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1. Introduction

The Fibonacci sequence, given by F0 = 0, F1 = 1 and Fn+2 = Fn+1 +
Fn, for n ∈ Z≥0, has sparked interest since it was discovered, due to its
abundant and unexpected identities [8]. It is a special case of an integer linear
recurrence sequence, which is a sequence (Gn) satisfying Gn ∈ Z ∀n ∈ Z≥0

and
Gn+k = ck−1Gn+k−1 + ck−2Gn+k−2 + · · ·+ c0Gn

for all n ∈ Z≥0, where k ∈ Z>0 and c0, . . . , ck ∈ Z are fixed.
Some higher-order generalizations of the Fibonacci sequence were also

studied, notably the k−bonacci sequence: F
(k)
0 = 0, F

(k)
1 = F

(k)
2 = · · · =

F
(k)
k−1, and for n ≥ 0,

F
(k)
n+k = F

(k)
n+k−1 + · · ·+ F (k)

n .

In [11], R.S. Melham proved novel identities for the tribonacci (3-bonacci)
and for the tetranacci (4-bonacci) sequences, denoted by (pn)n and (qn)n,
respectively. Some of them are

q2n+6+q2n+5+2q2n+4+2q2n+3−2q2n+2+q2n+1−q2n = 46q2n+70q2n+1+82q2n+2+88q2n+3

pm+3pn+3 + pm+2pn+2 + pm+1pn+1 − pmpn = 2pm+n + 3pm+n+1 + 3pm+n−2.
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He also exhibited a method to generate new ones, even for more general
integer linear recurrence sequences. In this context, we are interested in
determining whether or not identities like these can have arbitrarily large
degree.

Previously, authors have shown that under certain conditions, linear re-
currence identities cannot have large degree. Marques and Togbé [6] showed
that sums of consecutive powers (with exponent at least 3) of Fibonacci
numbers cannot fall back in the Fibonacci sequence infinitely many times.
Chaves, Marques and Togbé proved that, under certain conditions, sums of
powers of elements of integer linear recurrence sequences have bounded de-
gree. We try to extend those boundedness results to identities involving two
sequences and multiplication of terms with different indices, building upon
previous work in collaboration with Carlos Gustavo Moreira and Ana Paula
Chaves.

Our main result is the following:

Theorem 1. Let M be a positive integer, (Gn)n and (Hn)n be integer linear
recurrence sequences with nonzero terms and simple dominant roots α and
β, respectively. Then, there exists an effectively computable constant E such
that the following holds: If k ∈ Z>0, s ∈ Z>0, R(x0, . . . , xk) is a multinomial
with integer coefficients and degree at most s − 1, 0 ̸= c0, c1 . . . , ck = 1 are
integers with modulus at most M , and

R(Gni
, . . . , Gni+k) + c0G

s
ni
+ · · ·+ ck−1G

s
ni+k−1 +Gs

ni+k ∈ (Hn)n

for infinitely many ni ∈ Z>0, then s is at most E. (Note here that E does
not depend on k)

Here, a linear recurrence sequence (Gn)n is said to have a dominant root
α if α is a root of its characteristic polynomial with modulus bigger than all
other roots.

2. Auxiliary results

Lemma 1 (Matveev’s theorem). Let α1, α2, α3 be real algebraic numbers
and let b1, b2, b3 be non-zero integer rational numbers. Define

Λ = αb1
1 α

b2
2 α

b3
3 − 1.

Let D be the degree of the number field Q(α1, α2, α3) over Q and let A1, A2, A3

be positive real numbers which satisfy
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Aj ≥ max{Dh(αj), | logαj|, 0.16}, for j = 1, 2, 3.

Assume that B ≥ max{|bj|; 1 ≤ j ≤ 3}. Define also

C1 = 1.4× 306 × 34.5 ×D2 log(eD)

If Λ ̸= 0, then
|Λ| > exp(−C1A1A2A3 log(eB)).

In the previous statement, the logarithmic height of a degree n algebraic
number τ is defined as

h(τ) =
1

n
(log |a|+

n∑
j=1

logmax{1, |τ (j)|}),

where a is the leading coefficient of the minimal polynomial of τ (over Z)
and (τ (j))1≤j≤n are the (Galois) conjugates of τ .

Lemma 2. Let α > 1, g, h ̸= 0 be algebraic. Let also a ∈ Z>0, ζ = α
1
a . Let

also M > 0 be a positive integer. Then there exists an effectively computable
constant E such that if k ∈ Z>0 and c0, . . . , ck−1 integers with modulus at
most M satisfying

hζt = gs(c0 · · ·+ ck−1α
s(k−1) + αsk)

for some positive integer s and integer t, then s < E.

This is a corollary from the proof of Chaves-Moreira-N. theorem in [12].

3. The proof of Theorem 1

The proof outline is as follows: first, we will give asymptotic estimates for
R(Gni

, . . . , Gni+k), and use Matveev’s theorem to prove that β is a positive
rational power of α. Then, we will (after some manipulations) take limits as
ni goes to infinity, arriving at a ”Diophantine” equation with algebraic num-
bers. Eliminating one edge case will reduce our main result to the equation
in Lemma 2, concluding the proof.

Before delving into specific cases, let’s make some remarks on the asymp-
totic behavior of (Hn)n and (Gn)n. Let Q(x0 . . . , xk) = R(x0, . . . , xk)+c0x

s
0+

· · ·+ ck−1x
s
k−1 + xs

k. Write

R(Gni
, . . . , Gni+k) + c0G

s
ni
+ · · ·+ ck−1G

s
ni+k−1 +Gs

ni+k = Hti (1)
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For some sequences (ni)i, (ti)i of positive integers, and (ni)i increasing.
We also denote s = degR. Note that from the theory of linear recurrences,
we can write, for some polynomials gj,

Gn = gαn +
∑

gj(n)α
n
j = gαn(1 +O(γn

1 )) = gαn exp(O(γn
1 ))

for some positive real γ1 < 1, and we assume without loss of generality
γ1 >

1
α
. Similarly, if 1 > γ > max( 1

α
, γ1) is chosen to be close enough to 1,

Hn = hβn exp (O(γn)) (2)

and
Gn = gαn exp (O(γn)). (3)

3.1. Proof that β rational power of α

We compute

Q(Gni
, . . . , Gni+k) =

∑
a0+a1+···+ak≤s

ra0,...,akG
a0
ni
. . . Gak

ni+k

=
∑

a0+a1+···+ak≤s

ra0,...,ak

k∏
j=0

[gajαaj(ni+j) exp(O(γni))]

=
∑

a0+a1+···+ak≤s

ra0,...,akg
∑

ajα
∑

aj(ni+j) exp (kO(γni))

Let r be maximum such that u =
∑

a0+a1+···+ak=r ra0,...,akg
∑

ajα
∑

ajj is non-
zero. This necessarily exists as if Q(Gni

, . . . , Gni+k) = 0, Hti = 0, contradict-
ing our hypothesis.

Q(Gni
, . . . , Gni+k) = exp (O(γni))αnir

[ ∑
a0+a1+···+ak=r

(ra0,...,akg
∑

ajα
∑

ajj) +O(α−ni)

]
.

Q(Gni
, . . . , Gni+k) = uαnir exp kO(γni)(1 +O(α−ni))

= uαnir expO(γni) exp(O(α−ni))

= uαnir exp (O(γni)),
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because γ > 1
α
. Note that since this is eventually increasing, Hti ∼ hβti must

be eventually increasing, so we can assume without loss of generality that
(ti)i is increasing.

=⇒ hu−1βtiα−nir = exp(O(γni)) = 1 +O(γni) (4)

This gives us

ti = nir
lnα

ln β
+

ln(uh−1)

ln β
+O(γni) = O(ni).

Then, we apply Matveev’s theorem, for α1 = hu−1, α2 = β, α3 = −nir,
b1 = 1, b2 = ti, b3 = −nir, and

Λ = hu−1βtiα−nir − 1.

The b′is are nonzero and the αi’s are algebraic, so this gives us that either
Λ = 0 or there exist constants C1, A1, A2, A3 such that

(eB)−C1A2A2A3 < |Λ| = O(γni)

=⇒ O(ni) = eB > O(γniC1A2A2A3)−1

O(niγ
niC1A2A2A3) > 1,

which does not hold for large ni. Hence, we must actually have hβti = uαnir

for all sufficiently large i. Dividing the equations for i + 1 and i, we get

β = α
r
ni+1−ni
ti+1−ti , as desired. In particular, taking ζ = α

1
ti+1−ti yields that there

exist a, b ∈ Z>0 such that α = ζa, β = ζb.

3.2. Estimating equation (1) as ni → ∞.

In a similar manner as before, we get by denoting v = (c0 + c1α
s + · · ·+

ck−1α
s(k−1) + αsk)gs that

Q(Gni
, . . . , Gni+k) = exp (O(γni))αnis

[
v +

∑
a0+a1+···+ak<r

ra0,...,akg
∑

ajα
∑

aj(ni+j)−nis

]
.

Note that each term of
∑

a0+a1+···+ak<s ra0,...,akg
∑

ajα
∑

aj(ni+j)−nis is exponen-
tially decaying, so this goes to zero as ni → ∞. Equating this estimate for
Q(Gni

, . . . , Gni+k) with our estimate for Hn, we get

exp (kO(γni))αnis

[
v +

∑
a0+a1+···+ak<s

ra0,...,akg
∑

ajα
∑

aj(ni+j)−nis

]
= hβti exp (O(γti))
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Substituting α and β by powers of ζ,

exp (kO(γni))ζanis

[
v +

∑
a0+a1+···+ak<s

ra0,...,akg
∑

ajα
∑

aj(ni+j)−nis

]
= hζbti exp (O(γti))

ζbti−anis = exp (kO(γni) +O(γti))h−1

[
v +

∑
a0+a1+···+ak<s

ra0,...,akg
∑

ajα
∑

aj(ni+j)−nis

]
→ vh−1

as i → ∞. If v = 0,

c0 + · · ·+ ck−1α
s(k−1) = −αsk

=⇒ |αsk| ≤ M(1 + αs + · · ·+ αs(k−1)) = M
αs(k−1)+1 − 1

α− 1
< M

αs(k−1)+1

α− 1

αs−1 <
M

α− 1

s ≤ 1 + logα
M

α− 1
.

Now, if vh−1 ̸= 0, there exists an integer t such that

ζt = vh−1.

hζt = gs(c0 + · · ·+ ck−1α
s(k−1) + αsk)

Then, we are done by Lemma 2. □
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