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1. Introduction

This work is to a large extent a continuation of that in [K] on the global
aspects of measure preserving actions of countable groups. We define and
study here natural topologies on the spaces of measure preserving equiv-
alence relations and graphs on a standard probability space.

Here is an overview of its contents. In Chapter 2 we recall some basic
facts about the space of closed subgroups of a Polish group which admits a
(two-sided) invariant metric. In Chapter 3 we discuss full groups of mea-
sure preserving countable Borel equivalence relations on a standard prob-
ability space (X,µ), including a characterization of these groups among
the subgroups of the group Aut(X,µ) of measure preserving automor-
phisms of (X,µ). In Chapter 4 we define a natural Polish topology on
the space S(E) of subequivalence relations of a measure preserving count-
able Borel equivalence relationE. Several formulations of the topology are
given and shown to be equivalent. A stronger (non-separable) topology,
useful in certain applications, is also discussed. In Chapter 5 we discuss
the structure of limits of convergent sequences in S(E). In Chapter 6 it
is shown that the topologies on S(E) are coherent under inclusion and
can be used to define a topology on the space of all measure preserving
countable Borel equivalence relations (which is however far from Polish).

In Chapter 7 we discuss continuity properties of the map that assigns
to each measure preserving action of a countable group Γ the associated
equivalence relation and show that they are related to properties of the
group such as amenability and property (T). In Chapter 8, Chapter 9, and
Chapter 10 we include several descriptive set theoretic complexity calcula-
tions for classes of equivalence relations in S(E). This leads in Chapter 11
to the introduction and study of the class of richly ergodic equivalence re-
lations E, i.e., those for which the generic equivalence relation in S(E) is
ergodic. In Chapter 12 we consider the cost function on the space of sube-
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6 1. Introduction

quivalence relations and in Chapter 13 the concept of normality. In Chap-
ter 14 we prove a Borel selection theorem for hyperfiniteness. In Chap-
ter 15 we study the connections of the preceding theory to the structure of
invariant, random equivalence relations on a countable group. Chapter 16
deals with ultraproducts of equivalence relations and in Chapter 17 we
define and study various notions of factoring for equivalence relations.

In Chapter 18 we introduce an analogous canonical topology on the
space Gr(E) of Borel subgraphs of a measure preserving countable Borel
equivalence relation E and in Chapter 19 we include various descriptive
complexity calculations related to this topology. Chapter 20 deals with the
notion of treeability for equivalence relations.

Finally we mention that a survey (without proofs) of the results pre-
sented here appeared on [K3].

Acknowledgments. Research in this paper was partially supported by
NSF Grants DMS-0968710, DMS-1464475 and DMS-1950475. I would like
to thank Lewis Bowen for asking some questions that got me thinking
about this topic. Thanks also to Lewis, Peter Burton, François Le Maître,
Ben Miller, Forte Shinko , Anush Tserunyan and Robin Tucker-Drob for
many useful comments and corrections or for allowing me to include some
results of theirs in this paper.



2. The space of closed subgroups

We start with some preliminaries. Fix a Polish metric space (X, d), with
d ≤ 1 and let F∗(X) be the set of non-empty closed subsets of X . We can
identify F ∈ F∗(X) with the distance function

fF (x) = d(x, F ), x ∈ X,

and view F∗(X) as a subset of [0, 1]X . The relative topology on F∗(X)
induced by the product topology on [0, 1]X is called the Wijsman topology
on F∗(X). It is the topology generated by the functions:

F 7→ d(x, F ), x ∈ X.

It is shown in Beer [B] that F∗(X), the closure of F∗(X) in [0, 1]X , is
compact metrizable and F∗(X) is Gδ in F∗(X), thus a Polish space. More-
over the Borel σ-algebra of the Wijsman topology on F∗(X) is the Effros
σ-algebra generated by the sets {F ∈ F∗(X) : F ∩ V 6= ∅}, for V ⊆ X open
(Hess, see, e.g., [BK, 2.6.2]).

Equivalently, we can describe this topology as follows. Fix a countable
dense subsetX0 ⊆ X . Then it is clear that this topology is also the one gen-
erated by the functions F 7→ d(x0, F ), x0 ∈ X0. Then we can also identify
F ∈ F∗(X) with the function

f 0
F (x0) = d(x0, F ), x0 ∈ X,

and view F∗(X) as a subset of [0, 1]X0 . The relative topology on F∗(X)
induced by the product topology on [0, 1]X0 is again the Wijsman topology.

Assume next that Γ is a Polish group with a compatible (two-sided)
invariant metric d ≤ 1. Then (Γ, d) is complete, thus a Polish metric space.
Let

Sg(Γ) = {H ⊆ Γ: H is a closed subgroup}.
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8 2. The space of closed subgroups

Proposition 2.1. Sg(Γ) is a closed subspace of F∗(Γ).

Proof. Let Hn ∈ Sg(Γ) and Hn → H . Then d(1, Hn) = 0 → d(1, H), so
d(1, H) = 0 and 1 ∈ H . Let now g, h ∈ H in order to show that gh−1 ∈
H . Since 0 = d(g,H) = limn→∞ d(g,Hn), find gn ∈ Hn with d(g, gn) →
0 and similarly find hn ∈ Hn with d(h, hn) → 0. Then d(h−1, h−1

n ) → 0
(since d(h, hn) → 0 iff hn → h iff h−1

n → h−1 iff d(h−1, h−1
n ) → 0) and so

d(gh−1, gnh
−1
n )→ 0, thus d(gh−1, Hn)→ d(gh−1, H) = 0, i.e., gh−1 ∈ H .

It follows that Sg(Γ) with the induced topology is also Polish. The
group Γ acts on Sg(Γ) by conjugation: g ·H = gHg−1.

Proposition 2.2. The conjugation action of Γ on Sg(Γ) is continuous.

Proof. It is enough to show that it is separately continuous (see [K2, 9.14]).
(1) Let gn → g in Γ andH ∈ Sg(Γ). We will show that gnHg−1

n → gHg−1,
i.e., that for x ∈ Γ,

d(x, gnHg
−1
n )→ d(x, gHg−1).

Now d(x, gnHg
−1
n ) = d(g−1

n xgn, H) and d(x, gHg−1) = d(g−1xg,H). Since
g−1
n xgn → g−1xg and |d(x,H)− d(y,H)| ≤ d(x, y), this is clear.

(2) Let g ∈ Γ and Hn → H in Sg(Γ). We will show that gHng
−1 →

gHg−1, i.e., for any x ∈ Γ

d(x, gHng
−1)→ d(x, gHg−1)

or equivalently
d(g−1xg,Hn)→ d(g−1xg,H)

which is obvious.



3. Full groups

Let now (X,µ) be a standard probability space (i.e., X is a standard Borel
space and µ is a probability Borel measure on X). We denote by Aut(X,µ)
the group of all Borel automorphisms of X which preserve the measure µ
and in which we identify two such automorphisms if they agree µ-a.e.

Unless otherwise stated or is clear from the context, we will assume
that (X,µ) is non-atomic and moreover, as usual, we neglect null sets
in the sequel.

The uniform metric d = du on Aut(X,µ) is defined by du(S, T ) =
µ({x : S(x) 6= T (x)}). This is a (two-sided) invariant complete metric on
Aut(X,µ) and the associated uniform topology, u, makes it a topological
group.

Let now E be a measure preserving countable Borel equivalence rela-
tion on X and Γ = [E] the full group of E, i.e., the subgroup of Aut(X,µ)
consisting of all T ∈ Aut(X,µ) with T (x)Ex, for (almost) all x. Then Γ is a
closed subgroup of Aut(X,µ) in the uniform topology and d restricted to
Γ is separable, thus Γ is a Polish group admitting the compatible invariant
metric d. When T ∈ Aut(X,µ), its full group [T ], is the full group of the
equivalence relation ET induced by T .

For further reference, we also define the full pseudogroup of E, in
symbols [[E]], consisting of all Borel bijections f : A → B, with A,B Borel
subsets of X and f(x)Ex, for (almost) all x ∈ A, where we again identify
any two such functions if they agree a.e. Clearly [E] ⊆ [[E]].

It is an interesting question to characterize the full groups [E] among
the subgroups of the topological group Aut(X,µ) equipped with the uni-
form topology, using only the topological group structure of this group.
Below we provide one such characterization. We start with the following
lemma.
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10 3. Full groups

Lemma 3.1. For any non-trivial involution T ∈ Aut(X,µ), the centralizer CT
of T in the group Aut(X,µ) has a largest abelian normal subgroup, denoted by
AT . Moreover AT = [T ].

Proof. By [K, Lemma 4.7], if T ∈ [E], E ergodic, then [T ] is the largest
abelian normal subgroup of CT ∩ [E]. Since

Aut(X,µ) =
⋃
{[E] : E ergodic, T ∈ [E]}

the result follows.

We now have:

Theorem 3.2. The following are equivalent for a subgroup Γ of Aut(X,µ):
(i) Γ = [E], for a measure preserving countable Borel equivalence relation E,
(ii) (a) Γ is closed and separable in (Aut(X,µ), u), (b) every element of Γ is a

product of involutions, and (c) for any nontrivial involution T ∈ Γ, AT ⊆ Γ.

Proof. It is clear that (i) implies (ii), (a) and (c). That (i) implies (ii), (b), see
[M1, Chapter 1] or [M2, Theorem 1].

To prove that (ii) implies (i), assume that Γ is nontrivial and let I be a
countable set of nontrivial involutions in Γ which is uniformly dense in the
set of all nontrivial involutions in Γ (this is nonempty by (b)). Let E be the
equivalence relation induced by I. The group generated by I is included
in [E] and thus so is its uniform closure, so Γ ⊆ [E]. By [KT, 4.4], the group
generated by the union of the full groups [T ], T ∈ I, is uniformly dense in
[E]. By (c) and Lemma 3.1 this group is contained in Γ, so Γ = [E].

Theorem 3.3. The following are equivalent for a subgroup Γ of Aut(X,µ):
(i) Γ = [E], for an ergodic measure preserving countable Borel equivalence

relation E,
(ii) (a) Γ is closed and separable in (Aut(X,µ), u), (b) Γ is simple, and (c) Γ

contains a nontrivial involution T with AT ⊆ Γ.

Proof. For the proof that (i) implies (ii), use [K, 4.5, 4.6]. For the other direc-
tion, it is enough to show that Γ is of the form [E], because (b) then implies
the ergodicity of E (see [K, page 22]). By [KT, proof of 4.14], and using (c),
we see that there is a nonempty countable set of nontrivial involutions I
contained in Γ such that if E is the equivalence relation induced by I, then
[E] C Γ. Since Γ is simple and [E] is nontrivial, Γ = [E].
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Remark 3.4. In Theorem 3.3, (b) can be replaced by (b)*: Γ is topologically
simple.

The above characterization of the subgroups Γ of (Aut(X,µ), u) that
are full groups involves the properties of Γ within (Aut(X,µ), u). One can
wonder whether there is a characterization that depends only on the topo-
logical group structure of (Γ, u). In other words, is it possible to find a
property P(Γ) of Polish groups Γ, invariant under topological group iso-
morphism, such that for a closed separable subgroup of (Aut(X,µ), u), Γ
is a full group iff P(Γ) holds. It turns out that no such “internal" charac-
terization is possible, even if one uses the metric du on Γ.

Proposition 3.5. For each measure preserving countable Borel equivalence rela-
tion E, different than equality, there is a closed separable subgroup G of the group
(Aut(X,µ), u) which is not a full group but there is an isometry between (G, du)
and ([E], du) which is also a group isomorphism.

Proof. Let Y = X × {0, 1}, ν = µ × η, where η is the uniform measure on
{0, 1}. Consider the equivalence relation E∗ on Y given by

(x, i)E∗(y, j) ⇐⇒ xEy & i = j.

Then E∗ is a measure preserving countable Borel equivalence relation on
(Y, ν), which is of course isomorphic to (X,µ). For T ∈ [E], let T ∗ ∈ [E∗]
be defined by

T ∗(x, i) = (T (x), i).

Then T 7→ T ∗ is an isometry of ([E], du) with (Γ, du), where

Γ = {T ∗ : T ∈ [E]}

is a closed subgroup of (Aut(Y, ν), u), and T 7→ T ∗ is also clearly a group
isomorphism.

However Γ is not a full group. Indeed if Γ = [F ], then F = E∗, so
Γ = [E∗]. But if T0 6= T1 are in [E], let S ∈ [E] be defined by

S(x, i) = (Ti(x), i).

Then S ∈ [E∗] \ Γ, a contradiction.
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4. The space of subequivalence
relations

Let E be a measure preserving countable Borel equivalence relation on
(X,µ). We denote by S(E) the set of all subequivalence relations of E,
where as usual we identify two such relations if they agree a.e. We will
next define a canonical Polish topology on S(E). In fact we will give sev-
eral equivalent descriptions of this topology.

4.1 The weak topology

We can identify any F ∈ S(E) with its full group [F ] and thus view S(E)
as a subspace of Sg([E]).

Proposition 4.1. S(E) is a closed subspace of Sg([E]).

Proof. Let Fn ∈ S(E) and [Fn] → H ∈ Sg([E]). We will show that H ∈
S(E), i.e., that H = [F ], where F is a subequivalence relation of E.

Let H0 ≤ H be a countable dense subgroup of H . Thus H0 ≤ [E] and
let F be the subequivalence relation of E induced by H0. We will show
that this works.

Since H0 ⊆ [F ] and H0 is dense in H , clearly H ⊆ [F ].
We verify next that [F ] ⊆ H . Fix any T ∈ [F ]. Then there is a Borel

decomposition X =
⊔
nAn and hn ∈ H0 such that T =

⊔
n(hn|An). Fix

ε > 0 and let N be so large that∑
n≥N

µ(An) < ε.

Put ϕ =
⊔
n<N(hn|An). Since h0, . . . , hN−1 ∈ H = limn→∞[Fn], for all large

enough N0 we can find g0, . . . , gN−1 ∈ [FN0 ] with d(hn, gn) < ε
N

for n < N .

13



14 4. The space of subequivalence relations

For n < N let Bn ⊆ An be such that µ(An \ Bn) < ε
N

and hn|Bn = gn|Bn.
Let then ψ =

⊔
n<N gn|Bn and note that ψ(x)FN0x (for almost all x in the

domain of ψ). Let U ∈ Aut(X,µ) be such that ψ ⊆ U .
We now recall the following fact (see Ioana-Kechris-Tsankov [IKT, 1.1,

1.2]).

Proposition 4.2. Let F be a measure preserving countable Borel equivalence re-
lation and S ∈ Aut(X,µ). Then

d(S, [F ]) = µ({x : (x, S(x)) 6∈ F})

and there is T ∈ [F ] such that {x : (x, S(x)) ∈ F} = {x : S(x) = T (x)}, so that,
in particular, d(S, [F ]) = d(S, T ).

By this result, there is S ∈ [FN0 ] such that S(x) = U(x) if U(x)FN0x.
Then if x ∈ Bn, n < N,U(x) = gn(x)FN0x, so ψ ⊆ S.

Now S, T agree except on a set of measure < N ε
N

+ ε, so d(S, T ) < 2ε
and thus d(T, [FN0]) < 2ε. Thus we have shown that if T ∈ [F ], then we
can find N1 < N2 < . . . such that d(T, [FNi ]) < 1

i
, so d(T,H) = 0, i.e.,

T ∈ H .

Below we put
d(S, F ) = d(S, [F ]).

From Proposition 4.1, we have that S(E) is also a Polish space with the
topology it inherits from Sg([E]). We call this the weak topology on S(E)
and denote it by w. We recall that in this topology

Fn
w−→ F iff ∀S ∈ [E](d(S, Fn)→ d(S, F )).

Moreover [E] can be replaced in this equivalence by any dense subset of
[E]. The group [E] acts on S(E) by

x(T · F )y ⇐⇒ T−1(x)FT−1(y)

and, since [T · F ] = T [F ]T−1, Proposition 2.2 shows that this action is
continuous. It is clear that this action is not minimal, since E is a fixed
point of the action. In an earlier version of this work the following problem
was raised:

Is there a dense orbit for the action of [E] on S(E)?
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Subsequently, in [LeM1], Le Maître has shown that the answer is pos-
itive when E is ergodic hyperfinite but negative if E is aperiodic, i.e., has
infinite classes, and generated by a measure preserving action of an infi-
nite countable group with property (T) (and in fact all non approximable
E; see Definition 11.2) . We do not know a characterization of the equiva-
lence relations E for which the above problem has a positive answer.

In fact Le Maître has shown the following, where we use the terminol-
ogy and notation below:

(a) For each Borel set A ⊆ X and equivalence relation E, we let E|A =
E ∩ A2 be the restriction of E to A.

(b) We say that F ∈ S(E) has everywhere infinite index in E if for
every Borel set A ⊆ X of positive measure, [E|A : F |A] = ∞, i.e., each
E|A-class contains infinitely many F |A-classes.

(c) id is the equality relation on X .
(d) If F ∈ S(E), then [E] ·F is the orbit of F in the action of [E] on S(E).
(e) ForR ⊆ S(E),R is the closure ofR in the weak topology of S(E).
(f)HE ⊆ S(E) is the class of hyperfinite subequivalence relations of E.

Theorem 4.3 ( Le Maître, [LeM1]). (i) If E is aperiodic, then for every F ∈
S(E), F has everywhere infinite index in E iff id ∈ [E] · F .

(ii) If E is ergodic and F ∈ S(E) is aperiodic and has everywhere infinite
index in E, then HE ⊆ [E] · F . Therefore for F ∈ S(E), F is aperiodic and has
everywhere infinite index in E iff id ∈ [E] · F iffHE ⊆ [E] · F .

In particular, if E is ergodic hyperfinite, then for F ∈ S(E), F is aperiodic
and has everywhere infinite index in E iff [E] · F is dense in S(E).

Moreover Le Maître has shown the following:

Theorem 4.4 ( Le Maître, [LeM1]). If E is ergodic, then all [E] orbits in HE

are meager inHE

In particular, ifE is ergodic hyperfinite, then all [E] orbits are meager in S(E)

Consider now an aperiodic equivalence relation E and its automor-
phism group, N(E), which is also the stabilizer of E in Aut(X,µ), with its
associated Polish topology (see [K, Section 6]). Clearly N(E) also acts on
S(E) by the formula:

x(T · F )y ⇐⇒ T−1(x)FT−1(y),

or equivalently
T · [F ] = T [F ]T−1.
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Proposition 4.5. If E is aperiodic, then the action of N(E) on S(E) is continu-
ous.

Proof. It is enough to check separate continuity. Below the superscripts on
the arrows indicate the spaces in which these limits are taken.

(i) Fn
w−→ F =⇒ T · Fn

w−→ T · F : This is equivalent to

Fn
w−→ F =⇒ d(T−1ST, Fn)→ d(T−1ST, F )

for all S ∈ [E], which is clear as T−1ST ∈ [E].

(ii) Tn
N(E)−→ T ⇒ Tn · F

w−→ T · F : Fix S ∈ [E] in order to show that

d(S, Tn · F )→ d(S, T · F ).

This is equivalent to

d(T−1
n STn, F )→ d(T−1ST, F ).

But Tn
N(E)−→ T implies that T−1

n STn
[E]−→ T−1ST , so this is clear.

Le Maître in [LeM1] has also shown that there is no dense orbit for
the action of N(E) on S(E), if E is aperiodic and generated by a measure
preserving action of an infinite countable group with property (T).

We finally note, for further reference, the following simple fact:

Proposition 4.6. Let F0 ⊆ F1 ⊆ . . . be in S(E) and let F =
⋃
n Fn. Then

Fn
w→ F . Similarly, if F0 ⊇ F1 ⊇ F2 . . . and F =

⋂
n Fn.

Proof. This is immediate from Proposition 4.2.

4.2 The strong topology

We now define another topology on S(E).

Definition 4.7. LetE be a countable Borel equivalence relation onX . A sequence
(Ti)i∈N of Borel automorphisms is called generating for E if

Ti(x)Ex, for all x, i,

and if x 6= y, xEy, then there is i such that y = Ti(x).
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Such generating sequences exist by the Feldman-Moore Theorem (see,
e.g., [K4, Section 3.2] and references therein). In fact one can see the fol-
lowing stronger version, where we call a generating sequence (Ti)i∈N for
E a uniquely generating sequence if for all x 6= y, xEy, there is a unique
i such that y = Ti(x). The following is a special case of [KST, 4.10] but we
include a proof for completeness.

Proposition 4.8. Let E be a countable Borel equivalence relation on X . Then
there is a uniquely generating sequence (Ti)i∈N for E consisting of Borel involu-
tions of X .

Proof. The proof of the Feldman-Moore Theorem gives a sequence
{Sj}j∈N of Borel involutions such that xEy ⇐⇒ ∃j(Sj(x) = y). For each
j, let supp(Sj) = {x : Sj(x) 6= x}. Now let Yi = {x : ∀j < i(Si(x) 6= Sj(x))}.
If x ∈ Yi, then Si(x) ∈ Yi, since otherwise there is j < iwith x = Si(Si(x)) =
Sj(Si(x)), so Sj(x) = Si(x), a contradiction. Thus if we let

Ti = Si|Yi ∪ id|(X \ Yi),

Ti is an involution and clearly Ti(x)Ex. Now let x 6= y, xEy. Let i be least
such that Si(x) = y. We claim that x ∈ Yi, thus Ti(x) = y. Otherwise,
for some j < i, Si(x) = Sj(x) = y a contradiction. Finally assume that
y = Ti(x) = Tj(x) with j < i, towards a contradiction. Since x 6= y this
means that x ∈ supp(Tj), so y = Sj(x), a contradiction.

Definition 4.9. Consider the space S(E) and for T ∈ [E], F ∈ S(E) let

AT,F = {x : (x, T (x)) ∈ F}.

Therefore, by Proposition 4.2, d(T, F ) = 1 − µ(AT,F ). Fix a generating
sequence (Ti)i∈N for E and consider the map

F 7→ (ATi,F )i∈N ∈ MALGN,

where MALG = MALGµ is the measure algebra of (X,µ). We also endow
MALG with the usual complete, separable metric

dµ(A,B) = µ(A∆B),

and the associated topology.
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Lemma 4.10. The map F 7→ (ATi,F )i∈N is 1-1.

Proof. Assume F,G ∈ S(E) and ATi,F = ATi,G for all i. Then for x 6= y,
(x, y) ∈ F ⇐⇒ ∃i(y = Ti(x) & x ∈ ATi,F ) ⇐⇒ (x, y) ∈ G.

Thus we can identify F with (ATi,F )i∈N and transfer the product topol-
ogy on MALGN to S(E) to get a separable, metrizable topology on S(E),
which we will call the strong topology on S(E), Thus

Fn
s−→ F ⇐⇒ ∀i(ATi,Fn

MALG−→ ATi,F ).

We next note that this topology is independent of the choice of (Ti)i∈N.

Proposition 4.11.

Fn
s−→ F ⇐⇒ ∀T ∈ [E](AT,Fn

MALG−→ AT,F ).

Proof. ⇐ is obvious.
⇒ Assume Fn

s−→ F and let T ∈ [E]. Let A∞ = {x : T (x) = x} and let
Ai be a Borel partition of X \ A∞ such that x ∈ Ai ⇒ T (x) = Ti(x), i.e.,
X =

⊔∞
i=0 Ai t A∞ and T |Ai = Ti|Ai. Fix now ε > 0 and choose N large

enough so that
∑

i≥N µ(Ai) < ε. Then choose M large enough so that for
any n ≥M and any i < N ,

µ(ATi,Fn∆ATi,F ) <
ε

N
.

Now

AT,Fn = {x : (x, T (x)) ∈ Fn}

= A∞ t
⊔
i∈N

(Ai ∩ {x : (x, T (x)) ∈ Fn})

= A∞ t
⊔
i<N

(Ai ∩ ATi,Fn) t Cn,

where µ(Cn) < ε. Similarly

AT,F = A∞ t
⊔
i<N

(Ai ∩ AT,F ) t C,

= A∞ t
⊔
i<N

(Ai ∩ ATi,F ) t C
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where µ(C) < ε. Therefore

(AT,Fn∆AT,F ) ⊆ (
⊔
i<N

(Ai ∩ ATi,F )∆
⊔
i<N

(Ai ∩ AT,Fn)) ∪ C ∪ Cn

= (
⊔
i<N

(Ai ∩ (ATi,F∆ATi,Fn)) ∪ C ∪ Cn,

thus
µ(AT,Fn∆AT,F ) ≤

∑
i<N

µ(ATi,F∆ATi,Fn) + 2ε ≤ 3ε

We will next show that the strong topology on S(E) is Polish. Before
we do that however we state the following elementary lemma that will be
also useful later on. Its proof is straightforward, so we omit it.

Lemma 4.12. Let Γ be a group, a : Γ×X → X an action of Γ on a set X and put
a(g, x) = g · x. Let Ea be the induced equivalence relation on X and let F ⊆ Ea
be a subequivalence relation. For g ∈ Γ, let

Aag,F = Ag,F = {x : (x, g · x) ∈ F}.

Then for all g, h ∈ Γ,

1. A1,F = X ,

2. Ag,F ⊆ g−1 · Ag−1,F ,

3. Ag,F ∩ g−1 · Ah,F ⊆ Ahg,F ,

4. Ah,F ∩ Fix(h−1g) ⊆ Ag,F ,

where
Fix(p) = {x : p · x = x}.

Conversely, if (Ag)g∈Γ is a family of sets satisfying 1.-3. above, then the relation

xFy ⇐⇒ ∃g(g · x = y ∨ x ∈ Ag)

defines a subequivalence relation of Ea and if 4. also holds we have that Ag =
Ag,F , for all g ∈ Γ.



20 4. The space of subequivalence relations

Theorem 4.13. The strong topology on S(E) is Polish.

Proof. Proposition 4.11 shows that the strong topology does not depend
on which generating sequence we use. So fix a Borel action of a count-
able group Γ generating E and for each group element g denote also by
g the automorphism of the space X induced by the action of g. Since the
strong topology is obtained by transferring to S(E) the relative topology
(in MALGΓ) of the range of the map

F 7→ (Ag,F )g∈Γ,

it is enough to show that the range of this map is closed in MALGΓ. This
means that we have to show that if Fn ∈ S(E) and for each g, Ag,Fn

MALG−→ Ag
as n→∞, then there is F ∈ S(E) with Ag,F = Ag, for all g ∈ Γ.

Since, for each n, the family (Ag,Fn)g∈Γ satisfies (a.e.) conditions 1.-4. of
Lemma 4.12, it follows, by taking limits, that so does the family (Ag)g∈Γ,
and then, by Lemma 4.12 again, there is F ∈ S(E) such that Ag,F = Ag, for
all g ∈ Γ.

An alternative description of the strong topology on S(E) is as follows:
First consider MALG and let D ⊆ MALG be a countable dense subset

of MALG. Then the map

A ∈ MALG 7→ {µ(A ∩D)}D∈D ∈ [0, 1]D

is 1-1. Because if A,B ∈ MALG are distinct, then either µ(A \ B) > 0 or
µ(B\A) > 0. Say a = µ(A\B) > 0. LetD ∈ D be such µ((A\B)∆D) < a/2.
Then µ(D ∩ A) ≥ µ(D ∩ (A \ B)) = a − µ((A \ B) \ D) > a/2, while
µ(D ∩ B) ≤ µ((D ∩ (X \ A)) ∪ (D ∩ B)) = µ(D \ (A \ B)) < a/2, so
µ(A ∩ D) 6= µ(B ∩ D). Thus we can identify MALG with the range of
this map and transfer to MALG the relative topology from [0, 1]D (with the
product topology). We can now see that this topology is the same as the
topology of MALG. This follows from the next proposition.

Proposition 4.14. The following are equivalent:

(i) An
MALG−→ A,

(ii) ∀B ∈ MALG(µ(B ∩ An)→ µ(B ∩ A)),

(iii) ∀D ∈ D(µ(D ∩ An)→ µ(D ∩ A)).
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Proof. Clearly (i)⇒ (ii)⇒ (iii). To see that (ii)⇒ (i), take in (ii) B = A and
B = X \A. Finally for (iii)⇒ (ii), fix B ∈ MALG and ε > 0. Then let D ∈ D
be such that µ(D∆B) < ε. Choose next N such that for n ≥ N we have
|µ(D ∩ An) − µ(D ∩ A)| ≤ ε. Then for such n, |µ(B ∩ An) − µ(B ∩ A)| ≤
|µ(B∩An)−µ(D∩An)|+ |µ(D∩An)−µ(D∩A)|+ |µ(D∩A)−µ(B∩A)| <
2µ(B∆D) + ε < 3ε.

From this it follows that if (Ti)i∈N is a generating sequence for E and D
is a dense subset of MALG,

Fn
s→ F ⇐⇒ ∀i ∈ N∀D ∈ D(µ(ATi,Fn ∩D)→ µ(ATi,F ∩D))

⇐⇒ ∀T ∈ [E]∀D ∈ D(µ(AT,Fn ∩D)→ µ(AT,F ∩D))

⇐⇒ ∀T ∈ [E]∀B ∈ MALG(µ(AT,Fn ∩B)→ µ(AT,F ∩B)).

For comparison we note that

Fn
w→ F ⇐⇒ ∀T ∈ [E](µ(AT,Fn)→ µ(AT,F )).

Moreover in all these equivalences we can replace [E] by any dense subset
of [E].

4.3 Identification of the topologies

We next show that the two topologies we introduced are the same.

Theorem 4.15. The weak topology on S(E) is equal to the strong topology on
S(E).

Proof. Clearly the weak topology is contained in the strong topology, so it
is enough to show that if Fn, F ∈ S(E) and Fn

w→ F , then Fn
s→ F .

So assume that Fn
w→ F . Fix T ∈ [E] in order to show that µ(AT,Fn 4

AT,F ) → 0. By Proposition 4.2, let S ∈ [F ] be such that (x, T (x)) ∈ F ⇐⇒
S(x) = T (x). The rest of the argument is due to Anush Tserunyan. My
original proof was more complicated.

We have µ(AT,F \ AT,Fn) = µ({x ∈ AT,F : (x, T (x)) /∈ Fn}) = µ({x ∈
AT,F : (x, S(x)) /∈ Fn})} ≤ d(S, Fn)→ 0.

Also µ(AT,Fn \ AT,F ) − µ(AT,F \ AT,Fn) = (µ(AT,Fn \ AT,F ) + µ(AT,Fn ∩
AT,F ))− (µ(AT,F ∩AT,Fn) +µ(AT,F \AT,Fn)) = µ(AT,Fn)−µ(AT,F )→ 0, and
hence µ(AT,Fn \ AT,F )→ 0, so µ(AT,Fn 4 AT,F )→ 0.
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Remark 4.16 (A. Tserunyan). Note that in the proof of Theorem 4.15 we
only needed to verify that Fn

w→ F ⇒ ∀i(µ(ATi,Fn 4 ATi,F ) → 0), for a
sequence of involutions (Ti)i∈N generating E. For an involution T , it is
obvious how to find S ∈ [F ] such that S(x) = T (x), whenever (x, T (x)) ∈
F . One simply defines A = {x : (x, T (x)) ∈ F} and, noting that A is
T -invariant, let S(x) = T (x), if x ∈ A, and S(x) = x, if x /∈ A.

From now on we will call this topology simply the topology of S(E).
Note that we also have the following characterization of convergence in
this topology.

Let ((E)) be the set of Borel maps ϕ : A → B, with A,B Borel subsets
of X , such that x ∈ A⇒ ϕ(x)Ex. For ϕ ∈ ((E)), F ∈ S(E), let

Aϕ,F = {x ∈ dom(ϕ) : (x, ϕ(x)) ∈ F}.

Then for Fn, F ∈ S(E):

Fn → F ⇐⇒ ∀ϕ ∈ ((E))(µ(Aϕ,Fn)→ µ(Aϕ,F ))

⇐⇒ ∀ϕ ∈ ((E))(Aϕ,Fn
MALG−→ Aϕ,F ).

This is because if ϕ ∈ ((E)) and (Ti) is such that xEy ⇐⇒ ∃i(y = Ti(x)),
then there is a Borel decomposition dom(ϕ) =

⊔
iAi such that x ∈ Ai ⇒

ϕ(x) = Ti(x). Then if Fn → F , we have µ(Aϕ,Fn 4 Aϕ,F ) =
∑

i µ(Ai ∩
(ATi,Fn 4 ATi,F ))→ 0, as n→∞.

Remark 4.17. One can also consider the topology on S(E) induced by the
complete metric

σ(F1, F2) = µ({x : [x]F1 6= [x]F2})
(see [CM1, 1.7]). This is stronger than the topology of S(E) but it is not
separable in general. However it is shown in [CM1, Proposition 1.7.4] that
it is separable when restricted to the finite subequivalence relations of E.

4.4 Alternative descriptions

We discuss here three more equivalent descriptions of the topology of
S(E).

(1) If Y is a standard Borel space and ν, ρ are Borel probability mea-
sures on Y that are equivalent, i.e., have the same null sets, then MALGν =
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MALGρ. The measure ν induces the usual Polish metric δν(A,B) = ν(A∆B)
on MALGν and similarly for ρ. Since ν is equivalent to ρ, these two metrics
are equivalent, i.e., induce the same topology. In particular, if Σ is a σ-finite
Borel measure on Y one can define unambiguously a Polish topology on
MALGΣ = MALGν , for any Borel probability measure ν equivalent to Σ,
e.g., ν =

∑∞
n=0

1
2n

(ΣYn), where Y =
⊔
n Yn is a Borel decomposition of Y

into sets of positive finite Σ-measure and ΣYn is the normalized restriction
of Σ to Yn.

The set E ⊆ X2 admits a Borel measure M = ME defined by

M(W ) =

∫
|Wx|dµ(x) =

∫
|W y|dµ(y)

for BorelW ⊆ E, whereWx = {y : (x, y) ∈ W},W y = {x : (x, y) ∈ W}. This
measure is σ-finite. We call the measure algebra ofM , the measure algebra of
E, in symbols MALGE . (Thus MALGE = MALGM .) Fix a sequence (Ti)i∈N
in [E], such that xEy ⇐⇒ ∃i(Ti(x) = y). Note that M(graph(Ti)) = 1.
Define next the Borel probability measure ν = ν(Ti) on E by

ν(W ) =
∞∑
i=0

1

2i+1
M(W ∩ graph(Ti)).

=
∞∑
i=0

1

2i+1
µ(ATi,W )

where for T ∈ [E],W ⊆ E:

AT,W = {x : (x, T (x)) ∈ W}.

This is equivalent to M and the metric

δν(W,V ) = ν(W∆V ).

gives the topology of MALGE = MALGν . In this topology

Wn → W ⇐⇒ ∀i(ATi,Wn

MALG−→ ATi,W ).

It is clear that S(E) ⊆ MALGE and the topology of S(E) is the induced
topology from MALGE . Also as in the proof of Theorem 4.13, S(E) is a
closed set in the topology of MALGE . Thus we can view S(E) as a closed
subspace of MALGE .
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We next note a selection property of this representation of S(E). Below
we view E as a genuine countable Borel equivalence relation on X and
not one viewed µ-a.e. The measure ν as above is a non-atomic probability
measure on E and therefore there is a Borel bijection θ : E → (0, 1), which
takes ν to the Lebesgue measure λ on (0, 1). For any A ∈ MALGλ, let
ϕ(A) = {x ∈ (0, 1) : x is a density point of A}. Then ϕ(A) is a Borel subset
of (0, 1) which represents A in the measure algebra MALGλ. So for each
F ∈ S(E), let

ψ(F ) = θ−1(ϕ(θ(F )).

Then ψ(F ) represents F in the measure algebra MALGν . Let F̃ be a Borel
subequivalence relation of E that represents F in the measure algebra
MALGν . Then ν(F̃∆ψ(F )) = 0, so there is a Borel E-invariant set L ⊆ X
with µ(L) = 1 and for x, y ∈ L, (x, y) ∈ F̃ ⇐⇒ (x, y) ∈ ψ(F ). Let

B = {x ∈ X : ψ(F )|[x]E is an equivalence relation}.

Then µ(B) = 1 andB isE-invariant Borel. Let F ◦ = (ψ(F )|B)∪{(x, x) : x 6∈
B}. Then F ◦ is a Borel subequivalence relation of E and F ◦ represents F
in MALGν . In fact a simple calculation shows that F ◦ has a uniform Borel
definition from F , i.e., we have the following:

Proposition 4.18. There is a Borel set R ⊆ S(E) × E such that for any F ∈
S(E), the section RF = F ◦ is a Borel subequivalence relation of E which repre-
sents F in the measure algebra MALGν , i.e., F ◦ is equal to F in S(E).

We can also use this result to formulate a “uniform Borel version" of
the Ergodic Decomposition Theorem for elements of S(E).

First recall the Ergodic Decomposition Theorem of Farrell and (in-
dependently) Varadarajan, where again below F is viewed as a genuine
countable Borel equivalence relation on X .

Theorem 4.19 (Farrell [F], Varadarajan [V]). Let F be a countable Borel equiv-
alence relation on a standard Borel space X . Then

EIF = {σ ∈ P (X) : σ is invariant, ergodic for F}

is a Borel set in the standard Borel space P (X) of probability measures on X and
if F admits an invariant probability Borel measure, then EIF 6= ∅, and there is a
Borel surjection π : X → EIF such that
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1. π is F -invariant,

2. if Xe = {x : π(x) = e}, then e(Xe) = 1 and F |Xe has a unique invariant
measure, namely e,

3. if µ ∈ P (X) is invariant for F , then µ =
∫
π(x) dµ(x).

Moreover, π is uniquely determined in the sense that, if π′ is another such
map, then {x : π(x) 6= π′(x)} is null with respect to all invariant measures for
F .

The proof of this result is effective and therefore, in combination with
Proposition 4.18, shows the following:

Theorem 4.20. Let E,R, F 7→ F ◦ be as in Proposition 4.18. Let Q ⊆ S(E) ×
P (X) be defined by

(F, σ) ∈ Q ⇐⇒ σ ∈ EIF ◦ .

Then Q is Borel, nonempty and there is a Borel set R ⊆ S(E)×X × P (X) such
that for each F ∈ S(E), the section RF ⊆ X × P (X) is the graph of a (Borel)
function πF which is an ergodic decomposition for F ◦ as in Theorem 4.19.

(2) The next description is due to Robin Tucker-Drob and the author. It
is motivated by the idea of measurable subgroups, see [Bo, Section 4].

First, without loss of generality, we can assume that X = 2N and E is
generated by a continuous action of a countable group Γ. (Recall here that
we identify equivalence relations if they agree a.e.)

For x ∈ X,F ∈ S(E), define ΓFx = {g ∈ Γ: (x, g−1 · x) ∈ F}. Then
ΓFx ∈ P1(Γ) = {a ⊆ Γ: 1 ∈ a}. For g ∈ Γ, a ∈ P1(Γ), let ga = {gh : h ∈ a}
and a−1 = {h−1 : h ∈ a}. Put

ϕF (x) = (x,ΓFx ) ∈ X × P1(Γ).

On X × P1(Γ) put

(x, a)R(y, b) ⇐⇒ ∃g ∈ a−1(g · x = y & ga = b).

Proposition 4.21. R is an equivalence relation.

Proof. This is obvious.

Proposition 4.22. ϕF : X → X × P1(Γ) is 1-1.
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Proof. This is also obvious.

Proposition 4.23. ϕF (X) is R-invariant.

Proof. Let (x,ΓFx )R(y, b) and let g ∈ Γ be such that g · x = y, gΓFx = b.
So (x, g · x) ∈ F , thus (x, y) ∈ F . Now ΓFy = {h : (y, h−1 · y) ∈ F} =
{h : (y, h−1g · x) ∈ F} = {h : (x, h−1g · x) ∈ F} = {gp : (x, p−1 · x) ∈ F} =
g{p : (x, p−1 · x) ∈ F} = gΓFx = b, so (y, b) = ϕF (y).

Proposition 4.24. xFy ⇐⇒ ϕF (x)RϕF (y).

Proof. ⇒ Let xFy and let g ∈ Γ be such that y = g · x. That gΓFx = ΓFy
follows as in Proposition 4.23.
⇐ Let g ∈ Γ be such that g · x = y and gΓFx = ΓFy . Then g−1 ∈ ΓFx , so

(x, g · x) = (x, y) ∈ F .

Since µ is F -invariant and ϕF is a Borel bijection between X and a
Borel R-invariant subset of X × P1(Γ), it follows that (ϕF )∗µ = µF is an
R-invariant probability measure on X × P1(Γ) .

Remark 4.25. Actually the definition of ϕF , F ∈ S(E), depends on picking
an a.e. representative for F but it is easy to check that µF is well defined.

Let M be the compact, metrizable space of probability measures on
the compact zero-dimensional space Y = X × P1(Γ) ⊆ X × P(Γ), where
P(Γ) = {a : a ⊆ Γ} (we identify of course hereP(Γ) with the product space
2Γ). We first note the following:

Proposition 4.26. {µ ∈M : µ is R-invariant} is closed inM.

Proof. For g ∈ Γ, let Ng = {(x, a) ∈ Y : g ∈ a−1}, a clopen subset of Y . Let
Γ act on X × P(Γ) by g · (x.a) = (g · x, ga). Of course Y is not invariant
under this action but note that g ·Ng ⊆ Y . It is enough to show for µ ∈M
the following:

Claim. For µ ∈ M, µ is R-invariant ⇐⇒ ∀g∀ clopen N ⊆ Ng(µ(N) =
µ(g ·N)).

Granting this claim, it is clear that {µ ∈ M : µ is R-invariant} is closed
inM.

Proof of the claim. ⇒ Fix N ⊆ Ng, N clopen. Then N 3 t 7→ g · t is in
[[R]], so µ(N) = µ(g ·N) follows.
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⇐ Let ϕ : A → B be in [[R]], in order to show that µ(A) = µ(ϕ(A)).
Now ϕ =

⊔
g∈Γ ϕg, ϕg : Ag → Bg, A =

⊔
g∈ΓAg, B =

⊔
g∈ΓBg, Ag, Bg Borel

and Ag ⊆ Ng, ϕg(y) = g · y for y ∈ Ag. It is thus enough to show that
µ(Bg) = µ(Ag). Since Ag ⊆ Ng, it is enough to show that for every Borel
set A ⊆ Ng, µ(A) = µ(g · A). Let B = {A ⊆ Ng : A is Borel and µ(A) = µ(g ·
A)}. By hypothesis B contains the algebra of clopen sets contained in (the
clopen set) Ng and clearly B is closed under relative complementation in
Ng and under countable disjoint unions, so B contains all the Borel subsets
of Ng.

Define now Φ: S(E)→M by Φ(F ) = µF = (ϕF )∗µ.

Theorem 4.27. The map Φ: S(E) → M is a homeomorphism of S(E) with a
(necessarily) Gδ subspace ofM.

Proof. (a) Φ is continuous: It is enough to show that for each clopen rect-
angle U × V in Y = X × P1(Γ), the function

F ∈ S(E) 7→ (ϕF )∗µ(U × V )

is continuous. Now V is a finite disjoint union of sets of the form

W = {a ∈ P1(Γ) : g−1
1 ∈ a & . . . & g−1

n ∈ a & h−1
1 6∈ a & . . .& h−1

m 6∈ a}

for gi, hj ∈ Γ, so it is enough to show that

F ∈ S(E) 7→ (ϕF )∗µ(U ×W )

is continuous. We have

(ϕF )∗µ(U ×W ) = µ(ϕ−1
F (U ×W ))

= µ({x : x ∈ U & g−1
1 ∈ ΓFx & . . .& g−1

n ∈ ΓFx

& h−1
1 6∈ ΓFx & . . .& h−1

m 6∈ ΓFx }
= µ({x : x ∈ U & x ∈ Ag1,F & . . .& x ∈ Agn,F

& x 6∈ Ah1,F & . . .& x 6∈ Ahm,F})
= µ(U ∩ Ag1,F ∩ · · · ∩ Agn,F
∩ (X \ Ah1,F ) ∩ · · · ∩ (X \ Ahm,F )].

This function is continuous in the (strong) topology of S(E), so Φ is con-
tinuous.
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(b) Φ is 1-1: For Borel B ⊆ X, g ∈ Γ, let Ng,B = B × {a ∈ P1(Γ) :
g−1 ∈ a}. Then µF (Ng,B) = µ(B ∩ Ag,F ). Thus Φ(F ) = Φ(F ′) implies that
µ(B ∩ Ag,F ) = µ(B ∩ Ag,F ′), for any B, g, so Ag,F = Ag,F ′ and F = F ′.

(c) Φ−1 is continuous: We check that

µFn → µF ⇒ Fn → F.

Let D be the collection of clopen sets in X , so that D ⊆ MALG is count-
able dense in MALG. Then for D ∈ D, Ng,D is clopen in X × P1(Γ), so
µFn(Ng,D)→ µF (Ng,D). Thus µ(D∩Ag,Fn)→ µ(D∩Ag,F ) for all D ∈ D, g ∈
Γ, therefore, by Proposition 4.14, Ag,Fn

MALG−→ Ag,F for all g ∈ Γ, and so
Fn → F .

Thus the topological space S(E) can be identified with a Gδ subspace
ofM and this gives another description of the topology of S(E).

(3) The final description is due to Peter Burton.
Let Γ be a countable group and let A(Γ, X, µ) be the space of mea-

sure preserving actions of Γ on (X,µ). Denote by (A(Γ, X, µ), u) the space
of measure preserving actions of Γ on (X,µ) with the uniform topology
u (see [K, Section 10, (A)]). Here we consider the product topology on
Aut(X,µ)Γ, where Aut(X,µ) is given the uniform topology. The space
A(Γ, X, µ) is then viewed as a closed subspace of Aut(X,µ)Γ in this prod-
uct topology. Given an equivalence relation E, we denote by A(Γ, E) =
A(Γ, [E]) the subspace of A(Γ, X, µ) consisting of all a ∈ A(Γ, X, µ) “con-
tained” in E, i.e., ∀γ ∈ Γ(γa ∈ [E]) (see [K1, Section 6]). Then A(Γ, E) is
separable and closed in (A(Γ, X, µ), u), so a Polish space in the uniform
topology.

Consider now the case Γ = F∞, the free group with a countably infinite
sequence of free generators (γi). Then a complete compatible metric for
(A(Γ, E), u) is given by

δ(a1, a2) =
∞∑
i=0

2−(i+1)du(γ
a1
i , γ

a2
i ).

Fix a generating sequence of involutions (Ti) for E. Then the following is
a compatible metric for the topology of S(E)

ρ(F1, F2) =
∞∑
i=0

2−(i+1)µ(ATi,F1∆ATi,F2)
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(see Section 4.2).
Note that the metric ρ is complete. Indeed if (Fn) is a ρ-Cauchy se-

quence, then for each i, (ATi,Fn)n is a Cauchy sequence in the usual metric
of MALG given by µ(A∆B). The argument in the proof of Proposition 4.11
shows then that for each T ∈ [E] the sequence (AT,Fn)n is Cauchy in the
metric of MALG and thus converges to someAT . Then the argument in the
proof of Theorem 4.13 shows that there is an F ∈ S(E) such that Fn → F .

We define a map Ψ: S(E) → A(F∞, E) as follows: We let Ψ(F ) = a,
where the action a is defined by letting γai (x) = Ti(x), if Ti(x)Fx, and
γai (x) = x, otherwise. Denoting by Ea the equivalence relation generated
by an action a, we have that F = EΨ(F ).

Theorem 4.28. Ψ is an isometric embedding of (S(E), ρ) onto a closed subspace
of (A(F∞, E), δ).

Proof. To show that Ψ is an isometry it is enough to check that for each i,
and each F1, F2 in S(E) with Ψ(F1) = a1,Ψ(F2) = a2, we have

{x : γa1
i (x) 6= γa2

i (x)} = ATi,F1∆ATi,F2 .

which follows easily from the definitions. Finally the range of Ψ is closed,
since the metric δ is complete.

Therefore the topological space S(E) can be identified with a closed
subspace of (A(F∞, E), u).

4.5 Continuity of operations

We discuss here the continuity (or lack thereof) of various operations in
S(E).

The operation (F1, F2) 7→ F1 ∩ F2 from S(E)× S(E) to S(E) is continu-
ous. The relations F1 ⊆ F2 and F1 ⊥ F2 (see [KM, Section 27] are closed in
S(E)× S(E). Moreover the map (F1, F2) 7→ F1×F2 from S(E1)× S(E2) to
S(E1 × E2) is continuous. Finally the map

(F,A) ∈ S(E)×MALG→ F |A ∈ S(E),

where F |A = {(x, y) : (x, y ∈ A & xEy) ∨ x = y}, is continuous.
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One the other hand, the operation (F1, F2) 7→ F1∨F2 from S(E)×S(E)
to S(E) is not continuous, if E is aperiodic. (Here F1 ∨ F2 is the smallest
equivalence relation containing both F1, F2.) To see this, first find S ∈
[E] which is aperiodic, see [K4, 8.16]. Let Fn = ES2n , so that the Fn are
decreasing and

⋂
n Fn = id, where id is the equality relation on X , thus

Fn → id. Let also F = FS3 . Since for each n, 2n and 3 are relatively prime,
it is clear that Fn ∨ F = ES . On the other hand id ∨ F = ES3 6= ES .

Proposition 4.29. The operation (F1, F2) 7→ F1∨F2 from S(E)×S(E) to S(E)
is of Baire class 1.

Proof. For each T1, T2 ∈ [E] and F ∈ S(E), let

AT1,T2,F = {x : (T1(x), T2(x)) ∈ F}

(so that AT,F = Aid,T,F ). Since AT1,T2,F = T−1
1 (AT2T

−1
1 ,F ), it is clear that

F 7→ AT1,T2,F is continuous for every T1, T2 ∈ [E].
In order to prove the proposition, it is enough to show that for any

T ∈ [E], α < β in R,

{(F1, F2) : α < µ(AT,F1∨F2) < β}

is Fσ. Let (Ti)i∈N be a generating sequence for E.
Let

x ∈ AnT,F1,F2
⇐⇒ ∃m ≤ n∃i1, . . . , i2m+1 ≤ n(x ∈ ATi1 ,F1 &

x ∈ ATi1 ,Ti2 ,F2 & . . .& x ∈ ATi2m ,Ti2m+1
,F1 &

x ∈ ATi2m+1
,T,F2).

Then AnT,F1,F2
⊆ An+1

T,F1,F2
and AT,F1∨F2 =

⋃
nA

n
T,F1,F2

. So

µ(AT,F1∨F2) > γ ⇐⇒ ∃n(µ(AnT,F1,F2
) > γ).

Since AnT,F1,F2
is equal to

⋃
m≤n

⋃
i1,...,i2m+1≤n

(ATi1 ,F1 ∩ ATi1 ,Ti2 ,F2 ∩ · · · ∩ ATi2m ,Ti2m+1
,F1 ∩ ATi2m+1

,T,F2),

the map (F1, F2) 7→ AnT,F1,F2
is continuous and thus the set {(F1, F2) : γ <

µ(AT,F1∨F2)} is open, for every γ ∈ R. It follows that

{(F1, F2) : µ(AT,F1∨F2) < β} = S(E)2 \ {(F1, F2) : ∀n(β − 1
n
< µ(AT,F1∨F2))}

is Fσ and so {(F1, F2) : α < µ(AT,F1∨F2) < β} is Fσ.
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4.6 The uniform topology

We will next discuss a stronger topology for S(E). Recall that the topology
on S(E) is the smallest topology making the functions F 7→ AT,F , T ∈ [E],
from S(E) to MALG, continuous. It is also the smallest topology making
the functions F 7→ µ(AT,F ), T ∈ [E], from S(E) to [0, 1], continuous. This
topology is induced by the equivalent metrics:

τ(F1, F2) =
∞∑
i=0

2−(i+1)µ(ATi,F1∆ATi,F2),

τ ′(F1, F2) =
∞∑
i=0

2−(i+1) |µ(ATi,F1)− µ(ATi,F2)| ,

where (Ti)i∈N is a dense sequence in [E]. Consider now the following two
metrics:

τ∞(F1, F2) = sup
i
µ(ATi,F1∆ATi,F2) = sup

T∈[E]

µ(AT,F1∆AT,F2),

τ ′∞(F1, F2) = sup
i
|µ(ATi,F1)− µ(ATi,F2)| = sup

T∈[E]

|µ(AT,F1)− µ(AT,F2)| .

Proposition 4.30. τ ′∞ ≤ τ∞ ≤ 3τ ′∞.

Proof. Clearly τ ′∞ ≤ τ∞. Let now τ ′∞(F1, F2) = a. We will show that
τ∞(F1, F2) ≤ 3a. We have that |µ(AT,F1)− µ(AT,F2)| ≤ a, for all T ∈ [E], so
in particular for S ∈ [F1], 1 − µ(AS,F2) ≤ a, i.e., d(S, F2) ≤ a. Now given
T ∈ [E], there is S ∈ [F1] such that x ∈ AT,F1 =⇒ S(x) = T (x) (see Propo-
sition 4.2). Then by the last two paragraphs of the proof of Theorem 4.15,

µ(AT,F1 \ AT,F2) ≤ d(S, F2) ≤ a

and also

µ(AT,F1 \ AT,F2)− µ(AT,F2 \ AT,F1) = µ(AT,F1)− µ(AT,F2),

therefore
µ(AT,F2 \ AT,F1) ≤ µ(AT,F1 \ AT,F2) + a ≤ 2a,

so µ(AT,F1∆AT,F2) ≤ 3a, thus τ∞(F1, F2) ≤ 3a.
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Thus τ∞, τ ′∞ induce the same topology, which we call the uniform topol-
ogy of S(E). It clearly contains the topology of S(E). It is easy to see
that the metric τ∞ (or equivalently τ ′∞) is complete. Indeed let (Fn) be
τ∞-Cauchy. Then it is also τ -Cauchy (where we can assume that τ is de-
fined using a countable dense subgroup of [E]), so, by the proof of The-
orem 4.13, there is F ∈ S(E), such that Fn → F (in the topology of
S(E)). Fix now ε > 0 and let N be big enough, so that for m,n ≥ N ,
we have τ ′∞(Fm, Fn) ≤ ε. Let T ∈ [E] and then choose N0 > N such
that for m ≥ N0, |µ(AT,Fm)− µ(AT,F )| ≤ ε. Then for n ≥ N we have
|µ(AT,Fn)− µ(AT,F )| ≤

∣∣µ(AT,Fn)− µ(AT,FN0
)
∣∣+∣∣µ(AT,FN0

)− µ(AT,F )
∣∣ ≤ 2ε,

thus τ ′∞(Fn, F ) ≤ 2ε.
However the uniform topology is not, in general, separable.

Proposition 4.31. Let E be aperiodic. Then the uniform topology on S(E) is not
separable.

Proof. Let F ⊆ E be aperiodic hyperfinite. Then there is free Borel action a
of Z<N

2 such that Ea = F (see [K4, 8.10]). For Γ a subgroup of Z<N
2 consider

the subequivalence relation EΓ induced by the restriction of the action a
to Γ. There are clearly uncountably many such Γ and the map Γ 7→ EΓ is
injective. Suppose now that Γ is not contained in ∆ and choose γ ∈ Γ \∆.
Then µ(Aγa,EΓ

) = 1. On the other hand, by the freeness of a, there is no x
such that γa(x) = δa(x), for some δ ∈ ∆. Thus µ(Aγa,E∆

) = 0. It follows
that τ ′∞(EΓ, E∆) = 1, thus the uncountable set consisting of the EΓ’s is
discrete.

Remark 4.32. Recall the metric σ on S(E) defined in Remark 4.17. Then the
topology induced by σ contains the uniform topology. In particular, the
uniform topology is separable when restricted to the finite subequivalence
relations of E.



5. Limits of sequences

The following shows how the limit of a convergent sequence in S(E) is
related to the members of the sequence.

Theorem 5.1. Let Fn, F ∈ S(E) and Fn → F . Then for each i, there is an
increasing sequence n(i)

0 < n
(i)
1 < . . . , so that (n

(i+1)
m )m∈N is a subsequence of

(n
(i)
m )m∈N and

F =
⋃
m

⋂
k≥m

F
n

(m)
k
.

Proof. Let {Ti}i∈N be a countable subset of [F ], with T0 = id, such that
xFy ⇐⇒ ∃i(Ti(x) = y). We will define for each i an increasing sequence

n
(i)
0 < n

(i)
1 < . . . ,

so that (n
(i+1)
m )m∈N is a subsequence of (n

(i)
m )m∈N and moreover if we put

Ri,m =
⋂
k≥m

F
n

(i)
k
,

then for (almost) all x,
(x, Ti(x)) ∈

⋃
m

Ri,m.

We construct (n
(i)
m ), recursively on i.

To start with, take n(0)
m = m. Assume now (n

(i)
m ) is defined. We will next

define (n
(i+1)
m ).

Consider Ti+1 ∈ [F ]. Since d(Ti+1, F ) = 0,

d(Ti+1, Fn) = µ({x : (x, Ti+1(x)) 6∈ Fn})→ 0,

33
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so we can find a subsequence (n
(i+1)
m ) of (n

(i)
m ) with µ(Am) < 2−(m+1), where

Am = {x : (x, Ti+1(x)) 6∈ F
n

(i+1)
m
}.

Thus, by the Borel-Cantelli Lemma, µ(limmAm) = 0, where limmAm =⋂
m

⋃
k≥mAk. Therefore, µ(limm(∼ Am)) = 1, where

limmBm =
⋃
m

⋂
k≥m

Bk,

i.e., for almost all x, there is m such that for all k ≥ m, (x, Ti+1(x)) ∈ F
n

(i+1)
k

,
thus (x, Ti+1(x)) ∈

⋃
mRi+1,m.

Now note that Ri,m ⊆ Ri+1,m and Ri,m ⊆ Ri,m+1, thus Ri,m ⊆ Rj,n if
i ≤ j,m ≤ n. So let Rm = Rm,m. Then clearly

⋃
i,mRi,m =

⋃
mRm and

R0 ⊆ R1 ⊆ . . . . Finally if (x, y) ∈ F , then for some i, y = Ti(x), so (x, y) ∈⋃
mRi,m ⊆

⋃
mRm, i.e., F ⊆

⋃
mRm. We thus have F ⊆

⋃
m

⋂
k≥m Fn(m)

k
.

We will now verify that conversely

R =
⋃
m

⋂
k≥m

F
n

(m)
k
⊆ F.

Let T ∈ [R] in order to show that T ∈ [F ]. We have ∀x∃m[(x, T (x)) ∈⋂
k≥m Fn(m)

k
]. Let

Am =

{
x : (x, T (x)) ∈

⋂
k≥m

F
n

(m)
k

}
,

so that
⋃
mAm = X . Now F

n
(m)
k
→ F as k → ∞, so AT,F

n
(m)
k

MALG−→ AT,F .

Since Am ⊆ AT,F
n

(m)
k

for all k ≥ m, by taking limits as k → ∞, we obtain

Am ⊆ AT,F , i.e., x ∈ Am ⇒ (x, T (x)) ∈ F and so (x, T (x)) ∈ F for all x, i.e.,
T ∈ [F ].

Although the preceding result is sufficient for the subsequent applica-
tions, Le Maître in [LeM1], showed, using the description of the topology
in Section 4.4, (1), that one has the following stronger form of Theorem 5.1
(similar to Theorem 5.6):
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Let Fn, F ∈ S(E) and Fn → F . Then there is an increasing sequence n0 <
n1 < . . . , so that

F =
⋃
m

⋂
k≥m

Fnk .

For R a class of measure preserving countable Borel equivalence rela-
tions on (X,µ), let

R↓ =

{⋂
n

Fn : F0 ⊇ F1 ⊇ . . . , Fi ∈ R

}
,

and

R↑ =

{⋃
n

Fn : F0 ⊆ F1 ⊆ . . . , Fi ∈ R

}
.

Theorem 5.2. LetR ⊆ S(E) be closed under finite intersections. Then

R = (R↓)↑.

(whereR is the closure ofR in S(E)).

Proof. Clearly (R↓)↑ ⊆ R. The converse follows from Theorem 5.1, noting
that

⋂
k≥m Fn(m)

k
can be written as a decreasing intersection of relations in

R.

Put
R∗ = (R↓)↑.

The preceding shows that ifR ⊆ S(E) is closed under finite intersections,
then R∗ = R and thus (R∗)∗ = R∗. Also note that if R is hereditary, i.e,
closed under subequivalence relations, thenR = R∗ = R↑.

For any class R of measure preserving countable Borel equivalence
relations on (X,µ) closed under finite intersections (not necessarily con-
tained in some S(E)), we have that if F ∈ (R∗)∗, then for some large
enough E, F ∈ (R∗E)∗ withRE = R∩ S(E), so F ∈ R∗E . Thus (R∗)∗ = R∗.

This has the following implication about arbitrary hereditary classes of
equivalence relations (not necessarily within a fixed S(E)). It was origi-
nally proved (in a somewhat stronger form not requiring invariance of the
measure) in Boykin-Jackson [BJ, page 116].
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Corollary 5.3 (Boykin-Jackson [BJ]). Let R be a hereditary class of measure
preserving countable Borel equivalence relations on (X,µ). Then R↑ is closed
under taking unions of increasing sequences of relations, i.e., (R↑)↑ = R↑.

Proof. Let Sn ∈ R↑, S0 ⊆ S1 ⊆ . . . , E =
⋃
n Sn. Then if RE = S(E) ∩

R, we have that (RE)↑ = S(E) ∩ R↑ and Sn ∈ (RE)↑, so E ∈ RE , by
Proposition 4.6, and thus E ∈ R↑.

Put also
R∗ = (R↑)↓.

IfR is closed under finite intersections, thenR∗ ⊆ R = R∗.

Problem 5.4. IfR is closed under finite intersections, is it true thatR∗ = R∗?

We also have the following corollary of Theorem 5.1. Recall that id is
the equality equivalence relation.

Corollary 5.5. If Fn ∈ S(E), Fn → id, then
⋂
n Fn = id.

Proof. By Theorem 5.1, there is an increasing sequence (ni) with
⋂
i Fni =

id and thus
⋂
n Fn = id.

We finally note the following for the uniform topology.

Theorem 5.6. Let Fn, F ∈ S(E) and Fn → F in the uniform topology. Then
there is an increasing sequence n0 < n1 < . . . , so that

F =
⋃
m

⋂
k≥m

Fnk .

Proof. We have
sup
T∈[F ]

µ(X \ AT,Fn)→ 0,

therefore let n0 < n1 < . . . be such that for every T ∈ [F ], µ(X \ AT,Fnm ) <
2−(m+1). Then for every T ∈ [F ], µ(limm(AT,Fnm )) = 1, so for every T ∈ [F ]
and (almost) all x there is m such that for all k ≥ m, x ∈ AT,Fnk ). It follows
that

F ⊆
⋃
m

⋂
k≥m

Fnk .

The reverse inclusion follows as in the last part of the proof of Theorem 5.1.



6. The space of equivalence
relations

We discuss here a topology on the space of all measure preserving count-
able Borel equivalence relations.

6.1 Coherence of topologies

We consider now the relation of the topologies of S(E), S(F ), whenE ⊆ F .

Theorem 6.1. LetE ⊆ F . Then S(E) is a closed subset of S(F ) and the topology
of S(E) is the relative topology from S(F ).

Proof. From Theorem 5.1 it is clear that S(E) is a closed subset of S(F ).
Let τ be the relative topology of S(E) and let σ be the topology of S(E).

We will use the description of the topology of S(E) from Section 4.4, (1).
Let ME,MF be the corresponding measures and let νF be a probability
Borel measure equivalent to MF . Then νF (E) > 0, so let νE be the nor-
malized measure on E given by νE(W ) = νF (W )

νF (E)
, for Borel W ⊆ E. Then,

since ME is simply the restriction of MF to E, clearly νE is equivalent to
ME . It follows that the identity map is a homeomorphism of (S(E), τ) with
(S(E), σ), so τ = σ.

Denote by E the set of all measure preserving countable Borel equiv-
alence relations on (X,µ) (where again we identify two equivalence rela-
tions if they agree a.e.). Thus E =

⋃
E∈E S(E). By the preceding Theo-

rem 6.1, the topologies on S(E), S(F ) agree on S(E) ∩ S(F ) = S(E ∩ F )
and S(E ∩ F ) is closed on S(E) and S(F ). So we can define the weak
topology on E induced by the spaces S(E), which is the topology on E
defined by declaring that U ⊆ E is open iff U ∩ S(E) is open in S(E) for

37
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all E ∈ E . In particular f : E → Y , Y a topological space, is continuous if
f |S(E) : S(E)→ Y is continuous for all E ∈ E . Also on each S(E) the rel-
ative topology from E coincides with its topology and S(E) is closed in E .
(For the general concept of weak topology on a set induced by topologies
on families of subsets, see, e.g., [D, VI.8].)

We should also note here that for E ⊆ F , S(E) is a retract of S(F ), with
the retraction given by the map R ∈ S(F ) 7→ R ∩ E ∈ S(E). From this
it follows that the map E ∈ S(F ) 7→ S(E) ∈ F∗(S(F )), where F∗(S(F ))
is equipped with the Effros Borel structure, is a Borel map. To see this fix
a countable dense subset {Fn : n ∈ N} of S(F ). Then {E ∩ Fn : n ∈ N} is
dense in S(E) and the map Φ: S(F ) → S(F )N given by Φ(E)n = E ∩ Fn
is Borel and gives for each E ∈ S(F ) a dense sequence in S(E), which
implies that the map E ∈ S(F ) 7→ S(E) ∈ F∗(S(F )) is Borel. On the other
hand, we do not know if the map E ∈ S(F ) 7→ {G ∈ S(F ) : E ⊆ G} ∈
F∗(S(F )) is Borel.

Finally we point out that each space S(E) is contractible (to the equality
relation) by the map ϕ : S(E) × [0, 1] → S(E) given by ϕ(F, t) = F |[1, 1 −
t]∪{(x, x) : x ∈ (1− t, 1]}, where without loss of generality we assume that
X = [0, 1] and µ is Lebesgue measure.

Remark 6.2. The question of the Borelness of the mapE ∈ S(F ) 7→ S(E) ∈
F∗(S(F )) is a special case of the following more general question: Let X
be a Polish space and ≤ a closed (as a subset of X2) partial ordering on X .
Is the map x ∈ X 7→ Ix = {y ∈ X : y ≤ x} ∈ F∗(X) Borel (where again
F∗(X) is equipped with the Effros Borel structure)?

The answer is in general negative. To see this, fix a Polish space Y and
a closed subset F ⊆ Y 2 such that ∀y ∈ Y ∃z ∈ Y (y, z) ∈ F but there is
no Borel function f : Y → Y such that ∀y ∈ Y (y, f(y)) ∈ F (see, e.g., [K,
Exercise 18.17]).

Let Y ∞ =
⊕

n≥1 Y
n be the direct sum of the Y n. Thus each Y n is

clopen in Y ∞. Let X ⊆ Y ∞ be the closed subset of Y ∞ consisting of Y 1 =
{(y) : y ∈ Y }, and for each n ≥ 2 of all (y1, . . . , yn) such that (yn−1, yn) ∈
F, (yn−2, yn−1) ∈ F, . . . , (y1, y2) ∈ F .

Finally define on X the partial ordering

s = (s1, . . . , sn) ≤ t = (t1, . . . , tm) ⇐⇒ n ≥ m & s ⊇ t.

This is closed in X . Suppose now, towards a contradiction, that the map
x 7→ Ix is Borel. Define K : Y → F∗(Y 2) by K(y) = I(y) ∩ (X ∩ Y 2). Since
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X ∩ Y 2 is clopen in X , this is also a Borel map. Now

K(y) = {(u, v) ∈ Y 2 : (u, v) ∈ F & u = y} = {y} × Fy.

Since K is Borel, there is a Borel map φ : Y → Y such that φ(y) ∈ K(y) and
so there is a Borel map f : Y → Y such that f(y) ∈ Fy, contradicting our
assumption about F .

On the other hand, it is easy to see that if ≤ is a closed pre-linear or-
dering on a Polish space X , then the map x 7→ Ix is Borel. Indeed for
each open set U ⊆ X , let PU = {x ∈ X : Ix ∩ U 6= ∅}. We will check
that PU is Borel, in fact either open or closed. For that notice that for each
x ∈ X , the set Jx = {y ∈ X : x < y} is open. Then if U has a least ele-
ment u0, PU = {x : u0 ≤ x} is closed, while if U has no least element, then
PU =

⋃
x∈U Jx is open.

6.2 Properties of the weak topology

We will next give another description of the weak topology of E . Consider
the compact space [0, 1]Aut(X,µ) with the product topology. Define

Π: E → [0, 1]Aut(X,µ)

by Π(F )(T ) = d(T, F ). Since [F ] = {T : d(T, F ) = 0}, clearly Π is injective.

Proposition 6.3. The map Π defined above is a homeomorphism of E with a
subspace of [0, 1]Aut(X,µ).

Proof. Below denote by τ the weak topology of E . We first verify that Π is
continuous. Let V =

⋂n
i=1 Vi be a basic open set in [0, 1]Aut(X,µ), where Vi =

{p ∈ [0, 1]Aut(X,µ) : p(Ti) ∈ Ui}, with Ui open in [0, 1] and T1, T2, · · · , Tn ∈
Aut(X,µ). Then

Π−1(V ) = {F ∈ E : d(Ti, F ) ∈ Ui, 1 ≤ i ≤ n}.

Let F ∈ E be such that Ti ∈ [F ] for all 1 ≤ i ≤ n. Then Π−1(V ) ∩ S(F )
is open in S(F ). Since for each E ∈ E there is such an F containing E,
it follows from Theorem 6.1 that Π−1(V ) ∩ S(E) is open in S(E) for each
E ∈ E , so Π−1(V ) is τ -open.

Conversely, we show that Π sends τ -closed sets to closed subsets of
Π(E) (in its relative topology from [0, 1]Aut(X,µ)), so Π−1 is also continuous.
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Fix F ⊆ E which is τ -closed. Let (Fi)i∈I be a net in F and F ∈ E be
such that Π(Fi) → Π(F ), i.e., d(T, Fi) → d(T, F ), ∀T ∈ Aut(X,µ). We will
show that F ∈ F .

We inductively define an increasing sequence E0 ⊆ E1 ⊆ . . . of ele-
ments of E and for each n ∈ N a countable dense subset {T nk }k∈N of [En]
such that {T nk }k∈N ⊆ {T n+1

k }k∈N, as follows:
(i) E0 = F , {T 0

k }k∈N is some dense subset of [E0],
(ii) GivenEn, {T nk }k∈N, for each l ≥ 1, finite sequencem = (m1, . . . ,ml) ∈

Nl, and ε ∈ Q+, find F n
m,ε ∈ F such that∣∣d(T nmi , F )− d(T nmi , F

n
m,ε)
∣∣ < ε, 1 ≤ i ≤ l.

Put
En+1 = En ∨ (

∨
m,ε

F n
m,ε),

where for a sequence of equivalence relations (Fj),
∨
j Fj is the smallest

equivalence relation containing all Fj . Finally let {T n+1
k }k∈N be a dense

subset of [En+1] containing {T nk }k∈N.
Let E =

⋃
nEn. Since F ∩ S(E) is closed in S(E), it is enough to show

that F is in the closure of F ∩ S(E) in S(E). Since {T nk }n,k is dense in [E],
a basic open nbhd of F in S(E) is of the form

U =
l⋂

i=1

{F ′ ∈ S(E) : |d(Si, F
′)− d(Si, F )| < ε},

for some S1, . . . , Sl ∈ {T nk }n,k and ε ∈ Q+. Then for large enough n, we
have that S1, . . . , Sl ∈ {T nk }k, say Si = T nmi , 1 ≤ i ≤ l. Put m = (m1, . . . ,ml).
Then by construction F n

m,ε ∈ F ∩ U and the proof is complete.

Thus E can be viewed as a subspace of [0, 1]Aut(X,µ), so, in particular, it
is Hausdorff. On the other hand it is neither separable or first countable.

Proposition 6.4. The weak topology on E is not separable.

Proof. The closure of any countable set {Fn} ⊆ E is clearly contained in
S(
∨
n Fn).

Proposition 6.5. The weak topology of E is not first countable.
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Proof. We will use the following lemma. Recall that for T ∈ Aut(X,µ), ET
is the equivalence relation generated by T .

Lemma 6.6. Let F ∈ E , S1, S2, · · · ∈ Aut(X,µ) and T ∈ Aut(X,µ) be such
that ET ⊥ (F ∨ (

∨∞
i=1 ESi)). Then for every i ≥ 1, d(Si, F ∨ ET ) = d(Si, F ).

Proof. By definition of ⊥, ASi,F∨ET = ASi,F .

Assume now, towards a contradiction, that E is first countable. Fix
F ∈ E and let {Un} be a local basis at F . Then, for each n, there is a
sequence T n1 , . . . , T nkn ∈ Aut(X,µ) and open sets V n

i , . . . , V
n
kn

in [0, 1] such
that

F ∈
kn⋂
i=1

{F ′ : d(T ni , F
′) ∈ V n

i } ⊆ Un.

Let R = F ∨
∨
i≤kn,n∈NETni . The set {T ∈ Aut(X,µ) : ET ⊥ R} is comeager

in the weak topology of Aut(X,µ) (see Conley-Miller [CM, Theorem 8]),
so fix aperiodic T ∈ Aut(X,µ) with ET ⊥ R. Then d(T, F ) = 1. Put

U = {F ′ ∈ E : d(T, F ′) > ε},

where 0 < ε < 1. Then F ∈ U , so for some n, F ∈ Un ⊆ U and thus
F ∈

⋂kn
i=1{F ′ : d(T ni , F

′) ∈ V n
i } ⊆ U . Put F ′ = F ∨ ET . Then, since ET ⊥ R,

we have by Lemma 6.6 that d(T ni , F
′) = d(T ni , F ), therefore d(T ni , F

′) ∈ V n
i

for 1 ≤ i ≤ kn. Thus F ′ ∈ Un ⊆ U , so d(T, F ′) > ε. But T ∈ [F ′], so
d(T, F ′) = 0, a contradiction.

6.3 Parametrization by actions

To see another aspect of the global structure of E , consider the Polish space
A(F∞, X, µ) with the weak topology. The map a 7→ Ea is a surjection from
A(F∞, X, µ) to E and provides a canonical parametrization of E . Let

a ∼F∞ b ⇐⇒ Ea = Eb

be the associated equivalence relation, so that E = A(F∞, X, µ)/ ∼F∞ .

Proposition 6.7. ∼F∞ is Fσδ.
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Proof. We use below letters β, γ, δ for elements of F∞ and a, b for elements
of A(F∞, X, µ). We will verify that the negation of ∼F∞ is Gδσ. For this it is
enough to check that for each γ, ε > 0 the relation

P (a, b) ⇐⇒ µ({x : ∀δ(γa(x) 6= δb(x))}) ≥ ε

is Gδ and for this it suffices to check that for each fixed δ1, . . . , δn the rela-
tion

Q(a, b) ⇐⇒ µ({x : ∀1 ≤ i ≤ n(γa(x) 6= δbi (x))}) ≥ ε

is Gδ. Since the maps a 7→ βa from A(F∞, X, µ) to Aut(X,µ) (with the
weak topologies) are continuous, this reduces to showing that the relation
R ⊆ Aut(X,µ)n+1 given by

R(T, S1, . . . , Sn) ⇐⇒ µ(
n⋂
i=1

supp(T−1Si)) ≥ ε

is Gδ, where as usual

supp(T ) = {x : T (x) 6= x}.

This is clear, since the map

(U1, . . . , Un) ∈ Aut(X,µ) 7→ (supp(U1), . . . , supp(Un)) ∈ MALGn

is of Baire class 1 (see [K, page 4]).

Below let Ectble be the equivalence relation on PN, where P is an un-
countable Polish space, given by

(xn)Ectble(yn) ⇐⇒ {xn : n ∈ N} = {yn : n ∈ N}.

It is well known that this is a non-smooth equivalence relation and more-
over it is Fσδ-complete (as a set of pairs). Below for Borel equivalence
relations E,F in Polish spaces X, Y , we let E ≤c F mean that there is a
continuous reduction from E to F .

Theorem 6.8. Ectble ≤c∼F∞ , so, in particular, ∼F∞ is Fσδ-complete (as a set of
pairs) and non-smooth.
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Proof. Let Rn ⊆ Aut(X,µ)n be defined by

Rn(T1, . . . , Tn) ⇐⇒ ∀1 ≤ i ≤ n(ETi ⊥ ET1,...,Ti−1,Ti+1,...,Tn).

By Conley-Miller [CM, Theoem 8] and the Kuratowski-Ulam Theorem,
a simple induction on n shows that each Rn is comeager in Aut(X,µ)n.
Thus by the Kuratowski-Mycielski Theorem (see [K2, 19.1]), there is a Can-
tor set P ⊆ Aut(X,µ) so that for any distinct T1, . . . , Tn ∈ P we have
Rn(T1, . . . , Tn).

Define now f : PN → A(F∞, X, µ) by f((Ti)) = a, where γai = Ti, with
(γi) free generators of F∞. Clearly f is continuous and a reduction of Ectble

to ∼F∞ .

It can be also shown that ∼F∞ is Borel reducible to an equivalence rela-
tion induced by a Borel action of a Polish group. In fact, by using a slightly
different parametrization of E , the associated equivalence relation is again
Fσδ and induced by a continuous action of a Polish group (see Törnquist
[T, page 33]).

The preceding show that it is not possible to find a “definable" injection
of E into a standard Borel space, so in particular E does not admit any
“definable" separable metrizable topology. The following remains open:

Problem 6.9. What is the complexity of the equivalence relation (as a set of pairs)
on the space A(Γ, X, µ) (in the weak topology) given by

a ∼Γ b ⇐⇒ Ea = Eb,

for other groups Γ, e.g., Γ = Z?

Problem 6.10. Determine the complexity of the equivalence relation ∼F∞ in the
hierarchy of Borel equivalence relations under Borel reducibility.

6.4 The inclusion poset

We finally note an interesting property of the poset (E ,⊆). We start with
the following simple observation.

Let (P,≤) be an upper semilattice having the following two properties:
(i) there is no strictly increasing ω1 sequence in P and (ii) every increasing
ω sequence in P has a least upper bound. Then for every function f : P →
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P and every p ∈ P , there is q ≥ p such that f(q) ≤ q. Indeed if this fails,
then for some p0 and all q ≥ p0 we have that q∗ = q ∨ f(q) > q, which
using (ii) above produces a strictly increasing ω1 sequence. Moreover note
that if f is ω-continuous, i.e., for any increasing sequence (pn) we have
that f(lub pn) = lubf(pn), then the set {p ∈ P : f(p) ≤ p} is ω-closed, i.e.,
closed under suprema of increasing sequences, and cofinal.

In the following paragraph, we work in ZF + DC + AD.
By a result of Harrington [H] there is no injective ω1 sequence of Fσδ

sets and thus condition (i) above holds for (E ,⊆). Clearly condition (ii) is
also true. Thus for every f : E → E and every E ∈ E , there is F ⊇ E, with
f(F ) ⊆ F . An interesting example of such an f is defined as follows. Fix
a measure preserving bijection ϕ of X2 (with the product measure) with
X and let f(E) be the image of E × E by ϕ. Clearly f is ω-continuous.
It follows that there is an ω-closed, cofinal set of E for which E × E is
isomorphic to a subequivalence relation of E.

We work next in the stronger theory ZF + DC + ADR.
Let for any uncountable Polish space Z, Pℵ1(Z) be the set of all count-

able subsets of Z. Solovay [S] has shown that the set Pℵ1(Z) admits a
non-principal, countably complete ultrafilter U defined by:

A ∈ U ⇐⇒ A contains an ω-closed, cofinal subset.

(Here a subset C ⊆ Pℵ1(Z) is called ω-closed if for any S0 ⊆ S1 ⊆ . . . , with
Sn ∈ C, ∀n, we have that

⋃
n Sn ∈ C. It is cofinal if for any S ∈ Pℵ1(Z)

there is T ∈ C with S ⊆ T .)
We can use this to define a non-principal, countably complete ultrafil-

ter on E as follows: For each S ∈ Pℵ1(Aut(X,µ)), let ES be the equivalence
relation generated by S. Then for everyR ⊆ E , put

R ∈ UE ⇐⇒ {S : ES ∈ R} ∈ U .

It is easy to see that if R ⊆ E is ω-closed and cofinal in (E ,⊆), then R ∈
UE , thus UE contains the countably complete filter of sets containing an
ω-closed, cofinal subset of E . The following is open:

Problem 6.11. Is the filter generated by the ω-closed, cofinal subsets of E an
ultrafilter? Equivalently, is UE equal to that filter?

In any case, the ultrafilter UE provides a natural way to define a notion
of “largeness" for sets of equivalence relations. For example, the class of
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ergodic equivalence relations is “large", i.e., belongs to UE (and we will see
in Chapter 11 that so is the class of richly ergodic ones, being ω-closed,
cofinal). On the other hand, the class of hyperfinite equivalence relations
is “small", i.e., is not in UE .

Remark 6.12. The above can be also viewed as results concerning “defin-
able" functions and sets in E , where we interpret “definable" as meaning
“belonging to some inner model of ZF + DC + AD or ZF + DC + ADR con-
taining the set of reals R" and working in a strong enough large cardinal
extension of ZFC .

We conclude this section by pointing out the following unboundedness
property of E : There is no E ∈ E such that for every F ∈ E there is a
subequivalence relation F ′ of E which is isomorphic to F . This follows
from a result of Ozawa, see [K, page 29].
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7. Relations with the space of
actions

Let Γ be a countable group and let (A(Γ, X, µ), u) be the space of measure
preserving actions of Γ on (X,µ) with the uniform topology u and consider
its closed subspace A(Γ, E). For each a ∈ A(Γ, E), let Ea ∈ S(E) be the
equivalence relation induced by a. We also let ET1,T2,... be the equivalence
relation induced by T1, T2, . . . in Aut(X,µ).

If Γ = F∞, the map a 7→ Ea gives a parametrization of S(E) byA(F∞, E),
i.e., a surjective map from A(F∞, E) onto S(E). By Theorem 4.28, and the
paragraph preceding it, we have the following selection result.

Theorem 7.1. There is a continuous map Ψ: S(E) → A(F∞, E) such that for
F ∈ S(E), EΨ(F ) = F .

We now have:

Theorem 7.2. The map a ∈ A(Γ, E) 7→ Ea ∈ S(E) is of Baire class 1.

Proof. A subbasis for the weak topology of S(E) consists of the sets of the
form

{F ∈ S(E) : d(T, F ) ∈ (a, b)},
where T ∈ D, with D a countable dense subset of [E], and a < b rationals.
It is thus enough to show that

{a ∈ A(Γ, E) : d(T,Ea) ∈ (a, b)}

is Fσ and for that it suffices to show that for any such T and r > 0

{a ∈ A(Γ, E) : d(T,Ea) ≥ r}

is closed.

47
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So assume an → a in A(Γ, E) and d(T,Ean) ≥ r. Let U ∈ Ea be such
that d(T, U) = d(T,Ea). Then d(T,Ean) ≤ d(T, U) + d(U,Ean).

Claim. d(U,Ean)→ 0.

Granting this r ≤ limnd(T,Ean) ≤ d(T, U) = d(T,Ea).

Proof of claim. Fix ε > 0. Find next a Borel partition {An}∞n=1 of X and
elements {γn}∞n=1 of Γ with U =

⊔
γ γ

a
n|An. Let N be large enough so that∑

n>N µ(An) < ε. Then let M be large enough, so that d(γai , γ
an
i ) < ε

N
, if

i ≤ N and n > M . Let for i ≤ N, n > M

Bn
i = {x ∈ Ai : γai (x) = γani (x)}.

Then Bn
i ⊆ Ai and µ(Ai \Bn

i ) < ε
N

, so if

B =
⋃
i>N

Ai ∪
⋃
i≤N

(Ani \Bn
i ),

then µ(B) < 2ε. If x 6∈ B, then U(x) = γani (x) for some i ≤ N , so (x, U(x)) ∈
Ean . Thus {x : (x, U(x)) 6∈ Ean} ⊆ B, so

d(U,Ean) = µ({x : (x, U(x)) 6∈ Ean}) < 2ε

for all n > M and we are done.

Corollary 7.3. Let Γ = F∞. Let P be a property of equivalence relations such
that

P∗E = {a ∈ A(Γ, E) : Ea ∈ P}
is Borel in A(Γ, E). Then PE = P ∩ S(E) is Borel in the topology of S(E).

Proof. For F ∈ S(E),

F ∈ P ⇐⇒ ∃a ∈ A(Γ, E) (Ea = F & a ∈ P∗)
⇐⇒ ∀a ∈ A(Γ, E) (Ea = F ⇒ a ∈ P∗).

Since a 7→ Ea is Borel this shows that P ∩ S(E) is both analytic and co-
analytic, thus Borel.

In particular, taking again Γ = F∞, suppose P is a property of equiva-
lence relations such that {a ∈ A(Γ, X, µ) : Ea ∈ P} is Borel in the topology
of A(Γ, X, µ). Since this is contained in the uniform topology of A(Γ, X, µ),
this set is Borel in the uniform topology of A(Γ, X, µ) and it follows that
{a ∈ A(Γ, E) : Ea ∈ P} is Borel in (the uniform topology of) A(Γ, E).
Therefore PE is Borel in S(E).
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Problem 7.4. For which countable Γ is the map a ∈ A(Γ, E) 7→ Ea ∈ S(E)
continuous, for each E?

Anush Tserunyan and Robin Tucker-Drob found the first examples that
showed that this map is not always continuous.

(1) (R. Tucker-Drob) Take Γ = F∞ with free generating set {γm}m∈N. Fix
any two transformations S, T ∈ Aut(X,µ) such that ES ∨ ET 6= ET . Let
E = ES ∨ ET and define an ∈ A(Γ, E) by

γanm =

{
S if m > n,

T if m ≤ n.

Also define a ∈ A(Γ, E) by γam = T for all m. Clearly Ean = E and Ea =
ET . Also an converges uniformly to a. On the other hand, the constant
sequence Ean = E does not converge to Ea = ET .

(2) (A. Tserunyan) Take Γ = F∞ with free generating set {γm}m∈N. Let a
be the usual shift action of Γ on 2Γ andEa the induced equivalence relation.
Let T be the measure preserving automorphism on 2Γ such that T (x)(γ) =
1− x(γ), for all γ ∈ Γ. Let an be the action of Γ such that

γanm =

{
γam if m ≤ n,

T if m > n.

LetE be large enough so that all γan, for all γ ∈ Γ, and T are in [E]. Then
an → a uniformly but Ean does not converge to Ea, since d(T,Ean) = 0 but
d(T,Ea) = 1.

(3) (R. Tucker-Drob) Take Γ = Z. Let (S, T ) be any free action of Z2

on (X,µ) and fix some ergodic equivalence relation E whose full group
contains the transformations S and T . Fix also sequences εn > 0, εn → 0
and kn ∈ N, kn →∞. By the Rokhlin Lemma for Z2 actions, for each n we
can find a set Bn = B ⊆ X such that the sets SiT j(B), 0 ≤ i, j < kn, are
pairwise disjoint, and satisfy µ(C) > 1− εn, where

C =
⊔

0≤i,j<kn

SiT j(B).

Define the transformation Sn as follows: view powers of the transforma-
tion S as successively moving the block B upward and view powers of T
as moving B horizontally to the right. We thus have a square structure
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consisting of kn-many rows and kn-many columns, and where B is in the
bottom left corner. Define Sn to be equal to S on all rows except for the
top. On the top row define

Sn(x) =

{
TS−(kn−1)(x) if x ∈ Skn−1T j(B) where j < kn − 1,

T−(kn−1)S−(kn−1)(x) if x ∈ Skn−1T kn−1(B).

Thus, on C, Sn is a cyclic permutation of the blocks {SiT j(B)}0≤i,j<kn
with ESn|C ⊆ E(S,T )|C ⊆ E|C. We extend Sn to all of X so that it has
period k2

n and is in [E]. Then it is clear that Sn → S uniformly. Since (S, T )
defines a free action of Z2 we have d(T,ES) = 1 − µ({x ∈ X : (x, T (x)) ∈
ES}) = 1. On the other hand, if x ∈ C is in any column except the last,
then Sknn (x) = T (x), so that (x, T (x)) ∈ ESn and thus d(T,ESn) = 1−µ({x :
(x, T (x)) ∈ ESn})→ 0. This shows that ESn does not converge to ES .

Assume now that S is ergodic. We can use the sequence {Sn} to define
a new sequence {Qn} ⊆ [E] of ergodic transformations which converge
uniformly to S and also satisfy µ({x : T (x) = Qkn

n (x)}) → 1, so that EQn
does not converge to ES in S(E). Let ηn > 0 be chosen so that knηn → 0.
Since E is ergodic, any two transformations in [E] of period k2

n are isomor-
phic via an element of [E], so by the Uniform Approximation Theorem
(see [K, 3.3]), for each n there exists an ergodic transformation Qn ∈ [E]
such that du(Sn, Qn) ≤ 1

k2
n

+ ηn. Then Qn → S uniformly (since Sn con-
verges to S uniformly), and du(Q

kn
n , S

kn
n ) ≤ kn( 1

k2
n

+ ηn) = 1
kn

+ knηn → 0,
so µ({x : T (x) = Qkn

n (x)})→ 1.

It turns out now that we have the following general fact.

Theorem 7.5. Let E be ergodic. Let Γ be a countable infinite amenable group.
Then the map a ∈ A(Γ, E) 7→ Ea ∈ S(E) is not continuous.

Proof. By Dye and Ornstein-Weiss (see [KM, 10.7]), let T ∈ [E] be mixing
and let a ∈ A(Γ, E) be such that Ea = ET . Let S = T 2. Then S is ergodic
and ES $ ET . Again by Ornstein-Weiss, there is a free ergodic b ∈ A(Γ, E)
such that Eb = ES . By Foreman-Weiss [FW, proof of Claim 19], there
is a sequence S0, S1, · · · ∈ [Ea ∨ Eb] = [Ea] such that an = SnaS

−1
n → b

uniformly. But Ean = Ea 6= Eb.

We now define a stronger topology than the uniform topology on the
space A(Γ, X, µ) (see [K, Remark in page 103]). It is induced by the com-
plete metric
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δΓ,∞(a, b) = sup
γ∈Γ

du(γ
a, γb).

The main fact is that the map a ∈ A(Γ, E) 7→ Ea ∈ S(E) is Lipschitz in the
metrics δΓ,∞, τ∞ (defined in Section 4.6). Below recall that [[E]] is the full
pseudogroup of E, i.e., the set of all partial Borel bijections ϕ : A→ B with
ϕ(x)Ex,∀x ∈ A. As usual we identify two such partial bijections if they
agree µ-a.e.

Theorem 7.6. For any countable group Γ and any a, b ∈ A(Γ, E),

τ∞(Ea, Eb) ≤ 80δΓ,∞(a, b).

In particular, a ∈ A(Γ, E) 7→ Ea ∈ S(E) is continuous from the δΓ,∞-topology
on A(Γ, E) to the uniform topology of S(E) (and thus to the topology of S(E)).

Proof. We will show that for any δ > 0,

δΓ,∞(a, b) <
δ2

2
=⇒ τ∞(Ea, Eb) ≤ 40δ2.

Assume δΓ,∞(a, b) < δ2

2
and fix T ∈ [E]. By [K, Remark in page 103],

there is ϕ : A → B,ϕ ∈ [[E]] such that A is a-invariant, B is b-invariant,
ϕ(a|A)ϕ−1 = b|B, µ(A) > 1− 16δ2 and µ({x ∈ A : ϕ(x) 6= x}) ≤ 4δ2.

Put
A′ = {x ∈ A : ϕ(x) = x} = {x ∈ B : ϕ−1(x) = x},

A′′ = {x ∈ A′ : T (x) ∈ A′}.
Suppose now that (x, T (x)) ∈ Ea and x ∈ A′′. Then there is γ ∈ Γ such that
γa(x) = T (x), so, as x, T (x) ∈ A′, we have

γb(x) = γb(ϕ(x)) = ϕ(γa(x)) = ϕ(T (x)) = T (x),

so (x, T (x)) ∈ Eb. Similarly let (x, T (x)) ∈ Eb and x ∈ A′′. Then there is
γ ∈ Γ such that γb(x) = T (x), so, as x, T (x) ∈ A′, we have

T (x) = ϕ−1(T (x)) = ϕ−1(γb(x)) = γa(ϕ−1(x)) = γa(x),

thus (x, T (x)) ∈ Ea.
It follows that AT,Ea∆AT,Eb ⊆ X \A′′, and, since A′′ = A′ ∩ T−1(A′), we

have µ(X \ A′′) ≤ 2µ(X \ A′). Also X \ A′ ⊆ (X \ A) ∪ {x ∈ A : ϕ(x) 6= x},
so µ(X \ A′) < 16δ2 + 4δ2 = 20δ2. Thus µ(AT,Ea∆AT,Eb) < 40δ2 and, since
T was arbitrary, τ∞(Ea, Eb) ≤ 40δ2.
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It is known that when Γ has property (T) the δΓ,∞-topology on A(Γ, E)
coincides with the (uniform) topology of A(Γ, E) (see again [K, Remark in
page 103]), so we have the following result originally proved by R. Tucker-
Drob:

Corollary 7.7 (Tucker-Drob). If Γ has property (T), then the map a ∈ A(Γ, E) 7→
Ea ∈ S(E) is continuous.

In view of Theorem 7.5 and Corollary 7.7, one can consider the follow-
ing more precise version of Problem 7.4.

Problem 7.8. Let Γ be an infinite group. Is it true that the map a ∈ A(Γ, E) 7→
Ea ∈ S(E) is continuous for every E iff the group Γ has property (T).

Finally we have:

Proposition 7.9. Assume an → a in A(Γ, E) and for every T ∈ [E],

µ({x : ¬T (x)Eax & T (x)Eanx})→ 0.

Then Ean → Ea. In particular this holds if Ean ⊆ Ea.

Proof. We have to show that for T ∈ [E], d(T,Ean)→ d(T,Ea).
Let now U ∈ [Ea] be such that

T (x)Eax⇒ U(x) = T (x) (therefore d(T,Ea) = d(U, T ))

Let

Bn = {x : ¬T (x)Ean(x) & T (x)Eax}
Cn = {x : T (x)Eanx & U(x)Eanx & ¬T (x)Eax}
Dn = {x : T (x)Eanx & ¬U(x)Eanx & ¬T (x)Eax}
En = {x : ¬T (x)Eanx & U(x)Eanx & ¬T (x)Eax}
Fn = {x : ¬T (x)Eanx & ¬U(x)Eanx & ¬T (x)Eax}.

Let bn, cn, dn, en, fn be the measure of these sets, resp.
Then

d(T,Ean) = bn + en + fn

d(U,Ean) = bn + dn + fn
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and

d(T,Ea) = cn + dn + en + fn

Therefore d(T,Ean)− d(T,Ea) = bn − cn − dn.
Now as d(U,Ean) → 0 (by the Claim in Theorem 7.2), we have that

bn + dn → 0.
So it is enough to show that cn → 0. But

Cn = {x : T (x)Eanx & U(x)Eanx & ¬T (x)Eax}
⊆ {x : T (x)Eanx & ¬T (x)Eax},

so cn → 0 by hypothesis.
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8. Complexity calculations

We now discuss the complexity of various classes of equivalence relations.
For any class R of measure preserving countable Borel equivalence rela-
tions and any given such relation E, we denote by

RE = R∩ S(E),

the set of subequivalence relations ofE that are in the classR. In particular
EE = S(E). Recall that an equivalence relation is finite if all its equivalence
classes are finite and hyperfinite if it is the union of an increasing sequence
of finite equivalence relations.

Theorem 8.1. Let H be the class of hyperfinite equivalence relations. Then HE

is closed in S(E).

Proof. By Theorem 5.2.

Denote by F , resp., BF the classes of equivalence relations which are
finite, resp., bounded finite (i.e., for some N each equivalence class has at
most N elements). It follows that

FE = BFE = HE.

In particular, E is hyperfinite iff FE is dense in S(E) iff BFE is dense in
S(E). It also follows from this that the mapE ∈ S(F ) 7→ HE ∈ F∗(S(F )) is
Borel (when F∗(S(F )) is equipped with the Effros Borel structure). To see
this let {Fn : n ∈ N} be a countable dense subset of FF and let Φ: S(F ) →
S(F )N be given by Φ(E)n = E ∩Fn. Then Φ is Borel and for each E it gives
a dense sequence in FE , and so in HE , thus the map E ∈ S(F ) 7→ HE ∈
F∗(S(F )) is Borel.

Next we calculate the complexity of the class of aperiodic equivalence
relations.
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Theorem 8.2. LetA be the class of aperiodic equivalence relations. ThenAE is a
Gδ set in the topology of S(E). Moreover, if E is aperiodic, then AE is dense.

Proof. Let {Tn} ⊆ [E] be a sequence of aperiodic automorphisms which is
dense in the set of aperiodic elements of [E]. We claim that the following
are equivalent for F ∈ S(E):

(1) F is aperiodic,

(2) ∀ε ∈ Q+∃n(d(Tn, F ) < ε),

which clearly shows that the class of aperiodic elements of S(E) is Gδ.
(1)⇒ (2). By [K, 3.5], [F ] contains an aperiodic T . Then for each ε ∈ Q+

there is n such that d(Tn, T ) < ε, so d(Tn, [F ]) < ε.
(2) ⇒ (1). Assume (2) and also that (1) fails, towards a contradiction.

Then there is N ∈ N+ such that if A = {x : |[x]F | = N}, then µ(A) = a > 0.
Choose n so that d(Tn, F ) < a

2(N+1)2 and let T ∈ [F ] be such that

d(Tn, T ) < a
2(N+1)2 . Now note that for i ≤ N, d(T in, T

i) ≤ ia
2(N+1)2 ≤ (N+1)a

2(N+1)2 ,

so µ({x : ∃i ≤ N(T i(x) 6= T in(x))} ≤ (N+1)2a
2(N+1)2 = a

2
. Therefore if B = {x : ∀i ≤

N(T i(x) = T in(x))}, then µ(B) ≥ 1− a
2
, so µ(A ∩B) > 0.

If x ∈ A∩B, then T i(x) = T in(x), for i ≤ N , so N = |[x]F | ≥ |{T i(x) : i ≤
N}| = |{T in(x) : i ≤ N}| = N + 1, a contradiction.

Finally we prove that AE is dense in S(E), if E is aperiodic. For that
it is enough to show that if F ∈ S(E) is finite, then there is a sequence
F0 ⊇ F1 ⊇ . . . with Fn ∈ AE and

⋂
n Fn = F . Let Y be a Borel transversal

for F .
Note now that if R is an aperiodic equivalence relation, then there is

a sequence of aperiodic R ⊇ R0 ⊇ R1 ⊇ . . . such that
⋂
Rn = id (the

equality equivalence relation). To see this, let T ∈ [R] be aperiodic and let
Rn be the equivalence relation generated by T 2n , n = 0, 1, 2, . . . . Apply
this now to R = E|Y to find Rn as above and let Fn = Rn ∨ F .

We also have the following calculation concerning the Marker Lemma
(see [KM, Lemma 6.7]).

Proposition 8.3. There is a Borel function Ξ: AE → MALGN such that for each
F ∈ AE, Ξ(F )0 ⊇ Ξ(F )1 ⊇ . . . , µ(Ξ(F )n) → 0 and each Ξ(F )n is a complete
section of F .
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Proof. Use Proposition 4.18 and the proof of the Marker Lemma as in [KM,
Lemma 6.7].

It is clear that BFE is Fσ in the topology of S(E) and it is dense if E
is hyperfinite. Moreover if E is aperiodic, so that S(E) \ BFE is dense by
Theorem 8.2, it follows that BFE is in Fσ \Gδ in the topology of S(E) for E
aperiodic, hyperfinite. From Theorem 6.1, if E ⊆ F , then the topology on
S(E) is the relative topology it inherits from S(F ). Since every aperiodic
E contains an aperiodic, hyperfinite subequivalence relation, we have the
following:

Theorem 8.4. For every aperiodic E, BFE is in Fσ \Gδ andAE is in Gδ \Fσ in
the topology of S(E).

Theorem 8.5. The set FE of finite equivalence relations in S(E) is Fσδ in the
topology of S(E).

Proof. The proof is a variation of that of Theorem 8.2. Since every equiva-
lence relation is included in an aperiodic one, by the paragraph preceding
Theorem 8.4, we can assume that E is aperiodic.

First note that for each open set V ⊆ [E], the set

{F ∈ S[E] : [F ] ∩ V 6= ∅}

is open in the weak topology of S(E). To see this, let

V =
⋃
n

{T ∈ [E] : d(T, Tn) < εn},

for some sequence {Tn} ∈ [E]N and sequence (εn) of positive reals. Then
[F ] ∩ V 6= ∅ ⇐⇒ ∃n(d(Tn, F ) < εn), so the above set is clearly open.

Below let A(E) be the set of aperiodic elements of [E]. We claim that
the following are equivalent for F ∈ S(E):

(1) F is not finite,

(2) ∃a ∈ Q+∀N ∈ N+∃S ∈ A(E)
∃T ∈ [F ]

[
µ({x : ∀i ≤ N(Si(x) = T i(x))}) > a

]
.
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Granting this, it is enough to see that the expression in the second line
of (2) above defines an open set of F ’s (for each fixed S). Let

V = {T ∈ [E] : µ({x : ∀i ≤ N(Si(x) = T i(x))}) > a}.

Clearly V ⊆ [E] is open and this expression is equivalent to [F ] ∩ V 6= ∅,
which by the above defines an open set of F ’s.

We finally prove the equivalence of (1) and (2).
(1)⇒ (2). Assume that F is not finite. Let A be an F -invariant Borel set

of positive measure with F |A aperiodic and let a ∈ Q+ be such that µ(A) >
a. Let T0 ∈ [F |A] be aperiodic and let T ∈ [F ] be such that T |A = T0|A. Let
also S ∈ A(E) be such that T |A = S|A. Then for each N ∈ N+, x ∈ A, we
have that Si(x) = T i(x),∀i ≤ N , so µ({x : ∀i ≤ N(Si(x) = T i(x))}) > a.

(2) ⇒ (1). Assume that (2) is true and fix a ∈ Q+ witnessing that.
If (1) fails, towards a contradiction, find N ∈ N+ large enough so that
µ({x : |[x]F | ≤ N}) > 1−a. Then find S ∈ A(E), T ∈ [F ] so that µ({x : ∀i ≤
N(Si(x) = T i(x))}) > a. Thus there is x so that |[x]F | ≤ N but Si(x) =
T i(x), for i ≤ N . Then N ≥ |[x]F | ≥ |{T i(x) : i ≤ N}| = |{Si(x) : i ≤ N}| =
N + 1, a contradiction.

In an earlier version of this work, the following question was asked:

If E is aperiodic, is FE in Fσδ \Gδσ for the topology of S(E)?

The following then provided an affirmative answer when E is ergodic.

Theorem 8.6. If E is ergodic, then FE is in Fσδ \Gδσ in the topology of S(E).

Proof. First notice that for any aperiodic E, FE is not Gδ in the topology
of S(E). To see this, we can assume, by the paragraph preceding The-
orem 8.4, that E is aperiodic, hyperfinite. In this case FE is dense and
disjoint from the dense Gδ set AE , so it cannot be Gδ. It follows (see [K2,
21.18] and proof of 22.10) that for any aperiodic E, FE is Fσ-hard, i.e., for
each Fσ subset A ⊆ Y , Y a zero-dimensional Polish space, there is a con-
tinuous function f : Y → S(E) such that y ∈ A ⇐⇒ f(y) ∈ FE .

Since every ergodic E contains an ergodic, hyperfinite subequivalence
relation, we can assume as before that E is ergodic, hyperfinite. Since
every aperiodic, hyperfinite equivalence relation is contained in an er-
godic, hyperfinite equivalence relation (see [K, Lemma 5.4]) and all er-
godic, hyperfinite equivalence relations are isomorphic by Dye’s Theorem,
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it is enough to find some aperiodic, hyperfinite equivalence relationE such
that this theorem holds for E.

Given a sequence of measure preserving countable Borel equivalence
relations (En) on (X,µ), define their direct sum, in symbols

⊕
nEn , as

follows: Let Y =
⊔
nXn be the direct sum of infinitely many copies of

X . On each Xn put a copy µn of the measure µ and define the measure
ν on Y by ν =

∑
n

1
2n+1µn. Then put on each Yn a copy E ′n of En, and

let
⊕

nEn =
⋃
nE

′
n. Clearly

⊕
nEn is a measure preserving equivalence

relation on (Y, ν). Moreover the map
∏

n S(En) → S(
⊕

nEn) given by
(Fn) 7→

⊕
n Fn is a homeomorphism of

∏
n S(En) with S(

⊕
nEn), each

equipped with the weak topology. Moreover, under this homeomorphism∏
nFEn goes to F⊕

n En
.

Take now each En to be aperiodic, hyperfinite, so that E =
⊕

nEn is
also aperiodic, hyperfinite. Then each FEn is Fσ-hard and so

∏
nFEn is

Fσδ-hard and thus FE is also Fσδ-hard, which completes the proof.

Recently Le Maître, in [LeM1], gave a positive answer in general for
every aperiodic E.

Theorem 8.7 (Le Maître, [LeM1]). If E is aperiodic, then FE is in Fσδ \Gδσ in
the topology of S(E).

Let T be the class of treeable equivalence relations and let Dn, n =
1, 2, . . . , be the class of equivalence relations that have geometric dimen-
sion ≤ n, i.e., can be Borel reduced (a.e.) to a Kn-structurable Borel equiv-
alence relation, where Kn is the class of n-dimensional contractible sim-
plicial complexes (see Gaboriau [G1, 3.18], and Hjorth-Kechris [HK, Ap-
pendix D]). Thus D1 = T . Gaboriau [G1, 5.8], shows that Dn is hereditary
and by [G1, 3.17], if E ∈ Dn, then βp(E) = 0, if p > n, where βp is the p-th
L2-Betti number. Recall also from [G1, 3.16], that if F is induced by a free
measure preserving action of (F2)n, then βn(F ) = 1.

Let Dn,E = (Dn)E . We have TE = D1,E $ D2,E $ · · · $ Dn,E $ . . . , for
any large enough E. This is because an equivalence relation Fn induced
by a free measure preserving action of (F2)n+1 is in Dn+1 \ Dn, for n ≥ 1.
That Fn ∈ Dn+1 follows from [G1, 5.17], and Fn 6∈ Dn since βn+1(F ) = 1.

Gaboriau [G1, 5.13], also shows that if R0 ⊆ R1 ⊆ . . . are measure
preserving countable Borel equivalence relations, with R =

⋃
iRi, then

βn(R) ≤ limiβn(Ri), thus if all βn(Ri) = 0, we also have that βn(R) = 0. It
follows that if Ri ∈ Dn, so that βp(Ri) = 0, for p > n, then βp(R) = 0, if
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p > n. Therefore if R ∈ (Dn)↑, then βp(R) = 0, if p > n. In particular, if
E is large enough so that it contains equivalence relations induced by free
measure preserving actions of (F2)n, n = 1, 2, . . . , then no Dn,E is dense in
S(E).

Problem 8.8. Let D∞ =
⋃
nDn. Is D∞,E dense in the topology of S(E) (for

large enough E)?

We also note that for n ≥ 1, (Dn)↑ 6= Dn, thus no Dn,E is closed in the
topology of S(E) (if E is large enough). To see this, let F2 be the equiva-
lence relation induced by the shift action of F2 and let F1 be the equivalence
relation induced by the shift action of Z =

⊕
n(Z/2)n. Then F = (F2)n×F1,

is induced by a free measure preserving action of (F2)n×Z. Gaboriau (see
[G2, 7.3]) has shown that the ergodic dimension of (F2)n×Z is n+1. Recall
that the ergodic dimension of a group is the minimum of the geometric
dimensions of the equivalence relations given by free measure preserv-
ing actions of the group. It follows that the geometric dimension of F is
≥ n + 1, thus F 6∈ Dn. On the other hand it is easy to see (see, e.g., [HK,
page 62]) that F ∈ (Dn)↑.

Finally notice that by [G2, 7.3], (a), (Dn)↑ ⊆ Dn+1, so for every E,
D∞,E =

⋃
nDn,E =

⋃
nDn,E is an Fσ set.

Problem 8.9. What is the descriptive complexity of each Dn,E, n ≥ 1, in the
topology of S(E) (for large enough E)? Is D∞,E a true Fσ set?

We will see later in Corollary 19.5 that TE is analytic in S(E) but it is
not known if it is Borel; see Problem 19.6.



9. Finite and infinite index
subrelations

Denote by FinIndex(E) (resp., InfIndex(E)) the set of all F ∈ S(E) such
that [E : F ] < ∞, i.e., every E-class contains only finitely many F -classes
(resp., [E : F ] =∞, i.e., every E-class contains infinitely many F -classes).

Proposition 9.1. The set InfIndex(E) is Gδ in S(E) and it is dense if E is
aperiodic.

Proof. Let (Ti) be a generating sequence for E. Then the following are
equivalent for F ∈ S(E):

(i) F ∈ InfIndex(E),
(ii) ∀n∀k > 0∃M(µ({x : ∃m ≤M∀i ≤ n¬Tm(x)FTi(x)}) > 1− 1

k
).

Let
BF,M,n =

⋃
m≤M

⋂
i≤n

(X \ T−1
i (ATmT−1

i ,F )).

Then
InfIndex(E) =

⋂
n

⋂
k>0

⋃
M

{F : µ(BF,M,n) > 1− 1

k
}.

Since F 7→ µ(BF,M,n) is continuous, this shows that InfIndex(E) is Gδ.
Assume now that E is aperiodic and let A0 ⊇ A1 ⊇ . . . be Borel sets

which are complete sections of E and µ(An) → 0. Given F ∈ S(E), let
Fn = F |(X \An)t id|An. Then (Fn) is increasing and F =

⋃
Fn, so Fn → F .

Since each An meets every E-class in an infinite set, there are infinitely
many Fn-classes in each E-class, i.e., Fn ∈ InfIndex(E).

Remark 9.2. A similar calculation gives another way to show that AE is
Gδ is S(E) (see Theorem 8.2). Indeed as in the proof of Proposition 9.1, put
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Ci,m = {x : Ti(x) 6= Tm(x)} and DF,M,n =
⋃
m≤M

⋂
i≤n(Ci,m ∩ AF,Tm). Then

AE =
⋂
n

⋂
k>0

⋃
M{F : µ(DF,M,n) > 1 − 1

k
} and since F 7→ DF,M,n is again

continuous, AE is Gδ.

Answering a question raised in an earlier version of this work, Le
Maître in [LeM1] showed the following:

Theorem 9.3 (Le Maître, [LeM1]). If E is aperiodic, then InfIndex(E) is
Gδ \ Fσ in the topology of S(E).

Proposition 9.4. The set FinIndex(E) is Fσδ in S(E). If E is aperiodic, hyper-
finite, then it is also dense.

Proof. Let (Ti) be a generating sequence for E. Let

LF,M,n = {x : ∀i ≤ n∃m ≤M(Ti(x)FTm(x))}.

Then
FinIndex(E) =

⋂
k>0

⋃
M

⋂
n

{F : µ(LF,M,n) ≥ 1− 1

k
}

and since the map F 7→ LF,M,n is continuous, this shows that FinIndex(E)
is Fσδ.

Assume now that E is aperiodic, hyperfinite. It is enough to approxi-
mate every smooth F ∈ S(E) by finite index subrelations of E. Let Y be a
Borel transversal for F . Then E|Y is aperiodic (on Y ), so there is aperiodic
S ∈ [E|Y ] which generates E|Y . Let Fn = F ∨ ES2n (note that ES2n is an
equivalence relation on Y , which we can view as an equivalence relation
on X but extending it by equality outside Y ). Then (Fn) is decreasing,
Fn ∈ FinIndex(E) and Fn → F .

Again answering a question raised in an earlier version of this work,
Le Maître in [LeM1] showed the following:

Theorem 9.5 (Le Maître, [LeM1]). If E is aperiodic, then FinIndex(E) is
Fσδ \Gδσ (in the topology of S(E)) iff E has infinitely many ergodic components.
Otherwise it is in Fσ \Gδ.

We next show that FinIndex(E) is not always dense in S(E).

Theorem 9.6. There is an ergodic E such that FinIndex(E) is not dense in
S(E).
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Proof. Let Γ be an infinite property (T) group all of whose proper sub-
groups are finite (such groups exist by a result of Olshanskii, see [DC,
Proposition 2] and [O, Corollary 4]). Consider the shift action of Γ on
X = [0, 1]Γ and denote by E the associated equivalence relation. We will
show that this works.

Call F ∈ FinIndex(E) degenerate if there is a Borel partition X =
A0 t A1 t · · · t An−1 into sets of positive measure such that

xFy ⇐⇒ xEy & ∃i < n(x, y ∈ Ai).

Such an F is denoted by EA0,A1,...An−1 .
The next fact strengthens the last part of Bowen [Bo1, Theorem 1.1].

Lemma 9.7. If F ∈ FinIndex(E), then F is degenerate.

Proof. Let [E : F ] = n be the index of F in E, i.e., the number of F -classes
in each E-class. Let also (ϕi)i<n be a choice sequence for F in E, i.e., a
sequence of Borel functions such that for each x, ([ϕi(x)]F )i<n is an injective
enumeration of the F -classes in [x]E . Let also σ : E → Sn (= the symmetric
group of n elements) be the associated index cocycle defined by

σ(x, y)(i) = j ⇐⇒ ϕi(x)Fϕj(y).

This of course can also viewed as a cocycle of the shift action of Γ into Sn,
so by Popa superrigidity, see [Po], it is cohomologous to a homomorphism
from Γ into Sn, which, since Γ has no proper finite index subgroups, must
be trivial, i.e., σ is a coboundary and so by [FSZ, Proposition 1.7], F is
degenerate.

Call F ∈ S(E) relatively smooth, resp., relatively hypersmooth, if
there is a smooth (resp., hypersmooth) Borel equivalence relation R such
that F = E ∩R.

Lemma 9.8. If F ∈ S(E) is the limit of a sequence of degenerate relations, then
F is relatively hypersmooth.

Proof. Let Fi = EAi0,...,Aini−1
be such that Fi → F . Then by Theorem 5.1, for

each i, there is an increasing sequence n(i)
0 < n

(i)
1 < . . . , so that (n

(i+1)
m )m∈N

is a subsequence of (n
(i)
m )m∈N and

F =
⋃
m

⋂
k≥m

F
n

(m)
k
.
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Put Rm =
⋂
k≥m Fn(m)

k
. Then R0 ⊆ R1 . . . and F =

⋃
mRm. Define for each

m,
fm : X → NN

by

fm(x)(i) = n ⇐⇒ x ∈ An
(m)
m+i
n .

Then if
xSmy ⇐⇒ fm(x) = fm(y),

we have Rm = E ∩Sm. Also S0 ⊆ S1 ⊆ . . . and F =
⋃
mRm = E ∩ (

⋃
m Sm)

and
⋃
m Sm is hypersmooth.

By a result of Gaboriau-Lyons [GL], there is a free, measure preserving,
ergodic action of F2 whose induced equivalence relation F is in S(E). Then
by the result of Chifan-Ioana [CI], F is strongly ergodic (see Section 10.2
for the definition of strong ergodicity). We claim that F cannot be the
limit of a sequence of degenerate relations, thus it is not in the closure
of FinIndex(E). Otherwise, by Lemma 9.8, we would have F = E ∩ R,
with R hypersmooth, say R =

⋃
nRn, with (Rn) increasing and each Rn

smooth. Let fn : X → 2N be Borel such that xRny ⇐⇒ fn(x) = fn(y).
Let Fn = E ∩ Rn, so that (Fn) is increasing and F =

⋃
n Fn. By a result of

Gaboriau [G2, Proposition 5.2], there is n and a Fn-invariant Borel set A of
positive measure such that Fn|A is ergodic. Since fn|A is Fn|A-invariant, it
is constant, so Fn|A = E|A and thus

Fn|A ⊆ F |A ⊆ E|A = Fn|A,

i.e, F |A = E|A. But F |A is treeable, so E|A is treeable and, since A is a
complete section for E, E is treeable, contradicting the result of Adams
and Spatzier [AS].

Remark 9.9. For an arbitrary E, it is the case that F ∈ S(E) is relatively
hypersmooth iff F is the limit of a sequence of degenerate relations. One
direction is proved as in Lemma 9.8 (which did not use any particular
properties of E). For the other direction it is enough to show that every
relatively smooth F ∈ S(E) is the limit of degenerate relations. Indeed. let
R be smooth such that F = E ∩ R and let f : X → 2N be a Borel function
such that xRy ⇐⇒ f(x) = f(y). For s ∈ 2n, n ∈ N \ {0}, let Ns =
{x ∈ 2N : x|n = s} and As = f−1(Ns). Consider then, for each n > 0,
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the degenerate relation Fn determined by the partition {As}s∈2n . Clearly
F1 ⊇ F2 ⊇ F3 ⊇ . . . and F =

⋂
n Fn, so F is the limit of the sequence (Fn).

Problem 9.10. For what ergodic E is FinIndex(E) dense in S(E)?

Remark 9.11. In Vaes [Va] and Bowen [Bo1] examples are given of ergodic
equivalence relations that do not have proper finite index ergodic sube-
quivalence relations or proper finite index extensions.

Remark 9.12. In Popa [Po, Section 6.6] it is suggested that it might be pos-
sible that the cocycle superrigidity proved in that paper could be extended
to target groups that are closed subgroups of the (infinitary) unitary group
U(H). One can see however that this fails for the infinite symmetric group
S∞, which is a closed subgroup of U(H). Indeed let Γ, E be as in the proof
of Theorem 9.6. Let F ∈ S(E) be ergodic, hyperfinite, so that [E : F ] =∞.
Let (ϕi)i<∞ be a choice sequence for F in E and let σ be the associated
index cocycle, which now takes values in S∞. Assume, towards a contra-
diction, that this is cohomologous to a homomorphism π : Γ → S∞. Thus
there is a Borel map p : X → S∞ such that

σ(x, γ · x) = p(γ · x)π(γ)p(x)−1.

Put ψi(x) = ϕp(x)(i)(x), so that (ψi) is also a choice sequence with associ-
ated index cocycle τ(x, γ · x) = π(γ), so that ψi(x)Fψπ(γ)(i)(γ · x). Since
∀x∃i(ψi(x)Fx), fix i0 such that if A = {x : ψi0(x)Fx}, then A has positive
measure. By the ergodicity of F , A meets every F -class infinitely often.

Now if x, γ · x ∈ A and xFγ · x, we have

xFψi0(x)Fψπ(γ)(i0)(γ · x)Fγ · xFψi0(γ · x)

so
ψπ(γ)(i0)(γ · x)Fψi0(γ · x),

thus π(γ)(i0) = i0. It follows that

∆ = {γ : π(γ)(i0) = i0}

is an infinite subgroup of Γ, so ∆ = Γ, i.e., ∀γ ∈ Γ(π(γ)(i0) = i0). Then

ψi0(x)Fψπ(γ)(i0)(γ · x) = ψi0(γ · x),
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so x 7→ ψi0(x) is a homomorphism of E into F . Since E is strongly er-
godic and F is hyperfinite, this maps a.e. to a single F -class, which is a
contradiction, since ψi0(x)Ex.

More generally, one can show that if E is induced by a free, measure
preserving, ergodic action of a countable infinite group Γ on a standard
measure space (X,µ), if F ∈ S(E) is aperiodic and the index cocycle of F
in E is cohomologous to a homomorphism, then there is a Borel decom-
position X =

⊔
nXn and infinite subgroups ∆n of Γ such that if En is the

equivalence relation induced by the restriction of the action to ∆n, then
En|Xn = F |Xn.



10. Ergodic and strongly ergodic
equivalence relations

We discuss here the complexity of the notions of ergodicity and strong
ergodicity.

10.1 Ergodic equivalence relations

We first calculate the complexity of the set of ergodic equivalence relations
in S(E). We denote by ERG the class of (measure preserving countable
Borel) equivalence relations which are ergodic.

Theorem 10.1. The set ERGE of ergodic equivalence relations in S(E) is Gδ in
S(E).

Proof. We will give two proofs based, resp., in two descriptions of the
topology of S(E) given in Section 4.4.

(1) (with R. Tucker-Drob) In the notation of Section 4.4, (2) we have the
following fact:

Lemma 10.2. The set ERG = {µ ∈M : µ is R-invariant, ergodic} is Gδ inM.

Proof. The set {µ ∈ M : µ is R-invariant} is compact, convex and, since
R is a countable Borel equivalence relation, the ergodic measures in {µ ∈
M : µ is R-invariant} are exactly its extreme points, which clearly form a
Gδ set.

Then
ERGE = Φ−1(ERG)

and since Φ: S(E)→M is continuous, ERGE is Gδ in S(E).
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(2) (P. Burton) In the notation of Section 4.4, (3), we note that if we
let ERG(F∞, X, µ) be the set of ergodic actions in A(F∞, X, µ), then we
have that ERG(F∞, X, µ) is Gδ in the weak topology of A(F∞, X, µ) (see
[K, Proposition 12.1]) and thus it is also Gδ in the uniform topology. Since
Ψ is a homeomorphism between S(E) and a closed subspace of A(F∞, E)
with the uniform topology and for F ∈ S(E), F = EΨ(F ), we have that
ERGE = Ψ−1(ERG(F∞, X, µ)), so ERGE is Gδ in S(E).

10.2 Strongly ergodic equivalence relations

An equivalence relation F is called strongly ergodic or E0-ergodic iff for
any Borel homomorphism π : X → Y from F to a hyperfinite equiva-
lence relation R on Y (i.e., xFx′ =⇒ π(x)Rπ(x′)), there is y ∈ Y such that
π−1([y]F ) has measure 1. By a result of Jones-Schmidt this is equivalent to
the non-existence of non-trivial almost invariant sets for F (see, e.g., [HK,
Theorem A2.2], in which the hypothesis of ergodicity is unnecessary). We
denote the class of all (measure preserving countable Borel) equivalence
relations that are strongly ergodic by E0RG.

We call an equivalence relation F anti-E0-ergodic if there is homomor-
phism π as above to a hyperfinite equivalence relation for which all preim-
ages of F -classes are null. Denote byAE0RG the class of all anti-E0-ergodic
equivalence relations.

Proposition 10.3. The set AE0RGE is closed in S(E).

Proof. Miller [M, 2.1], has shown thatAE0RGE is closed under taking unions
of increasing sequences. It is obvious that it is also hereditary, so by Theo-
rem 5.2 it is closed.

Theorem 10.4. The set E0RGE is in the class Fσ ∩Gδ in S(E).

Proof. Consider S = S(E) \ E0RGE . Then clearly ERGE ∩ S = ERGE ∩
AE0RGE . Moreover S(E) \ ERGE ⊆ S. Thus S = (ERGE ∩ AE0RGE) t
(S(E) \ ERGE), which is in Gδ ∪ Fσ by Theorem 10.1 and Proposition 10.3.

Problem 10.5. Are there E for which Theorem 10.4 gives the optimal descriptive
complexity of E0RGE?



11. Richly ergodic equivalence
relations

We first note that for any E, S(E) \ ERGE is dense in S(E). This is because
any F ∈ S(E) can be approximated by equivalence relations of the form
F |(X \ A) t id|A, for Borel A of small positive measure, which clearly are
not ergodic.

We discuss here the following problem:

Problem 11.1. For which ergodic equivalence relations E is the set ERGE dense
in S(E)?

Let us call an ergodic equivalence relation E for which ERGE is dense
in S(E) richly ergodic. We first show that there exist ergodic but not
richly ergodic equivalence relations. These arise in the context of the so-
called non-approximable equivalence relations, introduced in the paper
Gaboriau–Tucker-Drob [GT].

Definition 11.2. Let E be a measure preserving countable Borel equivalence re-
lation on (X,µ). We say that E is non-approximable if whenever E =

⋃
n Fn,

where Fn are Borel equivalence relations with F0 ⊆ F1 ⊆ F2 . . . , then there is n
and a positive measure Borel set A with E|A = Fn|A.

It is an unpublished result of Gaboriau that if a ∈ A(Γ, X, µ), where
Γ is an infinite property (T) group, and a is ergodic, then the equivalence
relation Ea is non-approximable. This can be also seen as an application of
[IKT, Corollary 5.4 and Corollary 2.15]. In [GT] the authors also show that
if a ∈ A(Γ×∆, X, µ) is a free action, where Γ,∆ are finitely generated, and
a|Γ is strongly ergodic while a|∆ is ergodic, then Ea is non-approximable.
We now have:

69



70 11. Richly ergodic equivalence relations

Proposition 11.3. If E is ergodic and non-approximable, then E is not richly
ergodic.

Proof. First we show that E is an isolated point in ERGE . Otherwise there
is a sequence Fn ∈ ERGE such that Fn → E and Fn 6= E,∀n. By Theo-
rem 5.1, we can write E =

⋃
mRm, with R0 ⊆ R1 ⊆ . . . , and for each m,

there is n such that Rm ⊆ Fn. Since E is non-approximable, there is m,n
and a positive measure Borel set A such that E|A = Rm|A ⊆ Fn|A ⊆ E|A,
so that E|A = Fn|A. Since E is ergodic, A is a complete section for E. Let
B = [A]Fn . Then we also have E|B = Fn|B. Since B has positive measure,
is Fn-invariant and Fn is ergodic,B = X (modulo null sets) and soE = Fn,
a contradiction.

If now E was richly ergodic, it would follow that E is also an isolated
point in S(E). However it is easy to see that S(E) is perfect, i.e., has no
isolated points. This follows from the remarks in the first paragraph of
this section.

We will next see that in some sense most E are richly ergodic (see the
paragraph following Problem 6.11 here). If E0 ⊆ E1 ⊆ . . . is an increasing
sequence, we say that (En)n∈N is strongly increasing if for each n there is
an ergodic T ∈ [

⋃
nEn] such that En ⊥ ET .

Proposition 11.4. If (En) is strongly increasing and E =
⋃
nEn, then E is

richly ergodic.

Proof. Let F ∈ S(E). Then F ∩ En → F , so it is enough to show that for
each n, S(En) is contained in the closure of ERGE . Fix F ∈ S(En). Let then
T ∈ [E] be ergodic with ET ⊥ En. By Dye’s Theorem, there is S ∈ [ET ],
S mixing. Then also F ⊥ ES . Put Fn = F ∨ ES2n ∈ S(E). Then (Fn) is
decreasing,

⋂
n Fn = F , so that Fn → F , and each Fn is ergodic.

Proposition 11.5. For any E, there is E ′ ⊇ E which is richly ergodic.

Proof. Recall that for each equivalence relation R, the set

{T ∈ Aut(X,µ) : ET ⊥ R}

is comeager in the weak topology of Aut(X,µ) (see Conley-Miller [CM,
Theorem 8]). Since the set of ergodic automorphisms in Aut(X,µ) is also
comeager, it follows that there is an ergodic T with R ⊥ ET .
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Define now recursively E0 ⊆ E1 ⊆ . . . , by E0 = E,En+1 = En ∨ ETn ,
where ETn ⊥ En and Tn is ergodic. Then (En) is strongly increasing and
thus E ′ =

⋃
nEn is richly ergodic.

Proposition 11.6. If E0 ⊆ E1 ⊆ . . . are richly ergodic, so is E =
⋃
nEn.

Proof. If F ∈ S(E), then F ∩En → F and each F ∩En is the limit of ergodic
equivalence relations contained in En.

Thus the collection of richly ergodic equivalence relations is ω-closed
and cofinal in the class of all equivalence relations. We next discuss some
classes of richly ergodic equivalence relations. Below let ERGH = ERG∩H
be the class of ergodic, hyperfinite equivalence relations.

Proposition 11.7. For any ergodic E, ERGHE is dense in HE . In particular,
every hyperfinite ergodic equivalence relation is richly ergodic.

Proof. It is enough to show that if F ∈ S(E) is smooth, then F is the limit
of ergodic, hyperfinite equivalence relations in S(E).

Let Y be a Borel transversal for F . Then E|Y is ergodic (on Y ), so there
is S ∈ [E|Y ] which is mixing. Let Fn = F ∨ ES2n (note that ES2n is an
equivalence relation on Y , which we can view as an equivalence relation
on X but extending it by equality outside Y ). Then (Fn) is decreasing and
each Fn is ergodic. Indeed, if a Borel set A is Fn-invariant, then A ∩ Y is
ES2n -invariant, so, since ES2n is ergodic (on Y ), we have that µ(A∩ Y ) = 0
or µ(Y \ A) = 0, thus µ(A) = 0 or µ(X \ A) = 0, since A = [A ∩ Y ]F and
similarly for X \ A. Moreover Y is a complete section of Fn and Fn|Y =
ES2n is hyperfinite, so Fn is hyperfinite.

Finally we claim that
⋂
n Fn = F , which completes the proof. Let

p : X → Y be the Borel selector corresponding to Y , i.e., p(x) ∈ Y and
xFp(x). Then if (x, y) ∈

⋂
n Fn, we have that for each n there is a unique

kn ∈ Z with p(y) = Skn2n(p(x)). Since S is aperiodic, this can only happen
if p(x) = p(y), i.e., xFy.

Proposition 11.8. Let Γ = Γ1 ∗ Γ2 ∗ · · · , where each countable group Γn is non-
trivial. Let E be induced by a free, measure preserving, mixing action of Γ. Then
E is richly ergodic.

Proof. Let ∆n = Γ1 ∗ · · · ∗Γn and let En be the equivalence relation induced
by the restriction of the action to ∆n. Then (En) is clearly increasing with
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⋃
nEn = E and we claim that (En) is strongly increasing. This is because

Γn+1 ∗ Γn+2 contains an element of infinite order, say δ. If T ∈ [E] corre-
sponds to the action of δ, then T is ergodic and clearly En ⊥ ET . So, by
Proposition 11.4, E is richly ergodic.

Finally we call an equivalence relation E richlyE0-ergodic if E0RGE is
dense in S(E).

Problem 11.9. Which E0-ergodic equivalence relations E are richly E0-ergodic?

By Proposition 11.3 and the paragraph preceding it, it clearly follows
that there are E0-ergodic equivalence relations which are not richly E0-
ergodic. There are also richly E0-ergodic equivalence relations, One way
to see this is by using a variation of the construction in Proposition 11.8.

Let Γ = F∞ = 〈γ0, γ1, . . . 〉. Let a be the shift action of Γ on 2Γ, equipped
with the usual product measure. Then for any non-amenable ∆ ≤ Γ, the
restriction a|∆ of this action to ∆ is E0-ergodic (see, e.g., [HK, Theorem
A4.1]). Let E = Ea, Γn = 〈γ0, γ1, . . . , γn〉, an = a|Γn and En = Ean . Then
the En are increasing and E =

⋃
nEn. We will check that E is richly E0-

ergodic. For this it is enough to show that for each n and F ∈ S(En), F is
the limit of E0-ergodic equivalence relations in S(E).

Let ∆m ≤ 〈γn+1, γn+2〉 be non-abelian subgroups with ∆0 ⊇ ∆1 . . . and⋂
m ∆m = {1}. Put bm = a|∆m and Rm = Ebm , so that Rm is E0-ergodic.

Also clearly Rm ⊥ F . Let Fm = F ∨Rm. Then Fm is E0-ergodic, F0 ⊇ F1 . . .
and

⋂
m Fm = F , so Fm → F .
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For an equivalence relation F denote by C(F ) = Cµ(F ) the cost of F . We
will discuss here the complexity of the function F ∈ S(E) 7→ C(F ) ∈
[0,∞].

Let
FinCostE = {F ∈ S(E) : C(F ) <∞},

InfCostE = {F ∈ S(E) : C(F ) =∞}.

Proposition 12.1. The set FinCostE is dense in S(E).

Proof. Let F ∈ S(E) and fix a ∈ A(F∞, X, µ) with F = Ea. Let Fn = Ea|Fn .
Then Fn → F and each Fn has finite cost.

We next have the following dichotomy:

Theorem 12.2. For any aperiodic equivalence relation E, exactly one of the fol-
lowing holds:

(i) For every F ∈ S(E), C(F ) ≤ 1,
(ii) InfCostE is dense in the uniform topology of S(E).

Proof. We will need the following lemma:

Lemma 12.3. Let F be an equivalence relation with C(F ) > 1. Then there is a
subequivalence relation F ′ ⊆ F with C(F ′) =∞.

Proof. We use the ideas in the proof of [KM, Proposition 28.8]. Consider
the ergodic decomposition π : X → EIF , where EIF is the standard Borel
space of F -ergodic invariant probability measures on X (we view here F
as a genuine countable Borel equivalence relation and not one defined µ-
a.e.); see Theorem 4.19. Let ν = π∗µ.

Put
Y1 = {e ∈ EIF : : Ce(F |Xe) > 1}, Y0 = EIF \ Y1,
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where Xe = π−1({e}). Then Y1 is coanalytic and by [KM, Theorem 18.6]
ν(Y1) > 0, so there is Borel Z1 ⊆ Y1 such that ν(Y1) > 0. Put X1 =
π−1(Z1), X0 = X \ X1. Then X1 is Borel, µ(X1) > 0 and if Xe ⊆ X1,
then Ce(F |Xe) > 1. By the proof of [KM, Proposition 28.8], there is a free
Borel action a of F2 on X1 with Ea ⊆ F |X1 and thus there is a free Borel
action a′ of F∞ on X1 with Ea′ ⊆ F |X1. Put F ′ = Ea′ ⊕ F |X0 ⊆ F . Then
C(F ′) = Cµ|X1(Ea′) + Cµ|X0(F |X0) =∞, since Cµ|X1(Ea′) =∞.

It is clear that (i) and (ii) are contradictory, so let us assume that (i)
fails for E and then show (ii). By Lemma 12.3, we can assume that there
is F ∈ S(E) with C(F ) = ∞. It follows that F is not smooth (see, e.g.,
[KM, Proposition 20.1]). Put X0 = {x : |[x]E| = ∞}, X1 = X \ X0. Thus
µ(X0) > 0. Now F |X1 is smooth and thus Cµ|X1(F |X1) <∞. Since

C(F ) = Cµ|X0(F |X0) + Cµ|X1(F |X1) =∞,

it follows that Cµ|X0(F |X0) =∞.
Fix now ε > 0. Let S ⊆ X0 be a complete section of F |X0 such that

µ(S) < ε. We have

Cµ|X0(F |X0) = Cµ|S(F |S) + µ(X0 \ S) =∞,

so Cµ|S(F |S) =∞.
Let now R ∈ S(E). Put Rε = R|(X \ S)⊕ F |S. Then

C(Rε) = Cµ|(X\S)(R|(X \ S)) + Cµ|S(F |S) =∞.
Also for any T ∈ [E], we have

AT,Rε ={x : x /∈ S & T (x) /∈ S & x ∈ AT,R}
t {(x : (x ∈ S ∨ T (x) ∈ S) & x ∈ AT,Rε},

AT,R ={x : x /∈ S & T (x) /∈ S & x ∈ AT,R}
t {(x : (x ∈ S ∨ T (x) ∈ S) & x ∈ AT,R},

so AT,Rε∆AT,R ⊆ S ∪ T−1(S) and therefore µ(AT,Rε∆AT,R) < 2ε. It follows
that R 1

n
converges in the uniform topology to R.

Remark 12.4. It is unknown if condition (i) in Theorem 12.2 is equivalent
to hyperfiniteness.
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The following problem is open. For convenience, we will say that E is
of type II if it is aperiodic and there is F ∈ S(E) with C(F ) > 1.

Problem 12.5. Let E be a type II equivalence relation. Is InfCostE comeager in
S(E)?

We will next consider the descriptive complexity of the cost function.

Proposition 12.6. The set FinCostE is analytic in S(E) and the cost function
F 7→ C(F ) is Borel on FinCostE .

Proof. The first assertion follows by a direct calculation (or using Proposi-
tion 19.1 and Proposition 19.11 below).

For the second assertion, we recall that if an ergodic F ∈ S(E) has
finite cost, then it is induced by an action of some Fn (see [KM, Lemma
27.7]). Also the cost function a ∈ A(Fn, E) 7→ C(a) = C(Ea) is upper
semicontinuous on A(Fn, E) by [K, First Remark in page 78]. Thus for
ergodic F ∈ S(E) of finite cost and r ∈ R, we have:

C(F ) < r ⇐⇒ ∃n∃a ∈ A(Fn, E)(Ea = F & C(a) < r)

⇐⇒ ∀n∀a ∈ A(Fn, E)(Ea = F =⇒ C(a) < r),

which shows that the cost function is Borel on the set ERGE ∩ FinCostE .
The general case can be proved using the Ergodic Decomposition Theo-
rem 4.19, Theorem 4.20 and the integration formula for cost with respect
to the ergodic decomposition [KM, Corollary 18.6], which, in particular,
shows that if an equivalence relation has finite cost, so do (almost) all its
ergodic components.

The following is an open problem:

Problem 12.7. Is the cost function F 7→ C(F ) Borel on S(E)? Equivalently is
the set FinCostE Borel in S(E)?

We next notice some related facts and questions. It is clear from The-
orem 12.2 that for each E of type II the sets {F ∈ S(E) : C(F ) > r}, {F ∈
S(E) : C(F ) ≥ r}, for r ∈ R, r > 0, are not uniformly closed. We can
also see that for some E the sets {F ∈ S(E) : C(F ) < r}, r > 1, {F ∈
S(E) : C(F ) ≤ r}, r ≥ 1, are not closed. Take n > r, let Γ = Fn × Z, let a ∈
FR(Γ, X, µ) and letEa ⊆ E. Put Γm = 2mZ,m ≥ 1, and letEm = Ea|(Fn×Γm),
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so that E1 ⊇ E2 . . . and C(Em) = 1. Now
⋂
mEm = Ea|Fn , so Em → Ea|Fn

and C(Ea|Fn) = n > r. A similar argument, using Γ = F∞ × Z, shows that
in general {F ∈ S(E) : C(F ) <∞} is not closed. The following problem is
open:

Problem 12.8. Are the sets

{F ∈ S(E) : C(F ) < r}, r > 1,

{F ∈ S(E) : C(F ) <∞},
{F ∈ S(E) : C(F ) ≤ r}, r ≥ 1.

uniformly closed?

One can also use these observations to answer a question that arises
from [K, First Remark in page 78]. It is shown there that when the infinite
group Γ is finitely generated, the cost function C onA(Γ, E) is upper semi-
continuous. Is that true for arbitrary infinite Γ? The answer is negative:

Proposition 12.9. For any equivalence relation E of type II, the function a ∈
A(F∞, E) 7→ C(a) is not upper semicontinuous.

Proof. By Theorem 7.1, there is a continuous map Ψ: S(E) → A(F∞, E)
such that EΨ(F ) = F . So if the cost function was upper semicontinuous in
A(F∞, E), for each r ∈ R the set {F ∈ S(E) : C(F ) ≥ r} would be closed
in S(E), a contradiction.

Finally we show that an analog of Theorem 7.1 fails for Fn, n ≥ 2. Be-
low let Fn,E = {F ∈ S(E) : ∃a ∈ A(Fn, E)[Ea = E]}.

Proposition 12.10. Let n ≥ 2. If E is of type II, there is no continuous function
Ψn : Fn,E → A(Fn, E) such that EΨn(F ) = F .

Proof. As in the proof of Lemma 12.3, there is an invariant Borel set X1 of
positive measure and a free Borel action a∞ of F∞ on X1 with Ea∞ ⊆ E.
Let for n ≥ 1, an = a∞|〈γ0, γn〉, where {γ0, γ1, . . . } are free generators of
F∞. Let X0 = X \ X1 and put R0 = id|X0 and Fn = Ean ⊕ R0. Then
C(Fn) = 2µ(X1).

Lemma 12.11. Let a0 = a∞|〈γ0〉, F0 = Ea0 ⊕R0. Then Fn → F0.
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Proof. Below put δ · x = a∞(δ, x). Fix T ∈ [E]. Then

AT,Fn = {x ∈ X1 : T (x) ∈ 〈γ0, γn〉 · x} t {x ∈ X0 : T (x) = x},

AT,F0 = {x ∈ X1 : T (x) ∈ 〈γ0〉 · x} t {x ∈ X0 : T (x) = x}.

Thus AT,F0 ⊆ AT,Fn and (AT,Fn \ AT,F0) ∩ (AT,Fm \ AT,F0) = ∅, if n 6= m, so
µ(AT,Fn \ AT,F0)→ 0, thus µ(AT,Fn)→ µ(AT,Fn).

Note also that C(F0) = µ(X1). If such Ψn existed, and since the cost
function is upper semicontinuous on A(Fn, E), the set {F ∈ S(E) : C(F ) ≥
r} would be closed in Fn,E . Taking r = 2µ(X1) we have a contradiction.

Notice that the set Fn,E is analytic in S(E). The following problem is
open:

Problem 12.12. Let n ≥ 2. Is there a Borel function Ψn : Fn,E → A(Fn, E) such
that EΨn(F ) = F?

For n = 1, F1,E = HE , thus, by Theorem 8.1, F1,E is closed in S(E) and
we will see in Theorem 14.1 that Problem 12.12 has a positive solution for
n = 1. (Note that A(F1, E) = A(Z, E) is homeomorphic to [E].) However
we do not know if there is continuous Ψ1 : F1,E → A(Z, E) with EΨ1(F ) =
F .
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13. Normality

We discuss here normal subequivalence relations, see [FSZ]. Let E be er-
godic and let N = [E : F ] ≤ ∞ be the index of F in E, i.e., the number
of F -classes in each E-class. A sequence (ϕn)n<N of Borel functions on X
such that for each x, ([ϕn(x)]F )n<N is an injective enumeration of the F -
classes in [x]E is called a choice sequence. Again we identify two such
sequences if they agree a.e. Every F admits a choice sequence and if F is
also ergodic, then such (ϕn)n<N can be found which are in Aut(X,µ) (see
[FSZ, Lemma 1.3]).

Definition 13.1. Let E be ergodic. A subequivalence relation F ∈ S(E) is
normal in E, in symbols

F C E,

if there are choice sequences which are F -invariant.

In particular, if F C E and F is ergodic, then one can find choice se-
quences which are F -invariant and in Aut(X,µ). We now have the follow-
ing result concerning the complexity of the set of normal subequivalence
relations.

Theorem 13.2. The set Normal(E) of normal subequivalence relations of an
ergodic equivalence relation E is Borel in S(E).

Proof. We first note the following fact:

Lemma 13.3. The set {F ∈ S(E) : [E : F ] = N} is Fσδ, for any N ≤ ∞.

Proof. For N = ∞ this follows from Proposition 9.1. So we can assume
that N < ∞. Then the proof is similar to that of Proposition 9.4. Let (Ti)
be a generating sequence for E. Then we have that [F : E] ≤ N iff

∀k∃M∀n
(
µ({x : ∃s ∈MN∀j ≤ n∃k < N(Tj(x)FTs(k)(x))}) ≥ 1− 1

k

)
.
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So it is enough to show that for each N ≤ ∞, the set {F ∈ S(E) : [E :
F ] = N & F C E} is Borel.

We will first deal with ergodic normal subequivalence relations and
then consider the general case.

Ergodic case. The set {F ∈ ERGE : [E : F ] = N & F C E} is Borel in S(E).
We will view below E as a genuine countable Borel equivalence rela-

tion (and not one defined a.e.). Let then R ⊆ S(E) × E be as in Proposi-
tion 4.18, so that for each F ∈ S(E), RF = F 0 is a subequivalence relation
of E which is a representative for F in S(E). Let Γ = {γn} be a countable
group acting in a Borel way on X generating E. Then define inductively
for each F ∈ S(E), n < N , a Borel function ϕFn : X → X as follows:

ϕF0 (x) = x

ϕFn (x) = γk · x,

where k is least such that γk · x 6∈ [ϕFi (x)]F 0 , ∀i < n, if such exists; else
ϕFn (x) = x. Clearly (ϕFn )n<N is a choice sequence for F (a.e.). Moreover the
relation Q ⊆ S(E)× N×X2, given by:

Q(F, n, x, y) ⇐⇒ ϕFn (x) = y

is Borel.
Define now for each F ∈ S(E), a function σF : E → SN , where SN is

the symmetric group on N elements, as follows:

σF (x, y)(i) = j ⇐⇒ ϕFi (x)F 0ϕFj (y),

provided that there are exactlyN F 0-classes in [x]E = [y]E ; else σF (x, y)(i) =
i. Then σF is a Borel cocycle from E into SN and is the index cocycle of
F corresponding to the choice sequence (ϕFn )n<N (a.e.) (see [FSZ, Lemma
1.2]).

From [FSZ, Definition 2.1 and Theorem 2.2], we have that F C E iff
σF |F is a coboundary, i.e., there is a function f ∈ L(X,µ, SN) such that
for xFy, σF (x, y) = f(y)f(x)−1 (a.e.). Here L(X,µ, SN) is the space of
Borel functions from X to the Polish group SN , two functions being iden-
tified if they agree a.e. Then L(X,µ, SN) is a Polish group under point-
wise multiplication and the topology of convergence in measure. Let also
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Z1(F, SN) be the Polish space of Borel cocycles from F to SN (two such
cocycles being identified if they agree a.e.), see [K, Section 24]. The Pol-
ish group L(X,µ, SN) acts continuously on Z1(F, SN) via f · α(x, y) =
f(y)α(x, y)f(x)−1. Denoting by 1 the trivial cocycle (that sends any (x, y) ∈
F to the identity element 1 of SN ), we thus have that α is a coboundary iff
it is in the orbit of 1 in the action of L(X,µ, SN).

The stabilizer of 1 in this action consists of all f ∈ L(X,µ, SN), which
are F -invariant and thus constant, if F is ergodic. Thus for ergodic F this
stabilizer is equal to the group SN (identified with the group of constant
functions from X to SN ). Clearly SN is a closed subgroup of L(X,µ, SN),
so let T be a Borel set that contains exactly one element in each left-coset of
SN in L(X,µ, SN). Then if α is a coboundary there is a unique f ∈ T such
that f · 1 = α. Define then P ⊆ {F ∈ ERGE : [E : F ] = N}×L(X,µ, SN) by

P (F, f) ⇐⇒ f ∈ T & f · 1 = σF |F.

Then by the preceding discussion the first projection map is an injective
map from P onto {F ∈ ERGE : [E : F ] = N & F C E}. It thus suffices to
show that P is a Borel set or that

S(F, f) ⇐⇒ f · 1 = σF |F.

is Borel.
Recall that L(X,µ, SN) admits the compatible complete metric

d(f, g) =

∫
D(f(x), g(x))dµ(x),

where D is the usual compatible metric for SN (which is bounded by 1).

Lemma 13.4. For f ∈ L(X,µ, SN), let for m,n < N ,

Af,m,n = {x : f(x)(m) = n} ∈ MALGµ.

Then f ∈ L(X,µ, SN) → Af,m,n ∈ MALGµ is Lipschitz (for the usual metric ρ
on MALGµ).

Proof. Let ε be such that

D(p, q) < ε =⇒ p(m) = q(m).
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Then we will show that

ρ(Af,m,n, Ag,m,n) ≤ d(f, g)

ε
.

Let d(f, g) = a. Then by Markov’s inequality

µ({x : D(f(x), g(x)) ≥ ε})) ≤ a

ε
.

Now
Af,m,n∆Ag,m,n ⊆ {x : D(f(x), g(x)) ≥ ε},

so ρ(Af,m,n, Ag,m,n) ≤ a
ε
.

Lemma 13.5. There is a Borel set U ⊆ L(X,µ, SN)×X ×N2 such that for each
f ∈ L(X,µ, SN), x ∈ X , the section Uf,x is the graph of a permutation pf,x ∈ SN
and the map f 0 : X → SN given by f 0(x) = pf,x is equal to f a.e.

Proof. We can assume thatX = [0, 1] and µ is Lebesgue measure. LetA∗f,m,n
be the set of density points of Af,m,n. Then by Lemma 13.4, the relation
U∗(f, x,m, n) ⇐⇒ x ∈ A∗f,m,n is Borel. Finally let

U(f, x,m, n) ⇐⇒ (U∗f,x is not the graph of an element of SN and m = n)

or (it is such a graph and U∗(f, x,m, n)).

We have now that

S(F, f) ⇐⇒ ∀i∀∗x[xFTi(x) =⇒ σF (x, Ti(x)) = f(Ti(x))f(x)−1],

where ∀∗x means “for almost all x." So S(F, f) is equivalent to

∀i∀m∀∗x[xFTi(x)) =⇒ ϕFm(x)Fϕf(Ti(x))f(x)−1(m)(Ti(x))]

and therefore to
∀i∀m∀∗x∃j, k(xFTi(x) =⇒

[{ϕFm(x) = Tj(x) & ϕf0(Ti(x))f0(x)−1(m)(Ti(x)) = Tk(x)} & Tj(x)FTk(x)]).

Let B be the Borel set of x satisfying the condition within {. . . } in the line
above, so that finally

S(F, f) ⇐⇒ ∀i∀m∀∗x∃j, k[x /∈ ATi,F or (x ∈ B & x ∈ ATj ,Tk,F )],
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and so S(F, f) is equivalent to:

∀i∀m∀n∃Mµ({x : ∃j, k ≤M [x /∈ ATi,F or (x ∈ B & x ∈ ATj ,Tk,F )]}) ≥ 1− 1

n
.

Since the maps F 7→ ATi,F , ATj ,Tk,F from S(E) to MALGµ are continuous,
this shows that S is Borel and completes the proof in the ergodic case.

General case. The set {F ∈ S(E) : [F : E] = N & F C E} is Borel in S(E).
Repeating the argument as in the ergodic case, we note that the sta-

bilizer of 1 is the closed subgroup GF of the F -invariant functions in the
space L(X,µ, SN). Again as in the previous argument, it is enough to find
a Borel transversal TF for the cosets of GF in L(X,µ, SN), so that relation

T (F, f) ⇐⇒ f ∈ TF

is Borel (as a subset of S(E) × L(X,µ, SN)). Denote by F the Effros Borel
space of the closed subgroups of L(X,µ, SN). By the usual proof of the
existence of a Borel transversal for the cosets of a closed subgroup of a
Polish group, it is then enough to show that the map F ∈ S(E) 7→ GF ∈ F
is Borel or equivalently that there is a Borel function

δ : S(E)→ L(X,µ, SN)N

such that for each F ∈ S(E) the sequence δ(F ) is dense in GF .
To see this consider the Ergodic Decomposition Theorem 4.19 and The-

orem 4.20, whose notation we use below. Thus πF is an ergodic decompo-
sition of F 0, mapping X to P (X), and has range the set EIF 0 .

Then f ∈ L(X,µ, SN) is F -invariant iff it is of the form g ◦ πF for
a uniquely determined g ∈ L(P (X), (πF )∗(µ), SN). Thus the map g ∈
L(P (X), (πF )∗(µ), SN) 7→ g ◦ πF ∈ L(X,µ, SN) is an isometric embedding,
whose range is GF .

Now pick a countable Boolean algebraB of Borel subsets of P (X) which
generates its Borel sets. Then for any probability Borel measure ν on P (X),
B is dense in the measure algebra MALGν . Fix also a countable dense set
Σ = {σn} in SN . Then the Borel maps from P (X) into SN that are con-
stant in the pieces of a partition of P (X) in B and take values in Σ form
a dense set in any L(P (X), (πF )∗(µ), SN). Enumerate these functions as
{g0, g1, . . . }.

Finally define the function δ = (δn) as follows:

δn(F ) = gn ◦ πF .
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It only remains to check that this is a Borel function and for that we verify
that for any n, any (genuine) Borel function h0 fromX to SN and any ε > 0,
the set of all F ∈ S(E) for which

d(δn(F ), h0) =

∫
D(δn(F )(x), h0(x))dx < ε

is Borel, which is clear as the function (F, x) 7→ D(gn(πF (x)), h0(x)) is Borel.



14. A selection theorem for
hyperfiniteness

Recall that H is the class of hyperfinite equivalence relations. For each
E, the set HE is closed in S(E) by Theorem 8.1. Also the set ERGHE of
ergodic hyperfinite subequivalence relations of E is a Gδ set in S(E) by
Theorem 8.1 and Theorem 10.1. Note that if F is in ERG, then F is aperi-
odic.

We next prove the following selection result.

Theorem 14.1. There is a Borel function Θ: HE → [E] such that for F ∈ HE ,
if Θ(F ) = T , then F = ET (i.e., xFy ⇐⇒ ∃n ∈ Z(T n(x) = y)).

Proof. We will first give a detailed argument that there is a Borel function
Φ: ERGHE → [E] such that for F ∈ ERGHE , if Φ(F ) = T , then F = ET ,
i.e, we will first prove the theorem for the ergodic hyperfinite equivalence
relations. Then we will indicate how this can be extended to all hyperfinite
equivalence relations.

Let for F ∈ S(E),

A(F ) = {T ∈ [F ] : T is aperiodic}.

Then for any aperiodic F , A(F ) is a closed non-empty subset of [F ] (and
thus of [E]); see [K, 3.5]. We first prove the following:

Lemma 14.2. The following are equivalent:
(i) There is a Borel function Φ: ERGHE → [E] such that if Φ(F ) = T , then

ET = F (thus T ∈ A(F )).
(ii) The function A|ERGHE from ERGHE to F∗([E]) is Borel.
(iii) There is a Borel function Ω: ERGHE → [E] such that Ω(F ) ∈ A(F ).

Proof. (ii)⇒ (i). We need the following:

85
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Sublemma 14.3. Let F ∈ ERGHE . Then the generic element T ∈ A(F ) has
the property that ET = F .

Proof. Let C = {T ∈ A(F ) : ET = F}. We show first that it is dense in
A(F ). To see this, fix T0 ∈ A(F ) with ET0 = F . Then the orbit of T0 under
the conjugation action of [F ] on A(F ) is dense in A(F ), by [K], 3.4. Clearly
every element T of that orbit has ET = F .

It remains to show that C is Gδ in A(F ). For that it is enough to show
that the map [E] 3 T 7→ ET ∈ S(E) is of Baire class 1. This will follow if we
can show that for any S ∈ [E] and α ∈ R, the set {T ∈ [E] : α < µ(AS,ET )}
is open.

Now

AS,ET = {x : (x, S(x)) ∈ ET}
= {x : ∃n ∈ Z(S(x) = T n(x))

=
⋃
N∈N

{x : ∃|n| ≤ N(S(x) = T n(x))}

=
⋃
N∈N

ATN ,

where ATN = {x : ∃|n| ≤ N(S(x) = T n(x))}. Clearly AT0 ⊆ AT1 ⊆ . . . , so

α < µ(AS,ET ) ⇐⇒ ∃N(µ(ATN) > α),

thus it suffices to show that

{T : µ(ATN) > α}

is open in [E]. Fix T1 such that µ(AT1
N ) > α and let δ = µ(AT1

N )−α > 0. Then
let ε > 0 be such that N(N + 1)ε < δ. We will show that if du(T, T1) < ε,
then µ(ATN) > α.

If du(T, T1) < ε, then du(T n, T n1 ) < |n|ε, for any n ∈ Z. Since

{x : S(x) = T n(x)}∆{x : S(x) = T n1 (x)} ⊆ {x : T n(x) 6= T n1 (x)},

we have

µ({x : S(x) = T n(x)}∆{x : S(x) = T n1 (x)}) < |n|ε,
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so

µ({x : ∃|n| ≤ N(S(x) = T n(x))}∆{x : ∃|n| ≤ N(S(x) = T n1 (x))})

≤
∑
|n|≤N

(|n|ε) = N(N + 1)ε < δ,

therefore
µ(ATN) > µ(AT1

N )− δ = α.

This concludes the proof of the Sublemma.

Consider now the relation P ⊆ ERGHE × [E] given by

P (F, T ) ⇐⇒ T ∈ A(F ) & ET = F.

Clearly it is Borel and our goal is to find a Borel uniformizing function Φ
for P . To each F ∈ ERGHE assign the σ-ideal IF on [E] defined by

IF = {W ⊆ [E] : W ∩ A(F ) is meager in A(F )}.

It is clear that for F ∈ ERGHF , PF = {T : P (F, T )} 6∈ IF . Therefore by
[K2, 18.6], it is enough to show that F 7→ IF is Borel on Borel. So let Z be
a Polish space and U ⊆ Z × ERGHF × [E] be Borel in order to show that

{(z, F ) : Uz,F is meager in A(F )}

is Borel. In fact, more generally, we will show that for any W ⊆ [E], which
is an open non-empty set in [E], the set

MU,W = {(z, F ) : A(F ) ∩W 6= ∅ & Uz,F is not meager in A(F ) ∩W}.

is Borel. Note that if {Wn} is a basis of nonempty open sets in [E], then we
have for Borel U,Un ⊆ Z × ERGHF × [E]:

M⋃
n Un,W

=
⋃
n

MUn,W

and (letting ∼ U = (Z × ERGHE × [E]) \ U)

M∼U,W = [(Z × ERGHE) \
⋂
{MU,Wn : Wn ⊆ W,Wn ∩ A(F ) 6= ∅}]

∩ {(z, F ) ∈ Z × ERGHF : A(F ) ∩W 6= ∅},
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thus, since {(z, F ) ∈ Z × ERGHE : A(F ) ∩W 6= ∅} is Borel by our hypoth-
esis, it is enough to show that MU,W is Borel for each U = U1 × U2 × U3,
where U1 is open in Z,U2 is open in ERGHE and U3 is open in [E]. But in
that case

(z, F ) ∈MU,W ⇐⇒ z ∈ U1 & F ∈ U2 & A(F ) ∩W 6= ∅ &

U3 is not meager in A(F ) ∩W
⇐⇒ z ∈ U1 & F ∈ U2 & A(F ) ∩W 6= ∅ &

A(F ) ∩W ∩ U3 6= ∅,

which again is Borel by hypothesis.
(i)⇒ (iii): Obvious taking Ω = Φ.
(iii) ⇒ (ii): By [K, 3.4], the conjugacy class {T Ω(F ) T−1 : T ∈ [F ]} is

dense in A(F ). So for W ⊆ [E] open,

A(F ) ∩W 6= ∅ ⇐⇒ ∃T ∈ [F ](T Ω(F ) T−1 ∈ W )

⇐⇒ ∃T ∈ D(T Ω(F ) T−1 ∈ W ),

for any countable dense subset D ⊆ [F ]. It is thus enough to show that
there is a Borel function D : S(E)→ [E]N such that D(F ) = (Tn)n∈N, where
{Tn}n∈N is dense in [F ]. Since F ∈ S(E) is identified with [F ], a closed
subset of [E], this follows from [K2, 12.13].

This concludes the proof of the Lemma.

Thus to complete the proof of Theorem 14.1 in the ergodic case, it is
enough to prove (iii) of the preceding lemma.

We now use Proposition 4.18, in which we recall that E is viewed as
a genuine equivalence relation and not one viewed a.e., Combining this
with the proof of [K, 3.5], we then have:

Lemma 14.4. There is a Borel set Q ⊆ ERGHE × E such that for any F ∈
ERGHE, QF ⊆ F ◦ and QF is the graph of a Borel automorphism TF of X (thus
ETF ⊆ F ◦) such that TF restricted to the aperiodic part of F ◦ (i.e., the set of all x
with [x]F ◦ infinite) is also aperiodic.

In particular, if 〈TF 〉 is the element of [F ◦] = [F ] represented by TF , then
〈TF 〉 ∈ A(F ). We put Ω(F ) = 〈TF 〉 for F ∈ ERGHE . It remains to verify
that Ω: ERGHE → [E] is Borel.



14. A selection theorem for hyperfiniteness 89

Fix T0 ∈ [E]. It is enough to show that

{F ∈ ERGHE : d(TF , T0) < ε}

is Borel in S(E). Now for F ∈ ERGHE ,

du(TF , T0) < ε ⇐⇒ µ({x : TF (x) 6= T0(x)}) < ε

⇐⇒ µ({x : (x, T0(x)) 6∈ QF}) < ε,

⇐⇒ µ({x : (F, x, T0(x)) 6∈ Q}) < ε,

which is clearly a Borel condition on F .
This completes the proof of selection for the ergodic case.
The proof in the general case can proceed in two different ways. The

first is by using the ergodic composition theorem, see Theorem 4.20. The
second uses a result of Miri Segal in her (unpublished) Ph.D. Thesis (see
[K4, 8.47 and the following paragraph]. I would like to thank Ben Miller
for this suggestion. Segal’s result states that for each (genuine) countable
Borel equivalence relation F , which is hyperfinite µ-a.e., one can find in
an effective Borel way a Borel automorphism that generates F µ-a.e. Com-
bined with Proposition 4.18 this implies the following:

Proposition 14.5. There is a Borel set P ⊆ HE × E such that for any F ∈
HE, PF ⊆ F ◦ and PF is the graph of a Borel automorphism TF of X such that
ETF is equal to F in S(E).

This together with the argument following Lemma 14.4 completes the
proof of Theorem 14.1.

Combining Proposition 8.3 with Theorem 14.1 and the proof of [DJK,
Theorem 5.1], we also have the following result:

Theorem 14.6. There is a Borel function H : HE → S(E)N such that for F ∈
HE we have that for each n, H(F )n ∈ BFE , H(F )n ⊆ H(F )n+1, and F =⋃
nH(F )n.
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15. Invariant, random
equivalence relations on groups

We study here the connection between the space of subequivalence rela-
tions and that of invariant, random equivalence relations on groups.

15.1 Equivalence relations on groups

For each infinite countable group Γ, denote by Eq(Γ) the space of equiva-
lence relations on Γ. This is a compact subspace of 2Γ2 . The group Γ acts
continuously by translation on Eq(Γ): if γ ∈ Γ, e ∈ Eq(Γ), then

(δ, ε) ∈ γ · e ⇐⇒ (γ−1δ, γ−1ε) ∈ e.

Let σ be a Borel probability measure on Eq(Γ). If σ is invariant un-
der the action of Γ, we say that σ is a (Γ-)invariant, random equivalence
relation (IRE) on Γ. We denote by IRE(Γ) the space of these measures.

Clearly IRE(Γ) is a compact subspace of the space of all Borel proba-
bility measures on Eq(Γ) (which is equipped, as usual, with the weak∗-
topology, in which it is compact metrizable)

There is a canonical connection between subequivalence relations of
the equivalence relationEa induced by an action a ∈ A(Γ, X, µ) and IRE on
Γ, which is a special case of structurability of such equivalence relations.
See [KM, 29.1], [CK, Section 2], and [T-D, Appendix A] for the particular
case of equivalence relations.

Let a ∈ A(Γ, X, µ) and put E = Ea. Given F ∈ S(E), define the map

eaF = eF : X → Eq(Γ)

91
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by
(γ, δ) ∈ eF (x) ⇐⇒ (γ−1 · x, δ−1 · x) ∈ F.

Then eF is a Γ-equivariant Borel function. Put

σa(F ) = σ(F ) = (eF )∗µ.

Thus σa(F ) ∈ IRE(Γ).

Proposition 15.1. The map σa : S(E)→ IRE(Γ) is continuous.

Proof. Fix αi, βi, γj, δj ∈ Γ, i ≤ m, j ≤ k, and put

Aaᾱ,β̄,γ̄,δ̄,F = Aᾱ,β̄,γ̄,δ̄,F =
⋂
i≤m

A(αai )−1,(βai )−1,F ∩
⋂
j≤k

(X \ A(γaj )−1,(δaj )−1,F ),

where AS,T,F , for S, T ∈ [E], is defined in the proof of Proposition 4.29.
It is enough to prove that the map that sends F ∈ S(E) to the real

number

σa(F )({e ∈ Eq(Γ) : ∀i ≤ m(αi, βi) ∈ e & ∀j ≤ k(γj, δj) /∈ e)})

is continuous. But this number is equal to µ(Aᾱ,β̄,γ̄,δ̄,F ), which depends
continuously on F , since, by Proposition 4.29, the map F 7→ AS,T,F as
above is continuous.

Remark 15.2. The map σa is not injective. Consider, for example, the shift
action s of Γ on [0, 1]Γ, with the usual product measure. Let F1 = Es ∩
{(x, y) : x(1) = y(1)}, F2 = Es ∩ {(x, y) : x(γ) = y(γ)}, where γ 6= 1. Then
eF1 = eF2 is the constant function with value the equality relation =Γ on Γ,
so σ(F1) = σ(F2) is the Dirac measure at =Γ but F1 6= F2.

It turns out that every IRE is generated by the above procedure for
some, in fact free, action a and equivalence relation F . Below we denote
by FR(Γ, X, µ) the set of free actions in A(Γ, X, µ).

Proposition 15.3. IRE(Γ) = {σa(F ) : a ∈ A(Γ, X, µ), F ∈ S(Ea)}
= {σa(F ) : a ∈ FR(Γ, X, µ), F ∈ S(Ea)}.

Proof. Let σ ∈ IRE(Γ). Let b ∈ FR(Γ, Y, ν) and putX = Eq(Γ)×Y, µ = σ×ν.
Let also a be the product action of Γ on X , so that a ∈ FR(Γ, X, µ). Define
F ⊆ Ea by

(e, x)F (f, y) ⇐⇒ ∃γ(γ · (e, x) = (f, y) & (1, γ−1) ∈ e).

Then eaF (e, x) = e and so σa(F ) = σ.
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A special case of the above construction of IRE is the following. Let Y
be a standard Borel space and F a Borel equivalence relation on Y . Con-
sider the product space X = Y Γ with the shift action sY of Γ on this space
and let µ be a shift-invariant probability measure on X . Define the equiv-
alence relation F̃ on X by xF̃y ⇐⇒ xEsY y & x(1)Fy(1). Let eF̃ : X →
Eq(Γ) be the associated map, so that (γ, δ) ∈ eF̃ (x) ⇐⇒ x(γ)Fx(δ). Fi-
nally consider the IRE σsX (F̃ ).

Problem 15.4. Is every element of IRE(Γ) of the form σsY (F̃ ), for some measure
µ and Borel equivalence relation F on Y ? What if we take F to be the equality
relation on Y ?

Another way to obtain IRE is the following. Let Sg(Γ) be the space
of subgroups of Γ, which is a compact subspace of 2Γ on which Γ acts
continuously by conjugation. An invariant, random subgroup (IRS) of Γ
is a conjugation invariant Borel probability measure on Sg(Γ). Denote the
space of such measures by IRS(Γ). There is a canonical homeomorphism
Σ from Sg(Γ) into Eq(Γ) given by (γ, δ) ∈ Σ(H) ⇐⇒ γδ−1 ∈ H . Thus
the equivalence classes of Σ(H) are the right cosets of H . The range of Σ
consists of the equivalence relations induced by the cosets of a subgroup
of Γ. The embedding Σ is also Γ-equivariant, thus if µ ∈ IRS(Γ), then
Σ∗µ ∈ IRE(Γ) and the range of Σ∗ consists of the IRE that concentrate on
the range of Σ. This forms a proper compact subset of IRE(Γ). Tucker-
Drob [T-D, Appendix A] characterizes Σ∗(IRS(Γ)) as consisting of exactly
those σa(F ) for F ⊆ Ea that are normalized by a, which means that each
γa is an automorphism of F , i.e., xFy ⇐⇒ γa(x)Fγa(y).

15.2 Classes of invariant, random equivalence re-
lations

We say that σ ∈ RS(Γ) is an aperiodic IRE if it concentrates on the equiv-
alence relations all of whose classes are infinite. It is an infinite index IRE
if it concentrates on the equivalence relations that have infinitely many
classes. Both the aperiodic and the infinite index IRE form Gδ sets in
IRE(Γ). Similarly σ is a finite index IRE if it concentrates on the equiv-
alence relations that have only finitely many classes. Finally, σ is a finite
IRE if it concentrates on the equivalence relations all of whose classes are
finite.
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We now have the following results:

Theorem 15.5. Let Γ be an infinite countable group. The generic IRE on Γ is
aperiodic and has infinite index.

Proof. By Proposition 15.1 and Proposition 15.3 and Theorem 8.2 the ape-
riodic IRE are dense in IRE(Γ) and by Proposition 9.1 the same is true for
the infinite index IRE.

Theorem 15.6. Let Γ be an infinite amenable countable group. Then the finite
index IRE are dense in IRE(Γ).

Proof. This follows as before from Proposition 9.4.

We do not know if this holds for all infinite Γ.

Theorem 15.7. Let Γ be an infinite countable group. Then the following are
equivalent:

(i) Γ is amenable,
(ii) The finite IRE are dense in IRE(Γ),
(iii) The Dirac measure δΓ×Γ on the equivalence relation Γ × Γ is a limit of

finite IRE.

Proof. (i) =⇒ (ii) follows from Proposition 15.1 and Proposition 15.3 and
the paragraph following Theorem 8.1, while (ii) =⇒ (iii) is obvious.

(iii) =⇒ (i): Let σn be finite IRE such that σn → δΓ×Γ. We will use these
to find a left-invariant probability measure on Γ.

For A ⊆ Γ and an equivalence relation e with finite classes, put

ρe(A) =
|A ∩ [1]e|
|[1]e|

.

Then, for each n, put

ρn(A) =

∫
ρe(A)dσn(e).

Clearly ρn is a finitely additive probability measure on Γ.
Let now U be a non-principal ultrafilter on N and put

ρ(A) = lim
n→U

ρn(A).
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Again ρ is a finitely additive probability measure on Γ. We will show that
it is left-invariant. We have for each A ⊆ Γ, γ ∈ Γ,

ρ(A) = lim
n→U

∫
|A ∩ [1]e|
|[1]e|

dσn(e),

and
ρ(γA) = lim

n→U

∫
|γA ∩ [1]e|
|[1]e|

dσn(e)

Now note that
|γA ∩ [1]e|
|[1]e|

=
|A ∩ [γ−1]γ−1·e|
|[γ−1]γ−1·e|

,

so, using the invariance of νn, we have

ρ(γA) = lim
n→U

∫
|A ∩ [γ−1]e|
|[γ−1]e|

dσn(e).

It is thus enough to show that

lim
n→∞

∫ (
|A ∩ [1]e|
|[1]e|

− |A ∩ [γ−1]e|
|[γ−1]e|

)
dσn(e) = 0.

Since σn → δΓ×Γ, we have

σn({e : (1, γ−1) ∈ e})→ δΓ×Γ({e : (1, γ−1) ∈ e}) = 1,

so, given ε > 0, let N be large enough so that for n ≥ N ,

σn({e : [1]e 6= [γ−1]e}) < ε.

Then ∣∣∣∣∫ ( |A ∩ [1]e|
|[1]e|

− |A ∩ [γ−1]e|
|[γ−1]e|

)
dσn(e)

∣∣∣∣ ≤ ε,

and the proof is complete.

15.3 Bauer vs Poulsen

The space IRE(Γ) is a Choquet simplex (being the space of invariant Borel
probability measures for a continuous action of Γ on a compact metrizable
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space). Its extremal points are the ergodic IRE, whose set we denote by
ERGIRE(Γ). We next consider the question of whether IRE(Γ) is a Bauer
simplex, i.e., ERGIRE(Γ) is closed in IRE(Γ), or the Poulsen simplex, i.e.,
ERGIRE(Γ) is dense in IRE(Γ). By the results in Glasner-Weiss [GW], if Γ
has property (T), then IRE(Γ) is a Bauer simplex. However the following
is open:

Problem 15.8. Assume that the countable group Γ does not have property (T). Is
IRE(Γ) the Poulsen simplex?

15.4 Another approach to the topology of equiv-
alence relations

One can use ideas similar to those in this section to provide one more
description of the topology of S(E).

Fix a ∈ A(Γ, X, µ) withE = Ea. Consider the compact metrizable space
P(Γ)N × Eq(Γ) (where P(Γ) is the space of all subsets of Γ, identified with
2Γ), on which Γ acts continuously by γ · ((an), e) = ((γan), γ · e). Fix also
a sequence (Dn) of Borel sets which is dense in MALGµ. Define then the
map

θaF = θF : X → P(Γ)N × Eq(Γ),

by θF (x) = ((an), e), where an = {γ : γ−1 · x ∈ Dn} and e = eF (x). Let
τa(F ) = τ(F ) = (θF )∗µ ∈ Prob(P(Γ)N × Eq(Γ)), the space of Borel prob-
ability measures on (P(Γ)N × Eq(Γ)). Then τ(F ) is Γ-invariant and so its
projection on Eq(Γ) is in IRE(Γ).

Proposition 15.9. The map τa : S(E) → IRE(Γ) is a homeomorphism into
IRE(Γ).

Proof. The continuity of τa is proved as in Proposition 15.1. That τa is injec-
tive follows from the paragraph preceding Proposition 4.14 and Lemma 4.10.
That (τa)−1 is continuous can be deduced from the paragraph following
Proposition 4.14.

Thus we can also view S(E) as a Gδ subset of Prob(P(Γ)N × Eq(Γ)).
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15.5 Invariant, random equivalence relations and
weak containment

Recall that for a, b ∈ A(Γ, X, µ), we let a � b iff a is weakly contained in
b (see [K], where ≺ is used instead of �). Concerning the map σa(F ) that
sends F ∈ S(Ea), a ∈ A(Γ, X, µ), to an IRE on Γ, we consider its “slice"
corresponding to the �-predecessors of an action b.

Theorem 15.10. Let Γ be an infinite countable group and b ∈ A(Γ, X, µ). Then
the set

{σa(F ) : a ∈ A(Γ, X, µ), a � b, F ∈ S(Ea)}
is a compact subset of IRE(Γ).

Proof. We use the method of ultraproducts.
Fix a non-principal ultrafilter U on N. Let an ∈ A(Γ, X, µ), an � b and

Fn ∈ S(Ean), for n ∈ N. As in the proof of Proposition 15.1, for each action
d ∈ A(Γ, Z, ρ), F ∈ S(Ed), and αi, βi, γj, δj ∈ Γ, i ≤ m, j ≤ k, we put

Adᾱ,β̄,γ̄,δ̄,F =
⋂
i≤m

Ad(αdi )−1,(βdi )−1,F ∩
⋂
j≤k

(X \ Ad(γdj )−1,(δdj )−1,F ),

where for each S, T ∈ [Ed], A
d
S,T,F = {z ∈ Z : (S(z), T (z)) ∈ F}. In particu-

lar, AdT,F = {z : (z, T (z)) ∈ F} = Aid,T,F and AdS,T,F = S−1(AdTS−1,F ).
We will show that there is a standard probability space (Y, ν), an action

c ∈ A(Γ, Y, ν), c � b, and an equivalence relation F ∈ S(Ec) on (Y, ν) such
that

ν(Acᾱ,β̄,γ̄,δ̄,F ) = lim
n→U

µ(Aan
ᾱ,β̄,γ̄,δ̄,Fn

),

for all αi, βi, γj, δj ∈ Γ, i ≤ m, j ≤ k, which implies that {σa(F ) : a ∈
A(Γ, X, µ), a � b, F ∈ S(Ea)} is compact in IRE(Γ).

We will use below the notation and terminology of Conley–Kechris–
Tucker-Drob [CKT] concerning ultraproducts. Let (XU , µU) be the ultra-
power of (X,µ) and let a =

∏
n an/U the ultraproduct of (an). Put for

g ∈ Γ,
Aang,Fn = {x ∈ X : (x, gan(x)) ∈ Fn}.

Then for each n, (Aang,Fn) satisfies conditions 1.-4. of Lemma 4.12. So if
Ag = [(Aang,Fn)]U is the ultrapower of (Aang,Fn), it follows that (Ag)g∈Γ also
satisfies these conditions (all of course µU -a.e.).
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If BU is the σ-algebra on which µU lives, let MALGµU be the measure
algebra of (XU ,BU , µU). By the proof of Proposition 4.3 in [CKT], there is
a map TU : Γ×MALGµU → MALGµU such that if g ∈ Γ, A ∈ MALGµU \ {∅}
and ga(x) 6= x, ∀x ∈ A, then TU(g, A) ⊆ A, µU(TU(g, A)) ≥ 1

16
µU(A) and

ga · TU(g, A) ∩ TU(g, A) = ∅.
As in [CKT, Sections 4.2, 4.3], fix a countable Boolean subalgebraB0 ⊆

MALGµU which contains all Ag,Fix(ga), g ∈ Γ, and is closed under the
action a, the function SU in [CKT, Section 3.2] and the function TU as above.
Let B = σ(B0) ⊆ MALGµU be the σ-algebra generated by B0. This is
a countably generated, non-atomic, a-invariant subalgebra of MALGµU , so
there is a standard probability space (Y, ν) and a measurable map π : XU →
Y with π∗µU = ν and an action c ∈ A(Γ, Y, ν) such that

π(ga(x)) = gc(π(x)), g ∈ Γ, x ∈ XU

(i.e., c is a factor of a) and B 7→ π−1(B) is an isomorphism of (MALGν , ν)
with (B, µU |B) preserving the Γ-action.

Let thenBg, g ∈ Γ, in MALGν , be such that π−1(Bg) = Ag. Then ν(Bg) =
µU(Ag) and the family (Bg)g∈Γ satisfies 1.-3. of Lemma 4.12. We will next
verify that condition 4. of the same proposition also holds. Assuming this,
there will be an equivalence relation F on (Y, ν) withAcg,F = Bg. Replacing
F by F∩Ec, we can assume that F ⊆ Ec. Then, for each αi, βi, γj, δj ∈ Γ, i ≤
m, j ≤ k,

ν(Acᾱ,β̄,γ̄,δ̄,F ) = lim
n→U

µ(Aan
ᾱ,β̄,γ̄,δ̄,Fn

).

Since c is a factor of an ultraproduct of (an) and an � b, for each n, then
c � b (see [CKT, Theorem 1]) and the proof is complete.

In order to verify condition 4. in Lemma 4.12, it is enough to show that
for each g ∈ Γ,

π−1(Fix(gc)) = Fix(ga).

It is clear that π−1(Fix(gc)) ⊇ Fix(ga). If they are distinct (in MALGµU ), let
A = π−1(Fix(gc))\Fix(ga) ∈ B and let µU(A) = ε > 0. Then ga(x) 6= x,∀x ∈
A. Let B ∈ B0 be such that µU(B4A) < ε

32
. Since A ⊆ XU \ Fix(ga) ∈ B0,

we can assume (by replacing B by B \ Fix(ga)) that B ∩ Fix(ga) = ∅. Since
B0 is closed under TU , let C ⊆ B,C ∈ B0 be such that ga · C ∩ C = ∅ and
µU(C) ≥ 1

16
µU(B). In particularC∩A 6= ∅. SinceC∩A ∈ B, letD ∈ MALGν

be such that π−1(D) = C ∩ A ⊆ π−1(Fix(gc)), so ∅ 6= D ⊆ Fix(gc). On the
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other hand, π−1(gc ·D) = ga · (C ∩ A), so π−1(gc ·D) ∩ π−1(D) = ga · (C ∩
A) ∩ (C ∩ A) = ∅, so gc ·D ∩D = ∅, while gc ·D = D, a contradiction.

Corollary 15.11. Let Γ be an infinite countable group and assume that b ∈
A(Γ, X, µ) is ergodic but not strongly ergodic. Then the set

{σa(F ) : a ∈ A(Γ, X, µ), a � b, F ∈ S(Ea)}

is a compact convex subset of IRE(Γ).

Proof. By [AW, Theorem 3] the set {a ∈ A(Γ, X, µ) : a � b} is closed under
convex combinations (see [K, Section 10, (F)] for the concept of convex
combinations of actions).
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16. Ultraproducts of equivalence
relations

We will use here again the notation of Section 15.5 and [CKT]. Consider
the space (X,µ) and for each non-principal ultrafilter U on N form the
ultrapowerXU with the associated measure µU . For (xn) ∈ XN, put [xn]U =
[(xn)]U ∈ XU . We will use below the following general fact, where for Borel
A ⊆ X , we put [A]U = {[xn]U ∈ XU : Un(xn ∈ A)} ⊆ XU .

Proposition 16.1. [
⋃
i∈NAi]U =

⋃
i∈N[Ai]U in MALGµU .

Proof. Let Bj =
⋃
i≤j Ai. Then [Bj]U =

⋃
i≤j[Ai]U and

⋃
j Bj =

⋃
iAi,⋃

j[Bj]U =
⋃
i[Ai]U , so we can assume that A0 ⊆ A1 ⊆ . . . , and thus

[A0]U ⊆ [A1]U ⊆ · · · ⊆ [
⋃
iAi]U . Let µU([

⋃
iAi]U) = t. It is enough to

show that µU(
⋃
i[Ai]U) = t. Now t = µ(

⋃
iAi) = limi→∞µ(Ai) and thus

µ(
⋃
i[Ai]U) = limi→∞µ([Ai]U) = t.

Consider now a sequence of measure preserving countable Borel equiv-
alence relations (Fn) on (X,µ). Let E ∈ E be such that Fn ⊆ E, for each
n. Fix an action a ∈ A(Γ, X, µ) such that Ea = E. We will use this to
define an ultraproduct

∏a
n Fn/U of the Fn. We will then show that it is

independent of E and the action a, so that we can define unambiguously
the ultraproduct

∏
n Fn/U .

As in the proof of Theorem 15.10, we let Aag,Fn = {x ∈ X : (x, ga(x)) ∈
Fn} and Aag = [(Aag,Fn)]U . Consider also the ultrapower aU =

∏
n a/U . Then

(Aag) satisfies conditions 1.-4. of Lemma 4.12 and therefore it gives rise to
a countable equivalence relation F̂ a =

∏a
n Fn/U on XU defined by

[xn]U F̂
a[yn]U ⇐⇒ ∃g ∈ Γ(gaU ([xn]U) = [yn]U & [xn]U ∈ Aag).

Thus
∏a

n Fn/U is the union of the graphs of gaU |Aag, g ∈ Γ. It is easy to see
that the equivalence relation induced by each gaU |Aag is also induced by a
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single measure preserving automorphism of (XU , µU) and thus
∏a

n Fn/U is
induced by a measure preserving action of a countable group on (XU , µU).
Thus we can view

∏a
n Fn/U as a countable, measure preserving equiva-

lence relation on (XU , µU). Note that we also have AaU
g,F̂a

= [(Aang,Fn)]U and
so µU(AaU

g,F̂a
) = limn→Uµ(Aang,Fn).

We now check that this construction is independent of E, a. Suppose
Fn ⊆ E ⊆ F for each n and let a ∈ A(Γ, X, µ) generate E and b ∈
A(∆, X, µ) generate F . We will show that F̂ a =

∏a
n Fn/U =

∏b
n Fn/U = F̂ b.

(i) Suppose [xn]U F̂
a[yn]U and find g ∈ Γ with gaU ([xn]U) = [yn]U and

[xn]U ∈ Aag , i.e., Un((xn, g
a(xn)) ∈ Fn). Write X =

⊔
d∈∆Xd, where Xd is

Borel and
x ∈ Xd ⇒ ga(x) = db(x)

(since E = Ea ⊆ Eb = F ). Then XU =
⊔
d∈∆[Xd]U , so [xn]U ∈ [Xd]U for

some d ∈ ∆ and therefore Un(xn ∈ Xd), so that Un(ga(xn) = db(xn)) and
thus gaU ([xn]U) = [yn]U = dbU ([xn]U). Moreover, Un((xn, d

b(xn)) ∈ Fn)), i.e.,
[xn]U ∈ Abd, so [xn]U F̂

b[yn]U .
(ii) Conversely assume that [xn]U F̂

b[yn]U and find d ∈ ∆ with dbU ([xn]U) =
[yn]U and Un((xn, d

b(xn)) ∈ Fn). By Proposition 4.2, there is T ∈ [E] such
that

(x, db(x)) ∈ E ⇒ db(x) = T (x).

Let then X =
⊔
g∈ΓXg be a Borel decomposition such that

x ∈ Xg ⇒ T (x) = ga(x),

so that
x ∈ Xg & (x, db(x)) ∈ E ⇒ db(x) = ga(x).

Now [xn]U ∈ [Xg]U for some g ∈ Γ, i.e., Un(xn ∈ Xg). But also

Un((xn, d
b(xn)) ∈ Fn ⊆ E),

so Un(db(xn) = ga(xn)), i.e., dbU ([xn]U) = [yn]U = gaU ([xn]U) and moreover
Un((xn, g

a(xn) ∈ Fn), so [xn]U F̂
a[yn]U .



17. Factors

We will discuss here various notions of factoring for equivalence relations
and their applications.

17.1 Factors in general

Let E be a measure preserving countable Borel equivalence relation on
(X,µ). Let A ⊆ MALG = MALGµ be a non-atomic, σ-subalgebra of
MALG. Put

[E]A = {T ∈ [E] : ∀A ∈ A(T (A), T−1(A) ∈ A)}.

This is a closed subgroup of ([E], u), which we call the relative to A full
group of E.

Consider now a separable subgroup Γ of (Aut(X,µ), u). This defines
a measure preserving countable Borel equivalence relation F Γ as follows:
Let Γ0 ≤ Γ be a countable dense subgroup of Γ and let F Γ be the equiva-
lence relation induced by Γ0. We can easily see that this is independent of
the choice of Γ0 and moreover Γ ≤ [F Γ].

Clearly F Γ is the smallest equivalence relation F such that Γ ≤ [F ].
Kittrell-Tsankov [KT, 4.14] have shown that if Γ is also closed in the uni-
form topology, then there is a largest equivalence relation F , denoted by
FΓ, such that [F ] ≤ Γ and moreover [FΓ] is a normal subgroup of Γ.

We now say thatE is generated byA or thatA generatesE if F [E]A = E

(clearly always F [E]A ⊆ E). This is equivalent to saying that there is a
countable group Γ and an action a ∈ A(Γ, X, µ) such that Ea = E and A is
invariant under a, i.e., for each A ∈ A, g ∈ Γ we have that ga(A) ∈ A.

Let now π : (X,µ) → (Y, ν) be the factor corresponding to A, so that
(Y, ν) is a standard (non-atomic) measure space, π∗µ = ν and B 7→ π−1(B)
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is an isomorphism of (MALGν , ν) with (A, µ|A) (see [K2, 17.43]). If T ∈
Aut(X,µ) preserves A (i.e., ∀A ∈ A(T (A), T−1(A) ∈ A)), then (via π−1) it
gives an automorphism of MALGν , i.e., an element of Aut(Y, ν), denoted
by π̂(T ), such that π̂(T )(π(x)) = π(T (x)). (To verify this equality, simply
check that for every B ∈ MALGν , π̂(T )(π(x)) ∈ B ⇐⇒ π(T (x)) ∈ B.) In
particular, π(x) = π(y) =⇒ π(T (x)) = π(T (y)). So if

Aut(X,µ)A = {T ∈ Aut(X,µ) : ∀A ∈ A(T (A), T−1(A) ∈ A)},

then Aut(X,µ)A is a closed subgroup of (Aut(X,µ), u) and

π̂ : (Aut(X,µ)A, u)→ (Aut(Y, ν), u)

is a continuous homomorphism. In particular, π̂([E]A) is a separable sub-
group of (Aut(Y, ν), u) and thus gives rise to the equivalence relation F =

F π̂([E]A). We call this the factor of E relative to A.
Note that if Γ0 ≤ [E]A is dense in ([E]A, u), so that Γ0 generates E, then

π̂(Γ0) is dense in (π̂([E]A), u) and so, by definition, it generates the factor
F . It follows that there is a countable group Γ and an action a ∈ A(Γ, X, µ)
preserving A with Ea = E such that if π̂(a) = b is the factor action of a via
π (i.e., gb = π̂(ga) for each g ∈ Γ), so that

π(ga(x)) = gb(π(x)),

then we have Eb = F . Therefore π is a homomorphism of E into F , i.e.,

xEy ⇒ π(x)Fπ(y)

and also π is class-surjective, i.e., the image of each E-class is an F -class.
Moreover if c ∈ A(∆, X, µ) is any action of a countable group ∆ preserving
A with Ec = E and π̂(c) = d is the factor action of c via π, then Ed = F .
Indeed, let yFz and choose xwith π(x) = y and g ∈ Γ with gb(y) = z. Then
ga(x) = hc(x) for some h ∈ ∆, since Ea = Ec, so π(ga(x)) = gb(π(x)) =
gb(y) = z = π(hc(x)) = hd(π(x)) = hd(y), so (y, z) ∈ Ed. Thus F ⊆ Ed.
Since obviously Ed ⊆ F , we are done.

Clearly π̂ is a homomorphism of [E]A into [F ]. In fact we have:

Proposition 17.1. The homomorphism π̂ : [E]A → [F ] is surjective.
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Proof. Let S ∈ [F ]. Let a ∈ A(Γ, X, µ), Ea = E, π̂(a) = b, Eb = F as before.
Then there is a Borel decomposition Y =

⊔
g∈Γ Yg such that

y ∈ Yg ⇒ S(y) = gb(y).

Let Xg = π−1(Yg) ∈ A, so that X =
⊔
g∈ΓXg. If g, h ∈ Γ are distinct, then

gb(Yg) ∩ hb(Yh) = S(Yg) ∩ S(Yh) = ∅ and
⊔
g∈Γ g

b(Yg) =
⊔
g∈Γ S(Yg) = Y , so

that ga(Xg) ∩ ha(Xh) = ∅ and X =
⊔
g∈Γ g

a(Xg). Put T =
⊔
g∈Γ g

a|Xg.
First note that T ∈ [E]A, since ifA ∈ A, then T (A) = T (

⊔
g∈Γ(A∩Xg)) =⊔

g∈Γ g
a(A ∩ Xg) ∈ A. We will finally verify that π̂(T ) = S. For that it is

enough to check that for each B ∈ MALGν , g ∈ Γ we have that π̂(T )(B ∩
Yg) = S(B∩Yg). This is the case, since π̂(T )(B∩Yg) = π(T (π−1(B)∩Xg)) =
π(ga(π−1(B) ∩Xg)) = gb(B ∩ Yg) = S(B ∩ Yg).

The kernel of π̂|[E]A is equal to

[E]A = {T ∈ [E]A : ∀A ∈ A(T (A) = A)},

thus [F ] ∼= [E]A/[E]A (as topological groups). Note also that T ∈ [E]A ⇐⇒
T ∈ [E]A ∧ π(T (x)) = π(x),∀x.

Let Rπ be the kernel of π, i.e., the smooth equivalence relation given
by:

xRπy ⇐⇒ π(x) = π(y).

Put also
Eπ = E ∩Rπ.

Thus [E]A = [Eπ].
It is easy to check that E,Rπ commute, i.e., E ◦ Rπ = Rπ ◦ E. (Here

for any two equivalence relations E1, E2, we define the relation E1 ◦E2 by
x E1 ◦ E2 y ⇐⇒ ∃z(xE1z ∧ zE2y).)

We now have:

Proposition 17.2. Let F be a factor of E, let S0, S1, · · · ∈ [F ] be such that F =
ES0,S1,..., and let T0, T1, · · · ∈ [E]A be such that π̂(Ti) = Si. If E ′ = ET0,T1,...,
then E = E ′ ∨ Eπ.

Proof. Let xEy. Then π(x)Fπ(y), so for some i1, . . . , in we have π(y) =
S±1
i1
◦ · · · ◦ S±1

in
(π(x)). Then if z = T±1

i1
◦ · · · ◦ T±1

in
(x), we have π(z) =

S±1
i1
◦ · · · ◦ S±1

in
(π(x)) = π(y), so xE ′zEπy.
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The following result was shown by R. Tucker-Drob.

Proposition 17.3 (Tucker-Drob). Let S ∈ [F ] be an involution. Then there is
an involution T ∈ [E]A with π̂(T ) = S.

Proof. By Proposition 17.1, let T̃ ∈ [E]A be such that π̂(T̃ ) = S. We can
define T (x) = x for all x such that S(π(x)) = π(x), so that working in the
complement of the set of such x’s, we can assume that S(π(x)) 6= π(x), for
all x. Let Φ = {{x, x′} : xEx′ ∧ S(π(x)) = π(x′)}. Then, by [KM, Lemma
7.3], we can find a Borel set A ⊆ X and a Borel equivalence relation R on
A such that [x]R ∈ Φ, for x ∈ A and if {x, x′} ∩ A = ∅, then {x, x′} /∈ Φ.

For x ∈ A, we can define T (x) = x′, where {x, x′} ∈ R. Clearly
π(T (x)) = S(π(x)), so if we can show that A = X (modulo null sets),
this will imply that T ∈ [E]A, T is an involution and π̂(T ) = S.

Let B = {x : ∀x′((xEx′ ∧ π(x) = π(x′)) =⇒ x′ ∈ A) ⊆ A. Then by
the properties of A,R, we have that x /∈ A =⇒ T̃ (x) ∈ B (else there
would be some x′ such that x′ /∈ A and {x, x′} ∈ Φ.) Also (X \A)∩T (B) ⊆
(X \ A) ∩ A = ∅ and T (B) ⊆ T̃−1(B). Therefore X \ A ⊆ T̃−1(B) \ T (B)
and since µ(T̃−1(B)) = µ(T (B)) = µ(B), X \ A is null.

Corollary 17.4. If E is generated by the σ-subalgebra A, then there are involu-
tions T0, T1, · · · ∈ [E]A such that E = ET0,T1,....

Proof. Let S0, S1, · · · ∈ [F ] be involutions such that F = ES0,S1,.... By Propo-
sition 17.3, let U0, U1, · · · ∈ [E]A be involutions such that π̂(Ui) = Si. Let
E ′ = EU0,U1,.... Then, by Proposition 17.2, E = E ′ ∨ Eπ.

Now let V0, V1, . . . be involutions in [Eπ] such thatEπ = EV0,V1,.... Clearly
V0, V1, · · · ∈ [E]A and so if {T0, T1, . . . } = {U0, U1, . . . } ∪ {V0, V1, . . . }, then
T0, T1, · · · ∈ [E]A and E = ET0,T1,....

We next show the following.

Theorem 17.5. The composition of factors is a factor.

Proof. Let E live on (X,µ), π : (X,µ) → (Y, ν) be the factor corresponding
to the σ-subalgebra A ⊆ MALGµ which generates E and let F be the cor-
responding factor. Let also B be a σ-subalgebra of MALGν such that F is
generated by B and let ρ : (Y, ν) → (Z, ω) and H be the factor equivalence
relation corresponding to B. Let σ = ρ ◦ π : (X,µ) → (Z, ω) be the compo-
sition with associated σ-subalgebra C = π−1(B) ⊆ A. We will show that H
is the factor of E corresponding to C.
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Lemma 17.6. [F ]B = π̂([E]C ∩ [E]A).

Proof. Since π̂([E]A) = [F ], this is clear from the definitions noting that if
T ∈ [E]A, then T ∈ [E]C iff π̂(T ) ∈ [F ]B.

Lemma 17.7. E = F ([E]C∩[E]A) (in particular E = F [E]C ).

Proof. Let T ∈ [E]A. Then π̂(T ) ∈ [F ], so, since F = F [F ]B , we can find
Si in [F ]B and disjoint Borel sets Yi ⊆ Y with

⊔
i Yi = Y such that π̂(T ) =⊔

i Si|Yi. By Lemma 17.6, let Ti ∈ [E]C ∩ [E]A be such that π̂(Ti) = Si, so
that π̂(T ) =

⊔
i π̂(Ti)|Yi. Then for each i, π̂(T )|Yi = π̂(Ti)|Yi or π̂(T−1

i T )|Yi =
id|Yi.

Let Xi = π−1(Yi) ∈ A. It follows that T−1
i T (A) = A for any A ∈ A, A ⊆

Xi and in particular T−1
i T (Xi) = Xi. Since X =

⊔
iXi, U =

⊔
i(T
−1
i T )|Xi ∈

[E]A. Moreover U(A) = A for every A ∈ A, so that actually U ∈ [E]A ⊆
[E]C . Now for each x, there is i such that T−1

i T (x) = U(x) or T (x) = TiU(x).
Since TiU ∈ [E]C ∩ [E]A, we have that T ∈ [F [E]C∩[E]A ]. But E = F [E]A , so
E = F [E]C∩[E]A .

We now complete the proof of Theorem 17.5 as follows. Let Γ0 ≤
[E]C ∩ [E]A be a countable dense subgroup of [E]C ∩ [E]A, which therefore
generates E. Then π̂(Γ0) is a dense subgroup of [E]B, so ρ̂ ◦ π̂(Γ0) = σ̂(Γ0)
generates H . By the arguments preceding Proposition 17.1, it follows that
H is the factor of E corresponding to C.

It also follows from the preceding argument that there is a countable
group Γ and an action a ∈ A(Γ, X, µ), preserving both A and C, such that
Ea = E, and moreover if π̂(a) = b, then Eb = F and b preserves B and if
ρ̂(b) = ρ̂(π̂(a)) = c, then Ec = H .

This can be extended to infinite chains as follows.
For each n ∈ N, let En be an equivalence relation on (Xn, µn) and for

each n ≥ 1, let πn : (Xn, µn) → (Xn−1, µn−1) be the map corresponding to
a σ-subalgebra An ⊆ MALGµn , which generates En, and let En−1 be the
factor corresponding to An. For n > m, let πn,m = πm+1 ◦ · · · ◦ πn−1 ◦ πn,
and let πn,n = identity on Xn. Then πn,m : Xn → Xm, for n ≥ m. Put
An,m = π−1

n,m(MALGµm), so that An,n−1 = An and An,n = MALGµn . Thus
we have the following σ-subalgebras of MALGµn ,

An,0 ⊆ An,1 ⊆ · · · ⊆ An,n−1 = An ⊆ An,n = MALGµn .
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Put
[En]∗ = [En]An,0 ∩ · · · ∩ [En]An,n−1 .

Then we have, generalizing Lemma 17.6, Lemma 17.7:

Proposition 17.8. For each n ≥ 1,
(i) π̂n([En]∗) = [En−1]∗,
(ii) En = F [En]∗ .

Proof. By induction on n ≥ 1. The case n = 1 is clear. So assume that (i),
(ii) hold for n− 1 ≥ 1 and prove them for n. First we will show that if we
assume (i) for n, then (ii) also holds for n. The proof is similar to that of
Lemma 17.7.

Let T ∈ [En]An . Then π̂n(T ) ∈ [En−1], so by (ii) for n − 1, there is a
sequence Si ∈ [En−1]∗ and Yi ∈ MALGµn−1 such that

⊔
i Yi = Y and π̂n(T ) =⊔

i(Si|Yi). Let then, using (i) for n, Ti ∈ [En]∗ be such that π̂n(Ti) = Si. Then
π̂n(T ) =

⊔
i(π̂n(Ti)|Yi), so π̂n(T−1

i T )|Yi = id|Yi. Let Xi = π−1
n (Yi) ∈ An.

Then for any A ⊆ Xi, A ∈ An, T−1
i T (A) = A, so, in particular, T−1

i T (Xi) =
Xi. Since X =

⊔
iXi, we have that U =

⊔
i(T
−1
i T ) ∈ [E]. Also U(A) = A

for A ∈ An, so U ∈ [En]An ⊆ [En]∗. Now for each x ∈ Xn, there is i such
that U(x) = T−1

i T (x), i.e., T (x) = TiU(x). Since TiU ∈ [En]∗, this shows
that T ∈ [F [En]∗ ], thus En ⊆ F [En]∗ ⊆ En, so (ii) holds.

We now prove (i) for n. Clearly π̂n([En]∗) ⊆ [En−1]∗. Conversely, if
S ∈ [En−1]∗, let T ∈ [En]An be such that π̂n(T ) = S. Since S keeps invariant
the σ-subalgebras An−1,0, . . . ,An−1,n−2, clearly T keeps invariant

An,0 = π−1
n (An−1,0), . . . ,An,n−2 = π−1

n (An−1,n−2),An,n−1,

so T ∈ [En]∗.

Consider now the inverse limit (X∞, µ∞) of the sequence (Xn, µn), πn.
Denote by π∞,n : (X∞, µ∞) → (Xn, µn) the associated maps, so that πn,m ◦
π∞,n = π∞,m for n ≥ m. Thus X∞ consist of all chains (xn) ∈

∏
nXn with

πn(xn) = xn−1, for n ≥ 1, π∞,n((xn)) = xn and MALGµ∞ is the smallest
σ-algebra containing the σ-subalgebras

A∞,0 = π−1
∞,0(MALGµ0) ⊆ A∞,1 = π−1

∞,1(MALGµ1) ⊆ . . .

We will show next that there is a countable group Γ and a measure
preserving action a∞ ∈ A(Γ, X∞, µ∞), which keeps all the A∞,n invariant,
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thus factors to a measure preserving action π̂∞,n(a∞) = an ∈ A(Γ, Xn, µn),
which has moreover the property that Ean = En. Then if we put Ea∞ =
E∞, it follows that the factor of E∞ via π∞,n is exactly En and the appro-
priate diagrams commute.

To construct a∞, let, for each m, Tm0 , Tm1 , . . . , Tmi , . . . be in [Em]∗ and
generate Em (using Proposition 17.8). For n ≤ m, let Tm,ni = π̂m,n(Tmi )
and for n > m choose Tm,ni ∈ [En]∗ such that π̂n+1(Tm,n+1

i ) = Tm,ni for
n ≥ m (again using Proposition 17.8). Finally let Tm,∞i = (Tm,ni )n∈N ∈
Aut(X∞, µ∞), where Tm,∞i ((xn)) = Tm,ni (xn). Note that Tm,∞i leaves each
A∞,n invariant and π̂∞,n(Tm,∞i ) = Tm,ni .

Let Γ be the free group with infinitely many generators gi,m and let
it act in a measure preserving way on (X∞, µ∞) to produce a∞, where
ga∞i,m = Tm,∞i . If π̂∞,n(a∞) = an, then gani,n = π̂∞,n(T n,∞i ) = T n,ni = T ni , so
Ean = En and thus the factor ofE∞ by π∞,n is equal toEn, which completes
the proof.

Although E∞ is an “upper bound" for the inverse system (En), it is not
clear how to construct a canonical upper bound, i.e., an inverse limit in the
categorical sense for this inverse system.

Next we show that hyperfiniteness is preserved under factoring.

Proposition 17.9. IfE is hyperfinite and F is a factor ofE, then F is hyperfinite.

Proof. Let π : (X,µ) → (Y, ν) be the factor map and let a ∈ A(Γ, X, µ) be
such that Ea = E, π̂(a) = b and Eb = F . For y ∈ Y , let Xy = {x ∈
X : π(x) = y} and let µy be the probability measure on Xy associated with
the measure disintegration of π. Since E is amenable, let λn : E → [0, 1] be
Borel functions such that ∑

x′Ex

λn(x, x′) = 1,

||λnx − λnu||1 → 0, for xEu, as n→∞
(see [KM, Section 9]).

Define now ρn : F → [0, 1] by

ρn(y, y′) =

∫
Xy

∑
xEx′,π(x′)=y′

λn(x, x′) dµy(x) ∈ [0, 1].

We will show that ∑
y′Fy

ρn(y, y′) = 1,
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||ρny − ρnv ||1 → 0, for yFv, as n→∞,

which implies that F is amenable, thus hyperfinite (see [KM, Section 10]).
The first equality is easy to check, so we verify the second. Fix γ ∈ Γ

such that γ · y = v. Then γ ·Xy = Xv and γ · µy = µv. Now for each y′Fy,
we have

ρny (y′) =

∫
Xy

∑
xEx′,π(x′)=y′

λn(x, x′) dµy(x),

and
ρnv (y′) =

∫
Xv

∑
xEx′,π(x′)=y′

λn(x, x′) dµv(x),

so
ρnv (y′) =

∫
Xy

∑
xEx′,π(x′)=y′

λn(γ · x, x′) dµy(x).

It follows that

||ρny − ρnv ||1 ≤
∫
Xy

||λnx − λnγ·x||1 dµy(x)→ 0,

by Lebesgue Dominated Convergence.

This result can be used, along with an ultraproduct argument, to give
a different proof of a strengthening concerning weak containment of ac-
tions, due to Robin Tucker-Drob (private communication). We first need a
lemma, which extends Proposition 5.7 of [CKT] and Corollary 3.1 of [AE].
Below we let a ' b ⇐⇒ a � b & b � a denote the weak equivalence of
the actions a, b and let a v b denote that the action a is a factor of the action
b.

Lemma 17.10. Let Γ,∆ be infinite countable groups, a, b ∈ A(Γ, X, µ), c ∈
A(∆, X, µ) be such that a � b and Eb ⊆ Ec. The there are d ∈ A(Γ, X, µ),
e ∈ A(∆, X, µ) such that b ' d, c ' e, a v d and Ed ⊆ Ee. Similarly replacing
Eb ⊆ Ec, Ed ⊆ Ee by Eb = Ec, Ed = Ee, resp.

Proof. Let U be a non-principal ultrafilter on N and consider the ultra-
powers aU , bU , cU on the space (XU , µU). For each g ∈ Γ, h ∈ ∆, let Ag,h
be a Borel set such that for each g,

⋃
hAg,h = X and gb|Ag,h = hc|Ag,h.

These can be found as Eb ⊆ Ec. Then, using Proposition 16.1, we have
that for each g,

⋃
h[Ag,h]U = XU and gbU |[Ag,h]U = hcU |[Ag,h]U . Then as in
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[CKT, Sections 4.2 and 5.2] we can find an appropriate countably gener-
ated, non-atomic, invariant under bU , cU , σ-subalgebra B of the measure
algebra of (XU , µU), which contains all the sets [Ag,h]U and is such that if
d ∈ A(Γ, X, µ), e ∈ A(∆, X, µ), resp., are the factors of bU , cU corresponding
to B, then b ' d, c ' e and a v d. Since B also contains the sets [Ag,h]U , it
follows that Ed ⊆ Ee.

The proof in the case of equality instead of inclusion, as in the last
statement of this lemma, is similar.

Corollary 17.11 (Tucker-Drob). Let Γ be an infinite countable group and a, b ∈
A(Γ, X, µ) be such that a � b. If Eb is hyperfinite, then Ea is hyperfinite.

Proof. Apply Lemma 17.10 with ∆ = Z and use Proposition 17.9.

Remark 17.12. Standard factors of the ultraproduct
∏

n Fn/U (which was
defined in Chapter 16), can be constructed as in the proof of Theorem 15.10.

17.2 Class-bijective factors

We now consider the following notion that has been considered in the lit-
erature, see Feldman-Sutherland-Zimmer [FSZ]). A measure preserving
countable Borel equivalence relation F on (Y, ν) is called a class-bijective
factor of a measure preserving countable Borel equivalence relation E on
(X,µ) if there is Borel π : (X,µ)→ (Y, ν) with π∗µ = ν, π : E → F a homo-
morphism (i.e., xEx′ ⇒ π(x)Fπ(x′)) such that moreover for each E-class
[x]E the map π is a bijection of [x]E with [π(x)]F . In this case we also call
the map π class-bijective. For example, let E be measure preserving on
(X,µ), A ⊆ MALGµ a σ-subalgebra which generates E, π : (X,µ)→ (Y, ν)
the corresponding map, a ∈ A(Γ, X, µ) with Ea = E leaving A invariant,
π̂(a) = b and F = Eb. If b is free, then F is a class-bijective factor of E.

Proposition 17.13. A class-bijective factor is a factor in the sense of Section 17.1.

Proof. Let b ∈ A(Γ, Y, ν) be such that Eb = F . Define then a ∈ A(Γ, X, µ)
by

ga(x) = x′ ⇐⇒ xEx′ & gb(π(x)) = π(x′).

Then π(ga(x)) = gb(π(x)). Let A be the σ-subalgebra of MALGµ corre-
sponding to π. Clearly a preserves A, since ga(π−1(A)) = π−1(gb(A)), for
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any A ∈ MALGν , and Ea = E while π̂(a) = b, so F is a factor in the
preceding sense.

Thus a class-bijective factor is a factor π for which Eπ = id. In fact
it turns out that the class-bijective factors of a measure preserving count-
able Borel equivalence relation E on (X,µ) correspond exactly to smooth
equivalence relations Rπ that commute with E and are orthogonal to E in
the sense that Eπ = Rπ∩E = id. Indeed, if F on Y is a class-bijective factor
of E via π, then E,Rπ commute and Eπ = id.

Conversely if E,Rπ commute and Eπ = id, define the following rela-
tion on Y :

xFy ⇐⇒ ∃x′∃y′(x′Ey′ ∧ π(x′) = x ∧ π(y′) = y).

Then F is a equivalence relation on Y (transitivity follows from the com-
mutativity of E,Rπ). It is clearly analytic. It is also coanalytic, since, by the
commutativity of E,Rπ, we also have:

xFy ⇐⇒ ∀x′(π(x′) = x =⇒ ∃y′(x′Ey′ ∧ π(y′) = y)).

Thus F is Borel. Moreover the map π is bijective from [x]E to [π(x)]F (using
that Eπ = id), and so, in particular, F is a countable equivalence relation.
Finally, it is easy to verify that F is measure preserving.

Since [Eπ] = [E]A we also immediately have:

Proposition 17.14. Assume that E on (X,µ) is generated by the σ-subalgebra
A ⊆ MALG with corresponding map π : (X,µ) → (Y, ν) and factor F . Then π
is class-bijective iff [E]A is trivial, i.e., π̂ is an isomorphism of [E]A with [F ].

We will next characterize which factors are class-bijective. Below for
each T ∈ Aut(X,µ), we let as usual supp(T ) = {x : T (x) 6= x}.

Proposition 17.15. Assume that E on (X,µ) is generated by the σ-subalgebra
A ⊆ MALG with corresponding map π : (X,µ) → (Y, ν) and factor F . Then π
is class-bijective iff for each T ∈ [E]A, supp(T ) = π−1(supp(π̂(T ))).

Proof. First note that for any T ∈ [E]A, we have

π̂(T )(π(x)) 6= π(x) ⇐⇒ π(T (x)) 6= π(x),

so
π−1(supp(π̂(T )) ⊆ supp(T ).
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Now assume that π is class-bijective. Let T ∈ [E]A and T (x) 6= x. Then
as π is 1-1 on [x]E , π̂(T )(π(x)) 6= π(x), so π−1(supp(π̂(T )) ⊇ supp(T ).

Conversely, assume that π−1(supp(π̂(T )) ⊇ supp(T ) and let x 6= x′ ∈
[x]E . Then for some T ∈ [E]A we have T (x) = x′, so x ∈ supp(T ), thus
π(x) ∈ supp(π̂(T )), so π(x′) = π(T (x)) = π̂(T )(π(x)) 6= π(x), i.e., π is 1-1 on
[x]E .

From Proposition 17.15, and using its notation, we see that if π is class-
bijective, then for T ∈ [E]A we have that supp(T ) ∈ A. Conversely this
last condition almost characterizes class-bijective factors. Recall that π is
class-bijective iff card([x]Eπ) = 1, for all x.

Proposition 17.16. Assume that E on (X,µ) is generated by the σ-subalgebra
A ⊆ MALG with corresponding factor map π : (X,µ) → (Y, ν). If for every
T ∈ [E]A, supp(T ) ∈ A, then card([x]Eπ) ≤ 2, for all x.

Proof. Assume the conclusion fails, towards a contradiction. Let A∞ =
{x : card([x]Eπ) = ∞} and A≥3 = {x : ∞ > card([x]Eπ) ≥ 3}. Then one of
these two sets has positive measure.

Case 1. µ(A∞) > 0. Let then B ⊆ A∞ be a Borel set such that both B
and A∞ \B meet every Eπ|A∞ class. The by [K, 4.10] there is T0 ∈ [Eπ|A∞]
with supp(T0) = B. Extend T0 to T ∈ [Eπ] = [E]A by letting T (x) = x
for x /∈ A∞. Then supp(T ) = B but B is not Eπ-invariant, so B /∈ A, a
contradiction.

Case 2. µ(A≥3) > 0. Let then C ⊆ A≥3 be a Borel selector for Eπ|A≥3.
Then µ(C) > 0. Define T1 ∈ [Eπ|A≥3] so that x ∈ C =⇒ (T1(x) 6=
x ∧ T 2

1 (x) = x) and x /∈ (C ∪ T1(C)) =⇒ T1(x) = x. Extend T1 to
T ∈ [Eπ] by letting T (x) = x if x /∈ A≥3. Since supp(T ) = C ∪ T (C) is not
Eπ-invariant, so not in A, we again have a contradiction.

That the conclusion of Proposition 17.16 cannot be strengthened to π
being class-bijective can be seen from the following example. Let E on
(Y, ν) be given, let X = Y × {0, 1}, with the product measure µ, and let
(x, i)E(y, j) ⇐⇒ xFy. Then for π : X → Y the projection function, the hy-
pothesis of Proposition 17.16 is satisfied but π is clearly not class-bijective.

Class-bijective factors can be also characterized, in the ergodic case,
in terms of skew products. Let F be a measure preserving equivalence
relation on (Y, ν). Let (Z, σ) be a standard, not necessarily non-atomic,
measure space and let α : F → Aut(Z, σ) be a Borel cocycle, i.e., α(x, z) =
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α(y, z)α(x, y) for xFyFz (in an F -invariant set of measure 1). Let X =
Y × Z, µ = ν × σ and define the skew product equivalence relation E on
X , in symbols

E = F ×α (Z, σ),

by
(x, z)E(y, w) ⇐⇒ xFy & α(x, y)(z) = w.

Let p : X → Y be the projection map p(y, z) = y. Let a ∈ A(Γ, Y, ν) be such
that Ea = F . Let also α∗(g, y) = α(y, ga(y)). Then if b = a ×α∗ (Z, σ) is the
skew product action (see [K, Section 10, (E)]), we have Eb = E and since
p̂(b) = a, it follows that F is the factor of E corresponding to p. Moreover
it is easy to see that it is class-bijective.

Conversely, the proof of Rokhlin’s Skew Product Theorem (see Glasner
[Gl], 3.18) shows that if F on (Y, ν) is a class-bijective factor of an ergodic
E on a space (X,µ) via π : (X,µ) → (Y, ν), then there is a standard, not
necessarily non-atomic, space (Z, σ), a Borel cocycle α : F → Aut(Z, σ)
and an isomorphism ϕ : (X,µ)→ (Y ×Z, ν×σ) of E with F ×α (Z, σ) such
that p ◦ ϕ = π.

If F on (Y, ν) is a (class-bijective) factor ofE on (X,µ) via π, we say that
E is a (class-bijective) extension of E via π. Given two such extensions
E,E ′ of F on (X,µ), (X ′, µ′) via π, π′, we say that they are isomorphic if
there is an isomorphism ϕ : (X,µ)→ (X ′, µ′) of E with E ′ with π′ ◦ ϕ = π.
Thus we have shown the following:

Theorem 17.17. Let F be an ergodic measure preserving equivalence relation on
(Y, ν). Let E be an ergodic extension of F on (X,µ) via π : (X,µ) → (Y, ν).
Then the following are equivalent:

(i) E, π is a class-bijective extension of F .
(ii) E, π is isomorphic to a skew product extension of F .

Concerning the question of inverse limits for systems ((Xn, µn), πn, En)
we note that if we restrict ourselves to the category of class-bijective fac-
tors, i.e., if in this system every factor is class-bijective, then it is easy to see
that there is indeed a canonical inverse limit E∞ = lim←−nEn on (X∞, µ∞),
given by

(xn)E∞(yn) ⇐⇒ ∀n(xnEnyn).

This follows from the “unique lifting property" given in Proposition 17.14,
which implies that if a0 ∈ A(Γ, X0, µ0) is such that Ea0 = E0, then there
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are unique an ∈ A(Γ, Xn, µn) with π̂n,m(an) = am for n ≥ m and a∞ ∈
A(Γ, X∞, µ∞) with π̂∞,n(a∞) = an such that Ean = En, Ea∞ = E∞.

The following is an interesting open problem:

Problem 17.18. If E is treeable and F is a class-bijective factor of E, is F tree-
able?

Note that a positive answer implies that every countable treeable group
Γ is strongly treeable. (Recall that a countable group Γ is treeable if there
is some free a ∈ A(Γ, X, µ) with Ea treeable, while it is strongly treeable
if this holds for every free a ∈ A(Γ, X, µ).) Indeed let a ∈ A(Γ, X, µ) be
free with Ea treeable and consider any free b ∈ A(Γ, Y, ν). Let a × b be
the product of a, b. Then Ea×b is a class-bijective extension of Ea, so it is
treeable. Also Eb is a class-bijective factor of Ea×b, so, if the answer to
Problem 17.18 is positive, Eb is treeable.

17.3 Other notions of factors

In the preceding we have considered two categories whose objects are
triples (X,µ,E), withE a countable measure preserving Borel equivalence
relation on (X,µ).

(1) In the first category, the morphisms π : (X,µ,E) → (Y, ν, F ) are
measure preserving Borel maps π : (X,µ)→ (Y, ν) with π : E → F a class-
bijective homomorphism, i.e., for each x ∈ X , π is a bijection of [x]E with
[π(x)]E . (The notation π : E → F , which more accurately should be written
as π × π : E → F , indicates that π is a homomorphism of E into F .)

(2) In the second category, the morphisms π : (X,µ,E) → (Y, ν, F )
are measure preserving Borel maps π : (X,µ) → (Y, ν) such that if A ⊆
MALGµ is the σ-algebra associated to π, then [E]A generatesE and π̂([E]A)
generates F (or equivalently there is Borel action a of a countable group Γ
preserving A, such that Ea = E and Eπ̂(a) = F ).

Robin Tucker-Drob (unpublished) considered the following two addi-
tional categories with the same objects (X,µ,E).

(3) In the third category, the morphisms π : (X,µ,E) → (Y, ν, F ) are
measure preserving Borel maps π : (X,µ)→ (Y, ν) with π : E → F a class-
surjective homomorphism, i.e., for each x ∈ X , π is a surjection of [x]E
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with [π(x)]E . Note that a class-surjective homomorphism is a morphism
in the sense of the second category (i.e., that of Section 17.1) iff the homo-
morphism π̂ : [E]A → [F ] is surjective. One direction follows from Propo-
sition 17.1. For the other direction, recall that xRπy ⇐⇒ π(x) = π(y)
and Eπ = E ∩ Rπ. Let S0, S1, · · · ∈ [F ] generate F and let T0, T1, · · · ∈ [E]A

be such that π̂(Ti) = Si. Let also U0, U1, · · · ∈ [Eπ] generate Eπ. Then
T0, T1, . . . , U0, U1, . . . generate E and of course π̂(T0), π̂(T1), . . . generate F .

(4) Finally, in the fourth category, the morphisms

π : (X,µ,E)→ (Y, ν, F )

are measure preserving Borel maps π : (X,µ) → (Y, ν) with π : E → F a
surjective homomorphism (i.e., (π × π)(E) = F ).

Note that the categories above have the same objects but increasingly
more general morphisms.

17.4 An application to soficity

We start with the following proposition.

Proposition 17.19. Let π : E → F be a class-surjective homomorphism. Assume
that F is treeable. Then the following are equivalent:

(i) F is a factor of E via π.
(ii) There is Borel E ′ ⊆ E such that F is a class-bijective factor of E ′ via π

and E = E ′ ∨ Eπ.

Proof. (ii) =⇒ (i): Let T0, T1, · · · ∈ [Eπ] generate Eπ. If A is the σ-algebra
corresponding to π, clearly Tn ∈ [E]A. Let also T ′0, T

′
1, · · · ∈ [E ′]A ⊆ [E]A

generate E ′ with π̂(T ′0), π̂(T ′1), . . . generating F . Then T0, T1, . . . , T
′
0, T

′
1, . . .

generate E. Note that we have only used that F is a factor of E ′ here.
(i) =⇒ (ii): Fix a Borel treeing of F (i.e, a Borel acyclic graph whose

connected components are the F -classes). Using a Borel edge coloring of
this treeing with countably many colors (see [KST, Proposition 4.10]), we
can find a (finite or infinite) sequence S0, S1, . . . of Borel involutions gen-
erating this treeing, so that if m 6= n and Sm(x) = y with x 6= y, then
Sn(x) 6= y.

By Proposition 17.3, let Tn ∈ [E]A be an involution such that π̂(Tn) =
Sn. We can clearly assume that Tn is chosen so that Tn(x) = x if Sn(π(x)) =
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π(x). Let E ′ be the equivalence relation generated by the Tn, so that E ′ ⊆
E. We will show that π is a class-bijective homomorphism of E ′ to F .

Clearly π is a class-surjective homomorphism of E ′ to F . To check that
it is class-bijective, let x′E ′y′, x′ 6= y′ but, towards a contradiction, π(x′) =
π(y′). Let n be least such that we can find Ti1 , Ti2 , . . . , Tin with Ti1 ◦Ti2 ◦· · ·◦
Tin(x′) = y′ and therefore Si1 ◦ Si2 ◦ · · · ◦ Sin(π(x′)) = π(y′), contradicting
the acyclicity of the treeing.

Finally E = E ′ ∨ Eπ follows from Proposition 17.2.

Definition 17.20. Let F be a countable measure preserving Borel equivalence
relation on (Y, ν). We say that F is unfoldable if for any E on (X,µ) which
factors to F via π : (X,µ) → (Y, ν), there is E ′ ⊆ E such that F is a class-
bijective factor of E ′ via π.

Thus every treeable equivalence relation is unfoldable. For the next
result recall the notion of a sofic equivalence relation introduced in [EL].
See also [CKT, Definition 10.1] for an alternative description due to Ozawa
that we will use below.

Proposition 17.21. Every unfoldable equivalence relation is sofic.

Proof. First notice that every F is a factor of an E that is given by a free
action of F∞. Indeed let a be an action of F∞ such that F = Ea and let b be
a free action of F∞. Then take E = Ea×b. Since E is given by a free action
of the group F∞, E is sofic (this follows from the fact that F∞ has property
MD – see the first two paragraphs of [CKT, Section 10.3])

Assume now that F is unfoldable and let E ′ ⊆ E be such that F is a
class-bijective factor ofE ′. Then clearly [[E ′]] ⊆ [[E]] and, since F is a class-
bijective factor of E ′, there is a canonical embedding of [[F ]] into [[E ′]] and
thus into [[E]], so, by the definition of soficity, F is sofic.

The combination of Proposition 17.19, Proposition 17.21 gives then a
new proof of the following result of Elek-Lippner (another proof is also
given in [CKT, Section 10.3]).

Corollary 17.22 (Elek-Lippner, [EL]). Every treeable equivalence relation is
sofic.
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17.5 Relative hyperfiniteness

We consider here the following question:

Suppose E is hyperfinite and generated by a non-atomic σ-subalgebra
A, i.e., E is generated by a countable group of transformations that are
A-measurable (i.e., preserveA). Can we find a singleA-measurable trans-
formation that generates E, i.e., is E hyperfinite relative to A?

The answer is in general negative as the following example shows:
Consider (2N, µ), where µ is the usual product measure, and the equiva-
lence relation E0 of eventual equality. Let E = E0 × E0 be the product
equivalence relation, let π : 2N × 2N → 2N be the first projection and A the
corresponding σ-algebra. Clearly E is generated by A. Suppose, towards
a contradiction, that there is a T which preservesA and generates E. Then
T sends vertical lines (i.e., sets of the form π−1(x)) to vertical lines and
π̂(T ) generates E0, so it is aperiodic, thus T fixes no vertical line. But in
every vertical line there are distinct E-inequivalent elements, so T cannot
generate E.

The following result provides the next possible answer.

Theorem 17.23. LetE be hyperfinite and generated by a non-atomic σ-subalgebra
A. Then

(i) There are T1, T2 ∈ [E]A that generate E.
(ii) If E is ergodic, then there is T ∈ [E]A that generates E iff the factor

corresponding to A is class-bijective.

Proof. (i) Let π : X → Y be the map associated to A and F the correspond-
ing factor equivalence relation on Y . Then, by Proposition 17.9, F is hy-
perfinite. Say F = ES , where S ∈ [F ]. Let T1 ∈ [E]A be such that π̂(T1) = S
and let E ′ = ET1 . Then by Proposition 17.2, E = E ′ ∨ Eπ. Clearly Eπ is
generated by some T2 ∈ [E]A, so E is generated by T1, T2.

(ii) If the factor corresponding to A is class-bijective, then, since the
factor equivalence relation F is hyperfinite, clearly there is T ∈ [E]A that
generates E. Conversely, assume that there is T ∈ [E]A that generates E
and, towards a contradiction, that Eπ 6= id. Then for a positive measure
set of x, there is n 6= 0, n ∈ Z such that π(T n(x)) = π(x). Now π̂(T ) =
S generates F and Sn(π(x)) = π(x), therefore [π(x)]F is finite. But F is
ergodic, so aperiodic, a contradiction.
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Ben Miller raised the following questions:

Problem 17.24. i) Let E be a hyperfinite equivalence related generated by a non-
atomic σ-subalgebraA. Is there is an increasing sequenceE0 ⊆ E1 ⊆ . . . of finite
equivalence relations which are generated by A with E =

⋃
nEn?

ii) What if we assume the stronger hypothesis that E = ET , for some T ∈
[E]A?

We have the following result which provides a weaker version of a
positive answer to part i) of Problem 17.24 and a positive answer to part
ii)..

Proposition 17.25. i) Let E be hyperfinite and generated by a non-atomic σ-
subalgebraA. Then there is an increasing sequenceE0 ⊆ E1 ⊆ . . . of equivalence
relations, which are generated byA, withE =

⋃
nEn and for each n an increasing

sequence En,0 ⊆ En,1 ⊆ . . . of finite equivalence relations which are generated by
A such that En =

⋃
mEn,m.

In particular, E is the limit (in the topology of S(E)) of a sequence of finite
subequivalence relations which are generated by A.

ii) If moreover E = ET , for some T ∈ [E]A, then then there is an increasing
sequence E0 ⊆ E1 ⊆ . . . of finite equivalence relations, which are generated by
A, with E =

⋃
nEn.

Proof. i) Consider the factor map π associated withA and the factor equiv-
alence relation F . Then F is hyperfinite, by Proposition 17.9, so we can
write it as F =

⋃
n Fn, with F0 ⊆ F1 ⊆ . . . finite equivalence relations. Let

also, by Proposition 17.19, E ′ ⊆ be such that F is a class-bijective factor of
E ′ via π and E = E ′ ∨ Eπ. Let xF ′ny ⇐⇒ xE ′y & π(x)Fnπ(y) and put
En = F ′n ∨ Eπ. Clearly En is generated by A, increasing, and

⋃
nEn = E.

Fix now n in order to define En,m. Let B be a Borel selector for Fn, i.e.,
a Borel set meeting every Fn-class in exactly one point. For each Fn-class
C let yC be the point of B in C. Write also Eπ =

⋃
mEπ,m, with Eπ,m finite

and increasing. Clearly each Eπ,m is generated by A. Define now En,m as
follows:

Given x with π(x) = yC and any y ∈ C, there is a unique point θy(x)
such that π(θy(x)) = y and xF ′nθy(x). Define now the equivalence relation
Eπ,n,m by letting zEπ,n,mw iff zEπw and ifC is the Fn-class of π(z) = π(w)(=
y), then there are z′, w′ with z′Eπ,mw′ and θy(z

′) = z, θy(w
′) = w.

Clearly Eπ,n,m is finite and, since it is contained in Eπ, it is generated by
A. Finally let En,m = Eπ,n,m ∨ F ′n. This works.
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ii) Let π, F be as in i) and let S = π̂(T ). Denote by P the Borel set which
is the union of the set of finite F -classes and let Q be the complement of P .
Let A = π−1(P ), B = π−1(Q). These are both in A. Clearly F |Q is a class-
bijective factor of E|B, so since F |Q is the union an increasing sequence
of finite equivalence equivalence relations, E|B is the union an increasing
sequence of finite equivalence equivalence relations, which are generated
by A|B. It is thus enough to show that E|A is the union an increasing
sequence of finite equivalence equivalence relations, which are generated
by A|A. This can be done exactly as in the construction of the En,m from
Fn in part i).

One can also ask if a kind of converse of the Problem 17.24, ii) is true:
If there is an increasing sequence E0 ⊆ E1 ⊆ . . . of finite equivalence
relations, which are generated by A, with E =

⋃
nEn, is there T ∈ [E]A

such that E = ET ? The example given before Theorem 17.23 shows that
this fails in general.

Remark 17.26. LetE be a measure preserving countable Borel equivalence
relation on (X,µ). Then of course the following are equivalent:

a) E = ET for some T ∈ Aut(X,µ),
b) E is the union of an increasing sequence of finite Borel equivalence

relations.
The preceding show that when relativized to a σ-subalgebra A, a) im-

plies b) but not vice versa.

17.6 Relative cost

Let E be a measure preserving countable Borel equivalence relation on
(X,µ) and let A be a non-atomic σ-subalgebra of MALG such that E is
generated by A. Let π : X → Y be the associated to A factor map and F
the factor equivalence relation. Define the relative to A full pseudogroup
of E, in symbols [[E]]A, as the set of all partial Borel bijections θ ∈ [[E]],
θ : A → B, such that A,B ∈ A, and for any A′ ⊆ A,B′ ⊆ B,A′, B′ ∈ A,
we have θ(A′), θ−1(B′) ∈ A. If θ ∈ [[E]]A, θ : A → B, and A = π−1(C), B =
π−1(D), then, as in Section 17.1, we have an element π̂(θ) ∈ [[F ]] such
that π̂(θ) : C → D and π̂(θ)(π(x)) = π(θ(x)), for x ∈ A. Moreover, as in
the proof of Proposition 17.1, the map π̂ : [[E]]A → [[F ]] is surjective and
preserves composition.
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Next define the cost of E relative to A by

CA(E) = inf{
∑
i∈I

µ(Ai) : θi : Ai → Bi ∈ [[E]]A, (θi)i∈I generates E}

(where I varies over countable index sets).
Clearly CA(E) ≥ C(E). Also notice that if (θi)i∈I generates E, then

(π̂(θi))i∈I generates F , therefore CA(E) ≥ C(F ).
Below we say that an equivalence relation E on (X,µ) is finitely gen-

erated if it is of the form E = ET1,...,Tn , for some T1, . . . , Tn ∈ Aut(X,µ).

Theorem 17.27. Let E be a measure preserving countable Borel equivalence re-
lation on (X,µ) and letA be a non-atomic σ-subalgebra of MALG that generates
E. Let π : (X,µ) → (Y, ν) be the associated to A factor map and F the factor
equivalence relation. If F is aperiodic (e.g., if E is ergodic) and Eπ is finitely
generated, then CA(E) = C(F ).

Proof. We have already seen that CA(E) ≥ C(F ). If C(F ) = ∞, then
CA(E) = C(F ) = ∞. So we can assume that C(F ) < ∞. We will show
then that CA(E) ≤ C(F ).

Let ε > 0 and find a graphing (ηi)i∈I of F (where ηi ∈ [[F ]]) such that∑
i ν(dom(ηi)) < C(F ) + ε. Let θi ∈ [[E]]A be such that π̂(θi) = ηi. Then∑
i µ(dom(θi)) < C(F ) + ε.
Let E ′ ⊆ E be the equivalence relation generated by (θi)i∈I . We claim

that E = E ′ ∨ Eπ. Indeed let xEy. Then π(x)Fπ(y), so there are i1, . . . , in
such that η±1

i1
◦ · · · ◦ η±1

in
(π(x)) = π(θ±1

i1
◦ · · · ◦ θ±1

in
(x)) = π(y), so θ±1

i1
◦ · · · ◦

θ±1
in

(x)Eπy.
Since F is aperiodic, fix a Borel complete section B of F with ν(B) < ε,

so that if A = π−1(B), then µ(A) < ε. Let

EA = Eπ|A t id|(X \ A).

Since A is Rπ-invariant, so Eπ-invariant, EA is generated by the maps
T1|A, . . . , Tn|A, which belong to [[EA]]A ⊆ [[E]]A (note that Ti(C) = C, for
any C ∈ A).

We next claim that E = E ′ ∨ EA. Indeed it is enough to show that
Eπ ⊆ E ′ ∨ EA. Let xEπy. Since B is a complete section of F , there are
i1, . . . , in such that η±1

i1
◦ · · · ◦ η±1

in
(π(x)) ∈ B, so θ±1

i1
◦ · · · ◦ θ±1

in
(x) ∈ A. Also

θ±1
i1
◦ · · · ◦ θ±1

in
(x)Eπθ

±1
i1
◦ · · · ◦ θ±1

in
(y) ∈ A, thus xE ′θ±1

i1
◦ · · · ◦ θ±1

in
(x)EAθ

±1
i1
◦

· · · ◦ θ±1
in

(y)E ′y.
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We now have that E is generated by the θi, i ∈ I , and T1|A, . . . , Tn|A
which are all in [[E]]A and the sum of the measure of their domains is
< C(F ) + (n+ 1)ε, thus, letting ε→ 0, we have that CA(E) ≤ C(F ).

Corollary 17.28. Let E,A, π, F be as in Theorem 17.27. Then if Eπ is hyperfi-
nite, CA(E) = C(F ). In particular, if E is ergodic hyperfinite, then CA(E) = 1.

Although for E ergodic hyperfinite there might not be a single auto-
morphism T ∈ [E]A that generates E (see Theorem 17.23), Corollary 17.28
shows that CA(E) is still equal to 1.

It turns out that the hypothesis that Eπ is finitely generated is needed
in Theorem 17.27. This can be seen from the following example:

Let N be a non-trivial, normal subgroup of F2 of infinite index, so that
N is a free group of infinite rank. Let Γ = F2/N . Let b′ be a free action in
A(Γ, Y, ν) and then let b ∈ A(F2, Y, ν) be the (non-free) action of F2 induced
by b′ and the surjective homomorphism of F2 onto Γ. Then for each y ∈ Y
the stabilizer of y in the action b is equal to N . Let now c be a free action in
A(F2, Z, η) and let a = b× c, which is a free action of F2 on (X = Y ×Z, µ =
ν × η). Let π(y, z) = y and let A be the associated σ-subalgebra. Letting
E = Ea, F = Eb, all the conditions of Theorem 17.27 are satisfied, except
for Eπ being finitely generated. Indeed notice that Eπ is generated by the
free action ofN onX , so has infinite cost, thus cannot be finitely generated.
We will now see that the conclusion of Theorem 17.27 fails. First notice
that 2 = C(E) ≤ CA(E) ≤ 2, since the two generators of F2 (acting on
X), say T1, T2, are in [E]A. Thus if the conclusion of Theorem 17.27 was
true, we would have C(F ) = 2. Consider then the graphing of F given
by π̂(T1), π̂(T2). It has cost 2, so it attains the cost of F , thus it is a treeing
(Gaboriau, see, e.g., [KM, 19.1]), which implies that the action of F2 on Y
is free, a contradiction.

We next consider the question of when the infimum in the definition of
CA(E) is attained.

Proposition 17.29. Let E,A, π, F be as in Theorem 17.27. Then
i) If π is class-bijective and F is treeable, the infimum in the definition of

CA(E) is attained.
ii) Conversely, if the infimum in the definition of CA(E) is attained and F has

finite cost, F is treeable and π is class-bijective.

Proof. i) Note that if (ηi) is a treeing of F , which therefore attains the cost
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of F (Gaboriau, see, e.g., [KM, 27.10]), and π̂(θi) = ηi, with θi ∈ [[E]]A, then
(θi) attains CA(E) = C(F ).

ii) Assume now (θi) attains CA(E) = C(F ). Then if π̂(θi) = ηi, (ηi)
generates F and attains the cost of F , so it is a treeing of F , since F has
finite cost (Gaboriau, see, e.g., [KM, 19.1]). If now Eπ 6= id, towards a
contradiction, let xEπy, x 6= y. Then there are i1, . . . , in such that θ±1

i1
◦ · · · ◦

θ±1
in

(x) = y, thus η±1
i1
◦ · · · ◦ η±1

in
(π(x)) = π(x) = π(y), a contradiction.

In particular, using also Proposition 17.9, if E is ergodic hyperfinite,
then the infimum in the definition of CA(E) = 1 is attained iff π is class-
bijective.

Let E be a measure preserving countable Borel equivalence relation.
We define the cost spectrum of E, in symbols CSp(E), as the set of all
CA(E), where A varies over all the non-atomic σ-subalgebras of MALG
such that E is generated by A. (Thus CSp(E) ⊆ [C(E),∞].) Clearly
the cost spectrum is an invariant of isomorphism among equivalence rela-
tions. It might therefore be interesting to study its structure.

For example, if E is ergodic hyperfinite, then CSp(E) = {1}. Is it true
that if E is ergodic, non-hyperfinite but has cost 1, then CSp(E) 6= {1}?
If in fact for every ergodic, non-hyperfinite E of cost 1, one has an A, π
such that actually Eπ is finitely generated and CA(E) > 1, then it follows
that for every ergodic, non-hyperfinite E there is a subequivalence rela-
tion induced by a free action of F2 (which answers positively [KM, 28.14]).
Indeed if that is the case, every ergodic, non-hyperfinite E would have a
factor F of cost > 1, so that by [KM, 28.8] it would have a subequivalence
relation induced by a free action of F2, which then could be lifted to such
an action of F2 whose corresponding equivalence relation is included in
E.

It is actually easy, using Theorem 17.27, to construct examples of er-
godic, non-hyperfinite E of cost 1, whose cost spectrum contains any fi-
nite set of reals > 1. Given 1 < c1 < · · · < cn, simply take ergodic, finitely
generated equivalence relations E1, . . . , En with C(Ei) = ci (Gaboriau, see,
e.g., [KM, page 125, line 3]) and let E = E1 × · · · × En. Then E has cost
1 (Gaboriau, see, e.g., [KM, 24.9]) but, using Theorem 17.27 and consid-
ering the factors corresponding to the projection functions, we see that
CSp(E) ⊇ {c1, . . . , cn}.
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17.7 Topological rank of relative full groups

Recall that a topological generator of a topological group Γ is a subset Γ0

of Γ such that the subgroup generated by Γ0 is dense in Γ. The topologi-
cal rank of Γ, denoted by t(Γ), is the smallest cardinality of a topological
generator of Γ. Thus if Γ is Polish, then t(Γ) ≤ ℵ0. It is easy to see that if
Γ is a Polish group, N � Γ a closed normal subgroup and H = Γ/N , then
t(Γ) ≤ t(N) + t(H). Indeed, if N0 is a topological generator of N and H0

a topological generator of H , then choose for each coset in H0 a represen-
tative and let Ĥ0 ⊆ Γ consist of these representatives. Then N0 ∪ Ĥ0 is a
topological generator for Γ.

Let now E be a countable measure preserving Borel equivalence rela-
tion on (X,µ), let A be a non-atomic σ-subalgebra of MALG, with associ-
ated map π, such that E is generated by A, and let F be the factor of E
determined by A. Then we have that

t([F ]) ≤ t([E]A) ≤ t([F ]) + t([Eπ]).

If then F,Eπ are aperiodic, we have t([F ]), t([Eπ]) = 2 (see [LeM, p. 263]),
so t([E]A) ≤ 4. We do not know if 4 here can be lowered to 2.



18. The space of graphs

Consider again a measure preserving countable Borel equivalence relation
E on (X,µ). Denote by Gr(E) the set of all (simple, undirected) Borel
graphs G on X such that G ⊆ E, where again we identify two such graphs
if they agree a.e.

For any G ∈ Gr(E) and T ∈ [E], let again

AT,G = {x : (x, T (x)) ∈ G}

and define the strong topology onGr(E) as the one generated by the maps

G 7→ AT,G,

Gr(E)→ MALG,

for T ∈ [E].
Note that we have the obvious analog of Proposition 4.11 (in relation

to a generating sequence for E) and the following analog of Lemma 4.12.

Lemma 18.1. Let Γ be a group, a : Γ×X → X an action of Γ on a set X and put
a(g, x) = g · x. Let Ea be the induced equivalence relation on X and let G ⊆ Ea
be a graph. For g ∈ Γ, let

Aag,G = Ag,G = {x : (x, g · x) ∈ G}.

Then

1. A1,G = ∅,

2. Ag,G ⊆ g−1 · Ag−1,G,

3. Ah,G ∩ Fix(h−1g) ⊆ Ag,G,

125
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where
Fix(p) = {x : p · x = x}.

Conversely, if (Ag)g∈Γ is a family of sets satisfying 1.-2. above, then the relation

xGy ⇐⇒ ∃g(g · x = y ∨ x ∈ Ag)

defines a graph contained in Ea and if 3. also holds we have that Ag = Ag,G.

Therefore the proofs in Chapter 4 show that this topology is Polish. We
will simply call it the topology of Gr(E). For this topology we have the
following:

Gn → G ⇐⇒ ∀i(ATi,Gn
MALG−→ ATi,G)

⇐⇒ ∀T ∈ [E](AT,Gn
MALG−→ AT,G)

⇐⇒ ∀ϕ ∈ [[E]](Aϕ,Gn
MALG−→ Aϕ,G),

where, as usual, (Ti)i∈N generates E and for ϕ ∈ [[E]]), Aϕ,G = {x ∈
dom(ϕ) : (x, ϕ(x)) ∈ G}. Again as in Chapter 4, we can also view Gr(E) as
a closed subspace of MALGE with the induced topology. Note also that if
G0 ⊆ G1 ⊆ . . . , G =

⋃
nGn, then Gn → G and similarly if G0 ⊇ G1 . . . , G =⋂

nGn.
One can also define the weak topology onGr(E) as the topology gener-

ated by the maps G 7→ µ(AT,G), Gr(E)→ [0, 1], for T ∈ [E]. Anush Tserun-
yan pointed out that the proof of Theorem 4.15 shows that this topology
coincides with the above (strong) topology. Indeed, let Gn → G in the
weak topology and let T ∈ [E] be an involution. Let A = AT,G, which is
T -invariant, and let S ∈ [E] agree with T on A and be equal to the identity
in its complement. Then AS,Gn ⊆ A (since x ∈ AS,Gn =⇒ x 6= S(x)) and
so µ(A \ AS,Gn) → 0, since AS,G = A. Also AT,G \ AT,Gn = A \ AS,Gn , so
µ(AT,G \ AT,Gn) → 0. As in the proof of Theorem 4.15 this implies that
µ(AT,Gn \ AT,G)→ 0, so AT,Gn

MALG−→ AT,G.

Remark 18.2. On the set of bounded degree graphs in Gr(E) one can also
define the metric

D(G,H) = M(G4H) =

∫
|G(x)4H(x)|dµ(x)

(see Lovász [L, page 352]), where M is the measure on E defined in Sec-
tion 4.4, (1), and G(x) = {y : (x, y) ∈ G} is the set of neighbors of x in G.
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This gives rise to another topology on this set of graphs, for which is easy
to check that it is at least as strong as the relative topology inherited from
Gr(E) (i.e., contains the relative topology). However, even for graphs of
degree at most 2, it is easy to see that it may be actually strictly stronger.
For example, take E to be the equivalence relation generated by a free,
measure preserving action of the free group F∞, with infinitely many gen-
erators a0, a1, . . . . Let Gn be the graph induced by the action of an, let
F∞ = {g0, g1, . . . } and put Ti(x) = gi · x. Then ATi,Gn = X , if gi = an, while
ATi,Gn = ∅, if gi 6= an. Thus Gn converges to the empty graph in Gr(E) but
it is discrete in the metric D.

However if we consider the set of all d-regular graphs, for fixed d ≥ 2,
the D-topology on that set agrees with its relative topology from Gr(E).
Indeed assume that Gn, G are d-regular and Gn → G. Let ϕ1, . . . , ϕd ∈
((E)) be such that for each x, ϕ1(x), . . . , ϕd(x) are exactly the G-neighbors
of x. Then for each i ≤ d, µ(Aϕi,Gn)→ µ(Aϕi,G) = 1. So given ε > 0, find N
large enough so that for n ≥ N , µ(Aϕi,Gn) > 1− ε

d
. Since the ϕ1(x), . . . , ϕd(x)

are distinct and Gn is d-regular, it follows that for x ∈
⋂
i≤dAϕi,Gn ,we have

(Gn)(x) = G(x) and thus D(Gn, G) ≤ 2dε, i.e., D(Gn, G)→ 0.

We also have the following analog of Theorem 5.1.

Theorem 18.3. Let Gn, G ∈ Gr(E) and Gn → G. Then for each i, there is an
increasing sequence n(i)

0 < n
(i)
1 < . . . , so that (n

(i+1)
m )m∈N is a subsequence of

(n
(i)
m )m∈N and

G =
⋃
m

⋂
k≥m

G
n

(m)
k
.

Proof. Let (ϕi)i∈N be a sequence in [[E]] such that (x, y) ∈ G ⇐⇒ ∃i(ϕi(x) =

y). Then repeat the proof of Theorem 5.1 to define (n
(i)
m )m∈N and show that

G ⊆
⋃
m

⋂
k≥mGn

(m)
k

. For the converse again repeat the proof of Theo-
rem 5.1 by showing that if H =

⋃
m

⋂
k≥mGn

(m)
k

and (ψi)i∈N is a sequence
in [[E]] such that (x, y) ∈ H ⇐⇒ ∃i(ψi(x) = y), then for x ∈ dom(ψi), we
have (x, ψi(x)) ∈ G.

Again as in the paragraph following the proof of Theorem 5.1, Le Maître
in [LeM1], showed that one has the following stronger form:

Let Gn, G ∈ Gr(E) and Gn → G. Then there is an increasing sequence
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n0 < n1 < . . . , so that
G =

⋃
m

⋂
k≥m

Gnk .

For G ⊆ Gr(E) we define G↑,G↓ as in the case of equivalence relations.
Then we have:

Theorem 18.4. If G ⊆ Gr(E) is closed under finite intersections, then G =
(G↓)↑. In particular, if G is hereditary, G = G↑.

A locally countable Borel graph G on X is (µ-)measure preserving if
any partial Borel isomorphism ϕ : A → B such that graph(ϕ) ⊆ G is mea-
sure preserving. This is equivalent to saying that the equivalence relation
generated by G (i.e., the equivalence relation whose equivalence classes
are the connected components of G) is measure preserving. Denote by
GR the set of all Borel locally countable, measure preserving graphs on
(X,µ), where as usual we identify two such graphs if they agree a.e. Then
Gr(E) = {G ∈ GR : G ⊆ E} and GR =

⋃
E∈E Gr(E). As in Theorem 6.1,

we can see that if E ⊆ F , then Gr(E) is a closed subset of Gr(F ) and the
topology of Gr(E) is the relative topology it inherits form Gr(F ). Thus, as
in Chapter 6, we can define the topology on GR which is the topological
union of the topologies on Gr(E), E ∈ E .

Remark 18.5. As a final comment, we mention that ultraproducts of graphs
can be defined as in Chapter 16 using Lemma 18.1. Also the uniform topol-
ogy on Gr(E) can be defined as in Section 4.6.
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For each G ∈ Gr(E), let G∗ ∈ S(E) be the equivalence relation generated
by G. The argument in the paragraph preceding Proposition 4.29 shows
that the operation G ∈ Gr(E) 7→ G∗ ∈ S(E) is not continuous. Indeed, in
the notation used there, we can take Gn = Fn \ id and G = F \ id. Then
Hn = Gn ∪ G is decreasing and

⋂
nHn = G, so Hn → G, while H∗n = ES

and G∗ = ES3 . By a proof similar to that of Proposition 4.29 we also have
the following:

Proposition 19.1. The map Gr(E) 3 G 7→ G∗ ∈ S(E) is of Baire class 1.

We call G ∈ Gr(E) a graphing of E is G∗ = E.

Theorem 19.2. The set {G ∈ Gr(E) : G is a graphing of E} is Gδ in Gr(E). If
E is aperiodic, it is also dense in Gr(E).

Proof. That it is Gδ follows from the preceding proposition, since G is a
graphing of E iff G∗ = E.

Assume now E is aperiodic in order to show that {G : G is a graphing
of E} is dense in Gr(E). A typical basic open set in Gr(E) has the form

UG0,T1,...,Tn,ε = {G ∈ Gr(E) : ∀1 ≤ i ≤ n (µ(ATi,G∆ATi,G0) < ε)},

where G0 ∈ Gr(E), T1, . . . , Tn ∈ [E] and ε > 0. We will show that any
such set contains a graphing of E. Since E is aperiodic, let S1, S2, · · · ∈ [E]
be aperiodic with ES1,S2,... = E (see [K, 8.5]). For each 1 ≤ i ≤ n, 1 ≤
j < ∞, k ∈ Z, let Ai,j,k = {x : Ti(x) = Skj (x)}. For fixed i, j, the sets
{Ai,j,k}∞k=1 are pairwise disjoint, so for any δ > 0 there is N0(i, j, δ) such
that µ(

⋃
|k|≥N0(i,j,δ) Ai,j,k) < δ. Let M0(j, δ) = max1≤i≤nN0(i, j, δ).

Now define for each 1 ≤ j <∞ a graph Gj ∈ Gr(E) as follows:

(x, y) ∈ Gj ⇐⇒ y = S±kj (x) ∨ y = S
±(k+1)
j (x),

129
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where k = M0(j, δj) with δj = ε
2j+1 . Let G = G0 ∪

⋃∞
j=1Gj . We claim that

G ∈ UG0,T1,...,Tn,ε and G is a graphing of E.
(1) G ∈ UG0,T1,...,Tn,ε: Let 1 ≤ i ≤ n. Then ATi,G = ATi,G0 ∪

⋃∞
j=1ATi,Gj .

If x ∈ ATi,Gj , then there is |k| ≥ M0(j, δj), with Ti(x) = Skj (x), so x ∈⋃
|k|≥N0(i,j,δj)

Ai,j,k, therefore µ(ATi,Gj) < δj and so

µ(ATi,G∆AT1,G0) ≤ µ(
∞⋃
j=1

ATi,Gj)

≤
∞∑
j=1

δj =
ε

2
< ε.

(2) G∗ = E: It is enough to show that for x ∈ X and 1 ≤ j < ∞,
we have (x, Sj(x)) ∈ G∗j . Let k = M0(j, δj). Then (x, Sk+1

j (x)) ∈ Gj and
(Sj(x), Sk+1

j (x)) ∈ Gj , so (x, Sj(x)) ∈ G∗j .

As in Chapter 8, if G ⊆ GR is a class of measure preserving locally
countable Borel graphs and E ∈ E , we let

GE = G ∩Gr(E).

In particular, GRE = Gr(E).
We call G ∈ GR acyclic if for (almost) all x, there is no sequence x =

x0, x1, x2, . . . , xn, with n ≥ 2, of distinct points with (x0, x1) ∈ G, (x1, x2) ∈
G, . . . , (xn−1, xn) ∈ G, (xn, x0) ∈ G. We denote by T R the class of acyclic
graphs.

Theorem 19.3. The set T RE = {G ∈ Gr(E) : G is acyclic} is closed in Gr(E).

Proof. This follows from Theorem 18.4, but here is also a direct proof. Note
that G is not acyclic iff ∃n ≥ 2∃T1, T2, . . . , Tn ∈ [E](µ({x : For all 0 ≤ i <
j ≤ n(x 6∈ Fix(T−1

i Tj)) & ∀i < n(x ∈ ATi,Ti+1,G) & x ∈ ATn,T0,G)}) > 0)
where T0 = id and for T ∈ [E],Fix(T ) = {x : T (x) = x}, so

{G : G is not acyclic} =⋃
n≥2

⋃
T1,...,Tn∈[E]

{G : µ(
⋂

0≤i<j≤n

(X \ Fix(T−1
i Tj))∩⋂

i<n

ATi,Ti+1,G ∩ ATn,T0,G) > 0},

which is clearly open.
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A treeing G of E is an acyclic graphing of E.

Corollary 19.4. The set {G ∈ Gr(E) : G is a treeing of E} is a Gδ set in Gr(E).

Similarly we define what it means to say that G ∈ Gr(E) is a graphing
of F ∈ S(E) (namely G∗ = F ) or a treeing of F . We thus have:

Corollary 19.5. The set {(G,F ) : G is a graphing of F } is Gδ in Gr(E)×S(E).
Similarly for {(G,F ) : G is a treeing of F }. In particular {F ∈ S(E) : F is
treeable} is analytic in S(E).

Proof. Let {Un} be a countable open basis for S(E). Then G∗ = F ⇐⇒
∀n(G∗ ∈ Un ⇒ F ∈ Un).

The following is a basic open problem.

Problem 19.6. Is {F ∈ S(E) : F is treeable} Borel? Is there a Borel function
f : {F ∈ S(E) : F is treeable} → Gr(E) such that f(F ) is a treeing of F , if F is
treeable.

We next have the following fact, where for each d ≥ 1, we let GRd =
{G ∈ GR : G has degree ≤ d}.

Proposition 19.7. The set GRd,E = {G ∈ Gr(E) : G has degree ≤ d} is closed
in Gr(E), for any d ≥ 1.

Proof. Again this follows from Theorem 18.4, but we can also give a direct
proof. Note that

Gr(E) \ {G : has degree ≤ d} =
⋃

T1,...,Td+1∈[E]

{G :

µ(
⋂

1≤i<j≤d+1

(X \ Fix(T−1
i Tj))

∩
⋂

1≤i≤d+1

ATi,G) > 0}.

Now let BDG = {G ∈ GR : G has bounded degree}.

Corollary 19.8. The set BDGE = {G ∈ Gr(E) : G has bounded degree} is dense
Fσ in Gr(E). Moreover, if E is aperiodic, then its complement is dense in Gr(E),
so BDGE is in Fσ \Gδ.
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Proof. It is clear that BDGE is Fσ by Proposition 19.7. Density is also easy,
since if (Tn) is a uniquely generating sequence of Borel involutions for E,
then for any G ∈ Gr(E), if Gn = G∩

⋃
k≤n graph(Tk), then Gn → G. Finally

if E is aperiodic, put Hn = G ∪
⋃
k≥n{(x, y) : x 6= y & Tk(x) = y}. Then

Hn → G.

We also have, letting IDG = {G ∈ GR : G has infinite degree}:

Proposition 19.9. The set IDGE = {G ∈ Gr(E) : G has infinite degree} is Gδ

in Gr(E) and, if E is aperiodic, it is dense in Gr(E).

Proof. Let (Ti)i∈N be a generating sequence for E. Let also for each n, Dn =
{T0, . . . , Tn−1}. Finally let degG(x) be the degree of x in G. We have

{x : degG(x) ≥ d} =
⋃
n

⋃
S1,...Sd∈Dn[ ⋂

1≤i<j≤d

(X \ Fix(S−1
i Sj)) ∩

⋂
1≤i≤d

ASi,G

]
,

and

G ∈ IDGE ⇐⇒ ∀d ≥ 1∀ε ∈ Q+(µ({x : degG(x) ≥ d}) > 1− ε)

therefore G ∈ IDGE iff the following holds: ∀d ≥ 1∀ε ∈ Q+∃n

µ

( ⋃
S1,...Sd∈Dn

[ ⋂
1≤i<j≤d

(X \ Fix(S−1
i Sj)) ∩

⋂
1≤i≤d

ASi,G

])
> 1− ε

so IDGE is in Gδ.
Density in case of aperiodic E follows from the proof of Corollary 19.8,

since the graphs Hn defined there are in IDGE .

Finally we have, letting LFG = {G ∈ GR : G is locally finite}:

Proposition 19.10. The set LFGE = {G ∈ Gr(E) : G is locally finite} is Fσδ
in Gr(E). Both LFGE and its complement are dense in Gr(E), if E is aperiodic.
Moreover if E is ergodic, LFGE is in Fσδ \Gδσ.
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Proof. Using the notation of the proof of Proposition 19.9 we have

G is locally finite ⇐⇒ ∀ε ∈ Q+∃d ∈ N
µ({x : degG(x) < d}) ≥ 1− ε,

so it is enough to show that for each fixed d ∈ N,

{G : µ({x : deg(x) < d}) ≥ 1− ε}

is closed. Note that

{x : degG(x) < d} =
⋂
n

⋂
S1,...,Sd∈Dn[ ⋃

1≤i<j≤d

Fix(S−1
i Sj) ∪

⋃
1≤i≤d

(X \ ASi,G)

]
,

and

µ({x : degG(x)) < d}) ≥ 1− ε

⇐⇒ ∀n
[
µ

( ⋂
Sn,...,Sd∈Dn

[ ⋃
1≤i<j≤d

Fix(S−1
i Sj)∪

⋃
1≤i≤d

(X \ ASi,G
])
≥ 1− ε

]
,

which is clearly a closed condition on G.
By Corollary 19.8 and Proposition 19.9 both LFGE and its complement

are dense in Gr(E), if E is aperiodic.
Assume now that E is ergodic. Then the argument in the proof of The-

orem 8.6 shows that LFGE is not in Gδσ.

Denote by C(G) the cost of G, i.e., C(G) = 1
2

∫
degG(x)dµ(x) ∈ [0,∞].

Proposition 19.11. The functionG ∈ Gr(E) 7→ C(G) is lower semicontinuous,
i.e., for every r ∈ R, {G ∈ Gr(E) : C(G) > r} is open. In particular, {G ∈
Gr(E) : C(G) =∞} is Gδ.

Proof. We will show that for each r ∈ R, {G ∈ Gr(E) : C(G) ≤ r} is closed.
This follows from Theorem 18.4, since G ⊆ H ⇒ C(G) ≤ C(H) and G0 ⊆
G1 ⊆ · · · ⇒ C(

⋃
nGn) = limn→∞C(Gn).



134 19. More complexity calculations

Theorem 19.12. If E is aperiodic, the set {G ∈ Gr(E) : C(G) = ∞} is dense
and therefore the generic G ∈ Gr(E) is a graphing of E of infinite cost.

Proof. Recall that E admits a measure M defined by

M(A) =

∫
|Ax|dµ(x) =

∫
|Ay|dµ(y),

for Borel A ⊆ E. Moreover for G ∈ Gr(E), C(G) = 1
2
M(G). Since E

is aperiodic M(E) = ∞ and since E =
⋃
n graph(fn) for Borel functions

fn : X → X,M is σ-finite.
Let G ∈ Gr(E) in order to show that there is a sequence Gn ∈ Gr(E)

with C(Gn) =∞ and Gn → G. We can assume of course that C(G) <∞.
Write E \G =

⊔
nAn, with M(An) <∞. Let Bn = G∪

⊔
m≥nAm, so that

M(Bn) =∞, B0 ⊇ B1 ⊇ . . . ,
⋂
nBn = G. Let Gn = (Bn ∪ B′n) \ {(x, x) : x ∈

X}, where B′n = {(x, y) ∈ E : (y, x) ∈ Bn}. Then Gn ∈ Gr(E),M(Gn) =
∞, G0 ⊇ G1 ⊇ G2, . . . and moreover

⋂
nGn = G. Because if (x, y) ∈

⋂
nGn,

then x 6= y, and for infinitely many n, (x, y) ∈ Bn or for infinitely many
n, (x, y) ∈ B′n, i.e., (y, x) ∈ Bn, so (x, y) ∈ G. Then Gn → G and we are
done.

It is also clear that the Fσ set {G ∈ Gr(E) : C(G) < ∞} is dense, since
every G can be written as the union of an increasing sequence Gn with
C(Gn) = 1

2
M(Gn) < ∞. In particular, it follows that {G ∈ Gr(E) : C(G) <

∞} is in Fσ \Gδ.
Finally we have the following result concerning locally finite graphings

of equivalence relations (see [JKL, Theorem 3.12]).

Proposition 19.13. There is a Borel function Λ: S(E) → Gr(E) such that for
any F ∈ S(E),Λ(F ) is a locally finite graphing of F .

Proof. Use Proposition 4.18 and [JKL, proof of Theorem 3.12].
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In view of the proof of Theorem 14.1 (in the ergodic case), one can try to
approach Problem 19.6 by first trying to show an analog of Sublemma 14.3
for treeability. Recall that, by Theorem 19.3, the set

T RE = {G ∈ Gr(E) : G is acyclic}.

is closed in Gr(E). By Corollary 19.4, the set

Treeing(E) = {G ∈ T RE : G is a treeing of E}

is Gδ in T RE . If E is not treeable, clearly this set is empty.

Problem 20.1. If E is ergodic, treeable, is Treeing(E) dense in T RE?

We first note the following:

Proposition 20.2. If there is G ∈ T RE with C(G) =∞, then

{G ∈ T RE : C(G) =∞}

is dense in T RE .

Proof. The proof is analogous to that of Theorem 19.12. Let G ∈ T RE with
C(G) < ∞. Fix G∞ ∈ T RE with C(G∞) = ∞. Let S = G∞ \ G, so that
C(G) = ∞. Write S =

⊔
nGn, with Gn ∈ T RE and C(Gn) < ∞. Let

Hn = G t
⊔
m≥nGm. Then C(Hn) = ∞ and H0 ⊇ H1 ⊇ . . . ,

⋂
nHn = G, so

Hn → G.

Recall that C(E) denotes the cost of the equivalence relation E.

Proposition 20.3. Let E be ergodic with C(E) > 1. Then the set

{G ∈ T RE : C(G) =∞}

is dense Gδ in T RE . In particular if 1 < C(E) <∞, then the generic G ∈ T RE

is not a treeing of E.

135
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Proof. By the proof of [KM, 28.8], since C(E) > 1, there is a free action of
F2 on X whose equivalence relation is contained in E. Since F∞ ⊆ F2, this
gives a G ∈ T RE with C(G) =∞.

Thus Problem 20.1 has a negative answer if C(E) < ∞, but E is not
hyperfinite (in which case C(E) > 1). We next show that it has a positive
answer if E is hyperfinite.

Proposition 20.4. Let E be ergodic, hyperfinite. Then Treeing(E) is dense in
T RE and thus the generic G ∈ T RE is a treeing of E.

Proof. LetG0 ∈ T RE, T1, . . . , Tn ∈ [E] and ε > 0. We need to findG ∈ T RE

which is a treeing of E and ∀1 ≤ i ≤ n(µ(ATi,G∆ATi,G0) < ε).
First we claim that we can assume that G∗0 is a finite equivalence rela-

tion. Indeed G∗0 ⊆ E is hyperfinite, so we can write G∗0 =
⋃∞
n=1En, where

E1 ⊆ E2 ⊆ . . . and each En is finite. Let Gi = Ei ∩ G0, for i = 1, 2, . . . .
Then Gi ∈ T RE, G

∗
i ⊆ Ei is finite, G1 ⊆ G2 ⊆ . . . and G0 =

⋃∞
n=1Gn, so

Gn → G0.
Since E is aperiodic, it is clear that every E-class contains infinitely

many G∗0-classes. Let Y ⊆ X be a Borel transversal for G∗0. Clearly µ(Y ) >
0 and Y meets every E-class infinitely often.

We claim that there is T ∈ [E|Y ] such that T generates E|Y and more-
over µ({x ∈ Y : ∃1 ≤ i ≤ n(T (x) = T±1

i (x))}) < ε. Granting this, let
G ∈ Gr(E) be defined by

(x, y) ∈ G ⇐⇒ (x, y) ∈ G0 ∨ [x, y ∈ Y & y = T±1(x)].

Then clearly G ∈ T RE and G∗ = E. Moreover for any 1 ≤ i ≤ n,

ATi,G = ATi,G0 t {x ∈ Y : Ti(x) = T±1(x)},

thus
µ(ATi,G∆ATi,G0) = µ({x ∈ Y : Ti(x) = T±1(x)} < ε.

It remains to prove the claim. It is enough to show that there is an
aperiodic S ∈ [E|Y ] such that for each 1 ≤ i ≤ n, µ({x ∈ Y : S(x) =
T±1
i (x))}) < ε

2n
, so that µ({x ∈ Y : ∃1 ≤ i ≤ n(S(x) = T±1

i (x))}) < ε
2
.

Because then applying the Conjugacy Lemma (see, [K, 3.4]) to [E|Y ], we
can find T ∈ [E|Y ] which generates E|Y and µ({x ∈ Y : S(x) 6= T (x)}) < ε

2

and thus
µ({x ∈ Y : ∃1 ≤ i ≤ n(T (x) = T±1

i (x))}) < ε.
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To find S, let S0 ∈ [E|Y ] be aperiodic and generate E|Y . Let for each
1 ≤ i ≤ n,

Zi = {x ∈ Y : T±1
i (x) ∈ Y }.

If x ∈ Zi, then (x, T±1
i (x)) ∈ E|Y , so there is some m ∈ Z with T±1

i (x) =
Sm0 (x). Let for N ∈ N,

ZN,i = {x ∈ Y : ∃|m| ≤ N(T±1
i (x) = Sm0 (x))}.

Then Z0,i ⊆ Z1,i ⊆ . . . and
⋃
N ZN,i = Zi. So find N0 large enough with

µ(Zi \ ZN0,i) <
ε

2n
.

Let S = SN0+1
0 ∈ [E|Y ], which is clearly aperiodic. If x ∈ Y and S(x) =

T±1
i (x), then T±1

i (x) = SN0+1
0 (x), so x ∈ Zi \ ZN0,i, thus µ({x ∈ Y : S(x) =

T±1
i (x)}) ≤ µ(Z \ ZN0) < ε

2n
, and the proof is complete.

Corollary 20.5. Let E be ergodic, with finite cost. Then E is hyperfinite iff the
generic G ∈ T RE is a treeing of E.

Thus the only remaining open case of Problem 20.1 is when C(E) =∞.
There is actually a strengthening of Proposition 20.4, proved by Anush

Tserunyan, with a simpler proof than the above. We will use below the
following notation and terminology,.

We call G ∈ Gr(E) finite, smooth, hyperfinite if G∗ is, resp., finite,
smooth, hyperfinite. Let FT RE , ST RE and HT RE denote, resp., the set
of finite, smooth, hyperfiniteG ∈ T RE . Note that by Theorem 18.4,HT RE

is closed and FT RE = ST RE = HT RE .

Proposition 20.6 (Tserunyan). Let E be aperiodic and treeable. For any G0 ∈
ST RE and T1, ..., Tm ∈ [E], there is a treeing G ⊇ G0 of E such that ATi,G =
ATi,G0 , for all i.

Proof. Let Y be a transversal for G∗0 and take a group Γ = {gn}n∈N ⊆ [E]
that generates E. We first handle two special cases and the general case
will follow from them.

Case 1: [E : G∗0] < ∞. Then E|Y is a finite equivalence relation and hence
there is a Borel selector s : Y → Y for E|Y such that [s(y)]G∗0 is infinite for
all y ∈ Y (such s exists because E is aperiodic). Now define a function
g : Y \ s(Y ) → X by g(y) = gn(y), where n is the least such that gn(y) ∈
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[s(y)]G∗0 and for any i = 1, ...,m, gn(y) 6= Ti(y) and Ti(gn(y)) 6= y (such n
exists since [s(y)]G∗0 is infinite). Finally, put G = {(y, g(y)), (g(y), y) : y ∈
Y \ s(Y )} ∪ G0. It is straightforward to check that G is a treeing of E
satisfying the condition of the proposition.

Case 2: [E : G∗0] = ∞. Let H be the graph on Y generated by T1, ..., Tm, i.e.
for x, y ∈ Y ,

xHy ⇐⇒ x 6= y and ∃i(Ti(x) = y or Ti(y) = x).

Since H is locally finite, it admits a Borel countable coloring (actually a
finite coloring), and thus there is a maximal independent Borel subset Z.
For every E-class C, Y ∩ C is infinite (by the condition of the case), and
hence Z ∩C is infinite as well because otherwise there would be a point in
(Y \ Z) ∩ C independent from Z ∩ C in H , contradicting the maximality
of Z. Thus we can define a function g : Y \ Z → Z by g(y) = gn(y), where
n is the least such that gn(y) ∈ Z and for any i = 1, ...,m, gn(y) 6= Ti(y)
and Ti(gn(y)) 6= y. Put G1 = {(y, g(y)), (g(y), y) : y ∈ Y \ Z}. Also, let
G2 be a treeing of E|Z (which exists because E is treeable). Finally, put
G = G0 ∪ G1 ∪ G2. Again, it is not hard to check that G is a treeing of E
satisfying the condition of the proposition.

General case: Let

X1 = {x ∈ X : [x]E contains only finitely many G∗0 classes}

and put
X2 = X \X1.

Then combine the treeings for E|X1 and E|X2 provided by cases 1 and
2.

Theorem 20.7 (Tserunyan). Let E be aperiodic and treeable. Then we have
HT RE ⊆ Treeing(E). In particular, if E is hyperfinite, then Treeing(E) is
dense in T RE .

Proof. Fix G0 ∈ HT RE . Since G0 is hyperfinite, we have G∗0 =
⋃
n≥1En,

where En are increasing and finite. Letting Gn = En ∩ G0, we get G0 =⋃
n≥1Gn and thus Gn → G0. By Proposition 20.6, Gn is in Treeing(E), and

hence so is G0.
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Remark 20.8. Note that Proposition 20.6 cannot be extended to graphs
G0 ∈ HT RE , even if we drop the requirement about the Ti’s. Indeed, let E
be aperiodic, hyperfinite and F a proper aperiodic, hyperfinite subequiv-
alence relation of E. If G0 is a treeing of F , then it cannot be extended to
a treeing G of E, since then the cost of G would be bigger than the cost of
G0, contradicting the fact that they are both equal to 1.

Let SubTreeing(E) denote the set of all graphs in T RE that are con-
tained in treeings of E, i.e.,

SubTreeing(E) = {G0 ∈ T RE : ∃G ∈ Treeing(E)(G ⊇ G0)}.

Proposition 20.9 (Tserunyan). Let E be treeable. Then

ST RE ⊆ SubTreeing(E).

Therefore, in particular, we haveHT RE ⊆ SubTreeing(E).

Proof. Fix G0 ∈ ST RE and let Y ⊆ X be a Borel transversal for G∗0. Since
E is treeable, there is a treeing G of E|Y . It is clear that G0 ∪G is a treeing
of E.

Proposition 20.10. Let G0 ∈ SubTreeing(E).
(a) (Tserunyan) For any Borel set A ⊆ X , G0|A ∈ SubTreeing(E|A).
(b) (Conley) For a Borel equivalence relation F with G∗0 ⊆ F ⊆ E, G0 ∈

SubTreeing(F ).

Proof. Let G ⊇ G0 be a treeing of E. For (a), project G onto G|A as de-
scribed in the proof of [JKL, Proposition 3.3 (i)] to get G′ ∈ Treeing(E|A)
such that G′ ⊇ G|A. Similarly, for (b), use the same method to project G
onto G|C, for each F -class C, to get G′ ∈ Treeing(F ) with G′ ⊇ (G ∩ F ) ⊇
G0. One could also note that (a) follows from (b).

Theorem 20.11 (Tserunyan). For any G0 ∈ SubTreeing(E) and automor-
phisms T1, ..., Tm ∈ [E], there is a treeing G ⊇ G0 of E such that ATi,G =
ATi,G0 , for all i. In particular, Treeing(E) is dense in SubTreeing(E) and hence
Treeing(E) = SubTreeing(E).

Proof. Let X0 be the E-saturation of {x ∈ X : [x]G∗0 is infinite}. Then X0

is E-invariant and G∗0|(X \X0) is a finite equivalence relation, so Proposi-
tion 20.6 applies to G0|(X \ X0), and we may assume that X0 = X . Thus
each E-class C contains an infinite G∗0-class and hence

A := {x ∈ X : [x]G∗0 is infinite}



140 20. Treeability

is a complete section. Note that B := X \ A is G∗0-invariant and G∗0|B
is a finite equivalence relation. Let Y be a transversal for G∗0|B and fix a
group Γ = {gn}n∈N ⊆ [E] that generates E. Define g : Y → A by g(y) =
gn(y), where n is the least such that gn(y) ∈ A and for any i = 1, ...,m,
gn(y) 6= Ti(y) and Ti(gn(y)) 6= y (such n exists since [y]E ∩A is infinite). Put
G1 = {(y, g(y)), (g(y), y) : y ∈ Y }.

We now construct a treeing G2 ⊇ G0|A of E|A such that ATi,G2 =
ATi,G0|A, for all i. By (a) of Proposition 20.10, there is G′ ∈ Treeing(E|A)
such that G′ ⊇ G0|A. Fix a Borel linear ordering < on X and define a func-
tion f : G′ \ G0 → E|A as follows: for (x, y) ∈ G′ \ G0, let x′ = min<(x, y)
and y′ = max<(x, y), and put

f(x, y) = (x′, gn(x′)),

where n is the least such that gn(x′)G∗0y
′ and for all i = 1, ...,m, gn(x′) 6=

Ti(x
′) and Ti(gn(x′)) 6= x′ (such n exists since [y′]G∗0 is infinite). Now let

G′′ denote the symmetrization of f(G′ \ G0) and put G2 = G0|A ∪ G′′. To
see that G2 is a treeing of E|A note that G2 ⊇ G0|A and for any two G0-
connected components D1, D2 ⊆ A, there is an edge between D1 and D2 in
G2 if and only if there is one inG′ (in other words the projections ofG2 and
G′ on the quotient X/G∗0 coincide). Now it is clear that G = G0 ∪ G1 ∪ G2

satisfies the condition of the lemma.

Let MaxTr(E) denote the set of maximal (under inclusion) graphs in
T RE ; that is,

MaxTr(E) = {G ∈ T RE : ∀G′ ∈ T RE(G′ ⊇ G⇒ G′ = G}.

Theorem 20.12 (Tserunyan). Let E be a (not necessarily treeable) equivalence
relation. Then for any G0 ∈ T RE and T1, ..., Tm ∈ [E], there is G ∈MaxTr(E)
such that G ⊇ G0 and ATi,G = ATi,G0 , for all i. In particular, MaxTr(E) is
dense in T RE .

Proof. Let G′ ∈MaxTr(E) with G′ ⊇ G0 (it exists since, modulo a null set,
any increasing wellordered chain stabilizes in countably many steps). Put
F = (G′)∗ and note that G0 ∈ SubTreeing(F ). Let Si ∈ [F ], 1 ≤ i ≤ m,
be such that (x, Ti(x)) ∈ F =⇒ Si(x) = Ti(x), so that ATi,H = ASi,H , for
any H ∈ Gr(F ). Applying Theorem 20.11 to F and S1, . . . , Sm (in lieu of
E and T1, . . . , Tm), we get G ∈ Treeing(F ) such that G ⊇ G0 and ATi,G =
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ATi,G0 , for all i. It remains to show that G is maximal. Let G1 ∈ T RE be
such that G1 ⊇ G. Note that because G and G′ have the same connected
components, G′ ∩ (G1 \ G) = ∅ and G2 := G′ ∪ (G1 \ G) ∈ T RE . Thus, by
the maximality ofG′, G2 = G′. ButG2\G′ = G1\G and hence, G1 = G.

Let SubTreeing∗(E) denote the set of all graphs in SubTreeing(E) that
are not treeings anywhere; i.e.

SubTreeing∗(E) = {G ∈ SubTreeing(E) : µ({x ∈ X : [x]E = [x]G∗}) = 0}.

Proposition 20.13 (Tserunyan). For any G ∈ Treeing(E) and ε > 0, there
is G0 ∈ SubTreeing∗(E) with G0 ⊆ G such that µ(AT,G \ AT,G0) < ε, for all
T ∈ [E]. In particular, SubTreeing∗(E) is dense in Treeing(E).

Proof. Let Y ⊆ X be a Borel complete section for E such that µ(Y ) < ε
2

(which exists by the Marker Lemma, see [KM, 6.7]) and put

G0 = {(x, y) ∈ G : x, y /∈ Y }.

Clearly G0 ∈ SubTreeing∗(E), and for any T ∈ [E],

AT,G \ AT,G0 ⊆ Y ∪ T−1(Y ).

Thus µ(AT,G \ AT,G0) ≤ µ(Y ) + µ(T−1(Y )) < ε
2

+ ε
2

= ε.

Theorem 20.11 and Proposition 20.13 together imply:

Theorem 20.14 (Tserunyan). SubTreeing∗(E) = Treeing(E) =

SubTreeing(E).
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