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Introduction

Fix a local field K, for example a finite extension of Qp. A classical question
is counting the number of tamely ramified extensions of K of a given degree,
which in turn is done by Serre’s mass formula (see [3]), giving precisely n degree
n totally tamely ramified extensions (where p ∤ n), and then since a tamely
ramified extension is uniquely a totally tamely ramified extension of its maxi-
mal unramified one and there is a unique unramified degree k extension of K
for each k, we find there are σ0(n) tamely ramified degree n extensions, where
σ0(n) is the sum of the divisors of n coprime to p.

Using Kummer theory and the explicit description of tamely ramified Galois
extensions or more elementary techniques (see [1]), one can also obtain the fol-
lowing result:

Let K/Qp be a finite extension and let L be a finite unramified extension of
K. Set q = |k|. Then there are gcd(n, q − 1) tamely ramified Galois extensions
M/K such that L ⊂ M and M/L is totally ramified of degree n.

This Kummer Theory approach quickly devolves into a certain counting of
fixed points under the Galois group of the unramified part, something which
we greatly build upon using class field theory in a broader context. In terms
of ramification jumps, tamely ramified Galois extensions can be thought of as
(0, 1) Galois extensions since tamely ramified Galois extensions have ramifica-
tion jumps only at 0 and 1. The next natural question to ask is how to count
(0, n) extensions for a given positive integer n; these are the extensions with
only a single wild ramification jump.

In this paper, we briefly sketch the relatively straightforward (0, 2) case and
then give a complete treatment of the (0, 3) case, effectively determining ex-
plicit formulas for the number of (0, 3) extensions given a particular unramified
K/K1 setup (with K corresponding to the maximal unramified extension). In
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fact, we determine explicit formulas in the cases when K1/Qp is totally ramified
and when it is unramified.

1 Preliminaries

We start by noting an immediate consequence of [2] (p. 67, Prop. 7):

Proposition 1.1

Let L/K be a Galois extension with Galois group G. Set G0 = I and let Gi be
the ith higher ramification group for i ≥ 1. Then we have:

1) G0/G1 is isomorphic to a subgroup of l×, where l is the residue field of
L.

2) For i ≥ 1, Gi/Gi+1
∼= (Z/pZ)k for some k, and so in particular, G1 is a

p-group.

Letting π be a uniformizer for L/K and assuming the extension L/K is to-
tally ramified, we have that OL = OK [π] and so the ramification groups are
determined by π. More precisely, letting Gal(L/K) = G, we have that Gn =
{σ ∈ G, σ(π) ≡ π mod mn+1}, where m = (π) is the maximal ideal of OL. We
will later seek to better understand these ramification groups.

Proposition 1.2

Let M/L/K be a series of finite extensions of local fields such that M/L is
abelian and L/K is Galois. Let H be the norm subgroup of L× associated to
M under LCFT. Then M/K is Galois iff σ(H) = H for all σ ∈ Gal(L/K).

Proof. M/K being Galois is equivalent to σ(M) = M for all σ : M → K̄ an
embedding fixingK. Since L/K is Galois, σ(L) = L for all such embeddings and
thus σ(M)/L is an abelian extension. Its norm group is clearly σ(H). However,
LCFT gives an order-reversing bijection between norm groups and finite abelian
extensions, and so we have that σ(M) = M for all σ iff σ(H) = H for all σ.
But σ|L precisely attains the elements of Gal(L/K), and so we conclude.

2 Ramification Groups

We now prove some general results about ramification groups. We start with
Herbrand’s Theorem, which states thatGuH/H = (G/H)v, where v = ϕL/K(u).
We are interested in the case of Galois extensions where there is a single jump
in the wild ramification groups. We now characterize such extensions in the
context of Lubin-Tate Theory. As before, we have that G = Gal(Kπ,n/K) ∼=
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O×
K/(1+mn) and so view subgroups of G in terms of subgroups of O×

K/(1+mn).
We say that an subextension L/K with corresponding subgroup H has a (lower)
ramification jump at u if (G/H)u−1 ̸= (G/H)u.

Lemma 2.1

Suppose that Kπ,n/K is a Lubin-Tate extension with Galois group G. The
subextensions L/K with a single wild ramification jump at k correspond to the
proper subgroups H of G that both contain (1 + mk)/(1 + mn) and have the
property that the canonical map H → O×

K/(1 + mk−1) is surjective under the
identification G ∼= O×

K/(1 +mn).

Proof. Now recall from Lubin-Tate theory that if m < qn, qk ≤ m < qk+1,
we have that Gm = (1 + mk)/(1 + mn). It follows that Gk+1 = Gqk for each
0 ≤ k < n.

Next note that Galois extensions with a single positive ramification jump have
GϕL/K(v) = Gv for all v. Indeed, letting the jump be at k, we have that for
v ≤ k, GϕL/K(v) = Gv, where ϕL/K(v) = v follows since [G0 : Gv] = 1 for
all 0 ≤ v < k. On the other hand, for v > k, both are trivial since then
k < ϕL/K(v) < v. Thus the upper numbering and lower numbering groups
coincide for such extensions.

There being a unique jump at k is equivalent to (G/H)k = 1 and (G/H)k
′
=

(G/H)0 for 1 ≤ k′ < k by definition as these coincide with the lower ramification
groups. By Herbrand’s Theorem, this is equivalent to having Gk+1 = Gqk ⊂ H
and Gqk′H/H = (G/H)0 for 1 ≤ k′ < k. The former condition is equivalent to

containing (1+mk)/(1+mn). The latter just means that Gqk′H is constant for

1 ≤ k′ < k, which is equivalent to having the condition that H → O×
K/(1+mk′

)
is surjective for 1 ≤ k′ < k. However, surjectivity at k − 1 implies surjectivity
elsewhere, implying the claim.

We now use Lemma 2.1 to say more about the H such that there is a single
jump at 2 or 3. For 2, the second condition is superfluous, and so it is enough
to contain (1 + m2)/(1 + mn). By Proposition 2.1 and class field theory, this
implies that L ⊂ Kπ,2, and so these are precisely the working extensions.

If we assume that there only a single jump at q, then we must also have that the
map H → O×

K/(1 + m) is surjective. However, we know that H is isomorphic
to a subgroup of O×

K/(1 +m2), which has p-Sylow group (1 +m)/(1 +m2) and
cyclic subgroup of order q− 1 generated by the coset of µq−1, giving a splitting
O×

K/(1 + m2) ∼= k+ × k×, where k is the residue field of K, where the isomor-
phism is induced upon fixing a uniformizer π. Any subgroup of this group will
be isomorphic to the direct product of its Sylow subgroups, thus isomorphic to
a product of subgroups k1, k2 of k+, k×, respectively.
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Surjectivity is then equivalent to k2 being all of k×. Now let a ∈ k and note
that the coset Ha of H of elements congruent to a mod m is just (a+ (f(a) +
k1)π)/(1 + m2) for some unique coset f(a) of k+/k1. We must then have that
HaHb = Hab, which implies that af(b) + bf(a) ≡ f(ab) mod k1. Now since
there a unique subgroup H with a given k1 and every f gives a different sub-
group with that corresponding k1, we conclude that for any subgroup k1 of k+,
the unique “differential” of the form f : k → k+/k1 is the zero differential. Thus
the 2 case is encapsulating the differential information of the residue field. The
case of 3 can thus be seen as a more complicated type of differential.

Now we investigate this case. First we need some lemmas on finite fields.

3 Finite Fields

Lemma 3.1

Let k be a finite field of characteristic p and h, h′ subgroups of k+. Let r =
dimFp(h

′). Say that h ∼ h′ if x2 ∈ h for each x ∈ h′. Then the number of
functions f : h′ → k+/h such that f(a+ b) ≡ f(a) + f(b) + ab mod h is{

0 p = 2, h ̸∼ h′

pr(codimFp (h)) else

.

Proof. From this relation and an easy induction, we deduce

f(

r∑
i=1

ai) ≡
r∑

i=1

f(ai) +
∑

1≤i<j≤r

aiaj mod h

which in particular implies that for any positive integer r, f(ra) ≡ rf(a)+
(
r
2

)
a2

mod h upon setting all ais equal. If h ∼ h′ or p ̸= 2, we find that f(pa) ≡ 0
mod h and so f is in fact well-defined. If p = 2 and h ̸∼ h′, then we get a
contradiction since we would need a2 ≡ 0 mod h for all a ∈ h′, meaning that
no such functions can exist.

Now let e1, · · · , er be an Fp-basis for h′. Upon choosing f(ei), the above rela-
tion gives f(rei) ≡ rf(ei)+

(
r
2

)
e2i mod h, and so f(rei) is determined by f(ei).

Furthermore, we must have

f(

n∑
i=1

aiei) ≡
n∑

i=1

aif(ei) +

(
ai
2

)
e2i +

∑
1≤i<j≤n

aiajeiej mod h

and so f is completely determined by f on the basis.
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The condition f(a+ b) ≡ f(a) + f(b) + ab mod h is equivalent to

f(

n∑
i=1

(ai + bi)ei) = f(

n∑
i=1

aiei) + f(

n∑
i=1

biei) + (

n∑
i=1

aiei)(

n∑
i=1

biei)

Using the known value of f , this gives

n∑
i=1

(ai+bi)f(ei)+

(
ai + bi

2

)
e2i+

∑
1≤i<j≤n

(ai+bi)(aj+bj)eiej ≡
n∑

i=1

(ai+bi)f(ei)+

(

(
ai
2

)
+

(
bi
2

)
)e2i +

∑
1≤i<j≤n

(aiaj + bibj)eiej + (

n∑
i=1

aiei)(

n∑
i=1

biei) mod h

which is an equality. Thus any choice of f on a basis determines a working f
on all of k. As there are pcodimFp (h) choices of coset for each basis element, this
gives a total of prcodimFp (h) total choices of f .

Lemma 3.2

Let k be a finite field of characteristic p, k′/Fp a subextension of k/Fp, h a Galois
invariant subgroup of k+. Let q = |k′|. Then the number of Galois equivariant
functions f : k+ → k+/h such that f(a+ b) ≡ f(a) + f(b) + ab mod h is{

0 p = 2

qcodimFp (h) p > 2

Proof. By definition, we need to have σ(f(a)) = f(σ(a)) for all a ∈ k. Let
e1, · · · , er be a Galois invariant Fp-basis for k.

We claim that it is enough to it be equivariant on the eis. Indeed, if it is,
then representing a =

∑r
i=1 aiei, we have

σ(f(a)) ≡ f(σ(

r∑
i=1

aiei)) ≡
s∑

i=1

aiσ(f(ei)) +

(
ai
2

)
σ(e2i ) +

∑
1≤i<j≤r

σ(aiajeiej)

≡
r∑

i=1

aif(σ(ei)) +

(
ai
2

)
σ(ei)

2 +
∑

1≤i<j≤r

aiajσ(ei)σ(ej) ≡ f(σ(a)) mod h

proving the claim.

By the Galois module structure for Fpn , we can choose a basis for k over
Fp of the form σi(aj), 1 ≤ i ≤ r, 1 ≤ j ≤ s. Then given any choice of
f(σ1(a1)), · · · , f(σ1(ar)), we must have that f(σk(aj)) = σk(f(aj)), which de-
termines f on the part of basis consisting of the conjugates of aj and thus on
the entire basis.
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By the proof of Lemma 3.1, any choice of f on an Fp-basis for some p ̸= 2
uniquely determines a function satisfying f(a + b) = f(a) + f(b) + ab and for
p = 2, there are no such functions since k+ ̸∼ h as h is proper and the squaring
map is surjective on k. As any such function is automatically equivariant on
the basis, it must be equivariant on all of k. But then there are |k|/|h| choices
of coset for each f(σ1(aj)), giving (|k|/|h|)s = qcodimFp (h) total choices.

Lemma 3.3

Let t be the trace 0 subspace of l = Fpk , i.e. the kernel of the trace map
Fpk → Fp, let l

′ = Fpk′ be a subfield, and G = Gal(l/l′) with g a generator. Set

r = |G| and s = k
r . Then there is an Fp-basis for t of the form {giαj , 0 ≤ i ≤

r − 1, 1 ≤ i ≤ s− 1} ∪ {gi(g − 1)αs, 0 ≤ i ≤ r − 2}.

Proof. We start with the Fp[x]-module structure of l, where x acts as multipli-
cation by g, which is

∏s
i=1 Fp[x]/(x

r −1). Note that t is a G-invariant subspace
since any l′-conjugate is certainly an Fp-conjugate. Hence it also is naturally
endowed with the structure of a Fp[x]-module, and so it too has a decompo-
sition into elementary divisors

∏m
i=1 Fp[x]/(pi(x)

ei) according to the structure
theorem (so that the pis are irreducible).

Then note that multiplication by x − 1 on
∏s

i=1 Fp[x]/(x
r − 1) gives a sub-

module of t under this isomorphism, meaning that t contains the submodule∏s
i=1(x− 1)/(xr − 1) and thus a submodule isomorphic to

∏s
i=1 Fp[x]/(

xr−1
x−1 ).

Breaking both these submodules into their invariant factor decompositions and
choosing any monic irreducible p(x) ̸= x− 1 in these decompositions, it follows
that the dimension of the p(x)e is the same for both of these for any e, and so it
follows that t has identical p(x)e-torsion, and so in particular these elementary
divisors match.

The only other possibility for a pi(x) in the decomposition for t is x − 1 it-
self, and by considering (x − 1)e torsion in

∏s
i=1 Fp[x]/(

xr−1
x−1 ), we see that all

exponents must be at least one less than the common exponent in the decom-
position of k+. For dimension reasons, we must then have that all exponents
are equal except for one which is one less. Thus we get an elementary divisor
decomposition of t of the form

∏s−1
i=1 Fp[x]/(x

r−1)⊕Fp[x]/(
xr−1
x−1 ). The element

corresponding to 1 in the last summand and 0 elsewhere is in the kernel of the
trace map Trl/l′ , and thus is of the form (g − 1)αs for some αs (by a counting
argument or Hilbert 90), completing the proof.

Lemma 3.4

Let k be a finite field of characteristic 2 with [k : F2] = n and choose α ∈ k. Let

q = 2r be a prime power with n = rm so that m ≥ 2 and set αi = αqi + αqi+1

.
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Let t be the trace 0 subspace. Then
∑

0≤i<j<m αiαj ≡ αq+1 +α mod t if m is
odd and 0 mod t if m is even.

Proof. Note that
∑

0≤i<j<m αiαj =
∑

0≤i<j<m αqi+qj +αqi+1+qj+1

+αqi+1+qj +

αqi+qj+1

. First note that the pairs mod m obtained by (i + 1, j + 1) for
0 ≤ i < j < m are just the pairs (i, j) for 1 ≤ i < j ≤ m. Hence these
completely overlap the (i, j) pairs with 0 ≤ i < j < m except for those with
i = 0 in the latter case and j = m in the former. Hence this part of the sum
just becomes

∑
0<i<m α1+qi +

∑
1≤i<m αqi+qm =

∑
0<i<m α1+qi + αqi+qm = 0.

Hence we just need to determine
∑

0≤i<j<m αqi+1+qj + αqi+qj+1

. The pairs
(i + 1, j) obtained for 0 ≤ i < j < m are precisely those of the form (i, j) for
1 ≤ i ≤ j < m while the pairs (i, j+1) obtained for 0 ≤ i < j < m are precisely
those of the form (i, j) for 0 ≤ i < j ≤ m with i + 1 < j. The pairs (i, j)
for 1 ≤ i ≤ j < m that are not of the form (i, j) for 0 ≤ i < j ≤ m with
i + 1 < j are precisely those with i = j or i + 1 = j while the pairs (i, j) for
0 ≤ i < j ≤ m with i+ 1 < j that are not of the form (i, j) for 1 ≤ i ≤ j < m
are precisely those with i = 0 or j = m. Hence all terms in the sum cancel
out except these (since they all other pairs will have exactly 2 copies), leaving∑

1≤i<m α2qi +
∑

1≤i<m−1 a
qi+qi+1

+
∑m

j=2 a
1+qj +

∑m−2
i=0 αqi+qm −α1+qm (since

both of the latter two sums count the case (0,m)).

Overlapping the last two sums gives α1+qm−1

+α2+α2+αq+qm+
∑m−2

j=2 2a1+qj ≡
α1+qm−1

+ αq+qm − α1+qm ≡ α2 mod t. Hence the overall sum becomes α2 +∑
1≤i<m α2qi +

∑
1≤i<m−1 a

qi+qi+1

. Note that α2qi ≡ α mod t for each i,

while similarly, αqi+qi+1 ≡ αq+1 mod t for each i (this is because the coset
of t is determined by the trace and taking the trace of an F2-conjugate gives
the same result). It follows that α2 +

∑
1≤i<m α2qi +

∑
1≤i<m−1 α

qi+qi+1 ≡
α+ (m− 1)α+ (m− 2)αq+1 ≡ m(α+ αq+1) mod t, as desired.

4 Main Results

Theorem 4.1

Suppose K1/Qp, where K1 ̸= Qp, is finite and totally ramified, and let K be a
finite unramified extension of K1. Let n = [K : K1]. Set f(x) = xn−1

(x−1)p
vp(n) ∈

Fp[x], deg(f) = n − pvp(n) = d, and ζf (s) =
∑d

i=0
an

pns be the zeta function for

the ring S =
Fp[x]
(f) (equivalently, an is the number of degree n monic factors

of f). Then the number of Galois extensions L/K1 such that L/K is totally
ramified with a single ramification jump at 3 is{

0 p = 2
2pn+1−pn−pd+1

p−1 ζf (1) p > 2
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Proof. First note that G = Gal(L/K) has single wild ramification jump at 3,
which means that the extension is totally wildly ramified. Thus by Proposi-
tion 1.1, we see that G2/G3

∼= Gal(L/K) is the direct sum of cyclic groups of
order p. In particular, G is abelian, and so by class field theory we may at-
tach a norm group NmL/K(L×) to it. As L/K is totally ramified, we may let
π ∈ NmL/K(L×) be a uniformizer of OK . It then follows that NmL/K(L×) =

πZNmL/K(O×
L ). Let H = NmL/K(O×

L ). By Proposition 2.2, since G is abelian,
the extension L/K1 being Galois is equivalent to having the norm group corre-
sponding to the abelian extension L/K under class field theory to be fixed by
Gal(K/K1). This means that πZH is invariant under the Galois action.

Since σ preserves valuations, πZH is invariant under Gal(K/K1) iff πfH is
for each integer f . As K/K1 is unramified, let π = π′u for some uniformizer
π′ of OK1

and u ∈ O×
K . The group O×

K/H has finite order, and so choosing
f = |O×

K/H|, Lagrange implies that πfH = π′fH. Thus to be Galois invariant
in this case just means that H is Galois invariant. Now knowing that H is
Galois invariant, we see that πZH is invariant precisely if σ(u)/u ∈ H for each
σ ∈ G = Gal(K/K1). Thus for a given Galois invariant H, it suffices to find
the number of classes u ∈ O×

K/H that are also Galois invariant. As H is Galois
invariant, O×

K/H naturally obtains the structure of a G-module.

In order for the extension to be Galois, we just need two things to happen. First,
we need that h is fixed under the Galois action. Indeed, given x ∈ NmL/K(O×

L )∩
(1+m2) and σ ∈ Gal(K/K1), we have that σ(x) ∈ NmL/K(L×) by Proposition
2.2 since L/K1 is Galois. Furthermore, 1 + m2 is Galois invariant since it m is
the unique maximal ideal of OK . Thus σ(x) ∈ NmL/K(O×

L ) ∩ (1 + m2). As σ
has finite order, this implies that h is Galois invariant.

Then given such a subgroup h, we need to have that the fibers under the projec-
tion map onto (1 +m)/(1 +m2) are fixed under the Galois action. This means
that σ(Ha) = Hσ(a) for all σ ∈ Gal(K/K1) and a among our lifts.

We will now introduce a framework for understanding our lifts. Choose a
Gal(k/k′)-invariant Fp-basis for k (using the Fp-module structure of Fpm), say
e1, · · · , em and lift these basis elements to roots of unity ω1, · · · , ωm in O×

K .
Each a ∈ k can uniquely written as

∑
ziei, where zi ∈ Fp, and so there is a

unique lift of a of the form
∑

ziωi, where 0 ≤ zi ≤ p − 1. Let a′ =
∑

aiωi be
this lift of a. Notice that a′ + b′ =

∑
aiωi +

∑
biωi =

∑
(ai + bi)ωi. On the

other hand, the lift (a+ b)′ =
∑

(a+ b)iωi is equal to
∑

(ai + bi)ωi, so we have
that ai + bi = (a+ b)i in Fp, which implies that ai + bi ≡ (a+ b)i mod p. But
since K/Qp is totally ramified of degree > 1, we know that ai + bi ≡ (a + b)i
mod π2 and so a′ + b′ ≡ (a+ b)′ mod π2.

Now set Ha = (1 + a′π + f(a)π2)(1 + m3) for some coset f(a) of h in k. The
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key idea is that

HaHb = ((1 + a′π + f(a)π2)(1 +m3))((1 + b′π + f(b)π2)(1 +m3)) =

(1+(a′+b′)π+(f(a)+f(b)+ab)π2)(1+m3) = (1+(a+b)′π+(f(a)+f(b)+ab)π2)(1+m3)

It follows that Ha+b = HaHb is equivalent to f(a+b) ≡ f(a)+f(b)+ab mod h,
which defines our group structure. By Galois invariance of our basis, we have
that σ(a′) = (σ(a))′, and so σ(Ha) = (1+ (σ(a))′π+ σ(f(a))π2)(1 +m3). Thus
in order to have σ(Ha) = Hσ(a) we just need to have that σ(f(a)) = f(σ(a))
for all a ∈ k. In other words, we want the map f to be Galois equivariant. By
Lemma 3.2, the number of functions satisfying these two conditions is (|k|/|h|)s.

Now since the projection map H → O×
K/(1 + m2) is surjective, any element

of O×
K/H has a coset representative of the form 1 + π′2x. We want to compute

the number of G-invariant points of O×
K/H given a choice of H. We may view x

as an element of k since shifting x by something in m does not change its coset.
Such an element x is then precisely defined by its coset in k/h. The action of
G on k/h restricts to the action of G1 = Gal(k/k1) on k/h, and so we just seek
the number of G1 invariant fixed points of k/h for a given choice of h.

Now note that its coset x + h is invariant under G1 iff it is invariant under
a generator σ, meaning that we just need xq −x ∈ h. Thus we seek the number
of elements x+h of k/h such that xq −x ≡ 0 mod h, where q = |k1|. The map
x → xq − x is a linear map k → k with kernel consisting of the elements of Fq

and image t, where t′ is the trace 0 subspace (i.e. the kernel of Trk/k1
), since

anything in the image is in the kernel of the trace map and t and the image
have the same order. The subspace of h in the image of this map is then h ∩ t.
Each of these images is attained q times, so the total number of images in h is
q|h ∩ t′|. The total number of cosets of h is then q|h ∩ t′|/|h|, and so this is the
number of fixed points.

Now fix |h|. We want to determine
∑

|h ∩ t′| over all subspaces h of k with
|h| of a given size. For this, we use the Galois module structure. Since K ′/Qp

is totally ramified, Fpn naturally has a structure as a Fp[x]-module, decompos-
ing as Fp[x]/(x

n − 1). The virtue of this is that Fp[x]-submodules, i.e. Galois
invariant Fp-subspaces, correspond precisely to ideals of R = Fp[x]/(x

n − 1).

Under this correspondence, the subspace t′ is just the ideal (x − 1)R, and so
|h∩ t′| = |(x− 1)∩ I|. But now Is is necessarily a principal ideal corresponding
to a monic factor f of xn − 1 in Fp[x]. Let I = (f(x)). If x − 1|f(x), then
I ⊂ (x − 1) and so |(x − 1) ∩ I| = |I|. Otherwise, (x − 1) ∩ I = (f(x)(x − 1))
and so |(x − 1) ∩ I| = |I|/p. But then |h| = |I| and so the sum we seek is

|h|
∑1

i=0
Ni,t

pi . Let |h| = pt. Thus the total sum over h with |h| = pt becomes

p(
∑1

i=0
Ni,t

pi ).
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Now this is the total number of fixed points for a given choice of |h|. For
each h with |h| = pt, there are pn−t ways to extend it to a G-invariant subgroup
H of O×

K that is surjective on the projection map, and so by Lemma 3.2, to get
the total number of extensions, we sum this over all possible t, meaning that we
get

pn+1
n−1∑
t=0

1∑
i=0

Ni,t

pi+t

as desired. Now we determine Ni,t more explicitly. Firstly, if i = 1, then N1,t

counts the number of degree t factors indivisible by x − 1, which is ad−t = at.
If i = 0, then we now restrict to those divisible by x− 1, which is at−1 + at−2 +

· · ·+at−pvp(n) . Setting bt = 2at+
∑pvp(n)−1

i=1 at−i, we get p
n
∑n−1

t=0
bt
pt , which can

also be rewritten pn(2 +
∑n−d−1

i=1
1
pi )(

∑d
t=0

at

pt ), as desired.

In Theorem 4.1, we crucially assumed that K/Qp was ramified in order for
our coset machinery to work properly. However, the approach will work for
any ramified K/Qp, with the only fallback in general being that the fixed point
counts have a less pleasant expression when K/Qp is not totally ramified. In
fact, the count depends entirely on the content of the residue field extension
k/k′, and so it depends entirely on the residue field extension. In particular, for
K/K1 of fixed degree, only the residue degree of K1/Qp will impact the count.
We will now treat the unramified case.

Theorem 4.2

Suppose K1/Qp is unramified of degree n and let K be a finite unramified
extension of K1. Then the number of finite Galois extensions L/K1 such that
L/K is totally ramified with a single ramification jump at 3 is{

2n+1 p = 2,

0 else

Proof. Set [K : K1] = r.

By Proposition 1.1, G2/G3
∼= Gal(L/K) is the direct sum of cyclic groups of

order p. By Artin reciprocity and noting that L/K is totally ramified, we have
that Gal(L/K) ∼= O×

K/NmL/K(O×
L ). This means that (O×

K)p ⊂ NmL/K(O×
L ).

Now we suppose that p > 2. We claim that 1 + p2OK ⊂ (O×
K)p.

Indeed, note that (1 + py)p ≡ 1 + p2y mod p3 if p > 2, which implies that
for the polynomial f(x) = xp − (1 + p2y), |f(1 + p2y)| ≤ p−3. On the other
hand, f ′(1+p2y) = p(1+p2y)p−1, and so |f ′(1+p2y)| = p−1, which shows that
|f(1 + p2y)| ≤ |f ′(1 + p2y)|2. Thus by Hensel’s Lemma, we can find a solution
z ∈ OK to x2 − (1 + p2y) = 0, which shows that 1 + p2OK ⊂ (O×

K)p. Thus
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1 + p2OK ⊂ NmL/K(O×
L ) = H. However, to have a single ramification jump at

3, we need the map H → O×
K/(1 + p2OK) to be surjective, which implies that

H = O×
K , contradicting Lemma 2.1.

Next we handle the case of p = 2. We will determine precisely (O×
K)2. Note that

(1 + 2z)2 = 1 + 4(z2 + z). If we can find x such that z2 + z = y, then we have
that 1+ 2z is a solution to x2 − (1+ 4y) = 0, and so as before, Hensel’s Lemma
implies that we can find w with w2 = 1+ 4y. Thus the squares in 1 + 2OK are
precisely those of the form 1+4(z2+z) mod 8. In particular, we deduce that if
h is the image of H ∩ (1+4OK) → (1+4OK)/(1+8OK) ∼= k+, then h contains
the subspace consisting of all values z2 + z, z ∈ k. The map z → z2 + z is a ho-

momorphism on k with kernel 0, 1, and thus the image has size |k|
2 , meaning that

this subspace is an index 2 subgroup of k+. In particular, we must have that h
is precisely this subspace or else h would be the whole of k+ which would im-
ply as before thatH = O×

K , which is again not proper, contradicting Lemma 2.1.

By Lemma 3.3, we can choose an F2-basis for t of the form {giαj , 0 ≤ i ≤
r − 1, 1 ≤ j ≤ n − 1} ∪ {gi(g − 1)αn, 0 ≤ i ≤ r − 2}, where g is a generator
of Gal(k/k1). Denote these elements as e1, · · · , ern−1. Lift these basis elements
to roots of unity ω1, · · · , ωrn−1 in O×

K . Each a ∈ k can uniquely written as∑
fiei, where zi ∈ F2, and so there is a unique lift of a of the form

∑
ziωi,

where 0 ≤ zi ≤ 1. Let a′ =
∑

aiωi be this lift of a.

Now set Ha = (1 + 2a′ + 4f(a))(1 +m3) for some coset f(a) of t in k. Getting
a subgroup structure is equivalent to having HaHb = Ha+b for all a, b ∈ k.

First suppose that a, b ∈ t. The lift (a + b)′ for a + b will differ from a′ + b′

by 2(
∑

e′i), where the sum ranges over some subset of e′1, · · · , e′rn−1. Thus
1+2(a′+b′)+4ab+4f(a)+4f(b) = 1+2(a+b)′+4(

∑
e′i)+4ab+4f(a)+4f(b).

The key point is that now
∑

e′i will be an element of h and thus will not change
the coset of h dictated by the values of f , and thus 1 + 2(a+ b)′ + 4f(a+ b) =
1+2(a′+b′)+4ab+4f(a)+4f(b) = 1+2(a+b)′+4(

∑
e′i)+4ab+4f(a)+4f(b) =

1+2(a+b)′+4ab+4f(a)+4f(b), and so we deduce that f(a+b) ≡ f(a)+f(b)+ab
mod t for all a, b ∈ t.

Case 1: r is odd.

In this case, take some element β of k1 such that Trk1/F2
(β) = 1 and let ern = β.

Then note that Trk/F2
(β) = [K : K1]Trk1/F2

(β) = 1, and so β ̸∈ t, showing that
β completes the basis. Then if both a, b ̸∈ t, the element (a + b)′ − (a′ + b′)
will now be of the form 2(

∑
e′i), where it includes e′rn, and so now

∑
e′i will

indeed change the coset. Hence we deduce that f(a+b) ≡ f(a)+f(b)+ab+ern
mod h. Let l be the subspace of k spanned by e1, · · · , er(n−1). Applying Lemma
3.1 upon noting that l has a Galois invariant basis and stays in t upon squaring
(since t maps to itself upon squaring), meaning that l ∼ t, we conclude that
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there are 2n−1 Galois equivariant functions satisfying f(a+b) ≡ f(a)+f(b)+ab
mod t on l.

We will now show that each of these equivariant functions has exactly two
extensions to k+. First note that f((g − 1)αn) = f(αq

n + αn). In order for
the functional equation to be satisfied and to have Galois equivariance, we
must have that f(αq

n + αn) ≡ 2f(αn) + αq+1
n ≡ αq+1

n mod h if αn ∈ t and
f(αq

n+αn) ≡ 2f(αn)+αq+1
n +αn ≡ αq+1

n +αn mod h if αn ̸∈ t. Note that the
former is just αq+1

n + αn since αn ∈ t, so we have that f(αq
n + αn) = αq+1

n + αn

in all cases. Then since the Galois group preserves t, Galois equivariance forces
f(αqi

n + αqi−1

n ) ≡ αq+1
n + αn mod h for each i. Finally, we let f(β) be either

of the two possibilities. This defines f on all of k+ via the functional equation,
and by the proof of Lemma 3.1, will give a well-defined function.

Hence we just need to check that each such function is Galois equivariant.

Write a = arnβ +
∑n(r−1)

i=1 aiei + c and let b = arnβ +
∑n(r−1)

i=1 aiei. Note
that σ(f(a)) = σ(f(b)) + σ(f(c)) + σ(bc). Since the basis elements in the ex-
pansion of b form a Galois invariant set, the proof of Lemma 3.2 implies that
σ(f(b)) = f(σ(b)). Since we know that f satisfies the functional equation, we
must have that f(σ(a)) = f(σ(b))+f(σ(c))+σ(b)σ(c). Hence it suffices to show
that σ(f(c)) = f(σ(c)).

By definition and Galois equivariance on the basis, we have c =
∑rn−1

i=r(n−1) aiei =∑r−2
i=0 a′ig

i(g − 1)αn and so

g(f(c)) =

r−2∑
i=0

a′ig(f(g
i(g−1)αn))+

∑
0≤i<j≤r

g(a′ia
′
j(g

i(g−1)αn)(g
j(g−1)αn)) =

r−2∑
i=0

a′i(f((g − 1)αn)) +
∑

0≤i<j≤r−2

a′ia
′
j(g

i+1(g − 1)αn)(g
j+1(g − 1)αn))

Next note that gc = a′r−2(g − 1)αn +
∑r−3

i=0 (a
′
i + a′r−2)g

i+1(g − 1)αn and so

f(gc) = f(

r−3∑
i=0

a′ig
i+1(g − 1)αn) + a′r−2f(

r−2∑
i=0

gi(g − 1)αn)+

a′r−2(

r−3∑
i=0

a′ig
i+1(g − 1)αn)(

r−2∑
i=0

gi(g − 1)αn)

Now we know that

f(

r−3∑
i=0

a′ig
i+1(g − 1)αn) = (

r−3∑
i=0

a′if(g
i+1(g − 1)αn))+

∑
0≤i<j≤r−3

a′ia
′
j(g

i+1(g − 1)αn)(g
j+1(g − 1)αn))

12



Combining everything, it remains to show that f(
∑r−2

i=0 gi(g − 1)αn) ≡ f((g −
1)αn) mod h. Expanding out the left hand side gives (r − 1)f((g − 1)αn) +∑

0≤i<j≤r−2 g
i(g − 1)αn(g

j(g − 1)αn), and so since f((g − 1)αn) ≡ αq+1 + α

mod h, it remains to show that
∑

0≤i<j≤r−2 g
i(g−1)αn(g

j(g−1)αn) ≡ r(αq+1+

α) mod h. By Lemma 3.4, we have that
∑

0≤i<j≤r−1 g
i(g−1)αn(g

j(g−1)αn) =

r(αq+1
n + αn). But then rewriting the sum gives

∑
0≤i<j≤r−2

gi(g − 1)αn(g
j(g − 1)αn) + (

r−2∑
i=0

gi(g − 1)αn)(g
r−1(g − 1)αn) =

∑
0≤i<j≤r−2

gi(g − 1)αn(g
j(g − 1)αn) + ((1 + gr−1)αn)(g

r − gr−1)αn

However, ((1 + gr−1)αn)(g
r − gr−1)αn ≡ (α + αqr−1

)(αqr + αqr−1

) ≡ (α +

αqr−1

)2 = α + αqr−1 ≡ 0 mod h, and so we conclude that
∑

0≤i<j≤r−2 g
i(g −

1)αn(g
j(g − 1)αn) ≡ r(αq+1

n + αn) mod h, completing the proof.

Case 2: r is even.

Consider our basis {giαj , 0 ≤ i ≤ r − 1, 1 ≤ j ≤ n − 1} ∪ {gi(g − 1)αn, 0 ≤
i ≤ r− 2} for t coming from Lemma 3.3. This corresponds to the F2[x]-module

decomposition t ∼=
⊕n−1

i=1 F2[x]/(x
r − 1)⊕F2[x]/(x

r−1+ · · ·+1). We claim that
αn ̸∈ t. Suppose that αn ∈ t. Then we can write αn = (g − 1)b for some b, and
so then (g−1)αn = (g−1)2b. Since r is even, we know that x−1|xr−1+ · · ·+1,

and so it follows that (g − 1)2b is annihilated by the element gr−1+···+1
g−1 , con-

tradiction since (g − 1)αn corresponds to 1 in the last component under the
F2[x]-module isomorphism.

Now using the exact same reasoning as in Case 1, we can define our function f
on the subspace l corresponding to the Galois equivariant part of the basis for
t and note that that f((g− 1)αn) ≡ f(αq

n +αn) ≡ αq+1
n +αn mod h, this time

using that αn ̸∈ t. Furthermore, since αn ̸∈ t, we can use it to complete our
basis for k+. There are then 2 choices for f(αn), each defining f on all of k+

via the functional equation, and by the proof of Lemma 3.1 implies that we get
a well-defined function in each case.

Hence we just need to check that each function is Galois equivariant. The
proof of equivariance in the case when the αn coefficient is 0 is identical to the
proof in Case 1. Hence we just need to show equivariance in the case where
the αn coefficient is 1. Write a = a′ + α so that a′ ∈ t. Noting that we al-
ready have equivariance on t, we have that σ(f(a)) ≡ σ(f(a′)) + σ(f(α)) +
σ(a′α) ≡ f(σ(a′) + σ(a′)σ(α) + σ(f(α)) mod h. Hence we just need to show
that σ(f(α)) ≡ f(σ(α)) mod h. Note that

f(g(α)) ≡ f(α+ (g − 1)α)) ≡ f(α) + f((g − 1)α) + α(g − 1)α ≡
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f(α) + αq+1 + α+ α(αq + α) ≡ f(α) + α2 + α ≡ f(α) mod h

completing the proof.

Hence in each case, we have 2n Galois equivariant functions for h = t, which
shows that there 2n possibilities for h in each case. Now since the quotient k/t
consists of two cosets and each is fixed (since t itself is), we conclude that there
are 2 fixed points. Hence following the proof of Theorem 4.1, we conclude that
there are precisely 2n+1 extensions, as desired.

With the main theorems proven, we now determine the cohomology of our
subgroups H of O×

K and the quotients O×
K/H since H and thus O×

K/H are
equipped with the structures of G-modules, building off our calculation of fixed
points.

Theorem 5.1

We have that Ĥ0(G,H) ∼= Ĥ1(G,H) ∼= (Z/pZ)b, where pb = |h∩ k1||h∩ t′|/|h|.

Proof. We begin with the exact sequence 1 → H → O×
K → O×

K/H → 1. Taking
cohomology and using the 2-periodicity of cyclic cohomology gives the exact
sequences

Ĥ0(G,O×
K) → Ĥ0(G,O×

K/H) → Ĥ1(G,H) → Ĥ1(G,O×
K)

and
Ĥ1(G,O×

K) → Ĥ1(G,O×
K/H) → Ĥ0(G,H) → Ĥ0(G,O×

K)

Now sinceK/K1 is unramified, Ĥ1(G,O×
K) vanishes by Hilbert 90 and Ĥ0(G,O×

K)
vanishes since NmK/K1

(O×
K) = O×

K1
. Thus the exact sequences become

1 → Ĥ0(G,O×
K/H) → Ĥ1(G,H) → 1

and
1 → Ĥ1(G,O×

K/H) → Ĥ0(G,H) → 1

inducing isomorphisms Ĥ0(G,O×
K/H) ∼= Ĥ1(G,H) and Ĥ1(G,O×

K/H) ∼= Ĥ0(G,H).
As O×

K/H is a finite G-module and G is cyclic, the theory of the Herbrand

quotient implies that h(O×
K/H) = 1, which shows that |Ĥ1(G,O×

K/H)| =

|Ĥ0(G,O×
K/H)|. We now compute |Ĥ0(G,O×

K/H)| explicitly. Note that

|Ĥ0(G,O×
K/H)| = |(O×

K/H)G|/|NmK/K1
(O×

K/H)|

We have shown that |(O×
K/H)G| = q|h ∩ t′|/|h|, and so it remains to compute

NmK/K1
(O×

K/H). Again, we may view this as Trk/k1
(k/h). The number of

elements x ∈ k with Trk/k1
(x) = 0 is |k|/q by surjectivity of Trk/k1

. Thus there

14



are |k||h ∩ k1|/q with image in h, and so this means that q/|h ∩ k1| cosets are
reached, showing that the image has order q/|h ∩ k1|. Hence

|Ĥ0(G,O×
K/H)| = |h ∩ k1||h ∩ t′|/|h|

Now since the O×
K/H is p-torsion, so are Ĥi(G,O×

K/H), and this immediately
implies the claim.
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