
cocycles being identified if they agree a.e.), see [K, Section 24]. The Pol-
ish group L(X,pu,Sy) acts continuously on Z'(F,Sy) via f - a(z,y) =
f(y)a(z,y)f(z)~. Denoting by 1 the trivial cocycle (that sends any (z,y) €
F to the identity element 1 of Sy), we thus have that « is a coboundary iff
it is in the orbit of 1 in the action of L(X, u, Sx).

The stabilizer of 1 in this action consists of all f € L(X, i, Sy), which
are F-invariant and thus constant, if /' is ergodic. Thus for ergodic F' this
stabilizer is equal to the group Sy (identified with the group of constant
functions from X to Sy). Clearly Sy is a closed subgroup of L(X, y1, Sy),
so let 7' be a Borel set that contains exactly one element in each left-coset of
Sy in L(X, 1, Sy). Then if v is a coboundary there is a unique f € T such
that f -1 = a. Define then P C {F' € ERGp: [E: F| = N} x L(X, 1, Sy) by

P(F.f) < feT&f-1=o0p|F.

Then by the preceding discussion the first projection map is an injective
map from P onto {F € ERGg: [E : F] = N & F < E}. It thus suffices to
show that P is a Borel set or that

S(F,f) <~ flIO'F|F

is Borel.
Recall that L(X, i, Sy) admits the compatible complete metric

i1.9)= [ D@, g@)du(o)
where D is the usual compatible metric for Sy (which is bounded by 1).
Lemma 13.4. For f € L(X, u, Sn), let for m,n < N,
Apmn ={z: f(xz)(m) =n} € MALG,,.

Then f € L(X,u,Sn) = Apmn € MALG,, is Lipschitz (for the usual metric p
on MALG,).

Proof. Let € be such that

D(p,q) < e = p(m) = q(m).
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Then we will show that

d(f.9)

p(Af,m,na Ag,m,n) S c

Let d(f, g) = a. Then by Markov’s inequality

u{: D(f(2), g(x)) > €})) < =.
Now
ApmnAgmn € {22 D(f(2),9(x)) = ¢},
50 p(Afmm, Agmm) < 2. O

Lemma 13.5. There is a Borel set U C L(X, u, Sy) x X X N? such that for each
feL(X,u,Sy), x € X, the section Uy, is the graph of a permutation py,, € Sy
and the map f°: X — Sy given by f(z) = py. is equal to f a.e.

Proof. We can assume that X' = [0, 1] and ;1 is Lebesgue measure. Let A%, ,
be the set of density points of Ay,,,. Then by Lemma 13.4, the relation
U*(f,z,m,n) <= z € A}, is Borel. Finally let

U(f,r,m,n) <= (U;, is not the graph of an element of Sy and m = n)
or (it is such a graph and U*(f,z,m, n)).
[
We have now that
S(F, f) <= ViV'a[2FTi(x) = or(z, Ti(x)) = f(Ti(x))f(2) "],
where V*z means “for almost all z." So S(F, f) is equivalent to
Vivm¥Y z[FTi(2)) = ¢n(@)Fe i) s -1om (Ti(@))]

and therefore to
VivmY* 23y, k(e FT;(r) =

{om(@) = Tj(x) & @ o, @) o)-1(m) (Ti(2) = Ti(2)} & Tj() FTi(2)]).
Let B be the Borel set of x satisfying the condition within {... } in the line
above, so that finally

S(F, f) <= VivmV*x3j, klx ¢ Ap,por (v € B& v € Ay p,.r)],
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and so S(F, f) is equivalent to:

1
Vivm¥nIMpu({z: 3j,k < Mz ¢ Ar,por (v € B& v € Ay p)l}) > 1~ e

Since the maps F' +— Ar, r, A1, 1, .7 from S(E) to MALG,, are continuous,
this shows that S is Borel and completes the proof in the ergodic case.

General case. The set {F € S(E): [F': E] = N & F' < E} is Borel in S(F).

Repeating the argument as in the ergodic case, we note that the sta-
bilizer of 1 is the closed subgroup G of the F-invariant functions in the
space L(X, i1, Sy). Again as in the previous argument, it is enough to find
a Borel transversal T for the cosets of G in L(X, 1, Sy), so that relation

T(F f) < feTr

is Borel (as a subset of S(E) x L(X, i, Sx)). Denote by F the Effros Borel
space of the closed subgroups of L(X, x, Sy). By the usual proof of the
existence of a Borel transversal for the cosets of a closed subgroup of a
Polish group, it is then enough to show that the map F' € S(E) — Gp € F
is Borel or equivalently that there is a Borel function

§: S(E) — L(X, p, Sy)N

such that for each F' € S(FE) the sequence §(F') is dense in Gp.

To see this consider the Ergodic Decomposition Theorem 4.19 and The-
orem 4.20, whose notation we use below. Thus 7 is an ergodic decompo-
sition of F°, mapping X to P(X), and has range the set EZo.

Then f € L(X,pu,Sy) is F-invariant iff it is of the form g o 7y for
a uniquely determined g € L(P(X),(7r)«(1t), Sny). Thus the map g €
L(P(X),(7mp)«(p), Sy) — gomp € L(X, 1, Sy) is an isometric embedding,
whose range is Gp.

Now pick a countable Boolean algebra 5 of Borel subsets of P(X') which
generates its Borel sets. Then for any probability Borel measure v on P(X),
B is dense in the measure algebra MALG,. Fix also a countable dense set
Y = {o,} in Sy. Then the Borel maps from P(X) into Sy that are con-
stant in the pieces of a partition of P(X) in B and take values in ¥ form
a dense set in any L(P(X), (mp)«(1), Sn). Enumerate these functions as

{go,gl, c. }
Finally define the function § = (6,,) as follows:

5n(F) =0gnOTF.
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It only remains to check that this is a Borel function and for that we verify
that for any n, any (genuine) Borel function A, from X to Sy and any € > 0,
the set of all F' € S(FE) for which

A(5,(F), ho) = / D(S,(F)(x), holx))dz < c

is Borel, which is clear as the function (F, z) — D(g,(wr(z)), ho(z)) is Borel.
[



14. A selection theorem for
hyperfiniteness

Recall that H is the class of hyperfinite equivalence relations. For each
E, the set H is closed in S(E) by Theorem 8.1. Also the set ERGH g of
ergodic hyperfinite subequivalence relations of E is a G set in S(E) by
Theorem 8.1 and Theorem 10.1. Note that if F' is in ERG, then F' is aperi-
odic.

We next prove the following selection result.

Theorem 14.1. There is a Borel function ©: Hg — [E] such that for F' € Hp,
ifO(F) =T, then F = Ep (ie., xFy <= 3n € Z(T"(xz) = y)).

Proof. We will first give a detailed argument that there is a Borel function
O: ERGHE — [FE] such that for F' € ERGHE, if &(F) =T, then F = Er,
i.e, we will first prove the theorem for the ergodic hyperfinite equivalence
relations. Then we will indicate how this can be extended to all hyperfinite
equivalence relations.

Let for F' € S(E),

A(F) ={T € [F]: T is aperiodic}.
Then for any aperiodic F', A(F') is a closed non-empty subset of [F] (and
thus of [E]); see [K, 3.5]. We first prove the following:

Lemma 14.2. The following are equivalent:

(i) There is a Borel function ®: ERGH g — [E] such that if &(F) = T, then
Er =F (thus T € A(F)).

(ii) The function A|ERGH g from ERGH g to F*([E]) is Borel.

(iii) There is a Borel function Q2: ERGHp — [E] such that Q(F') € A(F).

Proof. (ii) = (i). We need the following;:

85
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Sublemma 14.3. Let F' € ERGHp. Then the generic element T € A(F') has
the property that Ep = F.

Proof. Let C = {T' € A(F): Er = F'}. We show first that it is dense in
A(F). To see this, fix Ty € A(F) with E7, = F. Then the orbit of 7, under
the conjugation action of [F] on A(F) is dense in A(F'), by [K], 3.4. Clearly
every element 7' of that orbit has £y = F.

It remains to show that C'is G5 in A(F'). For that it is enough to show
that the map [E] 5 T — Er € S(FE) is of Baire class 1. This will follow if we
can show that for any S € [E] and o € R, the set {T" € [E]: o < u(Asp,)}
is open.

Now

Asp, ={z: (z,5(x)) € Er}
={z: In € Z(S(x) =T"(x))

= |J{z: In| < N(S(z) = T"())}

NeN

:UAJTV,

NeN
where AL = {x: Jn| < N(S(z) = T"(x))}. Clearly AT C AT C ..., s0
a < pu(Aspr) = 3N(u(Ay) > ),
thus it suffices to show that
[T w(AG) > a}
is open in [E]. Fix T} such that 1(A}}) > aand let § = p(A}}) —a > 0. Then
let ¢ > 0 be such that N(N + 1)e < 6. We will show that if d,(7,7}) < ¢,

then p(A%) > a.
If d,(T,Ty) < ¢, then d,(T",T") < |nle, for any n € Z. Since

{z: S(z) =T"(x)}A{z: S(z) =T1"(x)} C{z: T"(2) # 17 ()},
we have

pl{z: S(x) = T"(@)}A{z: S(z) = T1'(2)}) < [nle,
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SO
pl{e: 3n| < N(S(x) = T"(x))}A{z: 3n| < N(S(z) = T7'(2))})

< ) (Infe) = N(N +1)e <6,

n|<N

therefore
W(AR) > p(AB) — 6 = .

This concludes the proof of the Sublemma. O
Consider now the relation P C ERGH g x [E] given by

P(F,T) < T € A(F) & Er = F.

Clearly it is Borel and our goal is to find a Borel uniformizing function ®
for P. To each F' € ERGH ; assign the o-ideal Zy on [E] defined by

Ip ={W C[E]: WN A(F) is meager in A(F)}.

It is clear that for F' € ERGHp, Pr = {T: P(F,T)} ¢ Zp. Therefore by
[K2, 18.6], it is enough to show that F' +— 7 is Borel on Borel. So let Z be
a Polish space and U C Z x ERGHr x [E| be Borel in order to show that

{(2,F): U, r is meager in A(F')}

is Borel. In fact, more generally, we will show that for any W C [E], which
is an open non-empty set in [E], the set

Myw ={(2,F): A(F)NW # (0 & U,  is not meager in A(F') N W}.

is Borel. Note that if {1V, } is a basis of nonempty open sets in [E], then we
have for Borel U, U,, C Z X ERGHr X [E]:

My v, w = U My, w

and (letting ~ U = (Z x ERGHE x [E]) \ U)

Moyw = [(Z x ERGHE) \ [ {Muw, : W € W, W, N A(F) # 0}]
N{(z,F) € Zx ERGHp: A(F)NW £ 0},
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thus, since {(z, F) € Z x ERGH: A(F) N W # (0} is Borel by our hypoth-
esis, it is enough to show that My is Borel for each U = Uy x U; x Us,
where U is open in Z, U, is open in ERGH g and U; is open in [E]. But in
that case

(z,F)eMyw <= 2€ U1 & Fel, S AF)NW £0 &
Us is not meager in A(F) N W
S 2e & Fel, SAF)NW 4D &
AF)NWNU; # 0,

which again is Borel by hypothesis.

(i) = (iii): Obvious taking Q2 = ®.

(iii) = (ii): By [K, 3.4], the conjugacy class {T Q(F) T-': T € [F|} is
dense in A(F). So for W C [E] open,

AFYNW #£0 < 3T c [FI(T QUF)T e W)
< ITeDTUF)TeW),

for any countable dense subset D C [F]. It is thus enough to show that
there is a Borel function D: S(FE) — [E]" such that D(F) = (T},)nen, where
{T),}nen is dense in [F]. Since F' € S(F) is identified with [F], a closed
subset of [FE], this follows from [K2, 12.13].

This concludes the proof of the Lemma. O

Thus to complete the proof of Theorem 14.1 in the ergodic case, it is
enough to prove (iii) of the preceding lemma.

We now use Proposition 4.18, in which we recall that £ is viewed as
a genuine equivalence relation and not one viewed a.e., Combining this
with the proof of [K, 3.5], we then have:

Lemma 14.4. There is a Borel set () C ERGHE x E such that for any F' €
ERGHE,Qr C F° and Qp is the graph of a Borel automorphism T of X (thus
Er,. C F°) such that Ty restricted to the aperiodic part of F° (i.e., the set of all x
with [x]pe infinite) is also aperiodic.

In particular, if (TF) is the element of [F*°] = [F] represented by T, then
(T'p) € A(F). We put Q(F) = (TF) for F € ERGHp. It remains to verify
that Q: ERGHEr — [E] is Borel.
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Fix Tj € [E]. It is enough to show that
{F € ERQHE d(TF,To) < 6}
is Borel in S(E). Now for ' € ERGHp,

du(Tr,Ty) < € <= p({x: Tr(z) # To(x)}) <€
= p{z: (2, To(2)) € Qr}) <
= p({z: (F2,T(x) € Q}) <e,

which is clearly a Borel condition on F'.

This completes the proof of selection for the ergodic case.

The proof in the general case can proceed in two different ways. The
first is by using the ergodic composition theorem, see Theorem 4.20. The
second uses a result of Miri Segal in her (unpublished) Ph.D. Thesis (see
[K4, 8.47 and the following paragraph]. I would like to thank Ben Miller
for this suggestion. Segal’s result states that for each (genuine) countable
Borel equivalence relation F, which is hyperfinite y-a.e., one can find in
an effective Borel way a Borel automorphism that generates F' y-a.e. Com-
bined with Proposition 4.18 this implies the following;:

Proposition 14.5. There is a Borel set P C Hp x E such that for any F €
Hp, Pr C F° and Pr is the graph of a Borel automorphism Ty of X such that
Er,. isequal to F in S(E).

This together with the argument following Lemma 14.4 completes the
proof of Theorem 14.1. O

Combining Proposition 8.3 with Theorem 14.1 and the proof of [DJK,
Theorem 5.1], we also have the following result:

Theorem 14.6. There is a Borel function H: Hr — S(E)N such that for F €
Hp we have that for each n, H(F), € BFg, H(F), C H(F)y41, and F =

U, #(EF)n.
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15. Invariant, random
equivalence relations on groups

We study here the connection between the space of subequivalence rela-
tions and that of invariant, random equivalence relations on groups.

15.1 Equivalence relations on groups

For each infinite countable group I', denote by Eq(I") the space of equiva-
lence relations on I'. This is a compact subspace of 2. The group I acts
continuously by translation on Eq(I'): if v € I', e € Eq(I"), then

(b,6) €Ev-e <= (v 15,7 ) €e.

Let o be a Borel probability measure on Eq(I'). If ¢ is invariant un-
der the action of I', we say that o is a (I'-)invariant, random equivalence
relation (IRE) on I'. We denote by IRE(I") the space of these measures.

Clearly IRE(T") is a compact subspace of the space of all Borel proba-
bility measures on Eq(I") (which is equipped, as usual, with the weak*-
topology, in which it is compact metrizable)

There is a canonical connection between subequivalence relations of
the equivalence relation £, induced by an action a € A(I", X, y) and IRE on
I', which is a special case of structurability of such equivalence relations.
See [KM, 29.1], [CK, Section 2], and [T-D, Appendix A] for the particular
case of equivalence relations.

Leta € A(I', X, 1) and put £ = E,. Given F' € S(F), define the map

ey =ep: X — Eq(I)

91
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by
(v,0) €ep(z) <= (vt 2,6 -2)€F.

Then ep is a I'-equivariant Borel function. Put
o' (F) = a(F) = (ep)«p.
Thus ¢*(F) € IRE(T").
Proposition 15.1. The map o*: S(E) — IRE(I') is continuous.
Proof. Fix o, B;,7;,6; € I';i <m,j < k,and put
AL Ga5r = Aagrsr = O Agasy-1,(g2)-1,p N ﬂk(X \ Apyey-1,60)-1,F),
i<m j<

where Agr p, for S,T € [E], is defined in the proof of Proposition 4.29.
It is enough to prove that the map that sends /' € S(E) to the real
number

o“(F)({e € Eq(I'): Vi < m(ay, 5;) € e & Vj < k(v;,6;) & €)})

is continuous. But this number is equal to ((A; 55 ), which depends
continuously on F, since, by Proposition 4.29, the map F +— Agrp as
above is continuous. O

Remark 15.2. The map o is not injective. Consider, for example, the shift
action s of I" on [0, 1], with the usual product measure. Let F; = E, N
{(z,y): (1) = y()}, F2 = E; 0 {(z,9): z(y) = y(7)}, where v # 1. Then
er, = ep, is the constant function with value the equality relation =r on T,
so o(F}) = o(F3) is the Dirac measure at =p but F} # F.

It turns out that every IRE is generated by the above procedure for

some, in fact free, action a and equivalence relation F'. Below we denote
by FR(I", X, u1) the set of free actions in A(I", X, p1).

Proposition 15.3. IRE(T") = {¢*(F): a € A(I', X, u), F € S(E,)}
= {0%(F): a e FR(I, X, p), F € S(E,)}.

Proof. Leto € IRE(I"). Letb € FR(I', Y, v) and put X = Eq(I")xY, u = o xv.
Let also a be the product action of I on X, so that a« € FR(I', X, it). Define
F CE,by

(e,2)F(f,y) <= I(y-(e,x) = (fiy) & (1,77) €e).

Then ¢%(e, z) = eand so 0*(F) = o. O
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A special case of the above construction of IRE is the following. Let Y’
be a standard Borel space and F' a Borel equivalence relation on Y. Con-
sider the product space X = Y with the shift action sy of I" on this space
and let i be a shift-invariant probability measure on X. Define the equiv-
alence relation F on X by 2Fy <= xE,y & z(1)Fy(1). Letez: X —
Eq(T") be the associated map, so that (v,6) € ez(z) <= z(vy)Fz(d). Fi-

nally consider the IRE o°* (F').

Problem 15.4. Is every element of IRE(T") of the form o*¥ (F), for some measure
w and Borel equivalence relation F on Y'? What if we take F to be the equality
relation on Y'?

Another way to obtain IRE is the following. Let Sg(I') be the space
of subgroups of I', which is a compact subspace of 2" on which T acts
continuously by conjugation. An invariant, random subgroup (IRS) of I
is a conjugation invariant Borel probability measure on Sg(I'). Denote the
space of such measures by IRS(I"). There is a canonical homeomorphism
¥ from Sg(T') into Eq(T") given by (v,d) € ¥(H) <= ~§ ' € H. Thus
the equivalence classes of ¥(H) are the right cosets of H. The range of ¥
consists of the equivalence relations induced by the cosets of a subgroup
of I'. The embedding ¥ is also I'-equivariant, thus if ¢ € IRS(I"), then
Y.p € IRE(T") and the range of ¥, consists of the IRE that concentrate on
the range of ¥. This forms a proper compact subset of IRE(I"). Tucker-
Drob [T-D, Appendix A] characterizes X, (IRS(I")) as consisting of exactly
those o¢(F') for I’ C E, that are normalized by a, which means that each
v* is an automorphism of F, i.e., tFy <= ~*(x)Fy*(y).

15.2 Classes of invariant, random equivalence re-
lations

We say that o € RS(I') is an aperiodic IRE if it concentrates on the equiv-
alence relations all of whose classes are infinite. It is an infinite index IRE
if it concentrates on the equivalence relations that have infinitely many
classes. Both the aperiodic and the infinite index IRE form G5 sets in
IRE(T"). Similarly o is a finite index IRE if it concentrates on the equiv-
alence relations that have only finitely many classes. Finally, o is a finite
IRE if it concentrates on the equivalence relations all of whose classes are
finite.
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We now have the following results:

Theorem 15.5. Let I' be an infinite countable group. The generic IRE on I is
aperiodic and has infinite index.

Proof. By Proposition 15.1 and Proposition 15.3 and Theorem 8.2 the ape-
riodic IRE are dense in IRE(I") and by Proposition 9.1 the same is true for
the infinite index IRE. O

Theorem 15.6. Let I' be an infinite amenable countable group. Then the finite
index IRE are dense in IRE(T).

Proof. This follows as before from Proposition 9.4. O
We do not know if this holds for all infinite I'.

Theorem 15.7. Let I' be an infinite countable group. Then the following are
equivalent:

(i) T is amenable,

(ii) The finite IRE are dense in IRE(T),

(iii) The Dirac measure or«r on the equivalence relation I' x I" is a limit of
finite IRE.

Proof. (i) = (ii) follows from Proposition 15.1 and Proposition 15.3 and
the paragraph following Theorem 8.1, while (ii) = (iii) is obvious.

(iii) = (i): Let 0,, be finite IRE such that o,, — dr«r. We will use these
to find a left-invariant probability measure on I'.

For A C I" and an equivalence relation e with finite classes, put

AN

Pl =)

Then, for each n, put

pu(A) = / pe(A)do(e).

Clearly p, is a finitely additive probability measure on I.
Let now U be a non-principal ultrafilter on N and put

p(A) = lim p,(A).

n—U
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Again p is a finitely additive probability measure on I'. We will show that
it is left-invariant. We have foreach A C I',y € T,

= lim / 4 dan (e),
n—U

AN 1]
PO A) =l |

and
do,(e)

Now note that )
AN _ AN B
|[1]e] |['7_1]T1-e|
s0, using the invariance of v,,, we have
ANy .
p(vA) = lim / [Aaoh | _1 doy(e).

n—U

It is thus enough to show that

ANELL ARG,
( Wl 5T )d“) 0

lim
n—o0

Since 0,, — drxt, we have

oul{e: (v € e}) = drarlfe: (1Ly") €e}) = L,

so, given € > 0, let N be large enough so that forn > N,

on({e: [Ue # [y} <e

AN AN,
/( ol 5T )d“>

and the proof is complete. O

Then
<e

Y

15.3 Bauer vs Poulsen

The space IRE(I") is a Choquet simplex (being the space of invariant Borel
probability measures for a continuous action of I' on a compact metrizable
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space). Its extremal points are the ergodic IRE, whose set we denote by
ERGIRE(T"). We next consider the question of whether IRE(T") is a Bauer
simplex, i.e., ERGIRE(I") is closed in IRE(I"), or the Poulsen simplex, i.e.,
ERGIRE(T) is dense in IRE(I"). By the results in Glasner-Weiss [GW], if I'
has property (T), then IRE(I") is a Bauer simplex. However the following
is open:

Problem 15.8. Assume that the countable group I' does not have property (T). Is
IRE(T") the Poulsen simplex?

15.4 Another approach to the topology of equiv-
alence relations

One can use ideas similar to those in this section to provide one more
description of the topology of S(E).

Fixa € A(T", X, u) with E = E,. Consider the compact metrizable space
P(I)N x Eq(T') (where P(I) is the space of all subsets of T', identified with
2"), on which T acts continuously by v - ((a,),e) = ((yan),7 - €). Fix also
a sequence (D,,) of Borel sets which is dense in MALG,,. Define then the
map

0% =0p: X — PN x Eq(I),

by 0r(z) = ((an),e), where a, = {y: v'-2 € D,} and e = ep(x). Let
T(F) = 7(F) = (0p).p € Prob(P(I')N x Eq(T)), the space of Borel prob-
ability measures on (P(I')Y x Eq(T")). Then 7(F) is I'-invariant and so its
projection on Eq(I") is in IRE(T").

Proposition 15.9. The map 7*: S(E) — IRE(I") is a homeomorphism into
TRE(T).

Proof. The continuity of 7¢ is proved as in Proposition 15.1. That 7 is injec-
tive follows from the paragraph preceding Proposition 4.14 and Lemma 4.10.
That (7*)~! is continuous can be deduced from the paragraph following
Proposition 4.14. [

Thus we can also view S(F) as a G subset of Prob(P(I')N x Eq(T)).
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15.5 Invariant, random equivalence relations and
weak containment

Recall that for a,b € A(I', X, 1), we let a < b iff a is weakly contained in
b (see [K], where < is used instead of <). Concerning the map ¢*(F') that
sends F' € S(E,),a € A(I', X, u), to an IRE on I', we consider its “slice"
corresponding to the <-predecessors of an action b.

Theorem 15.10. Let I be an infinite countable group and b € A(I', X, pu). Then
the set
{c*(F):ae€ AT, X, p),a =2b,F € S(E,)}

is a compact subset of IRE(T).

Proof. We use the method of ultraproducts.

Fix a non-principal ultrafilter ¢/ on N. Let a,, € A(I", X, 1), a, < b and
F, € S(E,,), for n € N. As in the proof of Proposition 15.1, for each action
de Al', Z,p), F € S(Ey), and o, B;,7;,0; € I',i <m,j <k, we put

Aggasr = [ At O[O\ AL a1, ):
i<m <k
where for each S, T € [Ey], AL p = {2z € Z: (5(2), T(z )) € F}. In particu-
lar, A7 = {2: (2,T(2)) € F} = Aigrp and Af . o = STH(AT g1 p).

We will show that there is a standard probablhty space (Y, ), an action
ce A(I',Y,v),c < b, and an equivalence relation ' € S(E.) on (Y, v) such
that

V(A 555F) = }Llflf{ :“(Ainng ),
for all oy, B;,75,0; € I',i < m,j < k, which implies that {c*(F): a €
AN, X, p),a = b, F € S(E,)} is compact in IRE(T").

We will use below the notation and terminology of Conley—Kechris—
Tucker-Drob [CKT] concerning ultraproducts. Let (Xy, 14/) be the ultra-
power of (X, p) and let a = [], a,/U the ultraproduct of (a,). Put for
gel,

Aye, = {r € Xt (2,9 (v)) € Fp}.

Then for each n, (Aj7. ) satisfies conditions 1.-4. of Lemma 4.12. So if
Ay = [(Ag7 ) is the ultrapower of (Ay, ), it follows that (A)ger also
satisfies these conditions (all of course 1-a.e.).
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If By is the o-algebra on which /4, lives, let MALG,,, be the measure
algebra of (X, By, fus). By the proof of Proposition 4.3 in [CKT], there is
amap Ty: I' x MALG,,, -+ MALG,,, such thatif g € I', A € MALG,,, \ {0}
and ¢*(z) # x,Vz € A, then Ty(g, A) € A, uu(Tu(g, A)) > -pu(A) and
9* - Tulg, A) NTy(g, A) = 0.

As in [CKT, Sections 4.2, 4.3], fix a countable Boolean subalgebra B, C
MALG,,, which contains all A,,Fix(¢*),g € I', and is closed under the
action a, the function S;; in [CKT, Section 3.2] and the function 73, as above.
Let B = o(By) € MALG,, be the o-algebra generated by B,. This is
a countably generated, non-atomic, a-invariant subalgebra of MALG,,,,, so
there is a standard probability space (Y, ) and a measurable map 7: X;; —
Y with 7,y = v and an action ¢ € A(T', Y, v) such that

m(g"(z)) = ¢°(n(x)), g €T, v € Xy

(ie., cis a factor of a) and B — 7 '(B) is an isomorphism of (MALG,, v)
with (B, jy|B) preserving the I'-action.

Letthen By, g € T, in MALG,,, be such that 7—'(B,) = A4,. Thenv(B,) =
tu(Ay) and the family (By),er satisfies 1.-3. of Lemma 4.12. We will next
verify that condition 4. of the same proposition also holds. Assuming this,
there will be an equivalence relation I on (Y, v) with Af . = B,. Replacing
Fby FNE,, we can assume that F' C E,. Then, for each o;;, 8;,7;,9; € I',i <
m,j <k,

Since c is a factor of an ultraproduct of (a,) and a, < b, for each n, then
c 2 b (see [CKT, Theorem 1]) and the proof is complete.
In order to verify condition 4. in Lemma 4.12, it is enough to show that
foreachg €T,
7! (Fix(¢%)) = Fix(g*).

It is clear that 7! (Fix(¢°)) 2 Fix(g*). If they are distinct (in MALG,,,), let
A =77 Fix(¢¢))\Fix(¢*) € B and let iy(A) = € > 0. Then g°(z) # z,Vz €
A. Let B € By be such that 1, (BAA) < 55. Since A C Xy \ Fix(g®) € By,
we can assume (by replacing B by B\ Fix(¢g*)) that B N Fix(¢*) = (). Since
By is closed under Ty, let C C B,C € Bgbe such that ¢ - C N C = ) and
1(C) > 15p(B). In particular CNA # 0. Since CNA € B,let D € MALG,,
be such that 771(D) = C N A C 7~ }(Fix(g°)), so 0§ # D C Fix(g°). On the
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other hand, 77!(¢°- D) = ¢g*- (CN A),son (¢°- D)Nn=w (D) = g¢g*- (CN
A)N(CNA)=0,s0g°- DN D =0, while g°- D = D, a contradiction. [

Corollary 15.11. Let I' be an infinite countable group and assume that b €
A(T, X, ) is ergodic but not strongly ergodic. Then the set

{0%(F):a€ AT, X,n),a = b, F € S(E,)}
is a compact convex subset of IRE(T").

Proof. By [AW, Theorem 3] the set {a € A(I', X, 1): a < b} is closed under
convex combinations (see [K, Section 10, (F)] for the concept of convex
combinations of actions). O
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16. Ultraproducts of equivalence
relations

We will use here again the notation of Section 15.5 and [CKT]. Consider
the space (X, ;) and for each non-principal ultrafilter &/ on N form the
ultrapower X;; with the associated measure 1. For (z,,) € XV, put [z,]y =
[(z7)]u € Xu. We will use below the following general fact, where for Borel
AC X,weput [Aly = {[zsn]u € Xu: Un(z, € A)} C Xy

Proposition 16.1. [|J,.\ Ailu = U,;enlAilu in MALG,,,,.

PVOOf. Let B] = Ulﬁ] Az Then [B]}u = Uzgg[Al]U and U] B] = UZAZ’
U;[Bilu = U;[Aiu, so we can assume that 40 C A; C ..., and thus
[Aolu C [Ailu € -+ C [U; Ailu- Let py(JU; Ailu) = t. It is enough to
show that yu(J;[Ailu) = t. Now t = p(lJ; Ai) = lim;,oop(A;) and thus
(U [Ailer) = limy o pu([Ailer) = 1. O

Consider now a sequence of measure preserving countable Borel equiv-
alence relations (F},) on (X, ). Let E' € & be such that F,, C E, for each
n. Fix an action a € A(T', X, u) such that E, = E. We will use this to
define an ultraproduct [[. F,,/U of the F,,. We will then show that it is
independent of E and the action a, so that we can define unambiguously
the ultraproduct [, F,,/U.

As in the proof of Theorem 15.10, we let Aj . = {z € X: (v,¢%(z)) €
F,} and Aj = [(A§ , )]u- Consider also the ultrapower a;; = [],, a/U. Then
(A7) satisfies conditions 1.-4. of Lemma 4.12 and therefore it gives rise to

a countable equivalence relation F* = [[* F, /U on X, defined by

[xn]uﬁ’“[yn]u < Jg € T(g"™([zn]u) = [Ynlu & [z,]u € AZ)-

Thus [ ], F,./U is the union of the graphs of g®|Aj, g € T'. It is easy to see
that the equivalence relation induced by each g*|Aj is also induced by a

101
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single measure preserving automorphism of (X, 1) and thus [[ F,/U is
induced by a measure preserving action of a countable group on (X, /).
Thus we can view [[" F,,/U as a countable, measure preserving equiva-
lence relation on (X, 1zs). Note that we also have A;i”ﬁa = [(A", )Ju and
SO uu(AZ” o) = limy, (AT ).

We now check that this construction is independent of £, a. Suppose
F, € E C F for each n and let « € A(I', X,u) generate £ and b €
A(A, X, 1) generate F.. We will show that F¢ = [[* E,,/u = " F./U = E.

(i) Suppose [z, F*[yn)y and find g € T with g%([z,]y) = [yn)u and
[znlu € Ay, ie., Un((T,, g%(zn)) € F,). Write X = | |;c, Xa, where X, is
Borel and

T € Xy = g%(zx) = d(v)

(since E = E, C E, = F). Then Xy = | |jen[Xalu, 50 [20)u € [Xa]u for
some d € A and therefore Un(z, € X), so that Un(g*(z,) = d°(z,)) and
thus g™ ([zn]u) = [Wnlu = d™([2n]u). Moreover, Un((zy, d*(x,)) € F,)), i.
[Tnu € Ad/ SO [In]uF [Ynlus- R

(i) Conversely assume that [z, ];, [ [y, ] and find d € A with d®([z,,]y) =
[Ynlu and Un((z,,, d°(x,)) € F,). By Proposition 4.2, there is T' € [E] such
that

(z,d°(x)) € E = d°(z) = T().

Let then X = | | . X, be a Borel decomposition such that
v e Xy =T(x) = g"(2),

so that
z € X, & (z,d(x)) € E = d’(x) = g*(2).

Now [z, ] € [X,]u for some g € T, i.e., Un(xz, € X,). Butalso
Un((zy,d"(z,)) € F, C E),

so Un(d"(z,) = g*(xn)), i.e., d([Tn)u) = [Ynlu = 9™ ([n]u) and moreover
Un((zn, g*(x,) € F), 8O [Tn)uF[ynlu-
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We will discuss here various notions of factoring for equivalence relations
and their applications.

17.1 Factors in general

Let £/ be a measure preserving countable Borel equivalence relation on
(X,pn). Let A € MALG = MALG, be a non-atomic, o-subalgebra of
MALG. Put

[EJA = {T € [E]: VA € A(T(A), T\ (A) € A)}.

This is a closed subgroup of ([E], u), which we call the relative to A full
group of E.

Consider now a separable subgroup I' of (Aut(X, p),u). This defines
a measure preserving countable Borel equivalence relation F' as follows:
Let 'y < T be a countable dense subgroup of I' and let F' be the equiva-
lence relation induced by I'y. We can easily see that this is independent of
the choice of I'y and moreover I' < [F!].

Clearly F' is the smallest equivalence relation F' such that I' < [F].
Kittrell-Tsankov [KT, 4.14] have shown that if I" is also closed in the uni-
form topology, then there is a largest equivalence relation F', denoted by
Fr, such that [F] < T and moreover [Fr] is a normal subgroup of T'.

We now say that E is generated by A or that A generates E if FIPI" =
(clearly always FI”I* C F). This is equivalent to saying that there is a
countable group I" and an action a € A(I', X, 1) such that £, = F and A is
invariant under ¢, i.e., for each A € A, g € I' we have that g*(A) € A.

Let now 7: (X, ) — (Y,v) be the factor corresponding to A, so that
(Y,v) is a standard (non-atomic) measure space, 7.u = v and B — 7 !(B)
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is an isomorphism of (MALG,, v) with (A, | A) (see [K2, 17.43]). If T €
Aut(X, p) preserves A (i.e, VA € A(T(A), T '(A) € A)), then (via 7 1) it
gives an automorphism of MALG,, i.e., an element of Aut(Y,v), denoted
by 7(7"), such that #(T)(n(z)) = w(T(x)). (To verify this equality, simply
check that for every B € MALG,, 7(T)(7w(x)) € B <= n(T(z)) € B.) In
particular, 7(z) = 7(y) = #(T(z)) = n(T'(y)). So if

Aut(X, ) = {T € Aut(X, n): VA € A(T(A), T HA) € A)},
then Aut(X, 1) is a closed subgroup of (Aut(X, i), u) and
7o (Aut(X, ), ) — (Aut(Y, v),u)

is a continuous homomorphism. In particular, #([E]4) is a separable sub-
group of (Aut(Y,v),u) and thus gives rise to the equivalence relation F' =
F*E") We call this the factor of E relative to A.

Note that if Ty < [E]* is dense in ([E]*, u), so that 'y generates E, then
#(Ly) is dense in (7 ([E]*), u) and so, by definition, it generates the factor
F. It follows that there is a countable group I" and an action a € A(I", X, u1)
preserving A with E, = E such that if 7(a) = b is the factor action of a via
7 (i.e., g® = 7(g?) for each g € "), so that

then we have Ej, = F'. Therefore 7 is a homomorphism of E into F, i.e.,
rEy = w(x)Fr(y)

and also 7 is class-surjective, i.e., the image of each E-class is an F'-class.
Moreover if c € A(A, X, 1) is any action of a countable group A preserving
A with E. = E and 7(c) = d is the factor action of ¢ via 7, then E; = F.
Indeed, let y F'z and choose x with 7(z) = y and g € ' with ¢°(y) = 2. Then
g*(z) = h¢(x) for some h € A, since E, = E,, so (¢*(z)) = ¢(n(z)) =
@(y) = z = w(hé(z)) = h¥(n(x)) = hi(y), so (y,2) € E;. Thus F C E,.
Since obviously E; C F, we are done.
Clearly # is a homomorphism of [E]# into [F]. In fact we have:

Proposition 17.1. The homomorphism 7 : [E]* — [F) is surjective.
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Proof. Let S € [F]. Leta € A(T', X, u), E, = E,7(a) = b, B, = F as before.
Then there is a Borel decomposition Y = | | - ¥; such that

y €Y, = S(y) =g"(y).

Let X, = 77'(Y,) € A, so that X = | | . X,. If g, € T are distinct, then
g"(Yy) N1 (Vy) = S(Yy) N S(Ys) = Dand | ¢°(Vy) = Lyer S(Yy) =Y, s0
that g(X,) Nh*(Xy) = 0and X =| |, g*(Xy). Put T = || °| X,

First note that T € [E]#, since if A € A, then T(A) = T(| | (ANX,)) =
Lyer 9°(AN X,) € A We will finally verify that 7#(7") = S. For that it is
enough to check that for each B € MALG,, g € I" we have that #(7)(B N
Y,) = S(BNY,). This is the case, since #(T)(BNY,) = n(T(x~(B)NX,)) =
r(g(x{(B) N X,) = (BY,) = S(BNY,). :

The kernel of #|[E]4 is equal to
[E]a=A{T € [E]": VA € A(T(A) = A)},

thus [F] = [E]*/[E] 4 (as topological groups). Note also that T € [E]4 <=
T € [E* An(T(z)) = 7(x), V.
Let R, be the kernel of 7, i.e., the smooth equivalence relation given
by:
tRyy <= 7(z) =n(y).
Put also
E.=FENR,.

Thus [E]4 = [E,].

It is easy to check that E, R, commute, i.e., F o R, = R, o E. (Here
for any two equivalence relations £, £, we define the relation £, o E; by
r FEioEyy <= Fz(xE1z A zEqy).)

We now have:

Proposition 17.2. Let F' be a factor of E, let Sy, Sy, -- € [F] be such that F' =
Es,.s,.., and let Ty, Ty,--- € [E]* be such that #(T;) = S;. If E' = En, 1.,
then E = E'V E,.

Proof. Let zEy. Then 7(z)Fn(y), so for some iy,...,i, we have n(y) =
Sito. oS (w(x)). Thenif z = T;' o+ o T;-'(z), we have 7(z) =

(2

S oo 5H (n(2)) = n(y), s0 2B 2By, -



106 17. Factors

The following result was shown by R. Tucker-Drob.

Proposition 17.3 (Tucker-Drob). Let S € [F| be an involution. Then there is
an involution T € [E]* with #(T) = S.

Proof. By Proposition 17.1, let T € [E]* be such that #(T) = S. We can
define T'(z) = z for all = such that S(n(z)) = 7(x), so that working in the
complement of the set of such z’s, we can assume that S(7(z)) # n(z), for
all z. Let ® = {{z,2'}: xE2’ A S(n(z)) = w(2’)}. Then, by [KM, Lemma
7.3], we can find a Borel set A C X and a Borel equivalence relation R on
A such that [x]z € @, forz € Aand if {z,2’} N A = (), then {x,2'} & .

For x € A, we can define T(z) = 2/, where {z,2’} € R. Clearly
m(T(z)) = S(m(z)), so if we can show that A = X (modulo null sets),
this will imply that T € [E]4, T is an involution and #(T) = S.

Let B = {z: V2/((zE2' A 7(x) = 7(2')) = 2’ € A) C A. Then by
the properties of A, R, we have that + ¢ A — T(z) € B (else there
would be some 2’ such that 2’ ¢ Aand {z,2'} € ®.) Also (X \ A)NT(B) C
(X\A)NA=0and T(B) C T~Y(B). Therefore X \ A C T-(B) \ T(B)
and since (T~ Y(B)) = u(T(B)) = u(B), X \ A is null. O

Corollary 17.4. If E is generated by the o-subalgebra A, then there are involu-
tions Ty, Tt - - - € [E]* such that E = Eq, 1,

gees®

Proof. Let Sy, S1,--- € [F] be involutions such that F' = Eg, s, . By Propo-
sition 17.3, let Uy, Uy, - -+ € [E]* be involutions such that #(U;) = S;. Let
E' = Ey, v,,..- Then, by Proposmon 172, E=E'V E,.

Now let Vj, V4, ... beinvolutions in [E,| such that £, = Ey, v, .. Clearly
Vo, Vi, € [E ] and so if {To,7,...} = {Uo, Uy, ... } U {Vy, Vi,... }, then
T07T17"' [ ] and F = EjTOT1 O

gees®

We next show the following.
Theorem 17.5. The composition of factors is a factor.

Proof. Let E live on (X, p), m: (X, ) — (Y, v) be the factor corresponding
to the o-subalgebra A C MALG, which generates I and let I be the cor-
responding factor. Let also B be a o-subalgebra of MALG, such that F'is
generated by B and let p: (Y,v) = (Z,w) and H be the factor equivalence
relation corresponding to B. Let 0 = po7: (X, u) = (Z,w) be the compo-
sition with associated o-subalgebra C = 7~!(B) C .A. We will show that H
is the factor of E corresponding to C.
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Lemma 17.6. [F]® = #([E]° N [E]Y).

Proof. Since #([E]*) = [F], this is clear from the definitions noting that if
T € [E]A, then T € [E|¢iff #(T) € [F]P. O

Lemma 17.7. E = FUENEY (in particular E = FIES),

Proof. Let T € [E]A. Then #(T) € [F], so, since F = FI¥1°, we can find
S; in [F]% and disjoint Borel sets Y; C Y with | |, Y; = Y such that #(T) =
LI, S:|Y;. By Lemma 17.6, let T; € [E]° N [E]* be such that #(T;) = S;, so
that #(T') = ||, #(T})|Yi. Then for each i, #(T)|Y; = #(T;)|Y: or #(T; 'T)|Y; =
id|Y;.

Let X; = 7 1(V;) € A. It follows that T, 'T(A) = Aforany A € A, A C
X; and in particular T} 'T(X;) = X;. Since X = | |, X;,U = | |,(T;'T)|X; €
[E]4. Moreover U(A) = A for every A € A, so that actually U € [E]4 C
[E]€. Now for each z, there is i such that T, 'T'(z) = U(x) or T(x) = T;U ().
Since T,U € [E]° N [E]A, we have that T e [FIENEY) But B = FIEY, 5o
E = FECNEA O

We now complete the proof of Theorem 17.5 as follows. Let I'y <
[E]¢ N [E]* be a countable dense subgroup of [E]° N [E]4, which therefore
generates E. Then #(T) is a dense subgroup of [E]?, so po #(Ty) = &(To)
generates . By the arguments preceding Proposition 17.1, it follows that
H is the factor of E corresponding to C. O

It also follows from the preceding argument that there is a countable
group I' and an action a € A(I', X, ), preserving both A and C, such that
E, = E, and moreover if 77(a) = b, then E, = F and b preserves B and if
p(b) = p(7(a)) = ¢, then E. = H.

This can be extended to infinite chains as follows.

For each n € N, let E,, be an equivalence relation on (X, 1,,) and for
eachn > 1, let m,: (X, ptn) = (X1, ftn—1) be the map corresponding to
a o-subalgebra A4, C MALG,,, which generates £,,, and let E,_; be the
factor corresponding to A,,. Forn > m, let 7,,,,, = mpp10---0my_y 0y,
and let 7,, = identity on X,,. Then 7,,,: X,, = X,,, for n > m. Put
Apm = ﬂ;%(MALGNm), so that A, ,,_1 = A, and A4, ,, = MALG,,,. Thus
we have the following o-subalgebras of MALG

Mn/’

A'I’L,O g An’l g te g ATL,'I’L—I - ATL g 'ATL,TL - MALG/J"
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Put
[E.]" = [En]A”’U N---N [En]A”»"*l,

Then we have, generalizing Lemma 17.6, Lemma 17.7:

Proposition 17.8. For eachn > 1,
(ii) £, = FEnI",

Proof. By induction on n > 1. The case n = 1 is clear. So assume that (i),
(ii) hold for n — 1 > 1 and prove them for n. First we will show that if we
assume (i) for n, then (ii) also holds for n. The proof is similar to that of
Lemma 17.7.

Let T € [E,J*". Then #,(T) € [E,_1], so by (ii) for n — 1, there is a
sequence S; € [E,_;]*and Y; € MALG,, ,suchthat| | Y; =Y and7,(T) =
|J;(Si|Y:). Let then, using (i) for n, T; € [E,]* be such that 7,,(T;) = S;. Then
7u(T) = L, (7u(T))|Y2), s0 7 (T 'T)|Y; = id|Y;. Let X; = m, (Vi) € A,.
Then forany A C X;, A € A,,T; 'T(A) = A, so, in particular, T, 'T(X;) =
X;. Since X = | |, X;, we have that U = | |,(T;'T) € [E]. Also U(A) = A
for Ae A, soU € [E,]4, C [E,]". Now for each z € X, there is i such
that U(z) = T, 'T(x), i.e., T(x) = T,U(z). Since T;U € [E,]*, this shows
that T € [FIF+]"], thus E,, C FIP" C E,, so (ii) holds.

We now prove (i) for n. Clearly 7, ([E,]*) C [E,—1]". Conversely, if
S € [E, 1%, letT € [E,]"" be such that 7,,(T) = S. Since S keeps invariant
the o-subalgebras A,,_1 0, ..., A,_1,,—2, clearly T keeps invariant

An,(] - 71-7:1<-/4n—1,0>7 s 7An,n—2 - ﬂ-;l(An—l,n—2)7 An,n—b
soT € [E,]* O

Consider now the inverse limit (X, /i) of the sequence (X, fi,), -
Denote by 7ot (Xoo, fhoo) = (X, i) the associated maps, so that 7, ,,, ©
Toom = Toom fOr n > m. Thus X, consist of all chains (z,) € [, X, with
To(xn) = Ty, forn > 1, 7 n((2,)) = x, and MALG,,_ is the smallest
o-algebra containing the o-subalgebras

Ao = w;{O(MALGMO) C Aw =m0 (MALG,,) C ...

We will show next that there is a countable group I' and a measure
preserving action a,, € A(I', X, fioo), which keeps all the A, ,, invariant,
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thus factors to a measure preserving action 7 ,(too) = an, € A(L, X, i),
which has moreover the property that F,, = E,. Then if we put £, =
E., it follows that the factor of E., via 7, is exactly E,, and the appro-
priate diagrams commute.

To construct a, let, for each m, 73", 17", ..., T)",... be in [E,,]* and
generate E,, (using Proposition 17.8). For n < m, let ™" = &, ,(T/")
and for n > m choose T/"" € [E,|* such that 7, (T/""™") = T/™" for
n > m (again using Proposition 17.8). Finally let 7, = (T""),en €
Aut(X, fieo), where T"((x,,)) = T;""(x,). Note that T, leaves each
Ao n invariant and 7o (7, °°) = T;™".

Let I' be the free group with infinitely many generators g; ,,, and let
it act in a measure preserving way on (X, it) to produce a.,, where
gim = T, M Toon(aoo) = an, then gi7 = 7o o (T;7) = T;"" = T}", so
E,, = E, and thus the factor of £, by 7, ,, is equal to £,,, which completes
the proof.

Although E, is an “upper bound" for the inverse system (£,), it is not
clear how to construct a canonical upper bound, i.e., an inverse limit in the
categorical sense for this inverse system.

Next we show that hyperfiniteness is preserved under factoring.
Proposition 17.9. If E is hyperfinite and F is a factor of E, then F' is hyperfinite.

Proof. Let m: (X, ) — (Y,v) be the factor map and let a € A(I', X, i) be
such that £, = F, (a) = band E, = F. Fory € Y, let X, = {z €
X: m(xz) =y} and let 41, be the probability measure on X, associated with
the measure disintegration of 7. Since E is amenable, let \": E' — [0, 1] be
Borel functions such that

Z ANz, 2') =1,

o' Ex
|AZ — A2||1 — 0, for xEu,as n — oo

(see [KM, Section 9]).
Define now p": F' — [0, 1] by

P = [ Nl duy(o) € 0.1
Xy Bz w(z)=y’

We will show that

> 0wy =1,

y'Fy
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lpy — pully — 0, for yFv,as n — oo,

which implies that F' is amenable, thus hyperfinite (see [KM, Section 10]).
The first equality is easy to check, so we verify the second. Fix v € I'
such that v - y = v. Then v - X, = X, and 7 - 1, = p,. Now for each y'F'y,

we have
B = [ N due)
Xy zEx! w(x")=y’
and
g = [ 3 W) dufa),
Xv zEx! (2" )=y’
SO
p) = [ N i)
Xy zEx! mw(z")=y’
It follows that
I =l < [ 112 = Al diy (o) =
by Lebesgue Dominated Convergence. O

This result can be used, along with an ultraproduct argument, to give
a different proof of a strengthening concerning weak containment of ac-
tions, due to Robin Tucker-Drob (private communication). We first need a
lemma, which extends Proposition 5.7 of [CKT] and Corollary 3.1 of [AE].
Below weleta ~ b <= a < b & b < a denote the weak equivalence of

the actions a, b and let a C b denote that the action «a is a factor of the action
b.

Lemma 17.10. Let I'; A be infinite countable groups, a,b € A(I', X, pn), ¢ €
A(A, X, ) be such that a < band E, C E.. The there are d € A(T', X, u),
e € A(A, X, ) suchthat b ~ d,c ~e,a C dand E; C E,. Similarly replacing
E,CE,E;CE by Ey,=FE, E; = E,, resp.

Proof. Let U be a non-principal ultrafilter on N and consider the ultra-
powers ay, by, ¢y on the space (Xy, ). Foreach g € I''h € A, let A, ),
be a Borel set such that for each g, |, A, = X and ¢°|A,; = h¢|Ay .
These can be found as £, C E.. Then, using Proposition 16.1, we have
that for each g, U, [AynJu = Xy and ¢%|[A 1] = h¥|[Ayplu. Then as in
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[CKT, Sections 4.2 and 5.2] we can find an appropriate countably gener-
ated, non-atomic, invariant under by, ¢;;, o-subalgebra B of the measure
algebra of (Xy, tu/), which contains all the sets [A, 1], and is such that if
de AT, X, n), e € A(A, X, ), resp., are the factors of by, c;; corresponding
to B, then b ~ d,c ~ e and a C d. Since B also contains the sets [A, i, it
follows that £; C E..

The proof in the case of equality instead of inclusion, as in the last
statement of this lemma, is similar. O

Corollary 17.11 (Tucker-Drob). Let I be an infinite countable group and a, b €
A(T, X, p) be such that a < b. If Ey, is hyperfinite, then E, is hyperfinite.

Proof. Apply Lemma 17.10 with A = Z and use Proposition 17.9. O

Remark 17.12. Standard factors of the ultraproduct [ [, F,,/U (which was
defined in Chapter 16), can be constructed as in the proof of Theorem 15.10.

17.2 Class-bijective factors

We now consider the following notion that has been considered in the lit-
erature, see Feldman-Sutherland-Zimmer [FSZ]). A measure preserving
countable Borel equivalence relation F' on (Y, v) is called a class-bijective
factor of a measure preserving countable Borel equivalence relation £ on
(X, p) if there is Borel 7: (X, u) — (Y, v) with myu = v, 7: E — F a homo-
morphism (i.e., Ez’ = m(x)Fn(z’)) such that moreover for each E-class
[z]p the map 7 is a bijection of [z|g with [7(z)]F. In this case we also call
the map 7 class-bijective. For example, let E be measure preserving on
(X,pn), A C MALG, a o-subalgebra which generates E, 7: (X, ) — (Y, v)
the corresponding map, a € A(l', X, u) with E, = FE leaving A invariant,
7(a) = band F = E,. If bis free, then F is a class-bijective factor of E.

Proposition 17.13. A class-bijective factor is a factor in the sense of Section 17.1.

Proof. Let b € A(I',Y,v) be such that £, = F. Define then a € A(I', X, p)
by

g (x) =2 <= 2B & ¢°(n(x)) = n(a').
Then 7(g%(z)) = ¢°(w(z)). Let A be the o-subalgebra of MALG,, corre-
sponding to 7. Clearly a preserves A, since g°(771(A4)) = 7~ 1(g*(A)), for



112 17. Factors

any A € MALG,, and E, = E while 7(a) = b, so F is a factor in the
preceding sense. O

Thus a class-bijective factor is a factor 7 for which E; = id. In fact
it turns out that the class-bijective factors of a measure preserving count-
able Borel equivalence relation £ on (X, i) correspond exactly to smooth
equivalence relations R, that commute with F and are orthogonal to £ in
the sense that £, = R, NE = id. Indeed, if F'on Y is a class-bijective factor
of £ via 7, then F, R, commute and E, = id.

Conversely if E, R, commute and E, = id, define the following rela-
tionon Y:

2Py < ' (2'Ey An(2') =z A7(y) =vy).

Then F'is a equivalence relation on Y (transitivity follows from the com-
mutativity of E, R;). Itis clearly analytic. It is also coanalytic, since, by the
commutativity of E, R, we also have:

rFy < Va'(r(2)) =2 = Ty (@'Ey An(y) =v)).

Thus F is Borel. Moreover the map 7 is bijective from [z]g to [7(z)]r (using
that £ = id), and so, in particular, F is a countable equivalence relation.
Finally, it is easy to verify that /' is measure preserving.

Since [E,| = [E] 4 we also immediately have:

Proposition 17.14. Assume that E on (X, ) is generated by the o-subalgebra
A C MALG with corresponding map w: (X, u) — (Y, v) and factor F. Then
is class-bijective iff |[E) 4 is trivial, i.e., # is an isomorphism of [E]* with [F).

We will next characterize which factors are class-bijective. Below for
each 7' € Aut(X, u), we let as usual supp(7') = {z: T'(z) # z}.

Proposition 17.15. Assume that E on (X, ) is generated by the o-subalgebra
A C MALG with corresponding map w: (X, u) — (Y, v) and factor F. Then
is class-bijective iff for each T € [E]4, supp(T) = 7 (supp(7(T))).

Proof. First note that for any T' € [E]#, we have
T(T)(m(z) # m(x) <= 7(T(x)) # n(x),

7w (supp(7(T')) € supp(T).
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Now assume that 7 is class-bijective. Let T’ € [E]A and T'(z) # x. Then
as mis 1-1 on [z|g, 7(T)(w(x)) # 7(x), so 7! (supp(#(T)) 2 supp(T).

Conversely, assume that 7 (supp(# (7)) 2 supp(T) and let z # 2’ €
[z]. Then for some T € [E]* we have T'(z) = 2/, so z € supp(T), thus
m(x) € supp(7(T)),so w(z') = n(T(x)) = #(T)(w(x)) # w(z),i.e., mis 1-1 on

From Proposition 17.15, and using its notation, we see that if 7 is class-
bijective, then for T' € [E]* we have that supp(T) € A. Conversely this
last condition almost characterizes class-bijective factors. Recall that 7 is
class-bijective iff card([z]g,) = 1, for all z.

Proposition 17.16. Assume that E on (X, u) is generated by the o-subalgebra
A C MALG with corresponding factor map ©: (X, u) — (Y,v). If for every
T € [E]A, supp(T) € A, then card([z]g,) < 2, for all z.

Proof. Assume the conclusion fails, towards a contradiction. Let A, =
{z: card([z]p,) = oo} and A>3 = {x: co > card([z]g,) > 3}. Then one of
these two sets has positive measure.

Case 1. (Ax) > 0. Let then B C A, be a Borel set such that both B
and A, \ B meet every E|A class. The by [K, 4.10] there is T € [E:|Ax]
with supp(7y) = B. Extend T, to T' € [E;] = [E] by letting T'(z) = =«
for v ¢ A.. Then supp(7T) = B but B is not E,-invariant, so B ¢ A, a
contradiction.

Case 2. ju(Ass) > 0. Let then C' C A3 be a Borel selector for E|A>s.
Then u(C) > 0. Define 71 € [E;|Ass] so thatz € C = (Ti(z) #
rANTz) = z)and z ¢ (C UTy(C)) = Ti(r) = x. Extend T} to
T € [E;] by letting T'(x) = x if x ¢ As3. Since supp(7’) = C UT(C) is not
E.-invariant, so not in A, we again have a contradiction. ]

That the conclusion of Proposition 17.16 cannot be strengthened to 7
being class-bijective can be seen from the following example. Let E on
(Y,v) be given, let X =Y x {0,1}, with the product measure y, and let
(x,1)E(y,j) <= xFy. Thenform: X — Y the projection function, the hy-
pothesis of Proposition 17.16 is satisfied but 7 is clearly not class-bijective.

Class-bijective factors can be also characterized, in the ergodic case,
in terms of skew products. Let F' be a measure preserving equivalence
relation on (Y,v). Let (Z,0) be a standard, not necessarily non-atomic,
measure space and let a: F' — Aut(Z, o) be a Borel cocycle, i.e., a(z,z) =



114 17. Factors

a(y, z)a(z,y) for tFyFz (in an F-invariant set of measure 1). Let X =
Y x Z, . = v x o and define the skew product equivalence relation £ on
X, in symbols

E=Fx.(Z0),

by

(z,2)E(y,w) <= xFy & a(z,y)(z) = w.
Let p: X — Y be the projection map p(y, z) = y. Leta € A(I', Y, v) be such
that £, = F. Let also a*(g,y) = a(y,¢g*(y)). Then if b = a X+ (Z, 0) is the
skew product action (see [K, Section 10, (E)]), we have E, = E and since
p(b) = a, it follows that F' is the factor of £ corresponding to p. Moreover
it is easy to see that it is class-bijective.

Conversely, the proof of Rokhlin’s Skew Product Theorem (see Glasner
[G]], 3.18) shows that if " on (Y, v) is a class-bijective factor of an ergodic
E on a space (X, ) via m: (X, ) — (Y, v), then there is a standard, not
necessarily non-atomic, space (Z,0), a Borel cocycle a: ' — Aut(Z,0)
and an isomorphism ¢: (X, ) = (Y x Z,v x o) of E with F' x,, (Z,0) such
thatpo ¢ = 7.

If F on (Y,v)is a (class-bijective) factor of E on (X, ;1) via 7, we say that
E is a (class-bijective) extension of E via 7. Given two such extensions
E,E of F on (X, p), (X', i) via 7,7, we say that they are isomorphic if
there is an isomorphism ¢: (X, ) = (X', i') of E with E' with 7’ o ¢ = 7.
Thus we have shown the following:

Theorem 17.17. Let F be an ergodic measure preserving equivalence relation on
(Y,v). Let E be an ergodic extension of F on (X, u) via w: (X,u) — (Y,v).
Then the following are equivalent:

(i) E, 7 is a class-bijective extension of F.

(ii) E, 7 is isomorphic to a skew product extension of F.

Concerning the question of inverse limits for systems ((X,,, ft,,), 7, E,)
we note that if we restrict ourselves to the category of class-bijective fac-
tors, i.e., if in this system every factor is class-bijective, then it is easy to see
that there is indeed a canonical inverse limit £, = lglnEn on (Xeo, foo),
given by

(2n)Es(yn) <= Yn(x,Eny,).
This follows from the “unique lifting property" given in Proposition 17.14,
which implies that if ay € A(I', Xo, o) is such that £,, = Ej, then there
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and a., €

are unique a, € A(I', X,,, p,) with 7, ,,,(a,) = a,, forn > m
=F.

AT, X, poo) With T n(a) = @y, such that E,, = E,, E,_
The following is an interesting open problem:

Problem 17.18. If E is treeable and F is a class-bijective factor of I, is F tree-
able?

Note that a positive answer implies that every countable treeable group
I" is strongly treeable. (Recall that a countable group I' is treeable if there
is some free a € A(I', X, u) with E, treeable, while it is strongly treeable
if this holds for every free a € A(T', X, u).) Indeed let a € A(T', X, i) be
free with E, treeable and consider any free b € A(I',Y,v). Let a x b be
the product of a,b. Then E,,, is a class-bijective extension of E,, so it is
treeable. Also Ej is a class-bijective factor of E,;, so, if the answer to
Problem 17.18 is positive, £, is treeable.

17.3 Other notions of factors

In the preceding we have considered two categories whose objects are
triples (X, p1, E), with E a countable measure preserving Borel equivalence
relation on (X, p).

(1) In the first category, the morphisms =: (X,pu, E) — (Y,v, F) are
measure preserving Borel maps 7: (X, u) — (Y,v) with 7: E' — F a class-
bijective homomorphism, i.e., for each z € X, 7 is a bijection of [z|g with
[7(2)]g. (The notation 7: £ — F, which more accurately should be written
as x m: E'— F, indicates that 7 is a homomorphism of £ into F'.)

(2) In the second category, the morphisms =: (X, u, E) — (Y,v, F)
are measure preserving Borel maps 7: (X, ) — (Y,v) such that if 4 C
MALG, is the o-algebra associated to 7, then [E]* generates E and 7 ([E]4)
generates I (or equivalently there is Borel action a of a countable group I'
preserving A, such that £, = F and E;,) = F).

Robin Tucker-Drob (unpublished) considered the following two addi-
tional categories with the same objects (X, p, £).

(3) In the third category, the morphisms 7: (X, pu, E) — (Y,v, F) are
measure preserving Borel maps 7: (X, ) = (Y,v) with 7: £ — F a class-
surjective homomorphism, i.e., for each z € X, 7 is a surjection of [z]g
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with [7(z)]g. Note that a class-surjective homomorphism is a morphism
in the sense of the second category (i.e., that of Section 17.1) iff the homo-
morphism #: [E]A — [F] is surjective. One direction follows from Propo-
sition 17.1. For the other direction, recall that xR,y <= n(z) = 7(y)
and E, = ENR,. Let Sy, Sy, - - € [F] generate F and let Ty, T}, - - - € [E]*
be such that 7(7;) = S;. Let also Uy, Uy,--- € [E;] generate E,. Then
Ty, 11, ..., Uy, Uy, ... generate E and of course 7(7p), 7(11), ... generate F.

(4) Finally, in the fourth category, the morphisms
m: (X, 1, E) = (Y0, F)

are measure preserving Borel maps 7: (X, ) — (Y,v) with7: £ — F a
surjective homomorphism (i.e., (7 x 7)(E) = F).

Note that the categories above have the same objects but increasingly
more general morphisms.

17.4 An application to soficity

We start with the following proposition.

Proposition 17.19. Let m: E — F be a class-surjective homomorphism. Assume
that F' is treeable. Then the following are equivalent:

(i) F' is a factor of E via .

(ii) There is Borel E' C E such that F is a class-bijective factor of E' via
and E = E'V E,.

Proof. (ii) = (i): Let Ty, 11, - - - € [E;] generate E,. If A is the o-algebra
corresponding to 7, clearly T, € [E]4. Let also T}, 77, -- € [E'|* C [E]*
generate £’ with 7(7}), 7(17), ... generating F. Then Ty, T3,..., 10,17, ...
generate E. Note that we have only used that F is a factor of £’ here.

(i) = (ii): Fix a Borel treeing of F (i.e, a Borel acyclic graph whose
connected components are the F-classes). Using a Borel edge coloring of
this treeing with countably many colors (see [KST, Proposition 4.10]), we
can find a (finite or infinite) sequence Sy, 51, ... of Borel involutions gen-
erating this treeing, so that if m # n and 5,,(z) = y with = # y, then
Sn(z) # y.

By Proposition 17.3, let T;, € [E]* be an involution such that #(7},) =
Sn. We can clearly assume that 7;, is chosen so that 7},(z) = z if S,,(7(x))
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m(x). Let E’ be the equivalence relation generated by the 7}, so that £’ C
E. We will show that 7 is a class-bijective homomorphism of £’ to F'.

Clearly = is a class-surjective homomorphism of E’ to F'. To check that
it is class-bijective, let 2’ E'y’, 2" # y' but, towards a contradiction, m(z') =
7(y'). Let n be least such that we can find 7;,, T, . .., T;, with T}, 0T}, 0---0
T;, (2') = v and therefore S;, o S;, 0 --- 0 5, (w(2')) = 7(y’), contradicting
the acyclicity of the treeing.

Finally £ = E' V E, follows from Proposition 17.2. O

Definition 17.20. Let F' be a countable measure preserving Borel equivalence
relation on (Y,v). We say that F' is unfoldable if for any E on (X, u) which
factors to F via w: (X, u) — (Y,v), there is E' C E such that F is a class-
bijective factor of E' via .

Thus every treeable equivalence relation is unfoldable. For the next
result recall the notion of a sofic equivalence relation introduced in [EL].
See also [CKT, Definition 10.1] for an alternative description due to Ozawa
that we will use below.

Proposition 17.21. Every unfoldable equivalence relation is sofic.

Proof. First notice that every F'is a factor of an E that is given by a free
action of F.. Indeed let a be an action of F, such that F' = E, and let b be
a free action of F,. Then take £ = E,,;. Since FE is given by a free action
of the group F,, E is sofic (this follows from the fact that F, has property
MD - see the first two paragraphs of [CKT, Section 10.3])

Assume now that F' is unfoldable and let £/ C FE be such that F'is a
class-bijective factor of E’. Then clearly [[£’]] C [[£]] and, since F is a class-
bijective factor of £E’, there is a canonical embedding of [[F]] into [[£']] and
thus into [[E]], so, by the definition of soficity, F' is sofic. O

The combination of Proposition 17.19, Proposition 17.21 gives then a
new proof of the following result of Elek-Lippner (another proof is also
given in [CKT, Section 10.3]).

Corollary 17.22 (Elek-Lippner, [EL]). Every treeable equivalence relation is
sofic.
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17.5 Relative hyperfiniteness

We consider here the following question:

Suppose E is hyperfinite and generated by a non-atomic o-subalgebra
A, i.e., F is generated by a countable group of transformations that are
A-measurable (i.e., preserve A). Can we find a single A-measurable trans-
formation that generates F, i.e., is I/ hyperfinite relative to A?

The answer is in general negative as the following example shows:
Consider (2%, 1), where p is the usual product measure, and the equiva-
lence relation Ej of eventual equality. Let £ = E; x E; be the product
equivalence relation, let 7r: 2 x 2V — 2N be the first projection and A the
corresponding o-algebra. Clearly E is generated by .A. Suppose, towards
a contradiction, that there is a 7" which preserves A and generates E. Then
T sends vertical lines (i.e., sets of the form 7~ !(x)) to vertical lines and
7(T') generates Ey, so it is aperiodic, thus T fixes no vertical line. But in
every vertical line there are distinct F-inequivalent elements, so 7' cannot
generate L.

The following result provides the next possible answer.

Theorem 17.23. Let E be hyperfinite and generated by a non-atomic o-subalgebra
A. Then

(i) There are Ty, Ty € [E]* that generate E.

(ii) If E is ergodic, then there is T € [E]A that generates E iff the factor
corresponding to A is class-bijective.

Proof. (i) Let m: X — Y be the map associated to .4 and F' the correspond-
ing factor equivalence relation on Y. Then, by Proposition 17.9, F' is hy-
perfinite. Say F' = Eg, where S € [F]. Let T} € [E]* be such that #(T}) = S
and let E' = Ep,. Then by Proposition 17.2, E = E' V E,. Clearly E; is
generated by some T;, € [E]*, so E is generated by Ty, Ts.

(ii) If the factor corresponding to A is class-bijective, then, since the
factor equivalence relation F is hyperfinite, clearly there is 7' € [E]A that
generates E. Conversely, assume that there is 7' € [E]A that generates E
and, towards a contradiction, that £, # id. Then for a positive measure
set of z, there is n # 0,n € Z such that 7(T"(x)) = n(x). Now 7(T) =
S generates F' and S"(n(z)) = 7(z), therefore [n(z)|p is finite. But F' is
ergodic, so aperiodic, a contradiction. O
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Ben Miller raised the following questions:

Problem 17.24. i) Let E be a hyperfinite equivalence related generated by a non-
atomic o-subalgebra A. Is there is an increasing sequence Ey C Ey C ... of finite
equivalence relations which are generated by A with E =, E,,?

ii) What if we assume the stronger hypothesis that E = Er, for some T €
()42

We have the following result which provides a weaker version of a

positive answer to part i) of Problem 17.24 and a positive answer to part
ii)..
Proposition 17.25. i) Let E be hyperfinite and generated by a non-atomic o-
subalgebra A. Then there is an increasing sequence Ey C Ey C ... of equivalence
relations, which are generated by A, with E = | J,, E,, and for each n an increasing
sequence E, o C E, 1 C ... of finite equivalence relations which are generated by
A such that E,, =, Enm-

In particular, E is the limit (in the topology of S(E)) of a sequence of finite
subequivalence relations which are generated by A.

ii) If moreover E = Er, for some T' € [E|*, then then there is an increasing
sequence Ey C Ey C ... of finite equivalence relations, which are generated by
A, with E =, E,.

Proof. i) Consider the factor map 7 associated with .A and the factor equiv-
alence relation F'. Then F is hyperfinite, by Proposition 17.9, so we can
write itas F' = |, F,,, with F; C F; C ... finite equivalence relations. Let
also, by Proposition 17.19, £’ C be such that Fis a class-bijective factor of
E'viamand E = E'V E,. Let 2Fly <= zE'y & n(x)F,n(y) and put
E, = F! V E,. Clearly E, is generated by A, increasing, and | J,, £, = E.

Fix now n in order to define E,, ,,. Let B be a Borel selector for F,, i.e.,
a Borel set meeting every [},-class in exactly one point. For each F,-class
C let yc be the point of B in C'. Write also £, = |J,, Ex ., with E ,, finite
and increasing. Clearly each E, ,, is generated by A. Define now E,, ,, as
follows:

Given z with 7(z) = yc and any y € C, there is a unique point 6,(z)
such that 7(6,(x)) = y and zF} 0, (x). Define now the equivalence relation
E; nmbyletting 2E, . ,wiff zEw and if C'is the F,,-class of 7(z) = m(w)(=
y), then there are 2/, w’ with 2'E, ,,w’ and 0,(2') = 2,0, (') = w.

Clearly E; ,, ., is finite and, since it is contained in £, it is generated by
A. Finally let E,, ,,, = Er ,, ,, V F,,. This works.
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ii) Let 7, F' be as in i) and let S = 7(7"). Denote by P the Borel set which
is the union of the set of finite F'-classes and let () be the complement of P.
Let A = 7 '(P),B = 7 1(Q). These are both in A. Clearly F|Q is a class-
bijective factor of E|B, so since F|() is the union an increasing sequence
of finite equivalence equivalence relations, E|B is the union an increasing
sequence of finite equivalence equivalence relations, which are generated
by A|B. It is thus enough to show that E|A is the union an increasing
sequence of finite equivalence equivalence relations, which are generated
by A|A. This can be done exactly as in the construction of the £, ,, from
F,, in part i). []

One can also ask if a kind of converse of the Problem 17.24, ii) is true:
If there is an increasing sequence £, C E; C ... of finite equivalence
relations, which are generated by A, with £ = |J, E,, is there T' € [E]4
such that £ = E;? The example given before Theorem 17.23 shows that
this fails in general.

Remark 17.26. Let E be a measure preserving countable Borel equivalence
relation on (X, i). Then of course the following are equivalent:

a) E = Er for some T' € Aut(X, u),

b) E is the union of an increasing sequence of finite Borel equivalence
relations.

The preceding show that when relativized to a o-subalgebra 4, a) im-
plies b) but not vice versa.

17.6 Relative cost

Let I/ be a measure preserving countable Borel equivalence relation on
(X, ) and let A be a non-atomic o-subalgebra of MALG such that E is
generated by A. Let 7: X — Y be the associated to A factor map and F'
the factor equivalence relation. Define the relative to A full pseudogroup
of E, in symbols [[E]]*4, as the set of all partial Borel bijections ¢ € [[E]],
0: A — B,suchthat A,B € A and forany A’ C A, B' C B, A", B' € A,
we have 0(A"),07Y(B") € A. If0 € [[E]]*,0: A— B,and A = 7 }(C),B =
7~ Y(D), then, as in Section 17.1, we have an element 7(6) € [[F]] such
that 7(0): C — D and 7(0)(n(z)) = n(6(z)), for x € A. Moreover, as in
the proof of Proposition 17.1, the map #: [[E]]* — [[F]] is surjective and
preserves composition.
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Next define the cost of £ relative to A by

CAE) = inf{z w(A): 00 Ay — B € [[E]]*, (0;)ic; generates E}

iel

(where [ varies over countable index sets).

Clearly CA(E) > C(E). Also notice that if (6;);c; generates F, then
(7(6,))icr generates I, therefore CA(F) > C(F).

Below we say that an equivalence relation £ on (X, ) is finitely gen-
erated if it is of the form F = Erp, 1, , forsome Ti,..., T, € Aut(X, ).

.....

Theorem 17.27. Let E be a measure preserving countable Borel equivalence re-
lation on (X, pu) and let A be a non-atomic o-subalgebra of MALG that generates
E. Let w: (X, ) — (Y, v) be the associated to A factor map and F' the factor
equivalence relation. If F is aperiodic (e.g., if E is ergodic) and E, is finitely
generated, then CA(E) = C(F).

Proof. We have already seen that CA(E) > C(F). If C(F) = oo, then
CA(E) = C(F) = oo. So we can assume that C(F) < co. We will show
then that CA(E) < C(F).

Let ¢ > 0 and find a graphing (7;);c; of F (where n; € [[F]]) such that
S v(dom(n;)) < C(F) + e. Let 6; € [[E]]A be such that #(6;) = n;. Then
>, uldom(6,)) < C(F) + e

Let £/ C E be the equivalence relation generated by (6;);c;. We claim
that £ = £’ V E,. Indeed let xEy. Then 7(z)Fr(y), so there are iy, ... i,
such that ;" o -+ o' (m(2)) = 7(0 0+ 0 65 (2)) = 7(y), 506, 00
05" () Ery.

Since F' is aperiodic, fix a Borel complete section B of F' with v(B) <,
so that if A = 771(B), then u(A) < e. Let

Ex=EAUid|(X \ A).

Since A is R.-invariant, so E -invariant, F4 is generated by the maps
Ti|A, ..., T,|A, which belong to [[E4]]* C [[E]]* (note that T;(C) = C, for
any C' € A).

We next claim that £ = E’ vV E4. Indeed it is enough to show that
E, C E'V E4. Let zE;y. Since B is a complete section of F, there are
it,... i, such thatn;' o---on!(n(z)) € B,s0o ;' o--- 06! (z) € A. Also
6 00 0 (@) B 0o 0 07 (y) € A, thus 2E'6F o 0 61 () E46E" o
00 (y) Ey.
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We now have that £ is generated by the 6,7 € I, and T3|A4,...,T,|A
which are all in [[E]]* and the sum of the measure of their domains is
< C(F) + (n + 1)¢, thus, letting ¢ — 0, we have that CA(E) < C(F). O

Corollary 17.28. Let E, A, 7, F be as in Theorem 17.27. Then if E. is hyperfi-
nite, CA(E) = C(F). In particular, if E is ergodic hyperfinite, then CA(E) = 1.

Although for E ergodic hyperfinite there might not be a single auto-
morphism 7' € [E]# that generates E (see Theorem 17.23), Corollary 17.28
shows that C4(E) is still equal to 1.

It turns out that the hypothesis that E; is finitely generated is needed
in Theorem 17.27. This can be seen from the following example:

Let N be a non-trivial, normal subgroup of I, of infinite index, so that
N is a free group of infinite rank. Let I' = F,/N. Let I/ be a free action in
A(T',Y,v) and then let b € A(FFy, Y, v) be the (non-free) action of IF, induced
by ' and the surjective homomorphism of F, onto I'. Then for eachy € Y
the stabilizer of y in the action b is equal to N. Let now c be a free action in
A(Fq, Z,n) and let a = b x ¢, which is a free action of Foon (X =Y x Z, u =
v xn). Let m(y, z) = y and let A be the associated o-subalgebra. Letting
E = E,, F = E, all the conditions of Theorem 17.27 are satisfied, except
for E, being finitely generated. Indeed notice that E is generated by the
free action of N on X, so has infinite cost, thus cannot be finitely generated.
We will now see that the conclusion of Theorem 17.27 fails. First notice
that 2 = C(E) < CA(FE) < 2, since the two generators of F, (acting on
X), say T1, Ty, are in [E]A. Thus if the conclusion of Theorem 17.27 was
true, we would have C(F) = 2. Consider then the graphing of F' given
by 7(1}), 7 (13). It has cost 2, so it attains the cost of F, thus it is a treeing
(Gaboriau, see, e.g., [KM, 19.1]), which implies that the action of F, on Y’
is free, a contradiction.

We next consider the question of when the infimum in the definition of
CA(E) is attained.

Proposition 17.29. Let E, A, 7, F be as in Theorem 17.27. Then

i) If m is class-bijective and F' is treeable, the infimum in the definition of
CA(E) is attained.

it) Conversely, if the infimum in the definition of CA(FE) is attained and F has
finite cost, F' is treeable and  is class-bijective.

Proof. i) Note that if (1;) is a treeing of F, which therefore attains the cost
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of F (Gaboriau, see, e.g., [KM, 27.10]), and #(6;) = n;, with 6; € [[E]], then
(6;) attains CA4(E) = C(F).

ii) Assume now (f;) attains CA(E) = C(F). Then if #(6;) = n;, (n:)
generates I and attains the cost of F, so it is a treeing of F', since F' has
finite cost (Gaboriau, see, e.g., [KM, 19.1]). If now E; # id, towards a
contradiction, let x E,y, x # y. Then there are iy, . .., i, such that Qiill 0---0
0" (z) =y, thus ;' o -+~ ot (w(2)) = 7(x) = 7(y), a contradiction. O

In particular, using also Proposition 17.9, if E' is ergodic hyperfinite,
then the infimum in the definition of CA(E) = 1 is attained iff 7 is class-
bijective.

Let £ be a measure preserving countable Borel equivalence relation.
We define the cost spectrum of E, in symbols C'Sp(E), as the set of all
CA(E), where A varies over all the non-atomic o-subalgebras of MALG
such that F is generated by A. (Thus CSp(E) C [C(E),oc].) Clearly
the cost spectrum is an invariant of isomorphism among equivalence rela-
tions. It might therefore be interesting to study its structure.

For example, if E is ergodic hyperfinite, then C'Sp(E) = {1}. Is it true
that if £ is ergodic, non-hyperfinite but has cost 1, then C'Sp(E) # {1}?
If in fact for every ergodic, non-hyperfinite £ of cost 1, one has an A, 7
such that actually E, is finitely generated and C#(E) > 1, then it follows
that for every ergodic, non-hyperfinite £ there is a subequivalence rela-
tion induced by a free action of IF;, (which answers positively [KM, 28.14]).
Indeed if that is the case, every ergodic, non-hyperfinite £ would have a
factor F' of cost > 1, so that by [KM, 28.8] it would have a subequivalence
relation induced by a free action of [F,, which then could be lifted to such
an action of I, whose corresponding equivalence relation is included in
E.

It is actually easy, using Theorem 17.27, to construct examples of er-
godic, non-hyperfinite £ of cost 1, whose cost spectrum contains any fi-
nite set of reals > 1. Given 1 < ¢; < --- < ¢,, simply take ergodic, finitely
generated equivalence relations £, . .., E, with C'(E;) = ¢; (Gaboriau, see,
e.g., [KM, page 125, line 3]) and let £ = E; x --- x E,. Then E has cost
1 (Gaboriau, see, e.g., [KM, 24.9]) but, using Theorem 17.27 and consid-
ering the factors corresponding to the projection functions, we see that
CSp(E) D {c1,...,cn}
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17.7 Topological rank of relative full groups

Recall that a topological generator of a topological group I' is a subset I
of I' such that the subgroup generated by I'y is dense in I'. The topologi-
cal rank of I', denoted by ¢(I'), is the smallest cardinality of a topological
generator of I'. Thus if I" is Polish, then ¢(I') < Ry. It is easy to see that if
I' is a Polish group, N < I" a closed normal subgroup and H = I'/N, then
t(I') < t(N) + t(H). Indeed, if N is a topological generator of N and H,
a topological generator of , then choose for each coset in H, a represen-
tative and let H, C I consist of these representatives. Then Ny U Hyis a
topological generator for I'.

Let now E be a countable measure preserving Borel equivalence rela-
tion on (X, 1), let A be a non-atomic o-subalgebra of MALG, with associ-
ated map , such that £ is generated by A, and let I’ be the factor of F
determined by A. Then we have that

t([F]) < ([E]Y) < 4([F]) + t(Ex))-

If then F, E;; are aperiodic, we have ¢([F]),t([Ex]) = 2 (see [LeM, p. 263]),
so t([E]*) < 4. We do not know if 4 here can be lowered to 2.
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Consider again a measure preserving countable Borel equivalence relation
E on (X, pu). Denote by Gr(E) the set of all (simple, undirected) Borel
graphs G on X such that G C E, where again we identify two such graphs
if they agree a.e.

Forany G € Gr(E) and T € [E], let again

Arg = {z: (2,7(x)) € G}
and define the strong topology on Gr(E) as the one generated by the maps
G~ ATyg,

Gr(E) — MALG,

for T € [E].
Note that we have the obvious analog of Proposition 4.11 (in relation
to a generating sequence for E) and the following analog of Lemma 4.12.

Lemma 18.1. Let I be a group, a: I' x X — X an action of I" on a set X and put
a(g,x) = g - x. Let E, be the induced equivalence relation on X and let G C E,
be a graph. For g € T, let

Ab o= Age=1{r: (v,9-2) € G}.
Then
1’ Al,G - ®/
2. AQG - g_l 'Ag—lg,

3. Ah,G N Fix(h_lg) C Ag,G/

125
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where
Fix(p) ={x: p-z = x}.
Conwversely, if (Ay)ger is a family of sets satisfying 1.-2. above, then the relation

rGy <= dg(g-x=yVaxeA,)
defines a graph contained in E, and if 3. also holds we have that A, = A, .

Therefore the proofs in Chapter 4 show that this topology is Polish. We
will simply call it the topology of Gr(E). For this topology we have the
following;:

Gn— G < Vi(Arc, 25 Az o)

< VT € [E](Argq, MALS Arc)

= Ve [E(4pe. = Asq)
where, as usual, (7;);ey generates E and for ¢ € [[E]]), A, = {z €
dom(yp): (z,p(x)) € G}. Again as in Chapter 4, we can also view Gr(E) as
a closed subspace of MALG g with the induced topology. Note also that if
GoCGyC...,G=, G, thenG, — G and similarly if G, 2 G, ...,G =
N, Gn.

One can also define the weak topology on Gr(E) as the topology gener-
ated by the maps G — u(Ar ), Gr(E) — [0,1], for T € [E]. Anush Tserun-
yan pointed out that the proof of Theorem 4.15 shows that this topology
coincides with the above (strong) topology. Indeed, let G;, — G in the
weak topology and let ' € [E] be an involution. Let A = A7, which is
T-invariant, and let S € [E] agree with 7" on A and be equal to the identity
in its complement. Then Agq, C A (since x € Agq, = = # S(x)) and
so u(A\ Asg,) — 0, since Asg = A. Also Arg \ Arg, = A\ Asg,, SO

w(Are \ Arg,) — 0. As in the proof of Theorem 4.15 this implies that

MALG
,LL(ATj(;n \ ATy(;) — O, SO AT,G’n — AT7g.

Remark 18.2. On the set of bounded degree graphs in G'r(E) one can also
define the metric

D(G,H)=M(GAH) = / |G(z) A H(x)|dp(x)

(see Lovasz [L, page 352]), where M is the measure on E defined in Sec-
tion 4.4, (1), and G(z) = {y: (z,y) € G} is the set of neighbors of z in G.
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This gives rise to another topology on this set of graphs, for which is easy
to check that it is at least as strong as the relative topology inherited from
Gr(E) (i.e., contains the relative topology). However, even for graphs of
degree at most 2, it is easy to see that it may be actually strictly stronger.
For example, take E to be the equivalence relation generated by a free,
measure preserving action of the free group F,, with infinitely many gen-
erators ag,ay,.... Let G, be the graph induced by the action of a,, let
Foo = {90,601, ...} and put T;(z) = ¢; - . Then Ar, ¢, = X, if g; = a,,, while
Ar, ¢, =0,if g; # a,. Thus G,, converges to the empty graph in Gr(E) but
it is discrete in the metric D.

However if we consider the set of all d-regular graphs, for fixed d > 2,
the D-topology on that set agrees with its relative topology from Gr(E).
Indeed assume that G,,, G are d-regular and G,, = G. Let ¢1,..., ¢4 €
((E)) be such that for each z, p;(z), ..., pa(z) are exactly the G-neighbors
of z. Then for each i < d, u(A,, ) — (A, .¢) = 1. So given € > 0, find N
large enough so that forn > N, (A, ¢, ) > 1—5. Since the ¢, (), ..., p4(x)
are distinct and G, is d-regular, it follows that for € (., A,,.¢,, ,we have
(G,)(r) = G(x) and thus D(G,,, G) < 2de, ie., D(G,,G) — 0.

We also have the following analog of Theorem 5.1.

Theorem 18.3. Let G,,, G € Gr(FE) and G,, — G. Then for each i, there is an

increasing sequernce néi) <\ < ..., s0 that (™)) pen is a subsequence of
¢={JM G-

(78 )mens and
m k>m

Proof. Let (¢;)ien be asequencein [[E]] such that (z,y) € G <= Fi(pi(z) =
y). Then repeat the proof of Theorem 5.1 to define (ngﬁ) )men and show that

G C U,,Nizm G, om. For the converse again repeat the proof of Theo-
— k
rem 5.1 by showing that if H = (J,, (5., G, o and (¢;)sen is a sequence
= k

in [[£]] such that (z,y) € H <= 3Fi(¢;(z) = y), then for x € dom();), we
have (z,¢;(x)) € G. O

Again as in the paragraph following the proof of Theorem 5.1, Le Maitre
in [LeM1], showed that one has the following stronger form:

Let G,,G € Gr(E) and G,, — G. Then there is an increasing sequence
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n0<n1<...,sothat

For G C Gr(E) we define G;, G, as in the case of equivalence relations.
Then we have:

Theorem 184. If G C Gr(E) is closed under finite intersections, then G =
(G))+. In particular, if G is hereditary, G = Gj.

A locally countable Borel graph G on X is (u-)measure preserving if
any partial Borel isomorphism ¢: A — B such that graph(y) C G is mea-
sure preserving. This is equivalent to saying that the equivalence relation
generated by G (i.e., the equivalence relation whose equivalence classes
are the connected components of ) is measure preserving. Denote by
GR the set of all Borel locally countable, measure preserving graphs on
(X, i), where as usual we identify two such graphs if they agree a.e. Then
Gr(E) ={G € GR: G C E} and GR = Jpce Gr(£). As in Theorem 6.1,
we can see that if £ C F, then Gr(FE) is a closed subset of Gr(F') and the
topology of Gr(FE) is the relative topology it inherits form Gr(F’). Thus, as
in Chapter 6, we can define the topology on GR which is the topological
union of the topologies on Gr(E), E € £.

Remark 18.5. As a final comment, we mention that ultraproducts of graphs
can be defined as in Chapter 16 using Lemma 18.1. Also the uniform topol-
ogy on Gr(E) can be defined as in Section 4.6.
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For each G € Gr(E), let G* € S(E) be the equivalence relation generated
by G. The argument in the paragraph preceding Proposition 4.29 shows
that the operation G € Gr(E) — G* € S(E) is not continuous. Indeed, in
the notation used there, we can take G,, = F}, \ id and G = F \ id. Then
H, = G, UG is decreasing and (), H, = G, so H, — G, while H} = Eg
and G* = Egs. By a proof similar to that of Proposition 4.29 we also have
the following:

Proposition 19.1. The map Gr(E) 5 G — G* € S(E) is of Baire class 1.
We call G € Gr(FE) a graphing of F'is G* = E.

Theorem 19.2. The set {G € Gr(E): G is a graphing of E}is G5 in Gr(E). If
E is aperiodic, it is also dense in Gr(E).

Proof. That it is G5 follows from the preceding proposition, since G is a
graphing of I iff G* = E.

Assume now F is aperiodic in order to show that {G: G is a graphing
of £} is dense in Gr(FE). A typical basic open set in Gr(E) has the form

Ucory,..Tne ={G € Gr(E): V1 <i <n (u(AncAAr ¢,) <€)},

where Gy € Gr(E),Ty,...,T, € [E] and ¢ > 0. We will show that any
such set contains a graphing of E. Since E is aperiodic, let S, 5s, - - - € [E]
be aperiodic with Eg, s, . = E (see [K, 85]). Foreach1 < i < n,1 <
j < ook € Z let Ay, = {x: T;(x) = Sj(x)}. For fixed i,j, the sets
{A; 1}, are pairwise disjoint, so for any 6 > 0 there is Ny(z, 7,0) such
that M(U|k|ZNo(i,j75) Ai,j,k) < 6. Let Mg(j, 5) = maxlSiSnNo(i,j, 5)

Now define for each 1 < j < oo a graph G; € Gr(E) as follows:

(z,y) €Gj <= y= S]ik(x) Vy = S;_L(kﬂ)(x),

129
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where k = My(j,6;) with 0; = 55. Let G = Gp U2, G;. We claim that
G € Ugym,,.. 1, and G is a graphing of E.

(1) G e UGO,Tl 77777 T et Letl <37 <n. Then AT,',G’ = AszGo U U;)il ATZ-,G’J--
If © € A, then there is [k| > My(j,9;), with Ti(z) = SF(z), so = €
Ulki=mo(.5,) Aigiks therefore pi(Ar, ;) < 6; and so

lj’(ATi,GAATl,GO) < #(U ATi7Gj)

j=1
> €

< Zdj = 5 < €.
j=1

(2) G* = E: It is enough to show that for z € X and 1 < j < oo,
we have (z,5;(z)) € G;. Let k = My(j,8;). Then (z,57"(z)) € G; and
(Sj(x), Si*!(x)) € Gy, s0 (x, 5j(x)) € G5 O

As in Chapter 8, if G C GR is a class of measure preserving locally
countable Borel graphs and I € £, we let

Ge=GNGr(E).
In particular, GRp = Gr(E).

We call G € GR acyclic if for (almost) all z, there is no sequence = =
Tg, X1, Lo, - . ., Tn, With n > 2, of distinct points with (z¢, 1) € G, (z1,22) €
G,....(Tn-1,2,) € G, (z4,70) € G. We denote by TR the class of acyclic
graphs.

Theorem 19.3. The set TR = {G € Gr(E): G is acyclic} is closed in Gr(E).

Proof. This follows from Theorem 18.4, but here is also a direct proof. Note
that G is not acyclic iff 3n > 237,15, ..., T, € [E](p({z: Forall0 < i <
J < n(ac g FIX(TzilTJ)) & Vi < n('r S ATivTH—hG) &re ATn,To,G)}) > 0)
where Ty = id and for T € [E], Fix(T) = {z: T(x) = x}, so

{G: G isnot acyclic} =

U (G () 0\ Fix(T )N
n>2Ty,... TyelE] 0<i<j<n

ﬂ Az, 10,6 N Az, 1,0) > 0},

<n

which is clearly open. O
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A treeing G of I is an acyclic graphing of E.
Corollary 19.4. The set {G € Gr(E): G is a treeing of E}isa G set in Gr(E).

Similarly we define what it means to say that G € Gr(F) is a graphing
of F € S(F) (namely G* = F) or a treeing of F. We thus have:

Corollary 19.5. The set {(G, F'): G is a graphing of F'} is G5 in Gr(E) x S(E).
Similarly for {(G,F): G is a treeing of F'}. In particular {F € S(E): F is
treeable} is analytic in S(E).

Proof. Let {U,} be a countable open basis for S(E). Then G* = F <=
V(G € U, = F € U,,). 0

The following is a basic open problem.

Problem 19.6. Is {F' € S(E): F is treeable} Borel? Is there a Borel function
f:{F € S(E): Fis treeable} — Gr(FE) such that f(F) is a treeing of I, if I is
treeable.

We next have the following fact, where for each d > 1, we let GR,; =
{G € GR: G has degree < d}.

Proposition 19.7. The set GR4p = {G € Gr(E): G has degree < d} is closed
in Gr(E), forany d > 1.

Proof. Again this follows from Theorem 18.4, but we can also give a direct
proof. Note that

Gr(E)\ {G: has degree < d} = U {G:
T,y Td+1€[E}
n( () (X\Fix(T7'T)))
1<i<j<d+1
n () Ane) >0}
1<i<d+1

Now let BDG = {G € GR: G has bounded degree}.

Corollary 19.8. The set BDGr = {G € Gr(E): G has bounded degree} is dense
F, in Gr(E). Moreover, if E is aperiodic, then its complement is dense in Gr(E),
so BDGg isin F, \ Gs.
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Proof. 1t is clear that BDGy, is F, by Proposition 19.7. Density is also easy,
since if (7},) is a uniquely generating sequence of Borel involutions for F,
then for any G € Gr(E), if G,, = GNY,.,, graph(7}), then G,, — G. Finally
if £ is aperiodic, put H, = G U ,-,{(z,y): z # y & Ti(z) = y}. Then
H, - G. - O

We also have, letting ZDG = {G € GR: G has infinite degree}:

Proposition 19.9. The set IDGr = {G € Gr(E): G has infinite degree} is G5
in Gr(E) and, if E is aperiodic, it is dense in Gr(E).

Proof. Let (T;);en be a generating sequence for E. Let also for each n, D,, =
{Tb, ..., T,—1}. Finally let deg(x) be the degree of = in G. We have

{z: degg(x) > d} = U U

n S1,...8S4€Dy

[ m (X\FIX mASG’

1<i<j<d 1<i<d

)

and
G €IDGr <= Vd > 1Ve € QF (u({x: degg(z) > d}) > 1 —¢)

therefore G € DGy, iff the following holds: Vd > 1¥e € Q" 3n

,u< U [ﬂ (X \ Fix(S; mAsg)>1—€
St
so IDGg is in Gj.

Sa€Dy L1<i<j<d 1<i<d
Density in case of aperiodic F follows from the proof of Corollary 19.8,
since the graphs H,, defined there are in ZDGp. O

Finally we have, letting LFG = {G € GR: G is locally finite}:

Proposition 19.10. The set LFGr = {G € Gr(E): G is locally finite} is F,s
in Gr(E). Both LFGg and its complement are dense in Gr(E), if E is aperiodic.
Moreover if E is ergodic, LFGg is in Fys \ G,
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Proof. Using the notation of the proof of Proposition 19.9 we have

G is locally finite <= Ve e Q*3d e N
p({z: dege(z) <dp) =2 1—e¢,

so it is enough to show that for each fixed d € N,

{G: p({x: deg(x) < d}) >1—¢}

is closed. Note that

{z: degg(zr) < d} = ﬂ ﬂ

)

[ U Fix(si's)u [ (X\ 4s.¢)

1<i<j<d 1<i<d

and
p({z: dege(x)) <d}) >1—¢

@Vn[u( N [U Fix(S;715;)U

SpyeeesSaepy F1<i<j<d

U <X\Asi,c;}) Zl—e},

1<i<d

which is clearly a closed condition on G.

By Corollary 19.8 and Proposition 19.9 both LF Gy and its complement
are dense in Gr(F), if E is aperiodic.

Assume now that F is ergodic. Then the argument in the proof of The-
orem 8.6 shows that LF G is not in Gy, . 0

Denote by C(G) the cost of G, i.e.,, C(G) = L [ dege(z)du(z) € [0, 00].

Proposition 19.11. The function G € Gr(E) — C(G) is lower semicontinuous,
ie, foreveryr € R, {G € Gr(E): C(G) > r} is open. In particular, {G €
Gr(E): C(G) = oo} is Gs.

Proof. We will show that foreachr € R, {G € Gr(E): C(G) < r}is closed.
This follows from Theorem 18.4, since G C H = C(G) < C(H) and G C
Gi C---=C, Gn) = lim,,o C(Gy). O
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Theorem 19.12. If E is aperiodic, the set {G € Gr(E): C(G) = oo} is dense
and therefore the generic G € Gr(E) is a graphing of E of infinite cost.

Proof. Recall that £/ admits a measure M defined by

M(4) = / A, ldpu() = / AV dpy),

for Borel A C E. Moreover for G € Gr(E), C(G) = 1M(G). Since E
is aperiodic M(E) = oo and since E = |J, graph(f,) for Borel functions
fu: X — X, M is o-finite.

Let G € Gr(E) in order to show that there is a sequence G,, € Gr(E)
with C(G,,) = oo and G,, — G. We can assume of course that C(G) < oo.

Write E\ G = | |, A, with M(A,) < co. Let B, = GU| |, Am, so that
M(B,)=00,By2B;2...,,B.=G.LetG, = (B,UB,)\ {(z,2): x €
X}, where B, = {(z,y) € E: (y,z) € B,}. Then G,, € Gr(E),M(G,) =
00, Gy 2 G1 2 G, ... and moreover (), G, = G. Because if (z,y) € ), G»,
then z # y, and for infinitely many n, (z,y) € B, or for infinitely many
n, (z,y) € B.,ie., (y,z) € By, so (z,y) € G. Then G,, — G and we are
done. O

It is also clear that the F, set {G € Gr(FE): C(G) < oo} is dense, since
every G can be written as the union of an increasing sequence G, with
C(G,) = tM(G,) < cc. In particular, it follows that {G € Gr(E): C(G) <

— 2
oo} isin F, \ Gb.
Finally we have the following result concerning locally finite graphings

of equivalence relations (see [JKL, Theorem 3.12]).

Proposition 19.13. There is a Borel function A: S(E) — Gr(E) such that for
any F' € S(E), A(F) is a locally finite graphing of F.

Proof. Use Proposition 4.18 and [JKL, proof of Theorem 3.12]. H
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In view of the proof of Theorem 14.1 (in the ergodic case), one can try to
approach Problem 19.6 by first trying to show an analog of Sublemma 14.3
for treeability. Recall that, by Theorem 19.3, the set

TRr ={G € Gr(E): G is acyclic}.
is closed in Gr(E). By Corollary 19.4, the set
Treeing(E) = {G € TRg: G is a treeing of E'}
is G5 in TR . If E is not treeable, clearly this set is empty.
Problem 20.1. If E is ergodic, treeable, is T'reeing(E) dense in TR g?
We first note the following:
Proposition 20.2. If there is G € TRg with C(G) = oo, then
{GeTRE: C(G) = o0}
is dense in T Rg.

Proof. The proof is analogous to that of Theorem 19.12. Let G € TRy with

C(G) < . Fix G, € TRE with C(Gy) = oo0. Let S = G« \ G, so that

C(G) = oco. Write S = ||, G, with G, € TRg and C(G,) < oo. Let

H,=GULl|, >, Gn Then C(H,) =occand Hy 2 H, 2 ...,(), H, =G, so

H, = G. B O
Recall that C'(E) denotes the cost of the equivalence relation E.

Proposition 20.3. Let E be ergodic with C'(E) > 1. Then the set
{GeTRE: C(G) = oo}
is dense G5 in T Rp. In particular if 1 < C(E) < oo, then the generic G € TR

is not a treeing of E.

135
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Proof. By the proof of [KM, 28.8], since C(£) > 1, there is a free action of
F, on X whose equivalence relation is contained in E. Since F., C IFy, this
givesa G € TRg with C(G) = oc. O

Thus Problem 20.1 has a negative answer if C(E) < oo, but E is not
hyperfinite (in which case C(E) > 1). We next show that it has a positive
answer if F is hyperfinite.

Proposition 20.4. Let E be ergodic, hyperfinite. Then Treeing(E) is dense in
TR and thus the generic G € TRy is a treeing of E.

Proof. LetGy € TRg,T1,...,T, € [E]and € > 0. Weneed to find G € TRg
which is a treeing of £ and V1 < i < n(u(Arn,cAAr. ) < €).

First we claim that we can assume that G is a finite equivalence rela-
tion. Indeed G}, C E is hyperfinite, so we can write Gj; = UZ‘;I E,,, where
E, C Ey; C ... and each FE, is finite. Let G; = E; N Gy, fori = 1,2,....
Then G; € TRg,G; C E; is finite, G; C G» C ... and Gy = |J,~, G,, so
Gn — Go.

Since £ is aperiodic, it is clear that every E-class contains infinitely
many Gj-classes. Let Y C X be a Borel transversal for G;. Clearly p(Y') >
0 and Y meets every E-class infinitely often.

We claim that there is T" € [E|Y] such that 7" generates E|Y and more-
over u({r € Y:31 < i < n(T(z) = TF'(2))}) < e. Granting this, let
G € Gr(E) be defined by

(1,9) € G <= (r,y) € GoVz,y €Y &y =T""(x)].
Then clearly G € TRy and G* = E. Moreover forany 1 <i <mn,
Ar.g = Arp g, U{zr € Y: Ti(z) = T (2)},

thus
W(Ag,aDALG,) = p({e € Y: Ti(x) = T ()} < e

It remains to prove the claim. It is enough to show that there is an
aperiodic S € [E|Y] such that for each 1 < i < n,u({z € Y: S(z) =
T '(2)}) < &, sothat u({z € Y: 31 < i < n(S(z) = T (2)}) < &
Because then applying the Conjugacy Lemma (see, [K, 3.4]) to [E]Y], we
can find T € [E|Y] which generates E|Y and u({z € Y': S(z) # T'(z)}) < §
and thus

p{r € Y:31 <i<n(T(z) =T (2)}) <e
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To find S, let Sy € [E|Y]| be aperiodic and generate E|Y. Let for each
1< <n,
Zi={reY: T (z) € Y}.
If v € Z;, then (2,7 (z)) € E|Y, so there is some m € Z with T*!(z) =
Sy'(x). Let for N € N,

Zyi={r € V: 3Im| < N(TF () = S5 (2))}.

Then Zy; C Z,, C ... and Uy Zn,; = Z;. So find N, large enough with

€
Zi\ Znyi) < —
lu( \ N07> 2n

Let S = S)o*! € [E|Y], which is clearly aperiodic. If # € Y and S(z) =
TF (x), then T (2) = S (2), so x € Z; \ Zn, 4, thus u({z € Y: S(z)
T (2)}) < u(Z\ Zy,) < £, and the proof is complete.

LIl

Corollary 20.5. Let E be ergodic, with finite cost. Then E is hyperfinite iff the
generic G € TRp is a treeing of E.

Thus the only remaining open case of Problem 20.1 is when C'(E) = oo.

There is actually a strengthening of Proposition 20.4, proved by Anush
Tserunyan, with a simpler proof than the above. We will use below the
following notation and terminology,.

We call G € Gr(E) finite, smooth, hyperfinite if G* is, resp., finite,
smooth, hyperfinite. Let T Rg, STRE and HT Ry denote, resp., the set
of finite, smooth, hyperfinite G € TR . Note thatby Theorem 18.4, HT R
isclosed and FTRg = STRg = HT RE.

Proposition 20.6 (Tserunyan). Let E be aperiodic and treeable. For any G, €
STRg and Ty, ..., T,, € [E], there is a treeing G O G of E such that Ar, ¢ =
Ar. ¢, for all i.

Proof. Let Y be a transversal for G§ and take a group I' = {g,,}nen C [E]
that generates . We first handle two special cases and the general case
will follow from them.

Case 1: [E : G{] < oco. Then E|Y is a finite equivalence relation and hence
there is a Borel selector s : Y — Y for E|Y such that [s(y)]c; is infinite for
all y € Y (such s exists because E is aperiodic). Now define a function
g:Y\s(Y)—= X Dbyg(y) = g.(y), where n is the least such that g,(y) €
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[s(y)]lg: and for any i = 1,...,m, g.(y) # Ti(y) and Ti(g.(y)) # v (such n
exists since [s(y)]q; is infinite). Finally, put G = {(y,9(y)), (9(y),vy) : y €
Y \ s(Y)} UGy Itis straightforward to check that G is a treeing of £
satisfying the condition of the proposition.

Case 2: [E : Gf] = co. Let H be the graph on Y generated by T3, ..., T, i.e.
forz,y €Y,

tHy < z #yand 3i(T;(z) =y or T;(y) = x).

Since H is locally finite, it admits a Borel countable coloring (actually a
finite coloring), and thus there is a maximal independent Borel subset Z.
For every E-class C, Y N C is infinite (by the condition of the case), and
hence Z N is infinite as well because otherwise there would be a point in
(Y'\ Z) N C independent from Z N C in H, contradicting the maximality
of Z. Thus we can define a function g : Y \ Z — Z by g(y) = g.(y), where
n is the least such that ¢,(y) € Z and for any i = 1,....m, ¢,(y) # T;(y)
and Ti(gn(y)) # y. Put G1 = {(y,9(v)), (9(y),y) : y € Y \ Z}. Also, let
G be a treeing of E|Z (which exists because £ is treeable). Finally, put
G = Gy U Gy UG, Again, it is not hard to check that G is a treeing of £
satisfying the condition of the proposition.

General case: Let
X1 = {z € X : [z]g contains only finitely many G}, classes}

and put
X, = X\ X,.

Then combine the treeings for F|X; and E|X, provided by cases 1 and
2. O

Theorem 20.7 (Tserunyan). Let E be aperiodic and treeable. Then we have
HTRE C Treeing(E). In particular, if E is hyperfinite, then Treeing(E) is
dense in T Rg.

Proof. Fix Gy € HTRg. Since Gy is hyperfinite, we have Gf = (U, -, En,
where E,, are increasing and finite. Letting G,, = £, N Gy, we get Gy =
U,,>; G» and thus G,, — G,. By Proposition 20.6, G,, is in T'reeing(E), and
hence so is Gy. O
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Remark 20.8. Note that Proposition 20.6 cannot be extended to graphs
Gy € HT RE, even if we drop the requirement about the 7;’s. Indeed, let £
be aperiodic, hyperfinite and F' a proper aperiodic, hyperfinite subequiv-
alence relation of E. If Gy is a treeing of F', then it cannot be extended to
a treeing GG of E, since then the cost of G would be bigger than the cost of
G\, contradicting the fact that they are both equal to 1.

Let SubTreeing(E) denote the set of all graphs in 7R that are con-
tained in treeings of £, i.e.,

SubTreeing(E) = {Gy € TR : 3G € Treeing(E)(G 2 Gy)}.
Proposition 20.9 (Tserunyan). Let E be treeable. Then
STRE C SubTreeing(E).
Therefore, in particular, we have HT Rg C SubTreeing(E).

Proof. Fix Gy € STRE and let Y C X be a Borel transversal for Gj. Since
E is treeable, there is a treeing G of E|Y. It is clear that Gy U G is a treeing
of E. O

Proposition 20.10. Let G, € SubTreeing(E).

(a) (Tserunyan) For any Borel set A C X, Gy|A € SubTreeing(E|A).

(b) (Conley) For a Borel equivalence relation F with Gj C F C E, Gy €
SubT'reeing(F).

Proof. Let G O Gy be a treeing of E. For (a), project G onto G|A as de-
scribed in the proof of [JKL, Proposition 3.3 (i)] to get G’ € Treeing(E|A)
such that G O G|A. Similarly, for (b), use the same method to project G
onto G|C, for each F-class C, to get G' € Treeing(F)withG' O (GNF) D
Gy. One could also note that (a) follows from (b). O

Theorem 20.11 (Tserunyan). For any G, € SubTreeing(E) and automor-
phisms Ty,...,T,, € [E|, there is a treeing G O Gy of E such that Ar, ¢ =
Ar, G, forall i. In particular, Treeing(E) is dense in Subl'reeing(E) and hence
Treeing(E) = SubTreeing(E).

Proof. Let X, be the E-saturation of {z € X : [z]g: is infinite}. Then X
is F-invariant and G§|(X \ X)) is a finite equivalence relation, so Proposi-

tion 20.6 applies to Go|(X \ Xp), and we may assume that X, = X. Thus
each E-class C' contains an infinite G§-class and hence

A= {r € X : [7]g; is infinite}
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is a complete section. Note that B := X \ A is Gj-invariant and G{|B
is a finite equivalence relation. Let Y be a transversal for Gj|B and fix a
group I' = {g,}nen C [E] that generates E. Define g : Y — A by g(y) =
gn(y), where n is the least such that g,(y) € A and for any i = 1,...,m,
gn(y) # Ti(y) and T;(gn(y)) # y (such n exists since [y|g N A is infinite). Put
Gi={(y.9(v), (9(y),y) :y €Y}

We now construct a treeing Go O Gy|A of E|A such that Ap ¢, =
A7, Gola, for all i. By (a) of Proposition 20.10, there is G' € T'reeing(E|A)
such that G’ O G| A. Fix a Borel linear ordering < on X and define a func-
tion f : G’ \ Gy — E|A as follows: for (z,y) € G' \ Gy, let 2’ = min_(z,y)
and ' = max(z,y), and put

f(z,y) = (2, gn(a")),

where n is the least such that ¢, (2')G}y’ and for all i = 1,...,m, g,(2') #
Ti(x") and Ti(gn(z')) # o' (such n exists since [y]g: is infinite). Now let
G" denote the symmetrization of (G’ \ Gy) and put G, = Go|AUG". To
see that G is a treeing of E|A note that Gy O Gy|A and for any two G-
connected components D;, D, C A, there is an edge between D; and D, in
(5 if and only if there is one in G’ (in other words the projections of G and
G’ on the quotient X /G coincide). Now it is clear that G = Gy U G; U G+
satisfies the condition of the lemma. O

Let MazTr(E) denote the set of maximal (under inclusion) graphs in
TRpg; that is,

MazTr(E) = {G € TRy :¥G' € TRE(G' 2 G = G' = G).

Theorem 20.12 (Tserunyan). Let E be a (not necessarily treeable) equivalence
relation. Then for any Gy € TRgand Ty, ..., T,, € [E], thereis G € MaxTr(E)
such that G 2 Gy and Ar, ¢ = Ar, ., for all i. In particular, MaxTr(E) is
dense in T Rg.

Proof. Let G' € MaxTr(E) with G' D Gy (it exists since, modulo a null set,
any increasing wellordered chain stabilizes in countably many steps). Put
F = (G')* and note that Gy € SubTreeing(F). Let S; € [F],1 < i < m,
be such that (z,T;(z)) € F = S;(z) = T;(x), so that Ar, y = Ag, g, for
any H € Gr(F). Applying Theorem 20.11 to F" and 5, ..., S,, (in lieu of
Eand Ty,...,T,), we get G € Treeing(F) such that G O Gy and A, ¢ =
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Ar, ¢, for all i. It remains to show that G is maximal. Let G; € TRg be
such that G; O G. Note that because G and G’ have the same connected
components, G' N (G; \ G) = 0 and G := G’ U (G, \ G) € TRg. Thus, by
the maximality of G/, Gy = G’. But G2\ G’ = G \G and hence, G; = G. [

Let SubTreeing*(E) denote the set of all graphs in SubTreeing(E) that
are not treeings anywhere; i.e.

SubTreeing*(E) = {G € SubTreeing(E) : u({x € X : [z]g = [z]g-}) = 0}.

Proposition 20.13 (Tserunyan). For any G € Treeing(E) and € > 0, there
is Gy € SubTreeing*(E) with Gy C G such that j(Ar¢ \ Arg,) < € for all
T € [E). In particular, SubTreeing*(E) is dense in Treeing(E).

Proof. Let Y C X be a Borel complete section for E such that p(Y) < §
(which exists by the Marker Lemma, see [KM, 6.7]) and put

GO = {(-T,y) €G: T,y g_f Y}
Clearly G € SubT'reeing*(E), and for any T" € [E],
Arc\ Arg, CYUTH(Y).

Thus p(Are \ Arg,) < p(Y) +u(T7H(Y)) <§+5 = O

Theorem 20.11 and Proposition 20.13 together imply:

Theorem 20.14 (Tserunyan). SubTreeing*(E) = Treeing(E) =
SubTreeing(E).




142 20. Treeability




Bibliography

[AE]

[AW]

[AS]

[BK]

[B]

[Bo]

[Bol]

[BJ]

[CK]

[CT]

M. Abért and G. Elek, The space of actions, partition metric and
combinatorial rigidity, arXiv:1108.21471v1. [110]

M. Abért and B. Weiss, Bernoulli actions are weakly contained
in any free action, Ergodic Theory Dynam. Systems, 33 (2013),
323-333. [99]

S.R. Adams and R.J. Spatzier, Kazhdan groups, cocycles and
trees, Amer. |. Math, 112 (1990), 271-287 [64]

H. Becker and A.S. Kechris, The Descriptive Set Theory of Polish
Group Actions, Cambridge Univ. Press, 1996. [7]

G. Beer, A Polish topology for the closed subsets of a Polish
space, Proc. Amer. Math. Soc., 113 (4) (1991), 1123-1133. [7]

L. Bowen, Every countably infinite group is almost Ornstein,
Contemp. Math., 567 (2012), 67-78. [25]

L. Bowen, Simple and large equivalence relations, Proc. Amer.
Math. Soc., 145(1) (2017), 215-224. [63, 65]

C.M. Boykin and S. Jackson, Borel boundedness and the lattice
rounding property, Contemp. Math., 425 (2007), 113-126. [35,
36]

R. Chen and A.S. Kechris, Structurable equivalence relations,
Fund. Math., 242 (2018), 109-185. [91]

I. Chifan and A. Ioana, Ergodic subequivalence relations in-
duced by a Bernoulli action, Geom. Funct. Anal., 20 (2010), 53—
67. [64]

143



144

Bibliography

[CKT]

[CM]

[CM1]

[DC]

[DIK]

[FSZ]

[FW]

[G1]

C.T. Conley, A.S. Kechris and R.D. Tucker-Drob, Ultraproducts
of measure preserving actions and graph combinatorics, Er-
godic Theory Dynam. Systems, 33, (2013), 334-374. [97, 98, 101,
110,111, 117]

C.T. Conley and B.D. Miller, An antibasis theorem for graphs
of infinite Borel chromatic number, Proc. Amer. Math. Soc., 142
(2014), 2123-2133. [41, 43, 70]

C.T. Conley and B.D. Miller, Measure reducibility of countable
Borel equivalence relations, Ann. of Math., 185(2) (2017), 347-
402. [22]

Y. de Cornulier, A note on quotients of word hyperbolic groups
with property (T), arXiv:math/0504193v3. [63]

R. Dougherty, S. Jackson and A.S. Kechris, The structure of hy-
perfinite Borel equivalence relations, Trans, Amer. Math. Soc.,
341(1) (1994), 193-225. [89]

J. Dugundji, Topology, Allyn and Bacon, 1966. [38]

G.Elek and G. Lippner, Sofic equivalence relations, J. Funct.
Anal., 258 (2010), 1692-1708. [117]

R.H. Farrell, Representation of invariant measures, Illinois. |J.
Math., 6 (1962), 447-467. [24]

J. Feldman, C.E. Sutherland and R.J. Zimmer, Subrelations of
ergodic equivalence relations, Ergodic Theory Dynam. Systems, 9
(1989), 239-269. [63, 79, 80, 111]

M. Foreman and B. Weiss, An anti-classification theorem for
ergodic measure preserving transformations, J. Eur. Math. Soc.,
6 (2004), 277-292. [50]

D. Gaboriau, Invariants L? de relations d’equivalence et des
groupes, Publ. Math. Inst. Hautes Etudes Sci., 95 (2002), 93-150.
[59]



Bibliography 145

[G2]

[GL]

[GT]

[H]

[HK]

[TKT]

[JKL]

[K1]

D. Gaboriau, Orbit equivalence and measured group theory,
Proc. Intern. Congress of Math., Vol. 11, Hindustan Book Agency,
1501-1527, 2010. [60, 64]

D. Gaboriau and R. Lyons, A measurable-group-theoretic so-
lution to von Neumann'’s problem, Invent. Math., 177(3) (2009),
533-540. [64]

D. Gaboriau and R.D. Tucker-Drob, Approximations of stan-
dard equivalence relations and Bernoulli percolation at p,, C.R.
Acad. Sci. Paris Sér. I Math., 354(11) (2016), 1114-1118. [69]

E. Glasner, Ergodic Theory via Joinings, Amer. Math. Soc., 2003.
[114]

E. Glasner and B. Weiss, Kazhdan’s property T and the geom-
etry of the collection of invariant measures, Geom. Funct. Anal.,
7 (1997), 917-935. [96]

L. Harrington, Analytic determinacy and 0%, J. Symb. Logic,
43(4) (1978), 685-693. [44]

G. Hjorth and A.S. Kechris, Rigidity theorems for actions of
product groups and countable Borel equivalence relations,
Memoirs Amer. Math. Soc., 177 (833) (2005). [59, 60, 68, 72]

A. Toana, A.S. Kechris, and T. Tsankov, Subequivalence re-
lations and positive-definite functions, Groups Geom. Dyn., 3
(2009), 579-625. [14, 69]

S. Jackson, A.S. Kechris, and A. Louveau, Countable Borel
equivalence relations, . Math. Logic, 2 (1) (2002), 1-80. [134,
139]

A.S. Kechris, Global aspects of ergodic group actions, Amer. Math.
Soc., 2010. [5, 10, 15, 28, 38, 42, 45, 50, 51, 52, 56, 58, 68, 75, 76,
81, 85, 86, 88,97, 99, 113, 114, 129, 136]

A.S. Kechris, Weak containment in the space of actions of a free
group, Israel |. Math., 189 (2012), 461-507. [28]



Bibliography

[KM]

[KST]

[KT]

[LeM]

[LeM1]

[L]

A.S. Kechris, Classical Descriptive Set Theory, Springer, 1995. [8,
43, 58, 87, 88, 104]

A.S. Kechris, Global aspects of measure preserving equivalence
relations and graphs, New Zealand ]. Math., 52 (2021), 691-726.

[6]

A.S. Kechris, The theory of countable Borel equivalence rela-
tions, preprint, posted in pma.caltech.edu/people/alexander-
kechris [17, 30, 32, 89]

A.S. Kechris and B.D. Miller, Topics in Orbit Equivalence,
Springer, 2004. [29, 50, 56, 57, 73, 74, 75, 91, 106, 109, 110, 122,
123, 136, 141]

A.S. Kechris, S. Solecki and S. Todorcevic, Borel chromatic
numbers, Adv. Math., 141 (1999), 1-44. [17, 116]

J. Kittrell and T. Tsankov, Topological properties of full groups,
Ergodic Theory Dynam. Systems, 30 (2010), 525-545. [10, 103]

F. Le Maitre, The number of topological generators for full
groups of ergodic equivalence relations, Invent. Math., 198(2)
(2014), 261-268. [124]

F. Le Maitre, On dense orbits on the space of subequivalence
relations, arXiv:2405.01806v1. [15, 16, 34, 59, 62, 127]

L. Lovasz, Large Networks and Graph Limits, Amer. Math. Soc.,
2012. [126]

B.D. Miller, Incomparable treeable equivalence relations, J.
Math. Logic, 12(1) (2012), 125004-1-125004-11. [68]

B.D. Miller, Full groups, classification, and equivalence rela-
tions, Ph.D. Thesis, U.C. Berkeley, 2004. [10]

B.D. Miller, Composition of periodic automorphisms, preprint,
posted in glimmeffros.github.io under Recent. [10]



Bibliography 147

[O]

[Po]

[T]

[T-D]

[Va]

Yu. A. Olshanskii, On residualing homomorphisms and G-
subgroups of hyperbolic groups. Internat. ]. Algebra Comput.,
3(4) (1993), 365—409. [63]

S. Popa, Cocycle and orbit equivalence superrigidity for mal-
leable actions of w-rigid groups, Invent. Math., 170(2) (2007),
243-295. [63, 65]

R.M. Solovay, The independence of DC from AD, Cabal Semi-
nar 76-77, Ed. by A.S. Kechris and Y.N. Moschovakis, Lecture
Notes in Mathematics, No. 689, Springer, 1978, 171-184. [44]

A. D. Tornquist, The Borel complexity of orbit equivalence,
Ph.D. Thesis, UCLA, 2005. [43]

R.D. Tucker-Drob, Shift-minimal groups, fixed price 1, and the
unique trace property, arXiv:1211.6395v3. [91, 93]

S. Vaes, Explicit computations of all finite index bimodules
for a family of /1, factors, Ann. Scient. Ecole Normal Sup., 4(1)
(2008), 743-788. [65]

V.S. Varadarajan, Groups of automorphisms of Borel spaces,
Trans. Amer. Math. Soc., 109 (1963), 191-220. [24]



148 Bibliography




Index

(E)), 22

(AT, X, p),u), 28
AT, E), 28

AT, X, 1), 28
AT,F/ 17

Arg, 125

Ar 15,7, 30
C(F),73

(@), 133
CSp(F), 123
CA(E), 120

E generated by A, 103
Ey-ergodic, 68
E, 0 Ey, 105
Er,9, 41

E., 105

E,, 19,29,47
Eap a4, ,, 63
Enr,., 47
Ectble/ 42

F x,(Z,0),114
F, VvV F,, 30

Fr, 103
FinCostg, 73
FinIndex(F), 61
G*, 129

Gr(E), 125

149

InfCostg, 73
Infindex(E), 61

M (measure on F), 23
Mg, 23

MazTr(E), 140
N(E), 15

R, 105

S(E), 13

Sg((I'), 7
SubTreeing(FE), 139
SubTreeing*(E), 141
Treeing(E), 135
wv,23

w,, 23

[E : F],15,61,63,79

A generates F, 103
AERGE, 68

BDG, 131

BDGr, 131

BF, 55



150 Index
BFg, 55 w-closed, 44
F, 28 w-continuous, 44
@D, E., 58 R, 35

\/j F;, 40 P(),26

Do, 59 Py (), 25

D,., 59 Pr, 48

Dk, 59 Py, (Z2), 44
D,.r, 59 1,29

DG, 132 =,97

IDGg, 132 R*, 35

T, 59 R., 36

TR, 130 ReEg, 55

Te, 59 Ry, 35

R, 15 R+, 35
51“700(61, b), 51 STRE, 137
£, 37 o(Fy, Fy), 22
ERG, 67 ~r, 43
ERGE, 67 ~p,., 41
ERG, 68 ~, 110
EoRGE, 68 7'(Fy, Fy), 31
F,55 7l (F1, Fy), 31
FTRE, 137 T(Fl,FQ), 31
F*(X),7 Too(Fl,FQ),31
Fr, 55 d(S,F), 14
FuE, 76 d,, 17

gR, 128 dy, 9

OGR4 131 dega(z), 132
GRa4r, 131 fr,103

G', 128 1d, 15, 30

Gr, 130 t(I"), 123

Gg,, 128 u, 9,28

Gy, 128 w, 14

H, 55 AERG, 68
HT REg, 137 ERGH, 71
Hg, 15,55 ERGHE, 71
LFG,132 Aut(X, u), 9
<., 42 ERGIRE(T), 96
M, 26 Eq(T"), 91




Index

151

FR(T, X, u), 92
Fix(p), 19
IRE(T"), 91
IRS(T"), 93
MALG, 17
MALGg, 23
MALG,, 17
Sg(I'), 93
supp(7), 112

acyclic, 130
anti-Ey-ergodic, 68
aperiodic, 15
aperiodic IRE, 93

bounded finite equivalence
relation, 55

choice sequence, 63, 79

class-bijective factor, 111

class-bijective homomorphism,
115

class-surjective, 104

class-surjective homomorphism,
115

coboundary, 80

commuting equivalence
relations, 105

cost, 73, 133

cost relative, 120

cost spectrum, 123

degenerate, 63
direct sum, 58

equivalent measures, 22
Ergodic Decomposition, 24
ergodic dimension, 60
everywhere infinite index, 15

extension, 114

finite equivalence relation, 55
finite graph, 137

finite index IRE, 93

finite IRE, 93

finitely generated, 120

free action, 92

full group, 9

full pseudogroup, 9, 51

full pseudogroup relative, 120

generating sequence, 16
geometric dimension, 59
graphing, 129

hereditary, 35

homomorphism, 68, 104, 111

hyperfinite equivalence relation,
55

hyperfinite graph, 137

index, 63, 79

index cocycle, 63, 80

infinite index IRE, 93

invariant, random equivalence
relation, 91

invariant, random subgroup, 93

IRE, 91

IRS, 93

kernel, 105

measurable subgroups, 25
measure algebra of E, 23
measure preserving graph, 128

non-approximable, 69
normalized, 93

relative to A full group of £, 103



152

Index

relatively hypersmooth, 63
relatively smooth, 63
restriction, 15

richly Ey-ergodic, 72
richly ergodic, 69

skew product, 113

smooth graph, 137

sofic, 117

strong topology, 18

strongly ergodic, 68

strongly increasing, 70
strongly treeable group, 115
surjective homomorphism, 116

the factor of F relative to A, 104
topological generator, 123
topological rank, 123

topology of Gr(E), 126

topology of S(£), 22
treeable group, 115
treeing, 131

typeII, 75

unfoldable, 117

uniform metric, 9

uniform topology on S(E), 32

uniform topology on the space
AT, X, ), 28

uniform topology on the space
Aut(X, p), 9

uniquely generating sequence, 17

weak equivalence, 110
weak topology on &, 37
weak topology on S(E), 14
weakly contained, 97
Wijsman topology, 7



