Caltech Home > PMA Home > Calendar > Applied Physics Seminar
open search form
Tuesday, October 29, 2013
4:00 PM - 5:00 PM
Watson 104

Applied Physics Seminar

ENZ and MNZ Phenomena
Nader Engheta, H. Nedwill Ramsey Professor, University of Pennslyvania,
Speaker's Bio:
Nader Engheta is the H. Nedwill Ramsey Professor at the University of Pennsylvania with affiliations in the Departments of Electrical and Systems Engineering, Bioengineering, Physics and Astronomy, and Materials Science and Engineering. He received his B.S. degree from the University of Tehran, and his M.S and Ph.D. degrees from Caltech. Selected as one of the Scientific American Magazine 50 Leaders in Science and Technology in 2006 for developing the concept of optical lumped nanocircuits, he is a Guggenheim Fellow, an IEEE Third Millennium Medalist, a Fellow of IEEE, American Physical Society (APS), Optical Society of America (OSA), American Association for the Advancement of Science (AAAS), and SPIE-The International Society for Optical Engineering, and the recipient of 2013 Inaugural SINA Award in Engineering, 2013 Benjamin Franklin Key Award, 2012 IEEE Electromagnetics Award, 2008 George H. Heilmeier Award for Excellence in Research, the Fulbright Naples Chair Award, NSF Presidential Young Investigator award, the UPS Foundation Distinguished Educator term Chair, and several teaching awards including the Christian F. and Mary R. Lindback Foundation Award, S. Reid Warren, Jr. Award and W. M. Keck Foundation Award. His current research activities span a broad range of areas including metamaterials, nanophotonics, graphene optics, imaging and sensing inspired by eyes of animal species, optical nanoengineering, microwave and optical antennas, and engineering and physics of fields and waves. He has co-edited (with R. W. Ziolkowski) the book entitled "Metamaterials: Physics and Engineering Explorations" by Wiley-IEEE Press, 2006. He was the Chair of the Gordon Research Conference on Plasmonics in June 2012.

Materials and structures with extreme values of relative permittivities or permeability, e.g., epsilon-near-zero (ENZ) and mu-near-zero (MNZ) materials, exhibit unique wave properties such as refractive index being near zero, resulting in essentially uniform phase and very long apparent wavelengths in such ENZ platforms.  We have introduced and developed this concept, and have been exploring their impacts when they are merged with other platforms such as nanophotonics. We have shown ENZ-based enhanced tunneling through ultranarrow channels and bends with arbitrary shapes and forms, enhancement of radiation of optical emitters within ENZ-based and MNZ-based guided structures, phase front engineering, and confinement of highly intense optical fields in elongated regions. In this talk, I will give an overview of the ENZ- and MNZ-based phenomena, and will discuss exciting potentials and future ideas and possibilities.

For more information, please contact Tiffany Kimoto by phone at 3330 or by email at [email protected].