Caltech Home > PMA Home > Calendar > LIGO Seminar
open search form
Thursday, February 10, 2022
1:00 PM - 2:00 PM

LIGO Seminar

Modeling the engines of multi-messenger gravitational wave events

Speaker: Elias Most

Modeling the engines of multi-messenger gravitational wave events

Announcing the dawn of a new era of multi-messenger astrophysics, the gravitational wave event GW170817 – involving the collision of two neutron stars – was detected in 2017. In addition to the gravitational wave signal, it was accompanied by electromagnetic counterparts providing new windows into the different physics probed by the system. Since then, several gravitational wave events involving neutron stars have been discovered, with many more expected over the next years.

In order to understand and interpret the physics of these events, it is necessary to model the intricate dynamics of such systems before, during and after the merger, including the amplification of strong magnetic fields and the formation of hot and dense nuclear matter. Due to its strong non-linear nature, a modeling of the post-merger phase will only be possible with cutting-edge numerical approaches that combine strong gravity, nuclear physics and plasma astrophysics.

In this talk, I will discuss recent advances in the multi-physics modeling of a neutron star coalescence. As particular examples, I will show how future gravitational wave detections of the post-merger phase might allow to systematically uncover the properties of hot dense matter. I will then discuss the role that magnetic fields play after the merger, and will introduce novel approaches to relativistic plasmas, which are able to capture their dissipative properties. Lastly, I will show how cutting-edge numerical simulations can help to uncover new mechanisms for the production of radio and X-ray precursors emitted shortly before the collision of two neutron stars. I will conclude by discussing how such a multi-physics approach will enable a next generation modeling of the engines of multi-messenger gravitational events.

Zoom link: