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1 Introduction

In this paper, we study the properties of partitions of the natural numbers into multiples of a finite
set of integers. The main question of interest is the following:

Theorem 1. Let a1 < a2 < · · · < an be positive integers such that the set of positive integers can be
partitioned into an infinite number of sets, each of the form {a1k, a2k, . . . , ank} for some positive integer k.
Then, ai | an for all 1 ⩽ i ⩽ n.

Such partitions of the naturals involve only the multiplicative structure of N. By considering
the prime factorization of integers, the theorem, in effect, can be recast into one about partitioning
Nd

0 (the set of d-dimensional lattice points with nonnegative coordinates) into disjoint translates
of a finite subset. In particular, we will prove the following:

Theorem 2. Suppose S is a finite subset of Nd
0 such that there exists a partition Nd

0 = S1 ⊔ S2 ⊔ · · ·
such that for each Si, there exists ti ∈ Nd

0 such that Si = {s + ti | s ∈ S}. Then, there exists a unique
maximal element sn of S , in the sense that every si ∈ S satisfies that the jth coordinate of si is at most the
jth coordinate of sn for each 1 ⩽ j ⩽ d.

To see that Theorem 1 follows from Theorem 2, we let {p1, . . . , pd} be the set of primes that
divide at least one of {a1, . . . , an}. Then, the prime factorizations of {a1, . . . , an} determine a set
S of n elements of Nd

0 where each element si is given by the exponents of p1, . . . , pd in the prime
factorization of ai. Now suppose that {a1, . . . , an} satisfies that a collection of sets of the form
{a1k, . . . , ank} partitions N. Then, it is necessary and sufficient for there to exist a partition of the
set W = {pc1

1 · · · pcd
d | (c1, . . . , cd) ∈ Nd

0} into sets of the form {a1k, . . . , ank}. Each such set can be
coordinatized as before, yielding a subset of Nd

0 of the shape S + t := {s + t | s ∈ S} which are
translates of S . Hence, S admits a partition of Nd

0 via disjoint translates of S . By Theorem 2, S
has a unique maximal element, corresponding to an satisfying ai | an for all 1 ⩽ i ⩽ n.

We shall now present several proofs of Theorem 2. The first is combinatorial in nature; the
second uses a polynomial method. We then present another polynomial method, distinct from the
first polynomial method but rich in ideas, that derives Theorem 2 for the case of d = 2.

2 Combinatorial Method

We will need the following definitions:

Definition 2.0.1 A lattice M spanned by vectors b1, . . . , bd ∈ N
p
0 is the set of points given by

e1b1 + · · · + edbd, where e1, . . . , ed are nonnegative integers. We denote M = span(b1, . . . , bd). If
b1, . . . , bd are linearly independent, we say b1, . . . , bd form a basis of M.
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For points p = e1b1 + · · · + edbd ∈ M where b1, . . . , bd are a basis of M, we coordinatize p as
(e1, . . . , ed).

If S ⊂ M is such that disjoint translates of S can partition M, then we shall say that S is tileable.
For tileable sets S , we can express M as M = S ⊕ T where T ⊂ M is called the tiling. Also, for
a ∈ S and b ∈ M, we shall say that b is tiled by a if b ∈ {a}+ T .

Definition 2.0.2. The product order is the partial ordering in M given by the following: for
p = (e1, . . . , ed) and q = ( f1, . . . , fd), we let p ⪰ q if ei ⩾ fi for all 1 ⩽ i ⩽ d.

Definition 2.0.3. For any set S ⊂ M, we say that a ∈ S is a primitive element of S if a is a
minimal element of S \ {(0, . . . , 0)} with respect to the product order.

Definition 2.0.4. For a point a = (a1, . . . , ad) in a lattice M with basis b1, . . . , bd, we shall define
the sublattice sp(a) = span({bi | ai > 0}), in other words, the span of all bases vectors whose
coordinate in a is nonzero, and sp(a)⊥ = span({bi | ai = 0}).

Observe that sp(a)⊕ sp(a)⊥ = M. This allows us to define a projection map M → sp(a). We
shall denote the projection of c ∈ M as projsp(a)(c).

2.1 L-Lemma

The central idea is that the tiling of primitive elements of tileable sets give us constraints on the
tiling.

Theorem 3 (L-Lemma). Let S and T be (possibly infinite) sets and M be a lattice such that S ⊕ T =
M. If a is a primitive element of S , then every element c of S satisfies projsp(a)(c) = ma where m is a
nonnegative integer.

Proof. Call such points whose projection onto sp(a) is a multiple of a "regular." Assume for the sake
of contradiction that not all elements of S are regular. Consider a minimal irregular x ∈ S : that is,
for every y ≺ x, if y ∈ S , then y is regular. Let Bx denote the set of y ∈ M such that y ≺ x. No-
tice that Bx is tiled by regular points. We are thus interested in how sets of regular points tile space.

Define La to be the set of points in sp(a) that are not ⪰ a, and N0a to be the set of nonnegative
integer multiples of a.

Proposition 2.1.1. La ⊕ N0a = sp(a).

Proof. We wish to show that each p ∈ sp(a) can be written uniquely as the sum of a multiple
of a and an element of La. Indeed, let m be the largest nonnegative integer such that ma ⪯ p.
Then, a ̸⪯ p − ma, and thus p is the sum of ma and p − ma ∈ La . This representation is indeed
unique: if p = m′a + (p − m′a), then m′ ⩽ m by the maximality of m, and and if m′ < m, then
(m − m′)a ⪯ p − m′a so p − m′a ̸∈ La. □

It follows that La ⊕ N0a ⊕ sp(a)⊥ = M. This tells us that the set La tiles M with a certain tiling
Ψ = N0a + sp(a)⊥. Note that Ψ is the set of all regular points.
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Claim. For each ψ ∈ Ψ, all points in (La + ψ) ∩ Bx are tiled by the same point in S . In other
words, for all s1, s2 ∈ S , t1, t2 ∈ T , and ℓ ∈ La satisfying s1 + t1 = ψ and s2 + t2 = ψ + ℓ ≺ x, we
have s1 = s2.

Proof. We induct on ψ consistent with product order. For the base case ψ = 0, note that because
a is primitive, only 0 tiles La ∩ Bx. For the induction step, assume the validity of the statement for
all points ψ′ ≺ ψ; we shall show its validity for ψ.

Since s1 ⪯ ψ ≺ x, we know that s1 is regular. Thus, t1 = ψ − s1 ∈ Ψ. If s1 > 0, then by the
induction hypothesis, t1 + ℓ is tiled by the same point in S as t1, namely 0, so t1 + ℓ ∈ T . Con-
sequently, ψ + ℓ = s1 + (t1 + ℓ) is the tiling of ψ + ℓ, so s2 = s1, as desired. If s1 = 0 but s2 ̸= 0,
then t2 = ψ − s2 + ℓ ∈ T which implies, by the induction hypothesis, that ψ − s2 ∈ T and thus
s2 + (ψ − s2) = s1 + t1 = ψ are two ways of representing ψ as a sum of elements of S and T ,
which is a contradiction, as desired. □

Having established what the tiling of points ≺ x "looks like," we now aim for a contradiction
with the fact x ∈ S . The general principle is the following: points that x tiles cannot be tiled by
other elements of S . To that end, let us say that x ∈ ψ + La for some ψ ∈ Ψ. All points in ψ + La
and ≺ x are tiled by some s ∈ S ; note that s is regular.

Case 1: If s ̸= 0, then ψ − s ∈ T and x − s ∈ (ψ − s) + La. By the claim, x − s is tiled by the same
element of S as ψ − s, namely 0 (since ψ − s ∈ T ). Therefore, x − s ∈ T so x is tiled by s, reaching
a contradiction for this case.

Case 2: If s = 0, let y be the (unique) minimum point satisfying y ⪰ x and y ⪰ ψ+ a. Notice that
(x + a) ≻ x and (x + a) ≻ ψ + a, so by the minimality of y, we have y ≺ x + a. This implies that
y − x ≺ a, so y − x ∈ T . Also, ψ ⪯ y − a ≺ x, so by the claim, y − a is tiled by 0, i.e., y − a ∈ T .
We have derived that y is tiled by both x and a, a contradiction.

This completes the proof of the L-lemma. ■

2.2 Reduction

The L-lemma tells us that if S is tileable and a ∈ S is primitive, then all points in S are in the lattice
M′ spanned by a and the bases of sp(a)⊥. Note that M′ is a sublattice of M. Let us coordinitize M′

so that the first digit corresponds to the basis a, so that a = (1, 0, . . . , 0).

Proposition 2.2.1. S tiles M′.

Proof. Consider the tiling of M by S . For any translated tile S + t, either one of the following
holds:

• If t ∈ M′ then S + t ⊆ M′.

• If t ̸∈ M′ then (S+)t ∩ M′ = ∅.

Thus, all tiles that intersect M′ are completely contained in M′, so selecting these tiles yields a
tiling of M′. □

We can write M′ = S ⊕ T ′. Let k be the minimum positive integer such that ka ̸∈ S . Note ka is
primitive in M′ \ S , so 0 must tile ka, and thus ka ∈ T ′. Applying the L-lemma on T ′ tells us that
T ′ is contained in the lattice M′

k = span(ka, sp(a)⊥), so by Proposition 2.2.1, T ′ tiles M′
k.
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Now we can write T ′ ⊕ Sk = M′
k. Notice that M′

k ⊕ {0, . . . , k − 1} = M′, so

T ′ ⊕ Sk = M′
k =⇒ T ′ ⊕ Sk ⊕ {0, . . . , k − 1} = M′ = T ′ ⊕ S =⇒ Sk ⊕ {0, . . . , k − 1} = S

We have thus shown that every tileable set S is expressible as Sk + {0, . . . , k − 1}. This allows us
to reduce S to Sk, which is also a tileable set. Moreover, |Sk| = |S|/k < S , so if we repeatedly
apply reduction, we will eventually reduce our set to {0}.

We have in fact shown the following statement:

Theorem 4. Every (finite) tileable S is expressible as {0, a1, . . . , k1a1}+ · · ·+ {0, am . . . , kmam}.

Note that theorem 2 follows, since the unique largest point in S is k1a1 + · · ·+ kmam.

3 First Polynomial Method

For each point (a1, a2, . . . , ad), we can associate it to the monomial xa1
1 · · · xad

d . Then, the polynomial
P associated with S is the sum of the monomials associated with the points in S.

Say a polynomial or formal power series is unitary if all its coefficients are 0 or 1. Notice that
P(x1, . . . , xd) is unitary. Moreover, the power series Q(x1, . . . , xd) associated with our tiling T is
also unitary. The condition that S tiles Nd

0 with tiling T can be written as

P(x1, . . . , xd) · Q(x1, . . . , xd) = ∏
1

(1 − xi)
.

Remark that the fact that Z[[x1, . . . , xd]] is a UFD means that the tiling T for each tileable S is
unique. Now, Q(x1, . . . , xd) converges for x1, . . . , xd ∈ D where D is the open unit disk, as does
the right hand side ∏ 1

(1−xi)
. This implies that P(x1, . . . , xd) is nonzero for x1, . . . , xd ∈ D.

Now the trick is to consider R(x) = P
(

x, xN , xN2
, . . . , xNd−1

)
for a sufficiently large value of

N >> deg(P). Notice that R(x) does not have any roots in D. Yet, R(0) = 1 (this is equivalent
to the the origin belonging in the tile S), so the product of the roots of R(x) has magnitude 1.
Consequently, all roots of R(x) have magnitude 1. It follows that if z is a root of R(x), then so is
z̄ = 1

z , and hence, R is symmetric: R(x) = xdeg(R)R
( 1

x

)
.

As N is large, each term in P corresponds to a distinct term in R(x). It follows that P(x1, . . . , xd)

is also symmetric: P(x1, . . . , xd) = xa1
1 · · · xad

d P
(

1
x1

, . . . , 1
xd

)
for some integers a1, . . . , ad. This shows

that the tile S is symmetric, and in particular, it contains a maximal element, as desired.

4 Addendum: Second Polynomial Method

Each translation of S will have associated polynomial xaybS(x, y) for some a and b, so a partition-
ing of N2 by disjoint translations of S can be expressed by a unitary formal power series T such
that

T(x, y) · S(x, y) =
1

(1 − x)(1 − y)
, (⋆)

where T is a unitary formal power series. We establish the following claims:
Claim 4.1. For some integers k and ℓ and unitary polynomials T0(x) and T1(y) with deg T0 < k

and deg T1 < ℓ,

S(x, 0) · T0(x) =
xk − 1
x − 1

and S(0, y) · T1(x) =
xℓ − 1
x − 1

.
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Proof. We establish that S(x, 0) · T0(x) = xk−1
x−1 , and the other case follows symmetrically.

From (x, y) = ( 1
2 , 0) in (⋆) we see that T( 1

2 , 0) is rational, and thus the exponents in T(x, 0) must
be eventually periodic with some period k. In particular, since S( 1

2 , 0) is an integer over a power
of two, it follows that T( 1

2 , 0) is a power of two divided by an integer, so T(x, 0) is periodic. Thus
we can write

T(x, 0) =
T0(x)
1 − xk

for some integer k and unitary polynomial T0. It then follows that

T0(x, 0) · S(x, 0) =
xk − 1
x − 1

,

as desired.

Claim 4.2. If x0 and y0 are complex with |x0|, |y0| < 1, then S(x0, y0) ̸= 0.

Proof. Since T has all coefficients 0 or 1, it converges absolutely when |x0|, |y0| < 1. It follows that

S(x0, y0) =
1

T(x0, y0)(1 − x0)(1 − y0)
̸= 0.

Express

T(x, y) = T0(x) + T1(x) · y + T2(x) · y2 + · · ·
and S(x, y) = S0(x) + S1(x) · y + S2(x) · y2 + · · ·+ Sn(x) · yn.

Claim 4.3. For each t, we have S0 | St.

Proof. Let ζ be a root of S(x, 0). Since S(x, 0) divides xk−1
x−1 for some k, we know |ζ| = 1. Now I

contend S(ζ, y) = 0 for all y. If not, then S(ζ, y) = 0 has a root at y = 0.
Perturb ζ slightly to ζ ′ where |ζ ′| < 1, and consider complex-valued functions f (y) = S(ζ, y)

and g(y) = S(ζ ′, y)− S(ζ, y). There exists a ζ ′ such that |g(y)| < | f (y)| for all y ∈ ∂D; hence by
Rouché’s theorem, f (y) = S(ζ, y) and f (y) + g(y) = S(ζ ′, y) have the same number of roots in K.
But f (y) has a root y = 0, so S(ζ ′, y) has at least one root with |y| < 1, contradicting Claim 2.

Hence each root ζ of S0(x) is a root of St(x) for all t ≥ 1. Since S0 divides xk−1
x−1 and thus has no

double root, it follows that S0(x) divides all St(x).

Claim 4.4. For each t, if St ̸≡ 0, we have St(x) = S0(x) · x• for some •.

Proof. We proceed by strong induction on t, with base case t = 0 obvious.
Assume the hypothesis for all integers less than t, and assume St ̸≡ 0. The unitary formal

power series St(x) · T0(x) is always a polynomial multiple of S0(x) · T0(x) = 1
1−x ; in particular if

R(x) = St(x)
S0(x) = r0 + r1x + · · ·+ rjxj then

St(x) · T0(x) =
R(x)
1 − x

=
(
r0 + r1x + r2x2 + · · ·

) (
1 + x + x2 + · · ·

)
= r0 + (r0 + r1)x + (r0 + r1 + r2)x2 + · · ·+ (r0 + · · ·+ rj)(xj + xj+1 + · · · ).

Since St(x) · T0(x) represents what St tiles in row t, it is unitary. In particular, the nonzero coef-
ficients of R must alternate between +1 and −1, and since R(1) = St(1)

S0(1)
> 0, we can express R

as
R(x) = xR0 − xR1 + xR2 − · · ·+ xR2n , where R0 < R1 < · · · < R2n.
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It also follows that

R(x)
1 − x

= ∑
R2i≤k<R2i+1

or k≥R2n

xk =⇒ 1 − R(x)
1 − x

= ∑
R2i−1≤k<R2i

or k<R0

xk.

Now R(x)
1−x = St(x) · T0(x) is the portion of row t covered by translations St, so 1−R(x)

1−x is the
portion covered by S0, S1, . . ., St−1, and since S0, S1, . . ., St−1 are translations of S0, this portion can
be tiled by S0. In particular, it is the product of S0 and a unitary polynomial.

The key is to consider the polynomial

P(x) =
R(x) · (1 − R(x))

1 − x
,

which is the product of R(x) · S0(x) = St(x) and a unitary polynomial; in particular, it is a product
of two unitary polynomials, hence its coefficients are all nonnegative.

However, consider the xR2n+R2n−1−1 term of P(x). In the product P(x) = R(x) · 1−R(x)
1−x , this term

can only be obtained from a −xR2n−1 term from R(x) and a +xR2n−1 term from 1−R(x)
1−x . Thus the

xR2n+R2n−1−1 term in P(x) has a coefficient of −1, contradiction.

Thus the rows of S(x, y) are translations of S(x, 0), and similarly the columns are translations of
S(0, y). Consider the reduction

S̃(x, y) =
S(x, y)

S(x, 0) · S(0, y)
,

with the property that each row and column of S̃ has at most one term. Since S tiles N2 and S̃ tiles
S, S̃ tiles N2; let T̃(x, y) · S̃(x, y) = 1

(1−x)(1−y) .

If, for contradiction, S̃(x, y) contains monomials xayb and xcyd where a > c and b < d, then con-
sider the monomial xayd in S̃(x, y) · T̃(x, y) = 1

(1−x)(1−y) . For one, xayd is contained in xayb · T̃(0, y),

but for another it is contained in xcyd · T̃(x, 0). Hence its coefficient is at least 2, contardiction.
It readily follows that S̃(x, y) has a top-right point, so S(x, y) = S(x, 0) · S(0, y) · S̃(x, y) has one

as well. This completes the proof. ■
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